平面几何4--张角定理及西姆松定理
高中数学竞赛 平面几何的几个重要定理——西姆松定理
ABC P BC AB AC D E F D E F ∆西姆松定理:若从外接圆上一点作、、的垂线,垂足分别为、、,则、、三点共线;9090180DE DF BDE FDC BDP BEP B E P D BDE BPE FDC PFCBEP PFC PCF PBA PBEBPE FPC BDE FDC D E F ∠=∠∠=∠=︒∴∴∠=∠∠=∠∠=∠=︒∠=︒-∠=∠∴∠=∠∴∠=∠∴证明:连接、,显然,只需证明即可;、、、四点共圆,同理可得:又且、、三点共线 ()P ABC L M N P ABC ∆∆西姆松的逆定理:从一点向的三边或它们的延长线作垂线,若其垂足、、在同一直线上,则在的外接圆上;ABC O O E C D Q R S O F B D P Q R P Q R S ∆∴证明:设的垂心为,则、、、四点共圆由西姆松定理有:、、三点共线又、、、四点共圆且由西姆松定理有:、、三点共线、、、四点共圆1.ABC AD BE CF D E F D AB BE CF AC P Q R S P Q R S ∆例设的三条垂线、、的垂足分别为、、;从点作、、、的垂线,其垂足分别为、、、,求证、、、在同一直线上;ABC O O E C D Q R S O F B D P Q R P Q R S ∆∴证明:设的垂心为,则、、、四点共圆由西姆松定理有:、、三点共线又、、、四点共圆且由西姆松定理有:、、三点共线、、、四点共圆2.ABCD D B AC AD E F EF BD ∠例四边形是圆内接四边形,且是直角,若从作直线、的垂线,垂足分别为、,则直线平分线段。
,90BG DC F E G BFD FDG DGB BFDG FG BD ⊥∠=∠=∠=︒∴∴证明:作由西姆松定理有:、、共线,又四边形为矩形对角线平分另一条对角线3.例求证:四条直线两两相交所构成的四个三角形的外接圆相交于一点,且由该点向四条直线所作垂线的垂足在一条直线上;180AB BC CD AD AB CD E BC AD F BCE CDF GBGF BGC CGF BEC CDABGF A ABF G AED GBCE CDF ABF AED G ∴∠=∠+∠=∠+∠∴∠+∠=︒∴证明:如图,设四条直线、、、中,交于点,交于点,圆与圆的另一个交点为,即圆过点同理圆也过点圆、圆、圆、圆交于同一点G AB BC CD DA E L M N P L M N M N P L M N P 若点向、、、所作垂线的垂足分别为、、、、,由西姆松定理可知、、在一条直线上,、、在一条直线上,故、、、在同一条直线上4.ABC PQ P Q ∆例设的外接圆的任意直径为,则关于、的西姆松线是互相垂直的。
平面几何-五大定理及其证明
平面几何定理及其证明梅涅劳斯定理1 .梅涅劳斯定理及其证明 定理:一条直线与 ABC 的三边AB BC CA 所在直线分别交于点 D E 、F ,且D E 、F 均证明:如图,过点C 作AB 的平行线,交EF 于点G. 因为 CG // AB ,所以 CG CF --------------------- ( 1)AD FA因为 CG // AB ,所以 EC ( 2) DB BEC F ,即得 AD C FEC FA DB EC FA2.梅涅劳斯定理的逆定理及其证明定理:在 ABC 的边AB BC 上各有一点 D E ,在边 AC 的延长线上有一点 F ,若二、 塞瓦定理3 .塞瓦定理及其证明定理:在ABC 内一点P,该点与ABC 的三个顶点相连所在的 三条直线分别交 ABCE 边AB BC CA 于点D E 、F ,且D E 、F 三点均不是 ABC不是ABC 的顶点,则有AD BECF 1DB EC由(1)宁(2) DB可得兀AD BE CF DB EC FA1,那么,D E 、F 三点共线.证明:设直线EF 交AB 于点D ,则据梅涅劳斯定理有AD /BE CF 丽EC FA因为AD Bl CF DB EC FA1,所以有誥段AB 上,所以点D 与D 重合.即得D鴿.由于点D D 都在线 E 、F 三点共线.证明:运用面积比可得 ADDB S ADP S BDPS ADC S BDC根据等比定理有S ADP S ADCSADC S ADP S APCSSBDPBDCSBDCSBDPS的顶点,则有AD BE CF “1 DB EC FA .所以AD S A PC .同理可得BE SDB S BPCAPB, CFEC S APC FA SBPCS APB三式相乘得竺吏 DB EC CF i FA 4.塞瓦定理的逆定理及其证明 定理:在 ABC 三边AB BC CA 上各有一点 H 1,那么直线CD AE BF 三线共点. DE 、F ,且 D E 、 F 均不是 ABC 的顶点,AD BE若 DB EC证明:设直线AE 与直线BF 交于点P,直线CP 交AB 于点D ,则 据塞瓦定理有 AD Z DBBE EC CA1 -1,所以有 段AB 上,所以点D 与D 重合.即得 因为竺 DB EC CF FA AD DB D DDB •由于点D D 都在线 E 、F 三点共线.三、西姆松定理 5.西姆松定理及其证明 定理:从 ABC 外接圆上任意一点 F ,则D E 、F 三点共线. 证明:如图示,连接PC ,连接EF P 向BC CA AB 或其延长线引垂线, 垂足分别为DE、交BC 于点D ,连接P D• 因为PE 因为A 、 所以, 共圆. 所以, 即 PD BC 由于过点 F D E 、 四、 6 AE,PF AF,所以A 、F 、P 、E 四点共圆,可得B 、P 、C 四点共圆,所以 FEP = BCP 即 DEP = CDP + CEP = 180°。
高中数学常用平面几何名定理
高中数学常用平面几何名定理定理1 Ptolemy定理托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
