单项式乘多项式练习试题[含答案]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单项式乘多项式练习题

一.解答题(共18小题)

1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.

2.计算:

(1)6x2•3xy (2)(4a﹣b2)(﹣2b)

3.(3x2y﹣2x+1)(﹣2xy)

4.计算:

(1)(﹣12a2b2c)•(﹣abc2)2= _________ ;

(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= _________ .

5.计算:﹣6a•(﹣﹣a+2) 6.﹣3x•(2x2﹣x+4)

7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2 8.(﹣a2b)(b2﹣a+)

9.一条防洪堤坝,其横断面是梯形,上底宽a米,下底宽(a+2b)米,坝高米.

(1)求防洪堤坝的横断面积;

(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?

10.2ab(5ab+3a2b) 11.计算:.

12.计算:2x(x2﹣x+3) 13.(﹣4a3+12a2b﹣7a3b3)(﹣4a2)= _________ .

14.计算:xy2(3x2y﹣xy2+y) 15.(﹣2ab)(3a2﹣2ab﹣4b2)

16.计算:(﹣2a2b)3(3b2﹣4a+6)

17.某同学在计算一个多项式乘以﹣3x2时,因抄错运算符号,算成了加上﹣3x2,得到的结果是x2﹣4x+1,那么正确的计算结果是多少?

18.对任意有理数x、y定义运算如下:x△y=ax+by+cxy,这里a、b、c是给定的数,等式右边是通常数的加法及乘法运算,如当a=1,b=2,c=3时,l△3=1×l+2×3+3×1×3=16,现已知所定义的新运算满足条件,1△2=3,2△3=4,并且有一个不为零的数d使得对任意有理数x△d=x,求a、b、c、d的值.

参考答案与试题解析

一.解答题(共18小题)

1.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣ab2﹣2,其中a=﹣2,b=2.

考点:整式的加减—化简求值;整式的加减;单项式乘多项式.

分析:先根据整式相乘的法则进行计算,然后合并同类项,最后将字母的值代入求出原代数式的值.

解答:解:原式=2a2b+2ab2﹣2a2b+2﹣ab2﹣2

=(2a2b﹣2a2b)+(2ab2﹣ab2)+(2﹣2)

=0+ab2

=ab2

当a=﹣2,b=2时,

原式=(﹣2)×22=﹣2×4

=﹣8.

点评:本题是一道整式的加减化简求值的题,考查了单项式乘以多项式的法则,合并同类项的法则和方法.

2.计算:

(1)6x2•3xy

(2)(4a﹣b2)(﹣2b)

考点:单项式乘单项式;单项式乘多项式.

分析:(1)根据单项式乘单项式的法则计算;

(2)根据单项式乘多项式的法则计算.

解答:解:(1)6x2•3xy=18x3y;

(2)(4a﹣b2)(﹣2b)=﹣8ab+2b3.

点评:本题考查了单项式与单项式相乘、单项式与多项式相乘,熟练掌握运算法则是解题的关键.

3.(3x2y﹣2x+1)(﹣2xy)

考点:单项式乘多项式.

分析:根据单项式乘多项式的法则,用单项式乘多项式的每一项,再把所得的积相加,计算即可.

解答:解:(3x2y﹣2x+1)(﹣2xy)=﹣6x3y2+4x2y﹣2xy.

点评:本题考查单项式乘多项式的法则,熟练掌握运算法则是解题的关键,本题一定要注意符号的运算.

4.计算:

(1)(﹣12a2b2c)•(﹣abc2)2= ﹣a4b4c5;

(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2)= ﹣6a3b3+8a2b4+10a2b3+2ab2.

考点:单项式乘多项式;单项式乘单项式.

分析:(1)先根据积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘;单项式乘单项式,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式的法则计算;

(2)根据单项式乘多项式,先用单项式去乘多项式的每一项,再把所得的积相加的法则计算即可.

解答:

解:(1)(﹣12a2b2c)•(﹣abc2)2,

=(﹣12a2b2c)•,

=﹣;

故答案为:﹣a4b4c5;

(2)(3a2b﹣4ab2﹣5ab﹣1)•(﹣2ab2),

=3a2b•(﹣2ab2)﹣4ab2•(﹣2ab2)﹣5ab•(﹣2ab2)﹣1•(﹣2ab2),

=﹣6a3b3+8a2b4+10a2b3+2ab2.

故答案为:﹣6a3b3+8a2b4+10a2b3+2ab2.

点评:本题考查了单项式与单项式相乘,单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号的处理.

5.计算:﹣6a•(﹣﹣a+2)

考点:单项式乘多项式.

分析:根据单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.

解答:

解:﹣6a•(﹣﹣a+2)=3a3+2a2﹣12a.

点评:本题主要考查单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意运算符号.

6.﹣3x•(2x2﹣x+4)

考点:单项式乘多项式.

分析:根据单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加,计算即可.

解答:解:﹣3x•(2x2﹣x+4),

=﹣3x•2x2﹣3x•(﹣x)﹣3x•4,

=﹣6x3+3x2﹣12x.

点评:本题主要考查单项式与多项式相乘的运算法则,熟练掌握运算法则是解题的关键,计算时要注意运算符号.7.先化简,再求值3a(2a2﹣4a+3)﹣2a2(3a+4),其中a=﹣2

考点:单项式乘多项式.

分析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.

解答:解:3a(2a2﹣4a+3)﹣2a2(3a+4)

=6a3﹣12a2+9a﹣6a3﹣8a2=﹣20a2+9a,

当a=﹣2时,原式=﹣20×4﹣9×2=﹣98.

点评:本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.

8.计算:(﹣a2b)(b2﹣a+)

考点:单项式乘多项式.

专题:计算题.

分析:此题直接利用单项式乘以多项式,先把单项式乘以多项式的每一项,再把所得的积相加,利用法则计算即可.

相关文档
最新文档