近世代数基础1

合集下载

近世代数基础 张禾瑞 答案

近世代数基础 张禾瑞 答案

《近世代数》单元测试(群论部分)
学号_________________ 姓名_______________ 成绩__________________
一、 (15%)在全体n 阶矩阵集合)(R M n 中定义二元关系“~”:⇔B A ~存在可逆矩阵
P ,使得B AP P =-1。

证明:
“~”是一个等价关系。

二、 (15%)设R 为实数域,令R c b a a b a c b a G ∈⎪⎪⎪⎭
⎫ ⎝⎛=,,|000{ 且0≠a }。

证明G 关于矩
阵的乘法构成群。

三、 (15%)设}0,,|10{≠∈⎥⎦⎤⎢⎣⎡=r Q s r s r G 对于矩阵乘法构成群,}|101{Q s s H ∈⎥⎦
⎤⎢⎣⎡=,其中Q 是有理数域,证明:H 是G 的不变子群,且*≅Q H G
,其中*Q 是非零有理数的乘法群。

四、 (15%)设G 和G 是两个有限循环群,它们的阶分别是m 和n ,证明:G 和G 同态当且
仅当m n |。

五、 (15%)若A 、B 是群G 的两个不变子群,且AB G =,证明:若
B b A a ba ab ∈∈∀=,,,则G 是直积B A ⨯的一个满同态象。

六、 (15%)设G 和G 是两个有限循环群,它们的阶分别是m 和n ,证明:G 和G 同态
当且仅当m n |。

七、 (10%)设G G f →:是满同态,G b a ∈,,证明:bK aK b f a f =⇔=)()(,其
中Kerf K =。

近世代数基础课件

近世代数基础课件
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例

近世代数笔记

近世代数笔记

近世代数笔记世代数,也称为代数学,是数学中的一个重要分支,研究代数结构及其上的操作。

在近代数学发展中,代数学作为数学的基础学科,发挥着重要作用。

以下是一些关于近世代数的笔记:一、代数结构代数结构是代数学中的一个重要概念,指具有某种代数运算的数学结构。

常见的代数结构包括群、环、域等。

群是一种具有封闭性、结合律、单位元和逆元的代数结构;环是一种具有加法和乘法运算的代数结构;域是一种具有加法、乘法、单位元和逆元的代数结构。

研究代数结构可以帮助我们更深入地理解数学中的抽象概念和结构。

二、线性代数线性代数是代数学的一个重要分支,研究向量空间及其上的线性变换和矩阵。

线性代数在科学和工程领域有着广泛的应用,如解线性方程组、求特征值和特征向量、研究线性映射等。

掌握线性代数知识可以帮助我们更好地理解和应用代数学中的相关概念。

三、代数方程代数方程是代数学中的一个重要内容,研究方程及其根的性质和解法。

在代数方程中,常见的问题包括一元多项式方程的解法、代数方程组的求解、代数方程的根与系数之间的关系等。

通过学习代数方程,我们可以更好地理解和应用代数学中的代数概念和方法。

四、代数拓扑代数拓扑是代数学和拓扑学的交叉领域,研究代数结构与拓扑结构的关系。

代数拓扑在数学中有着重要的地位,如同调理论、同伦论、拓扑群等都是代数拓扑的经典应用。

通过学习代数拓扑,我们可以更深入地理解代数学和拓扑学的交叉点,为数学研究提供新的视角和方法。

总之,代数学作为数学的基础学科,对于数学的发展和应用具有重要意义。

通过学习代数学,我们可以更好地理解和应用数学中的抽象概念和方法,为数学研究和实际应用提供新的思路和途径。

希望以上的笔记内容可以帮助大家更好地理解近世代数的相关知识。

第1章近世代数基本概念汇总

第1章近世代数基本概念汇总
2018/10/13
引言 近世代数理论的两个来源
有理运算以及开方的方法求出它的所有根,什么条件之下不能 求根。 最终解决这一问题的是法国年青数学家Galois(1811-
1832),Galois引入了扩域以及群的概念,并采用了一种全新 的理论方法发现了高次代数方程可解的法则。在Galois之后群 与域的理论逐渐成为现代化数学研究的重要领域,这是近世代 数产生的一个最重要的来源。
An到D的一个n元映射。 一的d D,则称 是A1 A2
d叫做(a1 , a2 ,
an )在之下的象; (a1, a2 ,
an ) d (a1, a2 ,
an )叫做d 在下
an )
的一个逆象(原象). 用符号表示:
: (a1, a2 ,
2018/10/13
§2 映射
A1 , A2 ,, An 的并和交分别记为:
n i 1
Ai A1
n
A2
n
An ,
i 1
Ai A1
A2
An .
x x
2018/10/13
i 1 n i 1
Ai Ai , x Ai . Ai Ai , x Ai .
§1 集合
集合的差运算: A B {x | x A但x B} 即A-B是由一切属于A但不属于B 的元素所组成。
则 不是一个A B到D的映射.
例5 设A=D=R. 定义
: a a, 若是 a 1
1 b, 这里 b2 1 则不是一个A到D的映射.
§2 映射
映射定义要注意以下几点:
1) 集合 A 1, A 2,
2) A1 , A2 ,
, An , D 可以相同;