定理2 Ceva定理定理3 Menelaus定理定理4 蝴蝶定理定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
定理5 张角定理在△ABC中,D是BC上的一点。
连结AD。
张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD定理6 Simon line西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
定理7 Eular line:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半定理8 到三角形三定点值和最小的点——费马点已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
定理9 三角形内到三边距离之积最大的点是三角形的重心定理10到三角形三顶点距离的平方和最小的点是三角形的重心在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。
这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。
1、欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半2、九点圆:任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
3、费尔马点:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。
四个重要定理(梅涅劳斯,塞瓦,托勒密,西姆松)
四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线的充要条件是 。
塞瓦(Ceva)定理(塞瓦点)△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的充要条件是。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1. 设AD是△ABC的边BC上的中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。
2. 过△ABC的重心G的直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC的中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3. D、E、F分别在△ABC的BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4. 以△ABC各边为底边向外作相似的等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6. 已知正七边形A1A2A3A4A5A6A7。
求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7. △ABC的BC边上的高AD的延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F。
求证:BC·EF=BF·CE+BE·CF。
四个重要定理(梅涅劳斯_塞瓦_托勒密_西姆松)
B平面几何中的四个重要定理梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1=⋅⋅RBARQA CQ PC BP 。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1=⋅⋅RBARQA CQ PC BP 。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
例题:1、设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF 2ED AE =。
【分析】CEF 截△ABD→1FABFCB DC ED AE =⋅⋅(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2、过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
求证:1FACFEA BE =+。
【分析】连结并延长AG 交BC 于M ,则M 为BC 的中点。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM→1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD 2GM ⋅⋅=1【评注】梅氏定理3、D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △【分析】【评注】梅氏定理4、以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5、已知△ABC 中,∠B=2∠C 。
著名的15个平面几何定理
1、欧拉(Euler)线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半证明:利用向量,简单明了设H,G,O,分别为△ABC的垂心、重心、外心.,D为BC边上的中点。
∵向量OH=向量OA+向量AH=向量OA+2向量OD (1)=向量OA+向量OB+向量BD+向量OC+向量CD=向量OA+向量OB+向量OC;而向量OG=向量OA+向量AG=向量OA+1/3(向量AB+向量AC) (2)=1/3[向量OA+(向量OA+向量AB)+(向量OA+向量AC)]=1/3(向量OA+向量OB+向量OC).∴向量OG=1/3向量OH,∴O、G、H三点共线且OG=1/3OH。
2、九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
