电控燃油喷射式发动机燃料供给系统

合集下载

电控燃油喷射系统的组成及工作原理

电控燃油喷射系统的组成及工作原理

电控燃油喷射系统的组成及工作原理电控燃油喷射系统是现代内燃机车辆中重要的燃油供给系统之一,它采用电子控制单元(ECU)来监测和控制燃油喷射过程。

本文将介绍电控燃油喷射系统的组成和工作原理。

一、组成电控燃油喷射系统主要由以下几个组成部分组成:1. 燃油泵:负责将汽油从油箱中抽取,并通过燃油滤清器过滤后供应给喷油嘴。

2. 电子控制单元(ECU):是系统的核心部件,负责监测和控制燃油喷射过程。

ECU根据传感器提供的各种数据,包括发动机转速、进气量、冷却水温度等,计算出最佳的喷油时间和喷油量,并通过喷油嘴控制燃油的喷射。

3. 传感器:用于监测发动机的运行状态和环境参数,包括进气压力传感器、进气温度传感器、曲轴位置传感器等。

这些传感器将收集到的数据传输给ECU,供其计算出最佳的喷油策略。

4. 喷油嘴:通过ECU的控制,喷射适量的燃油进入发动机燃烧室。

喷油嘴通常是电控式的,可以根据ECU的命令控制喷油时间和喷油量。

5. 燃油供应系统:包括燃油泵、燃油滤清器、燃油压力调节器等。

燃油供应系统负责将燃油供应给喷油嘴,并保持适当的燃油压力。

二、工作原理电控燃油喷射系统的工作原理如下:1. 数据采集:传感器收集发动机运行状态和环境参数的数据,包括发动机转速、进气量、冷却水温度等。

这些数据将被传输给ECU进行处理。

2. 数据处理:ECU根据传感器提供的数据,计算出最佳的喷油策略。

这个策略包括喷油时间和喷油量,旨在实现燃油的最佳利用和发动机性能的最优化。

3. 喷油控制:根据ECU计算出的喷油策略,ECU通过控制喷油嘴的开关来控制燃油的喷射。

喷油嘴根据ECU的命令,以合适的时间和合适的量将燃油喷射进入发动机燃烧室。

4. 燃油供应:燃油泵将汽油从油箱中抽取,并通过燃油滤清器过滤后供应给喷油嘴。

燃油压力调节器可根据需要调节燃油的压力,以保持适当的燃油供应。

5. 燃烧过程:通过喷油嘴喷射的燃油与进入燃烧室的空气混合后,在火花塞的点火下燃烧,释放出能量驱动发动机工作。

电控发动机燃油供给系统的原理与故障诊断

电控发动机燃油供给系统的原理与故障诊断

电控发动机燃油供给系统的原理与故障诊断在现代汽车中,电子控制系统扮演着至关重要的角色。

其中,燃油供给系统是其中一个关键的子系统。

本文将介绍电控发动机燃油供给系统的工作原理和常见的故障诊断方法。

燃油供给系统的工作原理燃油供给系统的基本功能是向发动机提供正确的空气/燃油混合物。

具体而言,这个过程包含以下步骤:1.燃油储存:燃油通常存储在汽车的油箱中。

油箱的底部有一个吸油管,负责把燃油输送到燃油泵。

2.燃油泵:燃油泵是燃油供给系统中最重要的一个组件。

当发动机启动时,燃油泵开始工作,将燃油从油箱中抽取,并将其注入到燃油滤清器中。

然后,燃油被送到燃油喷射器中。

3.发动机控制模块(ECM):ECM是汽车电子控制系统的核心。

它监测发动机的运行状况,并计算出正确的燃油量和空气量的混合物的比例。

然后,ECM向燃油喷射器发送信号,让其在正确的时候释放出适当的燃油量。

4.燃油喷射器:燃油喷射器是燃油供给系统中的另一个重要组件。

它根据 ECM 发出的信号计算出燃油的喷射定时和喷射量。

这些参数的正确性会影响发动机燃烧的效率和发动机的性能。

以上步骤中,燃油泵、ECM和燃油喷射器这三个组件是电控发动机燃油供给系统的核心组成部分。

常见的故障诊断方法燃油供给系统是一个复杂的子系统,可能会出现多种故障。

以下是一些常见的故障和其对应的故障诊断方法:燃油泵故障燃油泵故障的典型症状是发动机无法启动。

如果燃油泵无法为发动机提供足够的燃油,发动机就无法正常工作。

下面是一些可能导致燃油泵故障的原因:•燃油泵电气连接故障•燃油泵马达故障•油箱中的油不足为检查燃油泵是否正常工作,可以使用燃油压力表来测试燃油系统的压力。

压力高于规定的范围通常表明燃油泵失效。

燃油滤清器故障燃油滤清器是保护燃油系统免受污染和异物的重要组件。

当燃油滤清器受到污染或故障时,燃油供给系统的运行可能会受到影响。

以下是一些可能导致燃油滤清器故障的原因:•燃油滤清器过滤元件的污染•燃油滤清器连接管道的堵塞如果燃油供给系统的工作出现问题,可以检查燃油滤清器是否受到污染或其连接管道是否有堵塞。