近世代数基础PPT课件

近世代数基础PPT课件

来说四元数的发现使人们对于数系的代数性质的认识提高了
一大步。四元数代数也成为抽象代数研究的一个新的起点,
它是近世代数的另一个重要理论来源。
返回
16
(3)Kummer理想数的发现
17世纪初法国数学家费马(P.Fermat 1601-1665) 研究整数方程时发现当n≥3时,方程 xn+yn=zn 没有正整数解,费马认为他能够证明这个 定理,但是其后的三百多年中人们研究发现这是一 个非常困难的问题,这一问题被后来的研究者称为 费马问题或费马大定理,此定理直到1995年才被英 国数学家A.Wiles证明。对费马问题的研究在三个半 世纪内从未间断过,欧拉、高斯等著名数学家都对 此作出过重要贡献。但最重大的一个进展是由 E.Kummer作出的。
18
Kummer方法的前提是形如a+bη的复整数也象 整数一样具有唯一的素因子分解,其中a与b是通 常整数。并不是对于每个整数n,复整数a+bη都具 有唯一分解性,Kummer把这种复整数的因子分解 称为理想数的分解。
14
加罗华
阿贝尔
返回
15
(2)Hamilton四元数的发现
长期以来人们对于虚数的意义存在不同的看法,后来发
现可以把复数看成二元数(a,b)=a+bi,其中i2= -1。二元数按
(a,b)±(c,d)=(a±c,b±d),(a,b)(c,d)=(ad+bc,ac-bd)的法则进行
代数运算,二元数具有直观的几何意义;与平面上的点一一
近 世 代 数
概 述
11
>>
1. 近世代数理论的三个来现 (3) Kummer理想数的发现
下一页
12
(1) 代数方程的解 两千多年之前古希腊时代数学家就能够利用开

近世代数基础-张禾瑞著__课后答案__PPt格式共42页

近世代数基础-张禾瑞著__课后答案__PPt格式共42页
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利
近世代数基础-张禾瑞著__课后答案 __PPt格式

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。
ห้องสมุดไป่ตู้

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
谢谢

近世代数基础课件

近世代数基础课件
1 环的定义 2 环的举例
3 环的初步性质
25
第2讲 特殊元素及性质
1 特殊元素之一—零元、负 元及单位元、逆元、零因子 2 零因子的性质 3 求环中的特殊元素——举例
26
第3讲 环的分类及特殊环的性质
1 特殊环的定义 2 除环的性质 3 有限环的几个相关结论 4 域中元素的计算方法
5 循环环的性质
第7讲 循环群
第8讲 变换群 第9讲 特殊子群

特殊群
第10讲 群的同态与同构 第11讲 群与对称的关系
11
第1讲 代数系统 1 代数系统及子代数系统的定义 2 代数系统的举例
12
第2讲 半群
1 半群、子半群、交换半群的定 义及判定定理 2 半群的举例 3 半群中幂的定义及性质
13
第3讲 群的定义及性质
第11讲 群与对称的关系
1 序言 2 几何对称
3 代数对称
22
第四章
环论
23
第1讲 环的定义及基本性质
第2讲 特殊元素及性质
第3讲 环的分类及特殊环的性质
第4讲 环的特征
第5讲 子环、理想(主理想)及素理想和极大理想
第6讲 环的同态与同构
第7讲 特殊环
第8讲 商域
第9讲 有限域
24
第1讲 环的定义及基本性质
第5讲 等价关系与分类
4
第1讲 基本概念之集合及其之间的关系 —集合
1 集合与集合元素的定义 2 集合与集合元素的表示符号 3 集合与集合元素之间的关系—— 属于关系 4 集合的分类标准及分类 5 集合的表示方法 6 集合之间的内在关系——包含关 系 7 集合运算 8 运算律 9 特殊集合的表示符号 10 集合的补充说明 11 包含与排斥原理

近世代数基础习题课答案到 题

近世代数基础习题课答案到 题

第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

一个集合A 的元素个数用A 表示。

当A 中有有限个元素时,称为有限集,否则称为无限集。

用∞=A 表示A 是无限集,∞<A 表示A 是有限集。

_近世代数基础_学习指导

_近世代数基础_学习指导

-
代数运算是矩阵的加法和乘法. A = R , 其代 数运算是数的加法和乘法. 证明 A ~ A . ( 与例 6 一样, 先找一个 A 到 A 的满射 Υ ,再 看 Υ是否分别保持两个运算). a1 0 a 1 0 证明 Π ∈A , 令 Υ = 0 a2 0 a 2
. 对任意 a ∈A , 存 a 1 , 那么 Υ是 A 到 A 的映射 a 0 a 0 在 ∈A , 使 Υ = a , 所以 Υ 是 0 0 0 0
杨振华
( 陕西师范大学数学与信息科学学院 副教授 西安 710062)
摘 要: 本文通过例题, 谈谈怎样学习 《近世代数》 的基本概念和基本理论问题。 关键词: 要点; 实质; 启发 中图分类号: Q 153 文献标识码: A 文章编号: 1009- 3826 ( 2001) 04- 0092- 03
A~ A .
-
满射 . 又因为 a 1 0 b1 0 + Υ 0 a 2 0 b2 a 1 + b1 0 = Υ 0 a2 + b2 = a 1 + b1 a 1 0 b1 0 = Υ + Υ 0 a 2 0 b2 a 1 0 b1 0 Υ 0 a 2 0 b2 a 1 b1 0 = Υ 0 a 2 b2 = a 1 b1 a 1 0 b1 0 = Υ Υ 0 a 2 0 b2 即 Υ分别保持两个运算, 所以 A ~ A . 例 8 设代数结构 (A , o ) 与 (A , o ) 同态。 证明, 若代数运算 o 适合结合律, 那么 o 也适 合结合律。 ( 由条件知, 已经存在 A 到 A 的同态满 射, 且 Π a, b, c, ∈A , 有 等 式 ( ao b ) o c = ao ( bo c). 现在要证明 Π a , b , c ∈A , 也有等式 (

近世代数的基础知识

近世代数的基础知识

近世代数的基础知识(总19页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。

近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。

近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。

下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。

3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。

“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。

设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。

若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。

若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。

不含任何元素的集合叫空集,空集是任何一个集合的子集。

集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。

例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。

本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ;正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。