证明:如右图所示,△ABC的BC边垂足为D,BC边中点为L。
证法为以垂心H为位似中心,1/2为位似比作位似变换。
连结HL并延长至L',使LL'=HL;做H关于BC的对称点D'。
显然,∠BHC=∠FHE=180°-∠A,所以∠BD'C=∠BHC=180°-∠A,从而A,B,D',C四点共圆。
又因为BC和HL'互相平分于L,所以四边形BL'CH为平行四边形。
故∠BL'C=∠BHC=180°-∠A,从而A,B,L',C四点共圆。
综上,A,B,C,D',L'五点共圆。
显然,对于另外两边AB,AC边上的F,N,E,M也有同样的结论成立,故A,B,C,D',L',F',N',E',M'九点共圆。
此圆即△ABC的外接圆⊙O。
接下来做位似变换,做法是所有的点(⊙O上的九个点和点O本身)都以H为位似中心进行位似比为1/2的位似变换。
平面几何基础知识基本定理基本性质
平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2. 射影定理(欧几里得定理)3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b m a -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:C b B c A abc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R Cc B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7. 余弦定理:C ab b a c cos 2222-+=.8. 张角定理:ABDAC AC BAD AD BAC ∠+∠=∠sin sin sin .9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11. 弦切角定理:弦切角等于夹弧所对的圆周角.12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边.14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作一直线与⊙O 交于点A 、B ,则P A·PB = |d 2-r 2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD .16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、△BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE=BF =CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙A 1 、⊙B 1的圆心构成的△——外拿破仑的三角形,⊙C 1 、⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===AB KH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC+=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小; ⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心). 24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (CB A yC c y B b y A a C B A x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK 上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC 外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等; )2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (C B A Cy By Ay C B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abc R 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和. 27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,. 旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子); (2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r B A r r C A r r C B r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立)31.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q,∠C的平分线交边AB于R,∠B的平分线交边CA于Q,则P、Q、R三点共线.32.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线.33.塞瓦(Ceva)定理:设X、Y、Z分别为△ABC的边BC、CA、AB上的一点,则AX、BY、CZ所在直线交于一点的充要条件是AZZB·BXXC·CYYA=1.34.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT 交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53. 卡诺定理:通过△ABC 的外接圆的一点P ,引与△ABC 的三边BC 、CA 、AB 分别成同向的等角的直线PD 、PE 、PF ,与三边的交点分别是D 、E 、F ,则D 、E 、F 三点共线.54. 