汽油机电控燃油喷射系统的工作原理

汽油机电控燃油喷射系统的工作原理

汽油机电控燃油喷射系统的工作原理
工作原理如下:
1.燃油供给:燃油泵将汽油从燃油箱中抽取并送至燃油喷嘴。

电喷控
制器通过传感器来感知发动机的工作状态和负荷情况,从而精确计算出发
动机需要的燃油量,并发送给燃油泵控制装置以实现燃油的供给控制。

2.燃油喷射:燃油喷嘴根据电喷控制器的指令,将精确计算出的燃油
量按照合适的喷射时机通过喷油嘴喉喷射到发动机的进气道内。

喷射时机
的控制精确到喷油的角度和喷油的时刻,对不同工况下的发动机有不同的
喷油策略。

3.燃油混合:喷射的燃油在进气道内与空气混合形成可燃混合气,在
汽缸内进行燃烧以释放能量。

通过精确控制燃油的喷射量和喷射时机,汽油机电控燃油喷射系统具
有以下几个优势:
1.提高燃烧效率:电喷系统能够精确控制喷油量,使燃油与空气混合
更加均匀,燃烧更完全,从而提高燃烧效率,减少燃料的浪费。

2.提高动力性能:通过控制喷射时机和喷射量,电喷系统能够实现更
快更准确的燃烧,使发动机的输出动力更加强劲。

3.减少尾气排放:电喷系统能够根据发动机工况实时调整燃油喷射量
和喷射时机,使燃烧更加完全,减少有害物质的产生,从而降低尾气排放。

4.提高稳定性:电喷系统能够通过传感器实时监测发动机的状态和负
荷情况,并根据实时数据进行喷油控制,确保发动机在不同工况下的稳定
运行。

综上所述,汽油机电控燃油喷射系统通过精确控制燃油的喷射量和喷
射时机,实现了高效燃烧和优化燃烧参数的自动调整,从而提高了发动机
的燃油利用率和动力性能,同时减少了尾气排放,使汽车更加环保和节能。

情景一 电控燃油喷射系统组成和基本原理

情景一  电控燃油喷射系统组成和基本原理
4. 减矩断油控制。 装有电控自动变速器的汽车在行驶中自动升档时,ECU 发出减矩信
号,暂时中断个别缸的喷油,以降低发动机转速,从而减轻换档冲击。
5. 反馈控制 汽油喷射系统进行反馈控制的传感器是氧传感器。使用氧传感器的
发动机必须使用无铅汽油。反馈控制(闭环控制)是在排气管上加装氧 传感器,根据排气中氧的含量的变化测定出进入发动机燃烧室混合气的 空燃比值,把它偷入计算机与设定的目标空燃比值进行比较,将误差信 号经放大器控制电磁喷油器喷油量,使空燃比保持在设定目标附近。
作时,第根据二各部传分感器测得的空气流量、进气温度、发动机转速及工作温度等
参数,按预先编制的程序进行运算后与内存中预先存储的最佳工况时的供油 控制参数进行比较和判断,适时调整供油量,保证发动机始终在最佳状态下 工作,使其在输出一定功率的条件下,发动机的综合性能得到提高。模块一 发动总体认识模块三 配气机构
(四)按喷射时间分类 按喷射时间可分为:同时喷射、分组喷射、顺序喷射。 1、同时喷射
发动机在运行期间,所有的喷油器并联连接,电子控制单元根据曲轴位置 传感器送入的基准信号,发出喷油器控制信号,控制功率三极管的导通和截止, 从而控制各喷油器电磁线圈电路同时接通和切断,使各缸喷油器同时喷油。
情景一 电控燃油喷射系统组成和基本原理
在发动机运转过程中,ECU 根据进气量和发动机转速来计算喷油量。此 外,还要参考节气门开度、发动机冷却液温度与进气温度、海拔高度以及怠速 工况、加速工况、全负荷工况等运转参数来修正喷油量,以提高控制精度。
情景一 电控燃油喷射系统组成和基本原理
(二)喷油正时控制 在间歇式电控喷射系统中,当采用顺序喷射时,主电脑不仅要控制
现代电控燃油喷射系统控制方式逐步向独立控制-集中控制-整车控制技术发展。