近世代数基础习题课答案到 题

近世代数基础习题课答案到 题

第一章 第二章第一章1. 如果在群G 中任意元素,a b 都满足222()ab a b =, 则G 是交换群. 证明: 对任意,a b G ∈有abab aabb =. 由消去律有ab ba =. □2. 如果在群G 中任意元素a 都满足2a e =,则G 是交换群.证明: 对任意,a b G ∈有222()ab e a b ==. 由上题即得. □3. 设G 是一个非空有限集合, 它上面的一个乘法满足:(1) ()()a bc ab c =, 任意,,a b c G ∈.(2) 若ab ac =则b c =.(3) 若ac bc =则a b =.求证: G 关于这个乘法是一个群.证明: 任取a G ∈, 考虑2{,,,}a a G ⋯⊆. 由于||G <∞必然存在最小的i +∈ 使得i a a =. 如果对任意a G ∈, 上述i 都是1,即, 对任意x G ∈都有2x x =, 我们断言G 只有一个元,从而是幺群. 事实上, 对任意,a b G ∈, 此时有:()()()ab ab a ba b ab ==, 由消去律, 2bab b b ==; 2ab b b ==,再由消去律, 得到a b =, 从而证明了此时G 只有一个元,从而是幺群.所以我们设G 中至少有一个元素a 满足: 对于满足i a a =的最小正整数i 有1i >. 定义e G ∈为1i e a -=, 往证e为一个单位元. 事实上, 对任意b G ∈, 由||G <∞, 存在最小的k +∈ 使得k ba ba =. 由消去律和i 的定义知k i =:i ba ba =, 即be b =.最后, 对任意x G ∈, 前面已经证明了有最小的正整数k使得k x x =. 如果1k =, 则2x x xe ==, 由消去律有x e =从而22x e e ==, 此时x 有逆, 即它自身.如果1k >, 则11k k k x x xe xx x x --====, 此时x 也有逆:1k x -. □注: 也可以用下面的第4题来证明.4. 设G 是一个非空集合, G 上有满足结合律的乘法. 如果该乘法还满足: 对任意,a b G ∈, 方程ax b =和ya b =在G 上有解, 证明: G 关于该乘法是一个群.证明: 取定a G ∈. 记ax a =的在G 中的一个解为e . 往证e 是G的单位元. 对任意b G ∈, 取ya b =的一个解c G ∈: ca b =.于是: ()()be ca e c ae ca b ====. 得证.对任意g G ∈, 由gx e =即得g 的逆. □5. 找两个元素3,x y S ∈使得222()xy x y =/.解: 取(12)x =, (13)y =. □6. 对于整数2n >, 作出一个阶为2n 的非交换群.解: 二面体群n D . □7. 设G 是一个群. 如果,a b G ∈满足1r a ba b -=, 其中r 是正整数, 证明: ii i r a ba b -=, i 是非负整数.证明: 对i 作数学归纳. □8. 证明: 群G 是一个交换群当且仅当映射1x x - 是群同构.证明: 直接验证. □9. 设S 是群G 的一个非空集合. 在G 上定义关系 为: ~a b 当且仅当1ab S -∈. 证明: 这个关系是一个等价关系当且仅当S G ≤. 证明: 直接验证. □10. 设n 是正整数. 证明: n 是 的子群且与 同构.证明: 直接验证. □11. 证明: 4S 的子集{(1),(12)(34),(13)(24),(14)(23)}B =是一个子群, 而且B 与4U 不同构. (n U 是全体n 次单位根关于复数的乘法组成的群).证明: 用定义验证B 是4S 的子群. 由于4U 中有4阶元而B 中的元的阶只能是1或2, 所以它们不可能同构. □12.证明: 2n 阶群的n 阶子群必然是正规子群.证明: 用正规子群的定义验证. □13. 设群G 的阶为偶数. 证明: G 中必有2阶元.证明: 否则, G 中的任意非单位元和它的逆成对出现, 从而, G的阶为奇数, 矛盾. □14. 设0110A ⎛⎫= ⎪⎝⎭, 2i 2i 0e e 0n n B ππ-⎛⎫ ⎪= ⎪ ⎪⎝⎭. 证明: 集合 22:{,,,,,,,}n n G B B B AB AB AB =⋯⋯关于矩阵的乘法是一个群, 而且这个群与二面体群n D 同构.证明: n D 有如下的表现: 21,|1,n n D T S T S TS ST -=〈===〉. 作2:GL ()n D ϕ→ : S A , T B . 直接验证ϕ是群单同态,而且im G ϕ=. □15. 设群G 满足: 存在正整数i 使得对任意,a b G ∈都有()k k k ab a b =, 其中,1,2k i i i =++. 证明: G 是一个交换群.证明: 由()i i i ab a b =和111()i i i ab a b +++=得:111()()()()()i i i i i i ab a b ab ab ab a b +++===, 从而, 1i i i i ba b a b +=, 即:i i ba a b =.同理可得: 11i i ba a b ++=. 于是:11()()i i i i a ba ba a b a ab ++===, 即: ab ba =. □16. 在群2()SL 中, 证明元素0110a -⎛⎫= ⎪⎝⎭的阶为4, 元素1101b --⎛⎫= ⎪-⎝⎭的 阶为3, 而ab 的阶为∞.证明: 直接验证. □17. 如果群G 为一个交换群, 证明G 的全体有限阶元素组成一个子群.证明: 设{|()}H g G o g =∈<∞. 显然e H ∈, 从而H 不是空集. 对任意,a b H ∈, 设()o a m =, ()o b n =, 则1()o b n -=;11()()mn m n ab a b e --==, 即: 1ab H -∈. □18. 如果群G 只有有限多个子群, 证明G 是有限群.证明: 首先证明: 对任意a G ∈有()o a <∞. 