奥倍尔定理:通过△ABC 的三个顶点引互相平行的三条直线,设它们与△ABC 的外接圆的交点分别是L 、M 、N ,在△ABC 的外接圆上取一点P ,则PL 、PM 、PN 与△ABC 的三边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.55. 清宫定理:设P 、Q 为△ABC 的外接圆的异于A 、B 、C 的两点,P 点的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.56. 他拿定理:设P 、Q 为关于△ABC 的外接圆的一对反点,点P 的关于三边BC 、CA 、AB 的对称点分别是U 、V 、W ,这时,如果QU 、QV 、QW 和边BC 、CA 、AB 或其延长线的交点分别是D 、E 、F ,则D 、E 、F 三点共线.(反点:P 、Q 分别为圆O 的半径OC 和其延长线的两点,如果OC 2=OQ ×OP 则称P 、Q 两点关于圆O 互为反点)57. 朗古来定理:在同一圆周上有A 1、B 1、C 1、D 1四点,以其中任三点作三角形,在圆周取一点P ,作P 点的关于这4个三角形的西摩松线,再从P 向这4条西摩松线引垂线,则四个垂足在同一条直线上.58. 从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59. 一个圆周上有n 个点,从其中任意n -1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60. 康托尔定理1:一个圆周上有n 个点,从其中任意n -2个点的重心向余下两点的连线所引的垂线共点.61. 康托尔定理2:一个圆周上有A 、B 、C 、D 四点及M 、N 两点,则M 和N 点关于四个三角形△BCD 、△CDA 、△DAB 、△ABC 中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M 、N 两点关于四边形ABCD 的康托尔线.62. 康托尔定理3:一个圆周上有A 、B 、C 、D 四点及M 、N 、L 三点,则M 、N 两点的关于四边形ABCD 的康托尔线、L 、N 两点的关于四边形ABCD 的康托尔线、M 、L 两点的关于四边形ABCD 的康托尔线交于一点.这个点叫做M 、N 、L 三点关于四边形ABCD 的康托尔点.63. 康托尔定理4:一个圆周上有A 、B 、C 、D 、E 五点及M 、N 、L 三点,则M 、N 、L 三点关于四边形BCDE 、CDEA 、DEAB 、EABC 中的每一个康托尔点在一条直线上.这条直线叫做M 、N 、L 三点关于五边形A 、B 、C 、D 、E 的康托尔线.64. 费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65. 莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.平面几何的意义就个人经验而言,我相信人的智力懵懂的大门获得开悟往往缘于一些不经意的偶然事件.罗素说过:“一个人越是研究几何学,就越能看出它们是多么值得赞赏.”我想罗素之所以这么说,是因为平面几何曾经救了他一命的缘故.天知道是什么缘故,这个养尊处优的贵族子弟鬼迷心窍,想要自杀来结束自己那份下层社会人家的孩子巴望一辈子都够不到的幸福生活.在上吊或者抹脖子之前,头戴假发的小子想到做最后一件事情,那就是了解一下平面几何到底有多大迷人的魅力.而这个魅力是之前他的哥哥向他吹嘘的.估计他的哥哥将平面几何与人生的意义搅和在一起向他做了推介,不然万念俱灰的的头脑怎么会在离开之前想到去做最后的光顾?而罗素真的一下被迷住了,厌世的念头因为沉湎于平面几何而被淡化,最后竟被遗忘了.罗素毕竟是罗素.平面几何对于我的意义只是发掘了一个成绩本来不错的中学生的潜力,为我解开了智力上的扭结;而在罗素那里,这门知识从一开始就使这个未来的伟大的怀疑论者显露了执拗的本性.他反对不加考察就接受平面几何的公理,在与哥哥的反复争论之后,只是他的哥哥使他确信不可能用其他的方法一步步由这样的公理来构建庞大的平面几何的体系的以后,他才同意接受这些公理.公元前334年,年轻的亚历山大从马其顿麾师东进,短短的时间就建立了一个从尼罗河到印度河的庞大帝国.随着他的征服,希腊文明传播到了东方,开始了一个新的文明时代即“希腊化时代”,这时希腊文明的中心也从希腊本土转移到了东方,准确地说,是从雅典转移到了埃及的亚历山大城.正是在这个城市,诞生了“希腊化时代”最为杰出的科学成就,其中就包括欧几里德的几何学.因为他的成就,平面几何也被叫作“欧氏几何”.“欧氏几何”以它无与伦比的完美体系一直被视为演绎知识的典范,哲学史家更愿意把它看作是古代希腊文化的结晶.它由人类理性不可辩驳的几个极其简单的“自明性公理”出发,通过严密的逻辑推理,演绎出一连串的定理,这些在结构上紧密依存的定理和作为基础的几个公理一起构筑了一个庞大的知识体系.世间事物的简洁之美无出其右.★费马点:法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此介绍.★拿破仑三角形:读了这个题目,你一定觉得很奇怪.还有三角形用拿破仑这个名子来命名的呢!拿破仑与我们的几何图形三角形有什么关系?少年朋友知道拿破仑是法国著名的军事家、政治家、大革命的领导者、法兰西共和国的缔造者,但对他任过炮兵军官,对与射击、测量有关的几何等知识素有研究,却知道得就不多了吧!史料记载,拿破仑攻占意大利之后,把意大利图书馆中有价值的文献,包括欧几里德的名著《几何原本》都送回了巴黎,他还对法国数学家提出了“如何用圆规将圆周四等分”的问题,被法国数学家曼彻罗尼所解决.据说拿破仑在统治法国之前,曾与法国大数学家拉格朗日及拉普拉斯一起讨论过数学问题.拿破仑在数学上的真知灼见竟使他们惊服,以至于他们向拿破仑提出了这样一个要求:“将军,我们最后有个请求,你来给大家上一次几何课吧!”