燃料供给系统工作原理

燃料供给系统工作原理

燃料供给系统工作原理
燃料供给系统是指将燃料从燃料箱输送到发动机,以提供燃烧所需的燃料的系统。

以下是燃料供给系统的工作原理:
1. 燃油泵:燃油泵通过吸入燃料并提高其压力,将燃料从燃料箱推送到燃料滤清器。

2. 燃料滤清器:燃料滤清器移除燃料中的杂质和颗粒物,以保护燃料系统和发动机。

3. 压力调节器:压力调节器监测燃料压力,并保持燃料供给系统中的稳定压力。

它将过剩的燃料返回到燃料箱,以保持恒定的燃料供给。

4. 燃料喷射器/喷油嘴:燃料喷射器是用于向发动机喷射精确量的燃料的设备。

燃料喷射器根据发动机的负载、转速和其他参数,通过控制喷射燃料的时间和量来实现燃烧。

5. 传感器:燃料供给系统通常配备各种传感器,以监测燃料的压力、温度、水平和其他参数。

这些传感器提供信息给发动机控制单元(ECU),以便优化燃烧效率和性能。

总结起来,燃料供给系统的工作原理包括将燃料从燃料箱推送到发动机,同时根据需要控制燃料的压力和喷射量。

这些系统通过使用燃料泵、滤清器、压力调节器、喷射器和传感器等设备,确保发动机得到适量、清洁和稳定的燃料供给。

简述电控燃油喷射系统的工作原理。

简述电控燃油喷射系统的工作原理。

电控燃油喷射系统是现代内燃机的燃油供给系统,它采用电子控制单元(ECU)来精确控制喷油量和喷油时机,从而实现燃油的高效燃烧,提高发动机的动力性能和燃油经济性。

下面将从工作原理、组成部分和优点几个方面进行详细介绍。

一、工作原理1. 燃油供给:工作原理首先是燃油供给。

燃油从汽车油箱经过燃油泵被送至高压油路。

在高压油路和喷油嘴之间有一个燃压调节阀,它能够调节燃油的高压状态,保证燃油喷射系统的正常工作。

2. 压力调节:喷油泵生成的高压燃油会根据需要的燃烧量通过高压油路输送至喷油嘴。

ECU会控制燃油的喷射时间和喷油嘴的打开与关闭,根据发动机转速、负荷和气缸温度等参数进行调节。

3. 喷油处理:喷油系统的喷油嘴会把高压的燃油雾化成微小的颗粒喷射到气缸内混合空气当中,形成可燃气雾。

二、组成部分1. 燃油泵:用于从油箱中抽取燃油,然后将其输送到高压油路。

2. 高压油路:主要起到燃油输送和储存的作用。

3. 喷油嘴:负责将燃油雾化并喷射到发动机气缸内,与空气充分混合。

4. 电子控制单元(ECU):作为整个系统的控制中心,负责监控和调节喷油量、喷油时机,以及其他相关参数。

三、优点1. 节能环保:相比传统的化油器供油系统,电控燃油喷射系统能够更加精确地控制燃油喷射量和喷射时机,从而实现更加充分的燃烧,提高燃油利用率,减少尾气排放。

2. 动力性能好:由于燃烧更加充分,电控燃油喷射系统能够为发动机提供更加充足和稳定的动力输出。

3. 故障诊断简便:电控燃油喷射系统具有自我诊断功能,当系统出现故障时,ECU会存储相应的故障码,便于技师迅速定位和解决问题。

总结:电控燃油喷射系统的工作原理包括燃油供给、压力调节和喷油处理三个方面,主要由燃油泵、高压油路、喷油嘴和电子控制单元等组成部分构成。

相比传统供油系统,它具有节能环保、动力性能好和故障诊断简便等优点。

随着汽车技术的不断发展,电控燃油喷射系统也将会在未来得到更加广泛的应用和发展。

电控燃油喷射系统的工作原理虽然简单易懂,但其背后的技术原理和优化还有很多深奥之处。

电控汽油喷射系统的功用、构造及工作原理

电控汽油喷射系统的功用、构造及工作原理

电控汽油喷射系统的功用、构造及工作原理电控汽油喷射系统作为一种先进的汽车燃油供给系统,具有很多优点和功能。

它不仅可以提高汽车的燃油经济性和动力性能,还可以减少废气排放和改善环境质量。

本文将对电控汽油喷射系统的功用、构造和工作原理进行详细介绍。

电控汽油喷射系统的主要功能是根据发动机工作条件和驾驶需求,精确控制汽油的供给量和喷射时间,以实现最佳的燃烧效果。

它可以根据不同的工作条件,灵活调整喷油量和喷油方式,从而提高发动机的燃油经济性和动力性能。

电控汽油喷射系统的构造主要包括燃油泵、燃油滤清器、油箱、压力调节器、喷油嘴和电控单元等组成部分。

燃油泵负责将汽油从油箱中抽取并送至发动机燃油系统中。

燃油滤清器则用于过滤汽油中的杂质,保持喷油嘴的正常工作。

油箱则存放汽油,供应给燃油泵。

压力调节器是控制燃油供应压力的关键部件,它根据发动机工作条件和驾驶需求,自动调节燃油的供给压力,以确保喷油嘴正常工作。

喷油嘴则是将燃油喷射到发动机气缸中的装置。

电控单元是电控汽油喷射系统的核心部件,它通过传感器检测发动机和驾驶员的需求,并通过控制电磁阀来精确控制喷油嘴的工作。

电控汽油喷射系统的工作原理是,首先电控单元通过传感器监测发动机的工作状态,包括转速、负荷、冷却液温度和进气温度等参数。

然后根据这些参数,电控单元计算出最佳的喷油量和喷油时机。

接下来,电控单元通过控制电磁阀,打开喷油嘴并控制喷油时间和数量。

当发动机工作在低负荷或怠速状态下,电控单元会控制喷油嘴喷射较小的燃油量,以实现更为经济的燃烧效果。

而当发动机工作在高负荷或加速状态下,电控单元会增大喷油量,以提供更多的燃料供给和提高马力输出。

此外,电控单元还可以根据发动机的工作温度和质量要求,对燃油的喷射时间和方式进行精确控制,以确保发动机的顺畅运行。

总之,电控汽油喷射系统具有精确控制燃油供给量和喷射时间的功能,从而提高汽车的燃油经济性和动力性能。

通过调控燃油供给压力和喷油量,它可以适应不同的工作条件和驾驶要求,从而达到最佳的燃烧效果。

3.4 汽油机和柴油机燃料供给系认识