事实上, 设k a 〈〉为G 的由k a 生成的子群, 其中, 1k ≥是整数. 则242m a a a a 〈〉⊇〈〉⊇〈〉⊇⊇〈〉⊇ . 由于G 只有有限多 个子群, 所以必然存在m 使得2(1)22(2)m m m a a a ++〈〉=〈〉=〈〉= ,即 22(1)m t m a a +=.由消去律即得()o a <∞.于是G 的任意元素都包含在某个有限子群里, 而G 只有有限多个子群, 所以||G <∞. □19. 写出群n D 的全部正规子群.解: 已知: 212121{,,,,1,,,,,,|1},n n n n n D T T T T S ST ST ST S T S T TS ST ---=⋯=⋯〈====〉设H 是n D 的子群. 如果1H =则H 当然是n D 的正规子群.I (1) 设k H T =〈〉. 由于1k k k k ST S ST S SST T H ---===∈和k k TT T T H =∈. 所以k T 〈〉是n D 的正规子群.(2) 设{1,}H S S =〈〉=. 由于SSS S =和12TST ST --=, 所以{1,}H S S =〈〉=是n D 的正规子群当且仅当2n =.(3) 设k H ST =〈〉. 注意到()()1k k ST ST =, 所以{1,}k k H ST ST =〈〉=. 由于1k k TST T ST -=和()k k S ST S ST -=,所以{1,}k k H ST ST =〈〉=是n D 的正规子群当且仅当|2n k .II (1) 设,k k H T T '=〈〉. 则(,')k k H T =〈〉. 归结为I (1)的情形, 从而是n D 的正规子群. 一般地,1212(,,,),,,t t k k k k k k H T T T T ⋯=〈⋯〉=〈〉也是n D 的正规子群.(2) 设,k H S T =〈〉. 由于1k k TT T T -=, 12TST ST --=, k k ST S T -=, 所以,k H S T =〈〉是n D 的正规子群当且仅当存在m ∈ 使得|(2)n mk +. (注: 当1k =时,k n H S T D =〈〉=). 一般地, 设1,,,t k k H S T T =〈⋯〉. 则12(,,,),t k k k H S T ⋯=〈〉, 归结为刚讨论的情形.(3) 设,k k H ST ST '=〈〉. 或者, 更一般地,1212(,,,),,,t t k k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉. 归结为I (3)的情形,即: 1212(,,,),,,t tk k k k k k H ST ST ST ST ⋯=〈⋯〉=〈〉是n D 的正规子群 当且仅当12|2(,,,)t n k k k ⋯.□20. 设,H K 是群G 的子群. 证明: HK 为G 的子群当且仅当HK KH =. 证明: HK 为G 的子群当且仅当111()HK HK K H KH ---===. □21. 设,H K 是群G 的有限子群. 证明: ||||||||H K HK H K =⋂. 证明: 首先, HK 是形如Hk 的不交并; 其中k K ∈. 又, 12Hk Hk =当且仅当112k k K H -∈⋂. 所以, 这样的右陪集共有||||K H K ⋂ 个. 于是: ||||||||K HK H K H =⋂. □ 22. 设,M N 是群G 的正规子群, 证明:(1) MN NM =.(2) MN 是G 的正规子群.(3) 如果{}M N e ⋂=, 那么/MN N 与M 同构.证明: (1) 由1MNM N -⊆得MN NM ⊆. 同理, NM MN ⊆.(2) 由(1)和第20题, MN 确实是子群. 对任意g G ∈有111()()()g MN g gMg gNg MN ---=⊆. 所以MN 是G 的正规子群.(3) 如果mn m n ''=则11(){}m m n n M N e --''=∈⋂=, 从而,m m n n ''==. 即: MN 中的元素可以唯一地写为,,mn m M n N ∈∈的形式. 于是可以定义映射: :MN M σ→为mn m . 由于,M N 都是正规子群, 对任 意,m M n N ∈∈有111()(){}mn nm mnm n M N e ---=∈⋂=, 所 以mn nm =: 即此时, M 中的元素与N 中的元素可交 换. 由此可以验证σ是群同态. 显然σ是满的, 而且 ker N σ=. □23. 设G 是一个群, S 是G 的一个非空子集. 令(){|,}C S x G xa ax a S =∈=∀∈; 1(){|}N S x G x Sx S -=∈=. 证明: (1) (),()C S N S 都是G 的子群.(2) ()C S 是()N S 的正规子群.证明: 直接用定义验证. 以(2)为例. 对任意(),(),c C S n N S s S ∈∈∈,111111()()()()ncn s ncn nc n sn c n ------=. 设1n sn s S -'=∈, 即: 1s ns n -'=. 所以,1111111()()()()ncn s ncn nc n sn c n ns n s -------'===. 此即表明: 1()ncn C S -∈. □24. 证明: 任意2阶群都与乘法群{1,1}-同构. 证明: 设{,}G e a =. 作:{1,1}G σ→-为1e , 1a - . □25. 试定出所有的互不同构的4阶群.解: 设群G 的阶为4. 如果G 有4阶元, 则4G . 如果G 没有4阶元, 则G 的非单位元的阶都为2. 设{,,,}G e a b c =. 考虑第11题中的4S 的子群(Klein 四元群):{(1),(12),(34),(12)(34)}K =. 作映射: :G K σ→为:(1),(12),(34),(12)(34)e b a c . 则σ为群同构. 综上, 在同构意义下, 4阶群只能是4 或Klein 四元群. □26. 