你大概不会想到拿破仑还是这样一位有相当造诣的数学爱好者吧!不少几何史上有名的题目还和拿破仑有着关联,他曾经研究过的三角形称为“拿破仑三角形”,而且还是一个很有趣的三角形.在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,如下图.这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙、的圆心构成的△——外拿破仑的三角形.⊙、⊙、⊙三圆共点,外拿破仑三角形是一个等边三角形,如下图.△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙、⊙、⊙的圆心构成的△——内拿破仑三角形⊙、⊙、⊙三圆共点,内拿破仑三角形也是一个等边三角形.如下图.由于外拿破仑三角形和内拿破仑三角形都是正三角形,这两个三角形还具有相同的中心.少年朋友,你是否惊讶拿破仑是一位军事家、政治家,同时还是一位受异书籍、热爱知识的数学家呢?拿破仑定理、拿破仑三角形及其性质是否更让你非常惊讶、有趣呢?★欧拉圆:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆〔通常称这个圆为九点圆〔nine-point circle〕,或欧拉圆,费尔巴哈圆.九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.九点圆具有许多有趣的性质,例如:1.三角形的九点圆的半径是三角形的外接圆半径之半;2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.。
平面几何重要的定理
平面几何中重要定理1.中线定理AD 为BC 边上的中线,则有AB 2+AC 2=2(AD 2+BD 2)2.垂线定理AD 为BC 边上的高,则有AB 2-BD 2=AC 2-CD 23.梅涅劳斯定理一条直线与△ABC 三边或其延长线交于P 、Q 、R ,则1QA CQ PC BP RB AR =⋅⋅4.塞瓦定理△ABC 内一点O ,AO 、BO 、CO 交BC 、AC 、AB 于点X 、Y 、Z ,则有1YACY XC BX ZB AZ =⋅⋅5.角平分线定理AD 为∠BAC 的平分线,则有CDBD AC AB =6.斯特瓦尔特定理D 为BC 边上一点,则有AB 2·DC+AC 2·BD-AD 2·BC=BC·DC·BD7.射影定理∠BAC=90°,AD ⊥BC ,则有AD 2=BD·CD ,AB 2=BD·BC ,AC 2=CD·CB8.外森匹克不等式如图,三角形的面积为S ,则S c b a 34222≥++9.西姆松定理过△ABC 外接圆上一点P 作三边或其延长线上的垂线,则有:三个垂直M 、N 、Q 共线10.海伦公式△ABC 三边分别为a 、b 、c ,则有2,))()((S ABC cb a pc p b p a p p ++=---=∆△ABC 中,AD 、BD 、CF 相交于同一点O ,则有CD BD S S AOC AOB =∆∆12.正弦定理ABC 外接圆半径为R ,三个顶点A 、B 、C 所对的边分别为a 、b 、c ,则有R Cc B b A a 2sin sin sin ===13.余弦定理△ABC 外接圆半径为R ,三个顶点A 、B 、C 所对的边分别为a 、b 、c ,则有Cab b a c Bac c a b Abc c b a cos 2cos 2cos 2222222222-+=-+=-+=14.张角定理D 是△ABC 边BC 上一点,则有ADBAC AB CAD AC BAD ∠=∠+∠sin sin sin四边形ABCD 为圆内接四边形,则有AC·BD=AB·CD=AD·BC(任意凸四边形ABCD ,必有AC·BD AB·CD+AD·BC ,当且仅当ABCD 四点共圆时取等号)16.九点共圆定义:三角形三边的中点,三条高的垂足和各顶点与垂心连线的中点,九点共圆.九点圆的半径是三角形外接圆半径的一半.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点九点圆与三角形的内切圆,三个旁切圆均相切(费尔巴哈定理)17.蝴蝶定理M 是弦AB 的中点,任意两条弦CD 、EF 过点M ,DE 、CF 交AB 于P 、Q ,则有PM=QM18.欧拉线定义:三角形的外心O(中垂线的交点)、重心(中线的交点)、九点圆圆心和垂心H(高的交点),依次位于同一直线上,这条直线就叫三角形的欧拉线,OG=21GH ,OV=HVPA切圆于点A,则有∠PAC=∠B20.圆幂定理相交弦定理PA·PB=PC·PD切割线定理PQ2=PA·PB=PC·PD割线定理21.垂美四边形对角线互相垂直的四边形(ACBD),则有AB2+CD2=AD2+BC2 P为矩形内任意一点,则有PA2+PB2=PC2+PD222.维维亚尼定理P是等边三角形ABC内任意一点,P到三角的距离分别为h1、h2、h3,等边三角形的高为H,则h1+h2+h3=H23.莫得定理△ABC各内角的三等分线的交点,构成的△AEF为等边三角形.24.笛沙格定理△ABC和△A1B1C1中AA1、BB1、CC1,交于一点P,则AB与A1B1的交点D,BC与B1C1的交点E,AC与A1C1的交点F,三点共线。
平面几何4--张角定理及西姆松定理
例2.已知 的顶点A,B,C对应的三边长分别为a,b,c,E为其内切圆圆心,AБайду номын сангаас交BC于D,求证:
例3.如图,在四边形ABCD中,对角线AC平分 在CD上取一点E,BE与AC相交于F,延长DF交BC于G,求证:
例4.如图,已知AM是 的边BC上的中点,任作一直线顺次交AB,AC,AM于P,Q,N,求证: 成等差数列.
平面几何(4)----张角定理及西姆松定理
张角定理:设A,C,B顺次分别是平面内一点P所引三条射线PA,PC,PB上的点,线段AC,CB对点P的张角分别为 且 ,则A,C,B三点共线的充要条件是: .