3.4 汽油机和柴油机燃料供给系认识
驱动机构
图21 柱塞式喷分泵的组成
二、柴油机燃料供给系
(3)油量调节机构 作用:根据柴油的负荷和转速变化,相应地转 动柱塞,改变供油有效行程而调节供油量,并保证 供油量均匀一致。 种类: 拨叉 油量调节机构
汽车整车结构认知
二、柴油机燃料供给系
(4)传动机构 作用: 驱动柱塞往复运动,并保证供油准时。 组成:滚轮传动部件:滚轮、长槽、(垫块),凸轮轴(按作功顺序排列凸轮)。
汽车整车结构认知
汽油机和柴油机燃料供给系认识
汽车整车结构认知
一、汽油机燃料供给系
作用:储存、输送、清洁燃料,并根据发动机的不同工况要求,供给气缸不同浓度和数量的汽油 和空气的可燃混合气体,并将燃烧后的废气从气缸内排出到大气中去。
分类:分为化油器式和电控燃油喷射式。 (一)化油器式 1.结构 浮子室、针阀、喉部、节气门(油门) 2.工作原理 在供油时,化油器的节气门上方有一喉管,空气流动时在喉管处产生真空度,将浮子室内的汽油 吸出,然后高速流过的空气流将汽油吹散雾化,形成混合气,经进气管进入发动机气缸。
出油口 限压阀
盖 进油口
壳体 滤芯
放油螺塞
中心杆
图18 柴油滤清器的组成
二、柴油机燃料供给系
2.输油泵 作用:保证低压油路中柴油的正常流动,克服 柴油滤清器和管路中的阻力,并以一定的压力向喷 油泵输送足够量的柴油。 结构型式:活塞式、转子式、滑片式、齿轮式 等。
汽车整车结构认知
偏心轮 滚轮 挺杆 推杆
汽车整车结构认知
二、柴油机燃料供给系
(1)孔式喷油器 汽车柴油机喷油器大多采用孔式喷油器. 应用: 直接喷射燃烧室,孔数1~8个,孔径 0.2~0.8mm。 特点: 喷孔的位置和方向与燃烧室形状相适 应,以保证油雾直接喷射在球形燃烧室壁上; 喷 射压力较高;喷油头细长,喷孔小,加工精度高。

电控发动机燃油供给系统

电控发动机燃油供给系统

电控发动机燃油供给系统摘要:要确保汽车安全行驶并发挥其最佳的行驶性能,汽车电控发动机燃油供给系统必须可靠,而且保证汽车在任何时候电控发动机燃油供给系统都要工作良好。

汽车电控发动机燃油供给系统故障,是一种较常见的故障。

它包括回火、加速不良、起动困难、自动熄火,它的存在,既给发动机带来不同程度的损害,又给驾驶员带来麻烦,及影响安全行车。

如不彻底解决,不单影响发动机动力性和经济性,还会有安全隐患。

本文阐述了电控燃油喷射发动机各元件的功用,并就如何维修进行分析。

关键词:电控燃油;喷射技术;发动机1、燃油供给系统各元件的功用1.1燃油箱起加注、存储,冷却燃油的作用,为汽车行驶提供一定里程的燃油量。

燃油箱分为冲压件燃油箱和注塑件燃油箱两种,冲压件燃油箱和注塑件燃油箱的变形对所供油产生的影响有所不同。

1.2集滤器过滤、清洁燃油,防止燃油泵磨损。

集滤器堵塞会发生节流现象,节流就会产生压差,从而使燃油泵的泵油能力降低。

集滤器堵塞三分之一就应视为全堵,其对急加速工况、启动工况影响很大。

对于任何系统管路或滤芯,如果工作时的有效尺寸减少三分之一,都应视为全堵,而不能认为是导通工况。

1.3燃油泵提供充足流量的燃油,使燃油系统建立油压(产生压力的原因)。

保证发动机不同工况时需要的充分燃油。

燃油泵由直流电机、液压泵、安全阀和单向阀组成。

对于燃油泵直流电机,功率=电压×电流。

对于燃油泵液压泵,功率=压力×流量。

所以,通过测量电流看电流大小及变化状态的方法,以及测量流量看单位时间内流量多少及变化状态的方法可以确定燃油泵的好坏。

燃油泵为系统建立油压,提供流量,油压大小取决于系统和负载。

安全阀限定压力值反映的是燃油泵泵油能力的大小,是燃油泵电机提供的最高压力。

燃油供给系统正常工作时,安全阀不打开;系统堵塞时,安全阀打开,提供小循环回路,保护燃油泵。

燃油泵出口安装有一个单向阀,它使燃油供给系统拥有一定的残余压力,防止产生气阻,易于下次启动。

电控燃油供给系统的组成

电控燃油供给系统的组成

电控燃油供给系统的组成电控燃油供给系统是现代汽车发动机中非常重要的一个部分,其作用是将燃油按需供给发动机,以保证发动机正常运转。

电控燃油供给系统由多个部件组成,下面将详细介绍其组成及各部件的作用。

一、燃油箱燃油箱是整个电控燃油供给系统的起点,它是存储汽车燃料的地方。

在燃油箱内部还有一个浮子式传感器,可以检测到油面高度并通过信号发送到仪表盘上的油量显示器上。

二、燃油泵燃油泵是将汽车内的燃料从燃油箱中抽出并送至发动机内部的设备。

现代汽车通常采用电动泵来完成这项工作。

当驾驶员启动汽车时,电脑会向燃料泵发送信号来启动它,并将汽车所需的精确量送入发动机内。

三、滤清器滤清器是位于燃料泵和喷射器之间的设备。

它能够过滤掉进入引擎室内的杂质和污垢,并防止它们进入喷射器或其他部件中。

这可以防止引擎受到损坏,并提高了燃油的清洁度。

四、燃料压力调节器燃料压力调节器是用于控制燃油的压力,以确保发动机能够正常运转。

它可以根据不同的负荷和工作条件来调整燃油的压力,并确保发动机在不同的工作状态下获得所需的燃油供应。

五、喷射器喷射器是将燃油喷入发动机内部的设备。

现代汽车通常采用电控喷射器来完成这项工作。

当驾驶员踩下油门时,电脑会向喷射器发送信号来启动它,并将汽车所需的精确量送入发动机内。

六、传感器传感器是用于监测引擎运行状态和环境条件的设备。

例如,氧气传感器可以监测排气中氧气含量并向电脑发送信号,以便电脑根据需要调整混合比例;同时,温度传感器可以监测发动机温度并向电脑发送信号,以便电脑根据需要调整燃油供应。