设p 是素数. 证明任意两个p 阶群都同构.证明: 只需证明任意p 阶群G 都同构于p . 由Lagrange 定理, G的任意非单位元a 的阶都为p , 从而21{,,,,}p G e a a a -=⋯, 从 而有良定的映射:p G σ→ 为: 1a . 此即为一个群同构.□27. 在集合S =⨯ 上定义(,)(,):(,);(,)(,):(,)a b c d a c b d a b c d ac bd ad bc +=++=++. 证明: S 在这两个运算下是一个有单位元的环. 证明: 直接验证. 零元素为(0,0), 单位元为(1,0). □28. 在 上重新定义加法⊕和 为: :,:a b ab a b a b ⊕==+ . 问 关于这两个运算是否是一个环.解: 不是. 关于⊕不是一个abel 群. □29. 设L 是一个有单位元的交换环. 在L 中定义: :1a b a b ⊕=+-,:a b a b ab =+- . 证明: 在这两个新的运算下, L 仍然是一个环, 且与原来的环同构.证明: 直接验证满足环的定义中的条件. 作:(,,)(,,)L L σ+→⊕ 为:1a a - . 验证σ是环同构. □30. 给出满足如下条件的环L 和子环S 的例子:(1) L 有单位元, 而S 没有单位元.(2) L 没有单位元, 而S 有单位元.(3) ,L S 都有单位元, 但不相同.(4) L 不交换, 但S 可交换.解: (1) ;2L S == .(2) 0|,20a L a b b ⎧⎫⎛⎫=∈∈⎨⎬⎪⎝⎭⎩⎭ , 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (3) 0|,0a L a b b ⎧⎫⎛⎫=∈∈⎨⎬ ⎪⎝⎭⎩⎭, 0|00a S a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . (4) |,,,a L a b b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 0|0a S a a ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭ . 31. 环R 中的一个元L e 为一个左单位元, 如果对任意r R ∈有L e r r =.类似地可定义右单位元. 证明:(1) 如果环R 既有左单位元, 又有右单位元, 则R 有单位元.(2) 如果环R 有左单位元, 没有零因子, 则R 有单位元.(3) 如果环R 有左单位元但没有右单位元, 则R 至少有两个左单位元.证明: (1) 设,L R e e 分别为R 的左, 右单位元. 则L L R R e e e e ==为R的单位元.(2) 设L e 为R 的一个左单位元. 对任意0x R =∈/, 由22()0L xe x x x x -=-=得: L xe x =, 即L e 为R 的一个右单 位元. 由(1)即得.(3) 设L e 为R 的一个左单位元, 由于R 没有右单位元, 所以存在0z R =∈/使得L ze z =/. 令: :L L L f e z ze =+-. 则 L L f e =/且, 对任意r R ∈有0L L L f r e r zr ze r r r =+-=+=, 即: L f 为R 的另一个单位元. □32. 设F 为一个域. 证明: F 没有非平凡的双边理想.证明: 设0I F =⊆/为F 的一个理想. 取0x I =∈/, 有11x x F -=∈, 从而I F =. □33. 设R 是一个交换环, a R ∈.(1) 证明{|}Ra ra r R =∈是R 的一个理想.(2) 举例说明, 如果R 不是交换环, 那么Ra 不一定是一个(双边)理想.证明: (1) 直接验证.(2) 设|,,,a b R a b c d c d ⎧⎫⎛⎫=∈⎨⎬⎪⎝⎭⎩⎭ , 1010a ⎛⎫= ⎪⎝⎭. 则 0|,0r s Ra r s ⎧⎫⎛⎫=∈⎨⎬ ⎪⎝⎭⎩⎭. 显然, Ra 不是一个理想, 比如: 01010101a Ra ⎛⎫⎛⎫=∉ ⎪ ⎪⎝⎭⎝⎭. □34. 设I 为交换环R 的一个理想, 令: rad {|,}n I r I r I n +=∈∈∈ . 证明:rad I 为R 的理想, 称为I 的根.证明: 对任意,rad a b I ∈. 则存在正整数,m n 使得,m n a b I ∈. 由于 ()m n a b I +-∈, 从而rad a b I -∈.对任意rad a I ∈和r R ∈, 存在正整数m 使得m a I ∈. 从而()m m m ra r a I =∈, 即: rad ra I ∈. □35. 设F 为一个有单位元的交换环. 证明: 如果F 没有非平凡理想,则F 是一个域.证明: 对任意0a F =∈/, 由第33题(1)知, Fa 是F 的一个非零理想.由于F 没有非平凡理想, 所以Fa F =. 特别1Fa ∈, 即: 存在 b F ∈使得1ba =. □36. 设 是有理数域, ()n 是全体n 阶 上的矩阵组成的环. 证明:()n 没有非平凡的理想(没有非平凡理想的环称为单环). 证明: 设0I =/为()n 的一个理想. 取0A I =∈/. 则A 至少有一个 非零元素, 设为ij a . 由于I 是一个理想, 所以1ij ij ij ij E AE E I a ⎛⎫=∈ ⎪ ⎪⎝⎭, 其中ij E 表示(,)i j -元为1而其余元为0的基本矩阵. 由基本矩阵的乘法性质, ij jk ik E E E I =∈, 从而ki ik kk E E E I =∈, 1,2,,k n =⋯. 于是单位阵1nn kk k E E I ==∈∑, 从而()n I = . □37. 设R 是一个环, 0a R =∈/. 证明: 如果存在0b R ≠∈使得0aba =, 那么a 是一个左零因子或右零因子.证明: 由于0aba =, 所以, 如果0ba =/则a 是一个左零因子; 如果0ba =, 则a 是一个右零因子. □38. 