例1.如图,已知ABCD为四边形,两组对边延长后得到交点E,F,对角线BD//EF,AC的延长线交EF于G,求证:EG=GF.
西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线(此线常称为西姆松线).
西姆松定理的逆定理:若一点在三角形三边所在直线上的射影共线,则改点在此三角形的外接圆上.
例1.如图,过正 外接圆的 上点P作PD 直线AB于D,作PE AC于E,作 于F,求证:
例2.如图,设AD,BE,CF为 的三条高线,自D点作 于P, 于Q, 于R, 于S,连PS.求证:Q,R在直线PS上.
个人精心高中数学联赛竞赛平面几何四大定理及考纲
个人精心高中数学联赛竞赛平面几何四大定理及考纲Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#1、数学竞赛考纲二试1、平面几何基本要求:掌握高中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、、、。
几个重要的极值:到三角形三顶点距离之和最小的点--。
到三角形三顶点距离的平方和最小的点--。
三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的。
了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
方法、方法。
平面、及应用。
2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带的函数的图像。
,三角形的一些简单的恒等式,三角不等式。
,一阶、二阶递归,法。
函数,求n次迭代,简单的函数方程。
n个变元的平均不等式,,及应用。
复数的指数形式,欧拉公式,,单位根,单位根的应用。
圆排列,有重复的排列与组合,简单的组合恒等式。
一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。
简单的初等数论问题,除初中大纲中所包括的内容外,还应包括,,欧几里得除法,非负最小完全剩余类,,,,,格点及其性质。
3、立体几何多面角,多面角的性质。
三面角、直三面角的基本性质。
正多面体,欧拉定理。
体积证法。
截面,会作截面、表面展开图。
4、平面解析几何直线的式,直线的,直线束及其应用。
二元一次不等式表示的区域。
三角形的。
圆锥曲线的切线和法线。
圆的幂和根轴。
5、其它。
集合的划分。
覆盖。
西姆松线的存在性及性质()。
及其逆定理。
一、平面几何1. 梅涅劳斯定理(Menelaus)定理(简称梅氏定理)是由数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
平面几何四大神奇定理
实用标准文案平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R ,则P 、Q 、R 共线的充要条件是1RBARQA CQ PC BP =⋅⋅。
塞瓦(Ceva)定理(塞瓦点)△ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是1RBARQA CQ PC BP =⋅⋅。
托勒密(Ptolemy)定理四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)该点落在三角形的外接圆上。
例题:1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。
求证:FBAF2ED AE =。
【分析】CEF 截△ABD→1FABF CB DC ED AE =⋅⋅(梅氏定理)【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行线。
2. 过△ABC 的重心G 的直线分别交AB 、AC 于E 、F ,交CB 于D 。
DEG 截△ABM→1DB MDGM AG EA BE =⋅⋅(梅氏定理)DGF 截△ACM →1DCMDGM AG FA CF =⋅⋅(梅氏定理)∴FA CF EA BE +=MDAG )DC DB (GM ⋅+⋅=MD GM 2MD2GM ⋅⋅=1 【评注】梅氏定理3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上,λ===EACEFB AF DC BD ,AD 、BE 、CF 交成△LMN 。
求S △LMN 。
【分析】【评注】梅氏定理4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、△ABG 。
求证:AE 、BF 、CG 相交于一点。
【分析】【评注】塞瓦定理5. 已知△ABC 中,∠B=2∠C 。
求证:AC 2=AB 2+AB ·BC 。
平面几何的著名定理
平面几何的著名定理一、毕达格拉斯定理(即勾股定理)在任何一个直角三角形中,两条直角边的长的平方和等于斜边长的平方,这就叫做勾股定理。
即勾的平方加股的平方等于弦的平方二、帕普斯定理帕普斯(Pappus)定理:如图,直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD 交于P,AF,DC交于Q,BF,EC交于R,则P,Q,R共线。
三、影射定理(与相似三角形和比例有关)直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC ,(3)(AC)^2;=CD·BC 。
等积式 (4)ABXAC=BCXAD(可用面积来证明)四、梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
证明一过点A作AG∥BC交DF的延长线于G,则AF/FB=AG/BD , CE/EA=DC/AG。
三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1证明二过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1它的逆定理也成立:若有三点F、D、E分别在△ABC的边AB、BC、CA或其延长线上,且满足(AF/FB)×(BD/DC)×(CE/EA)=1,则F、D、E三点共线。