七、电脑电脑是整个电控燃油供给系统的核心部件。

它可以接收来自传感器和其他部件的信号,并根据这些信号来控制燃油泵、喷射器等部件的工作状态,以确保发动机能够正常运转。

总结:电控燃油供给系统是现代汽车发动机中不可或缺的一部分,它由多个部件组成,包括燃油箱、燃油泵、滤清器、燃料压力调节器、喷射器、传感器和电脑等。

每个部件都扮演着重要的角色,以确保发动机能够正常运转。

汽车发动机电控汽油机燃油供给系统图文详解-精

汽车发动机电控汽油机燃油供给系统图文详解-精
汽车电控汽油机燃油供给系统
学习目标:
1、了解燃油供给系统油路的工作流程; 2、理解喷油正时、喷油量、燃油停供控制理论,知道燃 油喷射的基本条件; 3、了解燃油泵的工作原理及故障检测方法; 4、了解喷油器的工作原理及故障检测方法; 5、了解燃油压力调节器的工作原理及故障检测; 6、学会典型车系的燃油泵及控制电路的故障检测; 7、学会典型车系喷油器及控制电路的故障检测。
发动机ECU和燃油泵ECU共同控制的三速燃油泵电路
(3)燃油泵关闭控制
燃油泵惯性开关的安装位置与结构示意
燃油泵惯性开关工作原理
当驾驶员空气囊、 前排乘客空气囊或座椅 侧空气囊充气膨胀时, 燃油切断控制装置使燃 油泵停止运转。因发动 机ECU从空气囊中央传 感器总成探测到充气信 号时,发动机ECU便会 断开开路继电器,使燃 油泵停止运作。
●发动机ECU和燃油泵ECU共同控制的燃油泵电路
发动机起动、大负荷时。发 动机ECU向燃油泵端子FPC端子 提供高电压信号(约为5V),则 燃油泵ECU会提供蓄电池电压给 燃油泵,燃油泵高速运转。
两速燃油泵电路
发动机怠速、小负荷运转时。 发动机ECU向燃油泵端子FPC端 子提供低电压信号(约为2.5V), 则燃油泵ECU会提供低电压(约 为9V)给燃油泵,燃油泵低速运 转。
流体动力泵 轴流泵 离心泵 涡轮泵 侧槽泵
内置式 涡轮泵 侧槽泵
外置式 滚柱泵
齿轮泵
※※电动燃油泵的构造 (1)涡轮式电动燃油泵
泵油组件、永磁电动机、端盖和外壳
涡轮式电动燃油泵的构造与工作原理示意
(2)滚柱式电动燃油泵
滚柱式电动燃油泵的结构
滚柱式电动燃油泵的工作原理
电动燃油泵的控制方法
通断控制

第五章电控汽油喷射式发动机的燃料供给系统

第五章电控汽油喷射式发动机的燃料供给系统

3.油压调节器
油压调节器的功用是根据进气支管真空度的变化来调节进入喷油器的燃油压 力,使燃油系统的绝对油压和进气支管的空气压力之间的差值恒定不变。让喷 油压力在不同的节气门开度下保持定值。保证发动机ECU对喷油量的精确控 制(通过喷油时间长短)。
即喷油压力保持在300-350kPa,不受转速和 节气门的影响,确保喷油 压力恒定。
2.喷油器
喷油器是按ECU的指令在恒压下, 定时、定量的喷油雾化。
喷油器由壳体、电磁线圈3、针 阀1、回位弹簧7、滤网4、针阀和衔 铁8组为一体,在回位弹簧的作用下 关闭。喷油控制信号使大功率三极 管导通或截止,脉冲电流使线圈产 生磁吸力,将针阀吸起而喷油,喷 油脉冲电流截止而停喷。
喷油器外形图。工作原理。
线性式
高灵敏度的电位器,由两个与节 气门联动的可动触点、电位器、怠 速触点IDL
点火开关闭合,发动机ECU输 入5伏电压,
另一触点在节气门关闭(怠速) 时与怠速触点IDL接触,向ECU提 供怠速信号,用于急怠速断油控制 和点火提前角提前修正。
转速传感器(SP) 和曲轴位置传感器(IGT/NE)
发动机转速传感器是检测发动机转速的传感器,曲轴位置传感器是检测活塞 上止点及曲轴转角的传感器,它们一般制成一体。发动机转速与曲轴位置传感 器是发动机电子控制系统中最主要的传感器之一,是控制点火时刻和喷油时刻 不可缺少的信号源,安装位置可在曲轴上、飞轮上、凸轮轴前端和分电器内。
氧化锆氧传感器
氧化锆是具有传导氧离子能 力的固体电解质,它能在氧分 子浓度差的作用下产生电动势。
氧化锆内外表面处氧的浓度 有较大差别时,锆管内外侧两 铂电极之间将会产生电压。 400度时参加工作。
Ford汽车用氧传感器。 三元催化转换器于空燃比的 关系。 氧传感器的电压输出特性。

电控发动机燃油供给系统的组成和工作原理

电控发动机燃油供给系统的组成和工作原理

电控发动机燃油供给系统的组成和工作原理燃油供给系主要由燃油箱、低压燃油管、输油泵、燃油滤清器、喷油泵(转子分配泵,装有喷油提前调节器和起动加浓装置等)、高压油管和喷油器等组成.供油系统的工作原理,是输油泵从燃油箱中吸出燃油,经过燃油滤清器后剩达供油泵进油腔.供油泵为叶片式,它的作用是依据发动机转递的增加来提高燃油压力;然后燃油到达调压阀,此阀用来调节喷油泵内的燃油压力;分配器柱塞进一步提高油压,并通过高压油管将燃油送入喷油器,从喷油器渗出的燃油被回油阀回收,并送回燃油箱里:所谓电控燃油喷射,就是测量吸入发动机的空气量,再把适量的汽油采取高压喷射的方式供给发动机。

