大学物理第9章习题解答

合集下载

袁艳红主编大学物理学第九章课后习题答案

袁艳红主编大学物理学第九章课后习题答案

----------专业最好文档,专业为你服务,急你所急,供你所需-------------文档下载最佳的地方第9章 静电场习 题一 选择题9-1 两个带有电量为2q 等量异号电荷,形状相同的金属小球A 和B 相互作用力为f ,它们之间的距离R 远大于小球本身的直径,现在用一个带有绝缘柄的原来不带电的相同的金属小球C 去和小球A 接触,再和B 接触,然后移去,则球A 和球B 之间的作用力变为[ ](A)4f (B) 8f (C) 38f (D) 16f答案:B解析:经过碰撞后,球A 、B 带电量为2q,根据库伦定律12204q q F r πε=,可知球A 、B 间的作用力变为8f。

9-2关于电场强度定义式/F E =0q ,下列说法中哪个是正确的?[ ] (A) 电场场强E 的大小与试验电荷0q 的大小成反比 (B) 对场中某点,试验电荷受力F 与0q 的比值不因0q 而变 (C) 试验电荷受力F 的方向就是电场强度E 的方向 (D) 若场中某点不放试验电荷0q ,则0=F ,从而0=E 答案:B解析:根据电场强度的定义,E 的大小与试验电荷无关,方向为试验电荷为正电荷时的受力方向。

因而正确答案(B )习题9-3图(B) 穿过S 面的电场强度通量改变,O 点的场强大小改变 (C) 穿过S 面的电场强度通量不变,O 点的场强大小改变 (D) 穿过S 面的电场强度通量不变,O 点的场强大小不变 答案:D解析:根据高斯定理,穿过闭合曲面的电场强度通量正比于面内电荷量的代数和,曲面S 内电荷量没变,因而电场强度通量不变。

O 点电场强度大小与所有电荷有关,由点电荷电场强度大小的计算公式204q E rπε=,移动电荷后,由于OP =OT ,即r 没有变化,q 没有变化,因而电场强度大小不变。

因而正确答案(D )9-4 在边长为a 的正立方体中心有一个电量为q 的点电荷,则通过该立方体任一面的电场强度通量为 [ ](A) q /ε0 (B) q /2ε0 (C) q /4ε0 (D) q /6ε0 答案:D解析:根据电场的高斯定理,通过该立方体的电场强度通量为q /ε0,并且电荷位于正立方体中心,因此通过立方体六个面的电场强度通量大小相等。

大学物理(肖剑荣主编)-习题答案-第9章

大学物理(肖剑荣主编)-习题答案-第9章

第九章 课后习题解答桂林理工大学 理学院 胡光辉(《大学物理·下册》主编:肖剑荣 梁业广 陈鼎汉 李明)9-1一个沿轴作简谐振动的弹簧振子,振幅为,周期为,其振动方程用余弦函数表示.如果时质点的状态分别是:(1);(2)过平衡位置向正向运动;(3)过处向负向运动; (4)过处向正向运动.试求出相应的初位相,并写出振动方程.解:因为 将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相.故有 9-2一质点沿x 轴做简谐振动,振幅为0.12m ,周期为2s ,当t=0时,质点的位置在0.06m 处,且向x 轴正方向运动,求; (1)质点振动的运动方程;(2)t=0.5s 时,质点的位置、速度、加速度;(3)质点x=-0.06m 处,且向x 轴负方向运动,在回到平衡位置所需最短的时间。

解 (1)由题意可知:可求得(初速度为零),所以质点的运动方程为 x A T 0=t A x -=02A x =2Ax -=îíì-==0000sin cos f w f A v A x )2cos(1p p p f +==t T A x )232cos(232p p p f +==t T A x )32cos(33p p pf +==t T A x )452cos(454p p pf +==t T A x 0020.12,,cos A m x A Tp w p j ====03p j =-(2) 任意时刻的速度为所以 任意时刻的加速度为所以(3)根据题意画旋转矢量图。