平面几何四大定理
平面几何四个重要定理四个重要定理:梅涅劳斯(Menelaus)定理(梅氏线)△ABC得三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、R共线得充要条件就是.塞瓦(Ceva)定理(塞瓦点)△ABC得三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点得充要条件就是。
托勒密(Ptolemy)定理四边形得两对边乘积之与等于其对角线乘积得充要条件就是该四边形内接于一圆。
西姆松(Simson)定理(西姆松线)从一点向三角形得三边所引垂线得垂足共线得充要条件就是该点落在三角形得外接圆上。
例题:1.设AD就是△ABC得边BC上得中线,直线CF交AD于F。
求证:。
【分析】CEF截△ABD→(梅氏定理)【评注】也可以添加辅助线证明:过A、B、D之一作C F得平行线。
2.过△ABC得重心G得直线分别交AB、AC于E、F,交CB于D。
求证:。
【分析】连结并延长AG交BC于M,则M为BC得中点。
DEG截△ABM→(梅氏定理)DGF截△ACM→(梅氏定理)∴===1【评注】梅氏定理3.D、E、F分别在△ABC得BC、CA、AB边上,,AD、BE、CF交成△LMN。
求S△LMN。
【分析】【评注】梅氏定理4.以△ABC各边为底边向外作相似得等腰△BCE、△CAF、△ABG。
求证:AE、BF、CG相交于一点。
【分析】【评注】塞瓦定理5.已知△ABC中,∠B=2∠C。
求证:AC2=AB2+AB·BC。
【分析】过A作BC得平行线交△ABC得外接圆于D,连结BD。
则CD=DA=AB,AC=BD。
由托勒密定理,AC·BD=AD·BC+CD·AB。
【评注】托勒密定理6.已知正七边形A1A2A3A4A5A6A7.求证:。
(第21届全苏数学竞赛)【分析】【评注】托勒密定理7.△ABC得BC边上得高AD得延长线交外接圆于P,作PE⊥AB于E,延长ED交AC延长线于F.求证:BC·EF=BF·CE+BE·CF。
十大高中平面几何几何定理汇总及证明
v1.0可编辑可修改高中平面几何定理汇总及证明1.共边比例定理证明:分如下四种情况,分别作三角形高,由相似三角形可证SA PAB=(S\ PAM SA PMB)=(SAPAM/SXPMB1) X SAPMB=(AM/BM1) X SXPMB等高底共线,面积比=底长比)同理,SXQAB=(AM/BM1) X SXQMB所以,SXPAB/SXQAB=XPMB/S\QMB=PMQM等高底共线,面积比=底长比)定理得证!特殊情况:当PB// AC时,易知△ PAB与△ QAB的高相等,从而SX PAB=X QAB 反之,SX PAB=X QAB 贝U PB// AQ2.正弦定理在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即卩a/sinA = b/sinB =c/sinC = 2r=R (r为外接圆半径,R为直径) 有公共边AB的两个三角形的顶点分别是P、Q, AB与PQ的连线交于点M则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM QM.证明:A现将△ ABC做其外接圆,设圆心为Q我们考虑/C及其对边AB 设AB长度为c。
若/C为直角,贝U AB就是。
0的直径,即c= 2r。
•••sBC二1 (特殊角正弦函数值)•••盒皿若/C为锐角或钝角,过B作直径BC'交O 0于C',连接C'A,显然BC'= 2r=R。
若/C为锐角,贝U C'与C落于AB的同侧,此时/ C'= / C (同弧所对的圆周角相等)•••在Rt△ ABC'中有= =若/C为钝角,贝U C'与C落于AB的异侧,BC的对边为a,此时/ C'= / A,亦可推出sin匸■ - 5inA _。
考虑同一个三角形内的三个角及三条边,同理,分别列式可得a b c^A = ^B=^C=2r = R。
3.分角定理在厶ABC中,D是边BC上异于B,C或其延长线上的一点,连结则有BD/CD=(sin / BAD/sin / CAD)*(AB/AC)。
平面几何的26个定理
ED C B A 高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级一、知识点金 1. 梅涅劳斯定理:假设直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立〔用同一法证明〕2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,假设,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
()ABCD E BAE CAD ABE ACDAB BE ABE ACD AB CD AC BE AC CDAB AE BAC EAD ABC AED AC ADBC ED AD BC AC ED AC ADAB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C D ∠=∠∠=∠∆∆∴=⇒⋅=⋅=∠=∠∴∆∆∴=⇒⋅=⋅∴⋅+⋅=⋅+∴⋅+⋅≥⋅证:在四边形内取点,使,则:和相似又且和相似且等号当且仅当在上时成立,即当且仅当、、、四点共圆时成立;注:托勒密定理的逆定理也成立4. 西姆松定理:假设从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
假设,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
西姆松定理证明过程
西姆松定理证明过程
嘿,朋友们!今天咱来唠唠西姆松定理的证明过程哈。
先说说啥是西姆松定理呢?就是从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
听起来有点玄乎哈,但咱慢慢捋。
咱就拿个具体的三角形来说事儿。
想象一下有个三角形 ABC,然后有个点 P 在它的外接圆上。
那怎么证明从 P 向三边引垂线的垂足共线呢?