把控制空气和汽油混合比的计算机控制过程称为电子控制燃油喷射。

这种供油方式与传统化油器有着原理性的区别,化油器是依靠空气流过化油器候管时产生负压,将浮子室内的汽油吸到喉管并随同空气流雾成可燃混合气。

电控燃油喷射系统(fe1)的控制内容及功能 :1、喷油量控制 ecu将发动机转速和负荷信号作为主控信号,确定基本喷油量(喷油电磁阀开启的时间长短),并根据其它有关输入信号加以修正,最后确定总喷油量。

2、喷油定时控制 ecu根据曲轴相位传感器的信号和两缸的发火顺序,将喷油时间控制在一个最佳时刻。

3、减速断油及限速断油控制摩托车行驶时,当驾驶员快速松开油门时,ecu将会切断燃油喷射控制电路,停止喷油,以降低减速时的废气排放和油耗。

发动机加速时,发动机转速超过安全转速,ecu 将会在临界转速切断燃油喷射控制电路,停止喷油,以防止发动机超速运转损坏发动机。

4、燃油泵控制当点火开关打开后,ecu将控制汽油泵工作2-3秒,以建立必须的油压。

此时若不起发动机,ecu将切断汽油泵控制电路,汽油泵停止工作。

在发动机起动过程和运转过程中,ecu控制汽油泵保持正常运转。

电控燃油系统(ef1)的优点 cl244fm1-c电控燃油喷射系统,采用目前较为普遍的多点、进气道喷射方式。

电控发动机燃油供给系统检测与维修

电控发动机燃油供给系统检测与维修

燃油供给系统检测与维修燃油供给系统检查任务目标1.进气燃油检查学习目标1.进气燃油检查1. 燃油供给系统的作用燃油供给系统的作用是为了实现在各种工况下向发动机提供燃烧过程所需的燃油。

燃油系统的作用2.燃油供给系统的工作过程发动机工作时,油泵将汽油从油箱中泵出,经过燃油滤清器过滤后,一再经过燃油压力调节器调压,将适宜压力的燃油经输油管配送给各个喷油器,喷油器根据ECU发来的喷射信号,把适量汽油喷射到进气歧管或直接喷人气如内。

燃油系工作原理3.燃油供给系统的组成燃油供给系统主要由燃油箱、燃油泵、燃油滤清器、燃油分配管、燃油压力调节器、喷油器等组成。

1)燃油箱燃油箱的作用是储存燃油,还起着散热、分离油液中的气泡、沉淀杂质等作用燃油箱根据各种标准,燃油箱必须防腐蚀并在承受两倍的正常工作压力的条件下不得泄露。

在汽车转弯、倾斜和路面颠簸的情况下燃油不得溢出。

在汽车发生意外造成的燃油箱从车体中移开不能让燃油点燃。

2)燃油泵燃油泵的作用是把燃油从燃油箱中吸出、加压后输送到供油管中,并通过喷油器供给发动机,和燃油压力调节器配合建立一定的燃油压力。

目前燃油泵普遍安装在燃油箱内,它和油位传感器、支架等集成在一起组成燃油泵总成。

电动燃油泵燃油泵总成3)燃油滤清器燃油滤清器的作用是把含在燃油中的杂物除去,防止燃油系统堵塞(特别是喷油嘴),减少机械磨损,确保发动机稳定运行,提高可靠性。

燃油泵一般安装在燃油泵下游。

图5-6燃油滤清器4)燃油分配管燃油分配管的作用是把燃油均匀地分配到各}喷油器,所以喷油器安装在燃油分配管上。

燃油分配管5)燃油压力调节器油压调节器的作用是将喷油器的燃油压力控制在250一300kPa(视发动机型号不同步,具体压力值也会有所不同)。

此外,压力调节器能像燃油泵的单向阀一样维持燃油管里的残余压力。

目前,有两种燃油调节系统。

(1)带回油管路的燃油调节系统该燃油调节系统(图5-8)普遍用在采用缸外喷射电控发动机中,由于燃油喷射在进气歧管中,歧管的真空状态随着发动机工作状态的变化不断变化,会对喷射精度产生较大影响。

电控燃油喷射系统工作原理

电控燃油喷射系统工作原理

电控燃油喷射系统工作原理
电控燃油喷射系统是一种现代化的汽车燃油供给系统,它的工作原理是利用电子控制器来管理和控制燃油喷射器的工作,以确保发动机的燃烧效率和排放性能。