环的一个元素a 成为幂零的, 如果存在正整数n 使得0n a =. 证明:对于有单位元环R 的任意幂零元a , 1a -是可逆的.证明: 21(1)(1)11n n a a a a a --+++⋯+=-=. □39. 证明: 在交换环中, 全部幂零元素组成一个理想.证明: 用定义直接验证: 在交换环中, 幂零元的差、积仍然幂零.□40. 设R 是有单位元的有限环. 如果,x y R ∈满足1xy =, 证明: 1yx =.证明: 作映射: ::f R R z yz → . 则f 是单射: 事实上, 如果 12yz yz =, 则12xyz xyz =, 即12z z =. 由于R 是有限集, 所以f是满射, 从而存在0z R ∈使得001()f z yz ==. 只需证明:0z x =. 事实上, 00001()()1z z xy z x yz x x ===== . □41. 设R 是一个有单位元的环. 证明: 如果存在,a b R ∈满足1ab =但1ba =/, 那么有无穷多x R ∈使得1ax =.证明: 注意到111()1n n n n a b ba a ab aba a ab ++++-=+-==, n ∈ . 所以只需证明1n n ba a +- (n ∈ )互不相同. 注意到1m m a b aa abb b =⋯⋯=, 对任意m ∈ 都成立.如果11n n k k ba a ba a ++-=-, (n k >). 则11111()0n n k k k k k ba a b ba b a b b b +++++-=-=-=, 即0n k n k ba a b ---=. 如果1n k -=则1ba ab ==, 矛盾.所以1n k ->. 从而10n k n k ba a ----=;11)(10n k n k n k ba a b b a ------=-=, 也得到矛盾. □42. 设R 是满足如下条件的环: R 至少有两个元素而且对任意0a R =∈/都存在唯一的元素b R ∈使得aba a =. 证明:(1) R 没有零因子.(2) bab b =.(3) R 有单位元.(4) R 是一个体.证明: (1) 设0a R =∈/使得0ax =. 由已知, 对于a 有唯一的b R ∈使得aba a =. 于是()a b x a aba +=. 由唯一性, b x b +=, 即: 0x =; 从而a 不是左零因子. 即: R 中的任意非零元都不 是左零因子; 从而R 也没有右零因子.(2) 由于()()a bab a ab aba aba ==, 再由唯一性即得bab b =.(3) 任取0a R =∈/, 取那个唯一的b R ∈使得aba a =. 往证ab就是一个单位元. 对任意0x R =∈/, 取那个唯一的y R ∈ 使得xyx x =. 由(2)有:()0b ab xy x babx bxyx bx bx -=-=-=.由(1), 0ab xy -=. 从而abx xyx x ==, 此即证明了ab 是左 单位元. 保持记号. 类似地有:()0a ba xy x abax axyx ax ax -=-=-=, 从而ba xy =, 于是xab xyx x ==, 此即证明了ab 是右单位元.(4) 由(3)可知, R 的每个非零元都有逆. □43. 设[0,1]C 是[0,1]上的连续函数组成的环. 证明:(1) 对于[0,1]C 的任意非平凡理想I , 都存在一个[0,1]θ∈使得对任意()f x I ∈都有()0f θ=.(2) ()[0,1]f x C ∈是一个零因子当且仅当零点集{[0,1]|()0}x f x ∈= 包含一个开区间.证明: (1) 若不然, 对任意[0,1]θ∈都存在()[0,1]g x C θ∈使得()0g θ=/. 由连续性, 存在一个包含θ的开区间[0,1]J θ⊆使得()g x θ在 J θ上恒为正或恒为负(0J 实际上是左闭右开的; 1J 实际上是左开右闭的). 另一方面, 由开覆盖定理, 存在有限多个i J θ, 使得[0,1]i i J θ=⋃. 定义2():(())ii g x g x θ=∑. 则 ()g x I ∈, 而且()0g x >. 于是11()()g x I g x =∈ , 与I 是非平凡理 想矛盾.(2) “⇒”: 设()f x 是[0,1]C 中的一个零因子: 存在0()[0,1]g x C =∈/使得()()0,[0,1]g x f x x ≡∈. 由于()0g x =/, 所以 存在[0,1]上的开区间J 使得()g x 在J 上恒为正或恒为负; 从而, ()f x 在J 上恒为0.“⇐”: 设存在[0,1]上的开区间J 使得()f x 在J 上恒为0. 作连 续函数()g x 使得: ()g x 在J 上恒不为0, 而在J 上恒为0, 从 而()()0f x g x ≡: 即()f x 是[0,1]C 中的一个零因子. □44. 设p = 为素域. (1) 求环()n 的元素个数.(2) 求群()n GL 的元素个数.(1) 解: 由于2dim ()n n = , 所以()n 的元素个数为2n p .(2) 解: 取定向量空间n 的一个基, 则()n GL 中的元与n 上 的可逆线性变换一一对应, 而可逆线性变换把基映为基. 所以, 只需求n 的基的个数. 注意到n 的元素个数为n p . 任取n 的一 个非零向量1α, 这样的取法有1n p -种. 取2n α∈ 使得12,αα线性 无关. 这样的2α能且只能从1n α-〈〉 中选取. 所以2α的选取方法有n p p -种. 类似地, 取3n α∈ 使得312,,ααα线性无关. 这样的3α 能且只能从12,n αα-〈〉 中选取. 所以3α的选取方法有2n p p -种(因为12,αα〈〉的维数是2). 继续这个过程, 我们得到n 的基的个 数为21()()()n n n n p p p p p p ---⋯-, 此即为所求. □45. 设K 是一个体, 0,a b K =∈/且1ab =/. 