由图可知,质点在x=-0.06m 处,且向x 轴负方向运动,再回到平衡位置相位的变化为所以9-3 质量为的小球与轻弹簧组成的系统,按的规律作谐振动,求:(1)振动的周期、振幅和初位相及速度与加速度的最大值;(2)最大的回复力、振动能量、平均动能和平均势能,在哪些位置上动能与势能相等?0.12cos 3x t p p æö=-ç÷èø0.50.12cos 0.50.1()3t x m p p =æö=-=ç÷èø0.12sin 3v t p p p æö=--ç÷èø10.50.12cos 0.50.19()3t v m s p p p -=æö=--=-•ç÷èø20.12cos 3a t p p p æö=--ç÷èø()220.50.12cos 0.5 1.03t a m s p p p -=æö=--=-•ç÷èø325236j p p p D =-=()50.8336t s jw D D ==»kg 10103-´)SI ()328cos(1.0p p +=x(3)与两个时刻的位相差;解:(1)设谐振动的标准方程为,则知:又(2)当时,有,即 ∴ (3)9-4 原长为0.50m 的弹簧,上端固定,下端挂一质量为0.1kg 的砝码。

大学物理第9篇习题解答

大学物理第9篇习题解答

第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。

考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±=(2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r r m G r q f f G e ππε氧其净力是引力。

9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = ×10-9C ,B 点处有点电荷q 2 = -×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。

解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。

点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε E 2 EE 1q 2A C q 1B θ994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。

C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B ϖ中,B ϖ的方向与回路的法线成60°角,如图所示,B ϖ的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φρρ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0ρρ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ垂直离开导线。

大学物理八九章部分习题解答

大学物理八九章部分习题解答

第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。

分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。

解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。

在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为2022322()R nIdxdB R x μ=+ 由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为212022322()x Lx R nIdxB dB R x μ==+⎰⎰0212212221221[]2()()nIx x R x R x μ=-++ 由图可知12122212221212cos os ()()x x R x R x ββ==++ c ,代入上式并整理可得 021(cos cos )2nIB μββ=-式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。

讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有nI B 0μ=上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。

理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。

即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行;(2)若点O 位于半无限长载流螺线管一端,即12πβ=,20β=或12πβ=,2βπ=时,无论哪一种情况均有nI B 021μ=------(8-19) 可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b )所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。

大学物理第9章 真空中电场解答

大学物理第9章 真空中电场解答

题9-12解图第九章习题解答9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷91 1.810C q -=⨯,B点上有一点电荷92 4.810C q -=-⨯,已知BC =0.04m ,AC =0.03m ,求C 点电场强度E的大小和方向(cos37°≈0.8, sin37°≈0.6).(分析:运用点电荷场强公式及场强叠加原理求解。

) 解:如图所示C 点的电场强度为12E E E =+99411220 1.810910 1.810(N/C)(0.03)4π()q E AC ε-⨯⨯⨯===⨯ 99422220 4.810910 2.710(N/C)(0.04)4π()q E BC ε-⨯⨯⨯===⨯44103.2410(N/C)E ===⨯方向为:o 44217.33107.2108.1arctan E E arctan =⨯⨯==α 即方向与BC 边成33.7°。

9-12 一细棒被弯成半径为R 的半圆形,其上部均匀分布有电荷+Q ,下部均匀分布电荷-Q .如题图9-12所示,求圆心O 点处的电场强度。

(分析:微分取电荷元,运用点电荷场强公式及场强叠加原理积分求解。

将带电半圆环分割成无数个电荷元,运用点电荷场强公式表示电荷元场强。

将电荷元电场进行矢量分解,再进行对称性分析,然后积分求解。

) 解:把圆环分成无限多线元d l ,d l 所带电量为2d d πQq l R=,产生的场强为d E 。

则d E 的大小为: 232200d d d 2π2πQ l Q E R Rθεε== x y dE dE i dE j =+,且:d sin d x E E θ=, d c o s d y E E θ= 由于+Q 、-Q 带电量的对称性,x 轴上的分量相互抵消,则:0x E =题图9-12Cπ2222200cos d 2d 2cos d 22ππy y Q QE E E E R Rθθθεε=====⎰⎰⎰圆环在O 点产生的场强为: 220QE j R πε=-9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2б,如题图9-13所示,求: (1)图中三个区域的场强1E ,2E ,3E 的表达式;(2)若б=4.43×10-6C ·m -2,那么,1E ,2E ,3E各多大?(分析:首先确定场强正方向,然后利用无限大均匀带电平板场强及场强叠加原理求解。