咱先从 P 向 AB 边引垂线,垂足咱就叫 D 吧。
再向 BC 边引垂线,垂足叫 E。
然后向 CA 边引垂线,垂足叫 F。
这时候咱就得想想了,这几个垂足之间有啥关系呢?别急,咱一步一步来。
先看看三角形 PBD 和三角形 PBE。
这俩三角形有啥特点呢?它们有个公共边 PB 呀,而且角 PDB 和角 PEB 都是直角,这就有意思了。
再看看三角形 PCD 和三角形 PCF,是不是也有类似的情况呀?
然后呢,咱就可以利用这些相似性啊、全等啊之类的知识来慢慢推导啦。
就这么捣鼓捣鼓,你就会发现,哎呀,这些垂足真的就共线啦!是不是挺神奇的?
其实啊,数学里好多定理都是这么一点点琢磨出来的。
就像咱过日子
似的,一点点积累经验,慢慢就明白好多道理啦。
说起来,我记得我以前学这个的时候,那也是费了不少劲呢。
一开始也是云里雾里的,后来慢慢琢磨,多画几个图,多想想,嘿,还真就搞懂啦。
所以啊,大家学这个定理的时候也别着急,慢慢来,就跟走迷宫似的,一步一步找路,总能找到出口的。
好啦,关于西姆松定理的证明过程我就说到这儿啦。
大家自己也可以多琢磨琢磨,说不定还能发现更有意思的证明方法呢!。
西姆森定理
西姆森定理
西姆森定理,亦译为西姆松定理,是关于平面几何中的点共线的两个定理。
表述为:过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线,此线常称为西姆松线或译西摩松线。
西姆森定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。
西姆森定理相关的结果有:
(1)称三角形的垂心为H。
西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。
(2)两点的西姆松线的交角等于该两点的圆周角。
(3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。
(4)从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面几何(4)----张角定理及西姆松定理
张角定理:设A ,C ,B 顺次分别是平面内一点P 所
引三条射线PA ,PC ,PB 上的点,线段AC ,CB 对
点P 的张角分别为,,αβ且180o αβ+<,则A ,C ,B 三点共线的充要条件是:
sin()sin sin PC PB PA
αβαβ+=+.
例1. 如图,已知ABCD 为四边形,两组对边延长后得到交点E ,F ,对角线BD//EF ,AC 的延长线交EF 于G ,求证:EG=GF.
例2. 已知ABC 的顶点A ,B ,C 对应的三边长分别为a ,b ,c ,E 为其内切
圆圆心,AE 交BC 于D ,求证:AE b c ED a
+=
例3. 如图,在四边形ABCD 中,对角线AC 平分,BAD ∠在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G ,求证:GAC EAC ∠=∠
例4. 如图,已知AM 是ABC 的边BC 上的中点,任作一直线顺次交AB ,AC ,AM 于P ,Q ,N ,求证:
,,AB AM AC
AP AN AQ
成等差数列.
西姆松定理:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线(此线常称为西姆松线).
西姆松定理的逆定理: 若一点在三角形三边所在直线上的射影共线,则改点在此三角形的外接圆上.
例1. 如图,过正ABC 外接圆的 AC 上点P 作PD ⊥直线AB 于D ,作PE ⊥AC
于E ,作PF BC ⊥于F ,求证:
111PF PD PE
+=
例2. 如图,设AD ,BE ,CF 为ABC 的三条高线,自D 点作DP AB ⊥于P ,DQ BE ⊥于Q ,DR CF ⊥于R ,DS AC ⊥于S ,连PS. 求证:Q ,R 在直线PS 上.
例3. 如图,设P 为ABC 外接圆上一点,作'PA BC ⊥交圆周于'A ,作'PB ⊥直线AC 交圆周于'B ,作'PC AB ⊥交圆周于'C ,求证:'''////AA BB CC。