证明如下的华罗庚恒等式:1111(())a a b a aba -----+-=.证明: 由提示, 先证明引理: 对任意0,1x K =∈/,1111(1)(1(1))1(1)(((1)))x x x x x x -----+-=-+--11(1)(1)11x x x x x x -=-+--=-+=,所以, 111(1)(1)1x x ----=--成立. 注意到: 原恒等式等价于1111(1)(())a ba a b a -----=+-, 等价于11111(1)()ba a a b a ------=+-. 由引理,111111*********(1)((1)1)(1)((1))ba a a b a a a b a a a a b ----------------=-+=+-=+-111()a b a ---=+- 即为所要的等式. □第二章1. 设G 为有限群, N G , (||,|/|)1N G N =. 证明: 如果元素a G ∈的阶整除||N , 那么a N ∈.证明: 考虑自然满态: :/G G N π→. 记()a a π=. 由于()/o a a e G N =∈, 所以()|()o a o a . 如果()1o a =/, 则((),|/|)1o a G N =/, 矛盾. □2. 设c 为群G 的阶为rs 的元素, 其中(,)1r s =. 证明: c 可以表示成c ab =, 其中()o a r =, ()o b s =, 且,a b 都是c 的幂.证明: 由(,)1r s =知, 存在整数,u v 使得1ur vs +=. 于是1ur vs c c c c ==.令vs a c =和ur b c =. 则()()((),)(,)o c rs rs o a r o c vs rs vs s ====. 同理, ()o b s =. □3. 证明: 如果群G 中的元素a 的阶与正整数k 互素, 那么方程k x a =在 a 〈〉内恰有一解.证明: 设()o a n =. 于是存在整数,r s 使得1rn ks +=. (法一) 作映射::k f a a x x 〈〉→〈〉 . 只需证明f 是双射. 由于||a n 〈〉=<∞, 所以只需证明f 是单射. 若k k x y =, ,x y a ∈〈〉, 则1()1k xy -=. 从而1111()()rn ks s xy xy xy e e ----====, 即x y =.(法二) 首先1()s k rn a a a -==, 即方程k x a =在a 〈〉中有解. 若t a a ∈〈〉也是k x a =的一个解, 那么()t s k a e -=, 从而 1()()t s ks t s rn t s a e a a ----===, 即t s a a =. □4. 设G 是一个群. 证明: 对任意,a b G ∈有()()o ab o ba =. 证明: 注意到, 对任意正整数m , 1()()m m ab a ba b -=, 所以1()()m m ab a ba b e -==当且仅当1111()()m ba a b ba ----==当且仅当 ()m ba e =. □5. 设2n >. 证明: 有限群G 中阶为n 的元素个数是偶数. 证明: 注意到, 对任意g G ∈有1()()o g o g -=, 而且, ()2o g >当且仅当1g g -=/. □6. 证明: 当2n >时有(){}n Z S e =. 即: n S 是交换群当且仅当2n ≤. 证明: 注意到, 对任意n S σ∈和轮换12()r i i i ⋯有11212()(()()())r r i i i i i i σσσσσ-⋯=⋯. 设()n e z Z S =∈/, 则对任意 n S σ∈应该有1z z σσ-=. 不妨设z 分解为互不相交的轮换的乘积(必要的话, 可通过重新编号): (12)(...)...(...)z =⋯. 取 (23)σ=. 则()(1)3z σσ=但(1)2z =, 矛盾. □7. 证明: 有理数加群 的任意有限生成的子群是一个循环群. 证明: 设1212,,,n n n H m m m =〈⋯〉, 其中(,)1i i n m =, 1i ≤≤ . 令 12[,,,]t m m m =⋯ . 则1H t=〈〉. □ 8. 设G 是有限生成的交换群. 证明: 如果G 的这些生成元都是有限 阶的, 那么G 是一个有限群.证明: 设1,,n G a a =〈⋯〉且()i i o a m =. 则G 的任意元素具有形式:1212nt t t n a a a ⋯, 其中1i i t m ≤≤, 从而G 只有有限个元素. □ 9. 对任意群G 和正整数k , 令{|}k k G a a G =∈. 证明: 群G 是循环 群的成分必要条件是G 的任意非单位子群都是形如k G 的集合. 证明: 必要性. 设G g =〈〉. 则G 的任意非单位子群H 具有形式k H g =〈〉, 其中k 是某个正整数. 于是H 中的任意元素具有形 式()()k m m k g g =, 即k H G ⊆. 反之, k G 的任意元素具有形式 ()()m k k m g g =, 于是k H G =.充分性. 考虑12k k G G ≥-⋃.(i) 如果12k k G G ≥-⋃不是空集, 取12k k g G G ≥∈-⋃. 则G g =〈〉是无限循环群. 事实上, g e =/, 从而G 的子群g 〈〉形如k G . 如果2k ≥, 则k k g x G =∈, 与g 的选取矛盾. 所以1g G G 〈〉==. 另外, 如果此时G g =〈〉是有限群, 则2k k G G ≥=⋃, 也得到矛盾.(ii) 现在假设12k k G G ≥-⋃是空集. 则对任意e x G =∈/, 存在正整 数k 使得子群k x G 〈〉=. 若1k =则G x =〈〉是循环群. 特别,存在整数s 使得k s x x =, 此即表明, G 的任意元素都是有限阶的. (To be continued).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