大学物理第九章课后习题答案

大学物理第九章课后习题答案
自治区精品课程—大学物理学
题库
第九章 静电场的基本规律
一、 填空 1. 电荷分为 和 ,一般把用 摩擦过的玻璃棒上所带的电 荷称为 , 把用毛皮摩擦过的 上所带的电荷称为 。 2. 物体所带电荷的多寡程度的物理量称为 。 3. 物体所带的电荷量不是以连续值出现,而是以不连续的量值出现的,这称 为 。 4. 试探电荷满足的两个条件是 , 。 5. 穿过电场中某曲面的电场线条数称为电场对该曲面的 。 6. 静电场的电场线起始于, ,终止于 , 是 (填 “闭合” 或 “不闭合” ) 的曲线, 在没有电荷的空间里, 电场线既不会 , 也不会 。 7. 高斯定理的表达式是 。 8. 电场中电势相等的点所构成的曲面称为 。 点电荷的等势面是以点电 荷为球心的一系列 。 9. 沿等势面移动电荷,电场力做功为 ,等势面和电场线处处 。 10. 沿电场线方向,电势 (填“升高”或“降低” ) 。 二、 简答 1. 2. 3. 4. 5. 简述真空中点电荷满足的库仑定律的内容及矢量表达式。 简述研究电场性质时,试探电荷需满足的两个条件。 简述电场线怎样描述电场的性质,以及静电场的电场线的特点。 简述高斯定理。 简述等势面具有的性质。
s
q内
0

8. 等势面,同心球面。 9. 零,正交。 10. 降低。 二、 简答 1. 答:内容:真空中两个点电荷之间的相互作用力沿其连线方向,同号相斥, 异号相吸;作用力的大小与两电荷的电荷量的乘积成正比,与两电荷之间的距离 的平方成反比。 矢量表达式: F =
q1 q 2 r0 。 4πε 0 r 2
� q j 2π 2 ε 0 R 2
联立①②, 可得 Q = 3 q 3
① ②
∴在三角形的中心应放置一电量为 − 的合力为零. 5.

大学物理课后习题答案第九章

大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系转变:23(65)10t t Wb -Φ=++⨯。

求2t s =时,回路中感应电动势的大小和方向。

解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速度υ在导电轨道abcd 上平行移动。

已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角,如图所示,B 的大小为B =kt (k 为正常数)。

设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向转变,且)1(x k B +=,0>k 。

求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)转变时,线框中感生电流的大小和方向。

解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a += 正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。

设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x mF G G mx x πρπρ=-=-令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x ×10-2m 处,向负方向运动;(4)物体在x =-×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭(3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭(4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