该系统由多个部件组成,包括传感器、电子控制器、喷油器和燃油供应系统。

传感器用于检测发动机状态和环境参数,比如发动机转速、进气温度、空气流量等。

这些数据将传输给电子控制器,电子控制器根据这些数据进行计算,并根据发动机工作需要来控制喷油器的喷油量和喷油时机。

当气门开启,气缸内形成负压时,电子控制器会从传感器获取相关数据,并计算出所需的燃油量。

然后,电子控制器通过电磁阀控制喷油器喷射所需的燃油量。

燃油通过喷油器进入气缸内进行燃烧,从而提供动力。

电控燃油喷射系统具有多个优势。

首先,它可以根据发动机状态和工作要求对燃油喷射进行精确控制,以提高燃烧效率和动力输出。

其次,通过控制喷油量和喷油时机,可以减少排放物的产生,降低环境污染。

此外,它还可以提供更好的燃油经济性和可靠性。

总之,电控燃油喷射系统通过利用传感器和电子控制器来管理和控制燃油喷射,以优化发动机的工作效率和排放性能。

这种系统在现代汽车中被广泛应用,并成为提高动力性能和环保性能的关键技术。

项目四 汽油喷射式燃料供给系统的构造与维修

项目四    汽油喷射式燃料供给系统的构造与维修

目录任务一任务二任务三任务四电子控制系统的构造与工作原理任务五电控燃油喷射系统故障诊断与排除任务一燃油喷射系统组成及工作原理【任务目标】1.掌握电子控制燃油喷射系统的基本组成;2.掌握电控汽油喷射系统的组成及工作原理;3.能够叙述燃油系统组成;4.能够完成喷油器的检查与更换。

【任务描述】据用户描述,自己的雪佛兰科鲁兹汽车,当打开点火开关起动发动机时,点火多次都不能起动,经用户仔细检查油箱中的燃油足够,其他各个系统均工作正常,在次打开点火开关还是不能起动发动机,用户在次检查燃油箱处,发现燃油箱中的燃油泵没有任何反映,根据用户的上述反映判断可能是燃油泵出现了故障。

【知识储备】一、电子控制燃油喷射系统概述燃油喷射指用喷油器在低压下(250~350kPa)将汽油以雾状直接喷射到进气总管、进气歧管或气缸中,与空气混合形成可燃混合气,其目的是为了提高雾化质量,改善燃烧状况。

根据燃油的喷射位置,电控燃油喷射系统分为缸内喷射式和缸外喷射式。

缸内喷射式将高压涡流喷油器安装在气缸盖上,将汽油直接喷入气缸,比缸外喷射更省油且动力更大。

缸外喷射式将喷油器安装在进气总管上(单点喷射)或各缸进气歧管靠近进气门处(多点喷射)。

汽油在气缸燃烧,必须先喷散成雾状并蒸发,与空气按一定比例混合,这样的混合物叫可燃混合气。

可燃混合气中汽油含量叫可燃混合气浓度,用空燃比“R”或过量空气系数“α”表示。

理论上完全燃烧1kg汽油需要14.7kg空气。

可燃混合气中空气与燃油的比值称为空燃比。

R=14.7(α=1)的混合气称为标准混合气;R<14.7(α<1)的混合气称为浓混合气;R>14.7(α>1)的混合气称为稀混合气。

冷起动工况时,汽油雾化不良, 要求供给的极浓的混合器,混合气成分为α=0.2~0.6。

在暖机、怠速阶段吸入空气量极少,汽油同样雾化蒸发不良, 需要浓混合气,α=0.6~0.8 。

在加速及大负荷时,为改善汽车加速性能,增大功率,也需要较浓混合气,α=0.85~0.95。

电控燃油喷射系统工作原理

电控燃油喷射系统工作原理

电控燃油喷射系统工作原理
电控燃油喷射系统(Electronic Fuel Injection System,简称EFI 系统)是一种利用计算机控制引擎燃油喷射量和喷射时机的燃油供给系统。