S
1 p

gS
2 p
g
1
(其中S
1 p
,
S p2为sylow
p子群)
8.对{e}≠G,若 G 没有非平凡正规子群,称为单群。
9.交换群 G 是单群⇔ G Z p ,p 为素数。 10.阶数最小的非交换单群是 60 阶的 5 元交代群 A5。
第 8 页 共 29 页
近世代数基础
2.6 群在集上的作用
2.4 同态
第 5 页 共 29 页
近世代数基础
1.设群(G,·)和(H,×),φ 是 G 到 H 的映射,若对 x, y G 有
(x y) (x) (y) 则称 φ 是群(G,·)到(H,×)的同态。当 φ 是单/满射时称 φ 为单/满同态。φ 的像(G 的同态像)为 Im {(x) | x G} H ;φ 的核为 Ker {x G | (x) e,e为H的恒等元} G 。当 φ 为满 同态时 Imφ=H;当 φ 为单同态时 Kerφ={e}。
是双射,且 (1) S T (S) (T ) (2) S G (S) G (3)若 S G 则 G / S G /(S)
2.5 有限群 设有限群 G 的阶为 n,子群 H、元素 a 阶为 m。
1.m|n 且 an=e。 2.设 H 在 G 中不同左陪集的个数为[G:H],称[G:H]为 H 在 G 中的指数,则 n=[G:H]m, 即|G|=|H|[G:H]。若 H G,则|G/H|=t,即|G|=|H||G/H|。
(x y) (y) (x) 则称 φ 是群(G,·)到(H,×)的反同构,称群(G,·)反同构于(H,×),记为 (G,) 1 (H ,) 。反同构关 系具有对称性。
第 2 页 共 29 页
近世代数基础
2.2(群 G 的)子群
1.元素 a 的阶|a|:|a|是使 an e 成立的最小正整数 n。若 n 不存在,则|a|=∞。 注:一般 ab≠ba,但|ab|=|ba|。 2.中心元 a:对 x G有ax xa 。中心元的逆元是中心元,单位元是中心元。记 G 的中 心元全体为 C,是 G 的子群,称为 G 的中心。 3.设 H 为 G 的非空子集,若满足 (1) H H H ,即a,b H有ab H (2) H 1 H ,即a H有a1 H 则称 H 为 G 的子群,记为 H<G。 注:平凡子群:G 和{e}。真子群:不同于 G 的子群。 4.子群的性质 (1)设 H<G,则 G 的运算·也是 H 的运算,且(H,·)也是群。
m
m
若 M 只有一个 G-轨道,即∀m∈M,M=Om,即∀m,n∈M, ∃g∈G,m=gn,称 M 为传递 G-集。
对传递 G-集 M,∃H<G 使 M G / H 。
第 10 页 共 29 页
6.对 S⊂G,定义 N(S)为 G 的正规化子:
N(S) {g G | gSg 1 S}
则 S N<G。若 S G,则 S=N。 7.Sylow 定理:对有限群 G,|G|=psm,(p,m)=1,p 为素数,则
(1)G 中存在 np 个 sylow-p 子群,即阶为 ps 的子群,且 np|m,np≡1(mod p)。若 np=1 则该子群 为 G 正规子群。 (2)G 中所有 sylow-p 子群彼此共轭,即∃g∈G 使
则 H 有 G-集 G/H。 3.对 G-集 M,m∈M,定义 m 的 G-轨道
m 的对称群
Om {gm | g G}
是 G 的子群,且有
Sm {g G | gm m}
第 9 页 共 29 页
近世代数基础
| Om | [G : Sm ], M Om ,| M | | Om |
ቤተ መጻሕፍቲ ባይዱ
5.第二同态定理
G/H G
第 6 页 共 29 页
近世代数基础
对满同态 : G G Im , H Ker ,令 L(G, H ) {N | H N G} L(G ) {N | N G}
则 : L(G, H ) L(G ), S (S) {(s),s S}
第 7 页 共 29 页
近世代数基础
3.对 n 阶循环群 G, m | n , H G, a G , | H || a | m 。
4.对有限交换群 G,|G|=n=pm,p 为素数,则 a G ,| a | p 。
5.对有限交换群 G,则 m | n | G | , H G , | H | m 。
近世代数基础
近世代数基础
第二章 群
2.1 群
1.设·是集合 S 的一个二元运算,若满足 (1)对·封闭,即 a,b S有a b S (2)结合律,即 a,b,c S有(a b) c a (b c) 则称(S,·)为半群。若还满足 (3)有单位元 e,使 a S有a e e a a 则称(S,·)为幺半群。若还满足 (4)有逆元,即 a S,b S使a b b a e 则称(S,·)为群。若还满足 (5)交换律,即 a,b S有a b b a 则称(S,·)为交换群(Abel 群)。 注:I.可以证明群中的单位元和逆元都唯一。群的定义中可以只要求有左单位元和左逆元(或
第 1 页 共 29 页
近世代数基础
右单位元和右逆元)。 II.对半群 G:G 是群⇔ a,b G,方程ax b, ya b在G内有解 2.有限群 G:G 中元素个数是有限的,其元素个数称为 G 的阶|G|。 3.同构(双射同态):设群(G,·)和(H,×),φ 是 G 到 H 的一一对应,若对 x, y G 有 (x y) (x) (y)
第 4 页 共 29 页
近世代数基础
7. 商 群 G/H 为 正 规 子 群 H 的 左 陪 集 群 {aH | a G} , 也 可 是 右 陪 集 群 。 运 算 为 aH bH abH
2.3 生成元集、循环群
1.n 元对称群 Sn,Sn 中所有偶置换全体称为 n 元交代群 An,|Sn|=n!,|An|=n!/2。 2.循环群〈a〉:由一个元素 a 生成的群,是交换群。 有限生成群:由有限个元素生成的群。 3.循环群的分类 (1)若|a|=n<∞,则 a {ai | i 0,1,...,n}同构于 Zn (2)若|a|=∞,则 a {an | n Z} 同构于整数加群 Z 4.子群相关 (1)n 阶群 G 同构于 Sn 的一个子群 (2)群 G 同构于变换群 T(G)的一个子群
5.生成元集 (1)G 中含集 M 的最小子群称为 M 在 G 中生成的子群,记为〈M〉。 (2)设 M⊂H,H<G,〈M〉=H,则称 M 是子群 H 的生成元集。 (3)设 M⊂G,〈M〉=G,则称 M 生成 G,且 M 是群 G 的生成元集。 6.正规子群和特征子群 (1)G 的内自同构记为 Ta:Ta(x)=axa-1,内自同构群记为 Inn(G)。则 Inn(G)为 Aut(G)正规 子群。 (2)正规子群 H:H 在 Inn(G)作用下保持不变,记为 H G。特征子群 H:H 在 Aut(G) 作用下保持不变。特征子群是正规子群,但正规子群不一定是特征子群。平凡子群是特征 子群。交换群的子群都是正规子群。 (3)特征子群具有传递性,即 G 的特征子群 H 的特征子群 K 是 G 的特征子群;正规子 群不具有传递性,即 G 的正规子群 H 的正规子群 K 不一定是 G 的正规子群。 (4)H 是正规子群⇔ a G, aH Ha;M G, MH HM 称 aH 为 H 的左陪集,Ha 为 H 的右陪集。
1.群 G,集合 M,运算 G×M 到 M,即
g G, m M , g m M
且满足
g1, g2 G, m M , g1 (g2 m) (g1g2 ) m 单位元e G,m M , e m m
称 M 为左 G-集。此运算也可以是 mg,gmg-1(共轭作用)等。 2.群 G 本身也是 G-集,因 g1, g2 G, g1g2 G 。对 H G ,定义 G/H 上的作用 g×aH,
反同态:(x y) ( y) (x) 2.同态将单位元映成单位元,逆元映成逆元,即
(e) e,(a1) (a)1 3.设 φ 是群 G 到 H 的同态,则 Im H ; Ker G 4.第一同态定理 (1)对群 G 的正规子群 H, : G G / H , g gH 是 G 到商群 G/H 的满同态,称 φ 为 自然同态。 (2)对满同态 : G G Im ,令 H Ker ,则有
(2)设 Hi<G,则 H Hi 是 G 的子群。
i
(3)设 H<G,K<G,则 I. H K H K {e}
第 3 页 共 29 页
近世代数基础
II. (H K) G H K或K H III. HK G HK KH 其中 HK {hk | h H , k H}
则称 φ 是群(G,·)到(H,×)的同构,称群(G,·)同构于(H,×),记为 (G,) (H ,) 。此时逆映射 φ-1 是 H 到 G 的同构。
注:I.同构关系具有传递性、对称性。 II.同构映单位元到单位元,逆元到逆元。 4.自同构:群(G,·)到自身的同构记为 ϕ。(G,·)的自同构全体记为 Aut(G)。 5.反同构:设群(G,·)和(H,×),φ 是 G 到 H 的一一对应,若对 x, y G 有
相关文档
最新文档