大学物理课后习题详解(第九章)中国石油大学

大学物理课后习题详解(第九章)中国石油大学

习 题 九9-1 一系统由图示的状态a 经acb 到达状态b ,系统吸收了320J 热量,系统对外作功126J . (1)若adb 过程系统对外作功 42J ,问有多少热量传入系统? (2)当系统由b 沿曲线ba 返回状态a ,外界对系统作功84 J ,试问系统是吸热还是放热? 热量是多少? [解] 由热力学第一定律A E Q +∆=得 A Q E -=∆ 在acb 过程中,E E E ∆=-a b J 19412632011=-=-=A Q在adb 过程中,内能变化量与acb 过程相同 因此 J 2364219422=+=+∆=A E Q 在ba 过程中J 2788419433b a 3-=--=+∆-=+-=A E A E E Q由于热量为负值,所以本过程中系统放热.9-2 2mol 氮气由温度为 300K ,压强为510013.1⨯Pa (1atm )的初态等温地压缩到 510026.2⨯Pa (2atm ).求气体放出的热量. [解] 在等温过程中气体吸收的热量等于气体对外做的功,所以J 1046.321ln30031.82ln321T ⨯-=⨯⨯⨯===p p RT A Q ν即气体放热为J 1046.33⨯.9-3 一定质量的理想气体的内能E 随体积的变化关系为E - V图上的一条过原点的直线,如图所示.试证此直线表示等压过程.[证明] 设此直线斜率为k ,则此直线方程为kV E = 又E 随温度的关系变化式为 T k T C MM E '=⋅=v m o l所以 T k kV '= 因此 C kk T V ='=(C 为恒量)又由理想气体的状态方程知,C T pV'= (C '为恒量)所以 p 为恒量,即此过程为等压过程.9-4 2mol 氧气由状态1变化到状态2所经历的过程如图所示:(1)沿l →m →2路径.(2)1→2直线.试分别求出两过程中氧气对外作的功、吸收的热量及内能的变化.[解] (1) 在1→m →2这一过程中,做功的大小为该曲线下的面积,氧气对外做负功.()()J 1010.81010013.11050204352121⨯-=⨯⨯⨯-⨯-=--=-V V p A由气体的内能公式T C E V ν=和理想气体的状态方程RT pV ν=得pV i RR i pVRpVC RpVC E 22VV====νν对于氧气5=i ,所以其内能的变化为 ()()J 1027.11010013.15051020252543511221⨯-=⨯⨯⨯⨯-⨯⨯=-=∆-V p V p E此过程吸收的热量为 J 1037.91010.81027.1444111⨯-=⨯-⨯-=+∆=A E Q (2)在从1→2过程中,由图知氧气对外作功为()()()()J 1007.51010013.11050520212143521122⨯-=⨯⨯⨯-⨯+⨯-=-+-=-V V p p A内能的变化 J 1027.1412⨯-=∆=∆E E吸收的热量 J 1034.61007.51027.1444222⨯-=⨯-⨯-=+∆=A E Q9-5 10mol 单原子理想气体在压缩过程中外界对它作功209J ,其温度上升1K ,试求:(1)气体吸收的热量与内能的增量.(2) 此过程中气体的摩尔热容量.[解] (1) 内能的增量为 J 65.124131.82310V =⨯⨯⨯=∆=∆T C E ν气体吸收的热量 J 35.8420965.124-=-=+∆=A E Q (2) 由气体摩尔热容量知 ())K mol J 44.835.841011⋅-=-⨯=∆=TQC ν9-6 将压强为1atm ,体积为33m 101-⨯的氧气(25V R C =)从0℃加热到100℃.试分别求在等体(积)过程和等压过程中各需吸收多少热量.[解] 由理想气体状态方程 RT pV ν= 00RT V p RTpV ==ν在等容过程中吸收的热量为 J 77.9210027310110013.1252535000V V =⨯⨯⨯⨯⨯=∆=∆=-T R RT V p T C Q ν在等压过程中吸收的热量为J 88.12977.92575727V p p =⨯==∆=∆=Q T R T C Q νν9-7 已知氩气的定体(积)比热为)K kg J 314V ⋅=c ,若将氩气看作理想气体,求氩原子的质量.(定体(积)摩尔热容V mol V c M C =).[解] 由定容摩尔热容量的定义知 R R i C 232V ==因此 VVV m o l 23c Rc C M==氩原子的质量为 kg 1059.63141002.631.823232623V A Amol-⨯=⨯⨯⨯===c N RN Mm9-8 为测定气体的γ(V p C C =)值有时用下列方法:一定量的气体的初始温度、体积和压强为0T 、0V 和0p ,用一根电炉丝对它缓慢加热.两次加热的电流强度和时间相同,第一次保持体积0V 不变,而温度和压强变为1T 和1p .第二次保持压强0p 不变,而温度和体积变为2T 和1V .试证明 ()()001001p V V V p p --=γ[证明] 两次加热气体吸收的热量相同,等容过程吸收的热量为()01V 1T T C Q -=ν 等压过程吸收的热量为 ()02p 2T T C Q -=ν 由 21Q Q =可得 ()()02p 01V T T C T T C -=-νν所以 0201Vp T T T T C C --==γ由理想气体状态方程 000RT V p ν= 101RT V p ν= 210RT V p ν= 因此 00101V R p p T T ν-=- 00102p RV V T T ν-=-所以得到 ()()001001p V V V p p --=γ9-9 已知1mol 固体的状态方程为bp aT v v ++=0,内能apT cT E +=,式中0v 、a 、b 、c 均为常量,求该固体的p C 、V C .