它的工作原理主要包括以下几个步骤:
1. 燃油供给:燃油经过燃油泵送压力后进入燃油喷射嘴,喷射嘴是由喷油电磁阀控制的。

燃油供给系统还包括燃油滤清器、燃油沉淀器等组件。

2. 空气供给:空气通过空气滤清器进入进气歧管,然后经过节气门进入发动机气缸。

3. 传感器控制:系统中配备了多个传感器,如空气流量传感器、氧气传感器、水温传感器等,用于监测发动机状态和环境参数。

这些传感器将收集的数据发送给控制器进行分析和计算。

4. 控制器计算:控制器是EFI系统中的核心部件,它根据传感器采集到的数据,通过内部的计算算法和存储的映射表,来确定当前的喷油量和喷油时机。

5. 喷油:根据控制器的指令,喷油器打开喷油电磁阀,让精确计算的燃油以适当的喷射时间和喷射量喷入发动机气缸中。

喷油时机和喷射量的精确控制能够提高燃烧效率,减少废气排放。

6. 点火系统:与EFI系统配套使用的还有点火系统,它控制着火花塞的点火时机和点火能量,以确保燃烧正常进行。

通过以上步骤,EFI系统可以实现对引擎燃油喷射量和喷射时机的精确控制,提高燃烧效率,降低废气排放,以及提升发动机的动力性能和燃油经济性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2电控汽油喷射式发动机燃料供给系统概述
• EFI系统利用安装在发动机不同部位上的各 种传感器所测得的工作参数,按照电控单 元中设定的控制程序,通过对汽油喷射时 间的控制调节喷油量,从而改变混合气浓 度,使发动机在各种工况下都能获得与所 处工况相匹配的最佳空燃比。
4.2.1电控汽油喷射式发动机燃料供给系统组成
• 目前应用较多的是热线式、热膜式空气流量计, 它直接检测空气的质量流量,测量精度高。桑塔 纳2000GSi轿车AJR发动机采用了热膜式空气流量 计。
空气流量计的安装位置
1、热线式空气流量计
• 根据热线的安装位置不同,热线式空流量 计有主流测量式和旁通测量式两种结构形 式,主流测量式热线式空气流量计应用较 广。
电子控制式燃油喷射系统(EFI) 是由电控单元直接控制燃油喷射的系 统,它能对空气和燃油精确计量,控 制精度高,目前在汽车发动机上被广 泛应用。
4.2.3电控汽油喷射系统的优点
• (1)能提供最佳的混合气浓度,使发动机 保持最佳的动力性、经济性和排放性能。
• (2)降低了HC、C0和N0X排放。 • (3)采用多点量计的输出特性
热膜式空气流量计
• 热膜式空气流量计是热线式空气流量计的 改进产品,其结构及工作原理与热线式空 气流量计基本相同,只是将感知元件由热 线改为平面形铂金属膜电阻器(简称热 膜)。
• 热膜式空气流量计测量精度高、响应速度 快、进气阻力小,而且可靠、耐用,不会 因粘附污物而影响测量精度。
• 空气滤清器长期使用会产生堵塞,对进气 产生额外阻力,使发动机充气量和动力性 降低。因此必须定期进行维护。桑塔纳 2000GSi轿车AJR发动机每行驶15000km进行 常规维护,即将滤芯取出用手轻拍,或用 压缩空气吹去积灰,切忌接触油质,以免 加大滤清阻力。每行驶30000km更换空气滤 清器。
热膜式空气流量计
热模式空气流量计的检测
• 1.起动发动机,用万用表直流电压档测量空气流 量计导线连接器端子2与搭铁线间的电压,应大于 11.5V。
• 2.打开点火开关,用万用表测量空气流量计导线 连接器端子4与搭铁点间的电压,其值约为5V。
比较均匀,有利于提高发动机运转的稳定性。 • (4)进气温度修正。
• (5)汽车加速、减速性能更加良好。
• (6)具有减速断油功能,既能降低排放, 也能节省燃油。
• (7)进气阻力减小,增大充气量,提高发 动机的输出功率,增加动力性。
• (8)在发动机起动时,可以用发动机控制 模块(ECU)计算出起动时所需的供油量,使 发动机起动容易,暖机更快,暖机性能提 高。
4.3.2进气系统的主要部件
• 4.3.2.1空气滤清器
• 空气滤清器的作用是滤去空气中的尘土和 砂粒,以减少气缸、活塞和活塞环的磨损, 延长发动机的使用寿命。
• 目前,汽车发动机广泛采用纸质干式空气 滤清器。这种滤清器具有结构简单、质量 轻、成本低、使用方便、滤清效果高的优 点。纸质干式滤清器滤清效率可达99.5% 以上。
4.3.2.2空气流量计
• 空气流量计的作用是对进入气缸的空气量进行直 接计量,并把空气流量的信息输送到ECU。它用 在L型的发动机进气系统中,安装在空气滤清器 与节气门体之间,作为电控燃油喷射系统的主控 信号。
• 在L型电控汽油喷射发动机的发展历程中使用过 翼片式、卡门旋涡式、热线式和热膜式等多种型 式的空气流量计。
利用进气歧管绝对压力传感器检测进气歧管内的绝对压 力,电控单元根据进气歧管绝对压力和发动机转速,计算出 发动机吸入的空气量,并由此计算出循环基本喷油量。精度 较低,需进行流量修正。
2、按喷射位置分
• (1)缸内喷射(GDI) • (2)进气管喷射(PFI) • ①单点燃油喷射系统(SPI)
• SPI:Single Point Injection • CFI:Central Fuel Injection(中央燃油喷射) • TBI:Throttle Body Fuel Injectlon(节流阀体喷射)
4.3进气系统的构造与维修
• 4.3.1进气系统的作用和组成
• 1.作用:提供与负荷相适应的清洁的空气;测量 和控制进入气缸的空气量;形成符合要求的可燃 混合气;有限的气缸容积中尽可能多和均匀地供 气。
• 2.组成:空气滤清器、空气流量计或进气管绝对 压力传感器、节气门体、怠速控制阀、进气总管、 进气歧管等。
• ②多点燃油喷射系统(MPI) • D型:压力感应式 L型:流量感应型 • LH型:热线、热膜式空气流量计
将高压燃油直接喷到气缸内。分层混 合气(从火花塞往外逐渐变稀)。油耗 和排放也远远低于普通汽油发动机。
3、按喷油器的喷射方式分
• (1)连续喷射系统
• 其喷油量的多少不是取决于喷油器,而是取决于 燃油分配器中燃油计量槽孔的开度及计量槽孔内 外两端的压差。
主流测量式热线式空气流量计
旁通测量式热线式空气流量计
热线式空气流量计的工作原理
• 热丝长时间暴露在进气中,会因空气中灰 尘附着在热丝上而影响测量精度,需增加 自洁净功能:关闭点火开关时ECU向空气流 量计发出一个信号,控制电路立即给热丝 提供较大电流,使热丝瞬时升温至1000℃ 左右,把附着在热丝上的杂质烧掉。自洁 净功能持续时间约1~2s。
• (2)间歇喷射系统
• 喷油量多少取决于喷油器的开启时间,即发动机 控制模块(ECU)发出的喷油脉冲宽度。这种燃油喷 射方式广泛地应用于现代电控燃油喷射系统中。
• 同时喷射、分组喷射和顺序喷射
4、按燃油喷射系统的控制方式分
• (1)机械控制式燃油喷射系统 • (2)机电结合式燃油喷射系统 • (3)电子控制式燃油喷射系统
4.2.2电控汽油喷射系统的类型
• 1、按对进入气缸空气量的检测方 式分
• (1)直接检测型(简称L型) • (2)间接检测型(简称D型)
直接测量单位时间发动机吸入的空气体 积流量,但存在需要进行大气压力和温度修 正等缺点。
直接测量单位时间发动机吸入的空气质量 流量,不需要进行大气压力和温度修正。
相关文档
最新文档