[解] 由热力学第一定律可得 V p E A E Q d d d d d +=+= (1) 由已知条件可得 p b T a V d d d += (2) T ap p aT T c E d d d d ++= (3)将(2)、(3)代入(1)得 ()p b T a p T ap p aT T c Q d d d d d d ++++= (4) 在等压过程中,0d =p所以 ()T ap c Q d 2d += 因此 ap c TQ C 2d d p +==在等容过程中 0d =V代入(2)式得 0d d =+p b T a 因此 T ba p d d -=代入(4)式得Tb T a apc T b a b T a p T ap T b a aT T c Qd d d d d d d 2⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+++⎪⎭⎫ ⎝⎛-+= 所以 bT a ap c TQ C 2V d d -+==9-10 已知范德瓦尔斯气体的内能0V E Va T C E +-=.其中V C 、a 、0E 为常数,试证明其绝热过程方程为()常数=-VC R b V T[证明] 范德瓦尔斯气体的状态方程为 ()RT b V V a p =-⎪⎭⎫⎝⎛+2 (1) 又由已知条件可得 V Va T C E d d d 2V += (2)绝热过程 0d =Q ,由热力学第一定律得 V p A E d d d -=-= (3) 由(2)、(3)式可得 V p V Va T C d d d 2V -=+ (4)由 (1)式可得 2Va bV RT p --=(5)将(5)代入(4)式有 V bV RT V Va V Va T C d d d d 22V --=+整理得 V bV T RTC d 1d V --=积分得()常数=-+b V T RC ln ln V即 ()常数=-RCVT b V这就是范德瓦尔斯气体的绝热过程方程.9-11 如图所示是氮气循环过程,求:(1)一次循环气体对外作的功;(2)循环效率. [解] (1) 一次循环过程气体对外作功的大小为闭合曲线所包围的面积,由图知,其包围的面积为1()()1412V V p p S --= ()()J 100.2101015510335⨯=⨯⨯-⨯-=-该循环对外作功为正,所以 J 100.23⨯=A(2) 该循环过程中,从1→2,2→3为吸收热量过程 1→2为等容过程,吸收热量为()()112212V 125V p V p T T C Q -=-=ν()J 1025.110101511025335⨯=⨯⨯⨯-⨯⨯=-2→3为等压过程,吸收热量为 ()()223323p 227V p V p T T C Q -=-=ν()J 104.1101011051027435⨯=⨯⨯⨯-⨯⨯=-因此吸收的总热量为 J 10525.1421⨯=+=Q Q Q 该循环的效率为 %1.13%10010525.1100.243=⨯⨯⨯==Q A η9-12 一理想气体的循环过程如图所示,其中ca 为绝热过程,点 a 的状态参量为()11,V T ,点b 的状态参量为()22,V T ,理想气体的热容比为γ,求(1)气体在ab 、bc 过程中与外界是否有热交换? 数量是多少?(2)点c 的状态参量;(3)循环的效率.[解] (1) ab 过程是等温过程,系统吸收热量为121T lnV V RT A Q ν==因12V V >,故该过程是吸热过程.bc 过程是等容过程,系统吸收热量为 ()2c V V T T C Q -=ν 因 c T <2T ,故该过程是放热过程. (2) 从图上可看到 2c V V =又 ac 为绝热过程,故根据绝热方程 112111c1c T VV T VV T --⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=γγ又有 γγ11c c V p V p =得到 121211121211c -⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛=γγγννV V V RT V RT V V V V p p(3) ()()[]()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⋅-=--=--=-=--12121V 12111212V 121C 2V TV ln 11ln1ln11V V V V RC V V RT T V V T C V V RT T T C Q Q γγννη9-13 图中闭合曲线为一理想气体的循环过程曲线,其中ab 、cd 为绝热线,bc 为等体(积)线,da 为等压线,试证明其效率为bc ad T T T T ---=γη1式中a T 、b T 、c T 、d T 分别为a 、b 、c 、d 各状态的温度,V p C C =γ.[证明] da 为放热过程,其放出的热量为()a d p 2T T C Q -=νbc 为吸热过程,其吸收的热量为 ()b c V 1T T C Q -=ν 所以其效率为 ()()bc ad b c V a d p 12111T T T T T T C T T C Q Q ---=---=-=γννη9-14 如图所示,AB 、DC 为绝热线,COA 是等温线. 已知系统在COA 过程中放热J 100,OAB 的面积是J 30,ODC 的面积为 J 70,试问在BOD 过程中系统是吸热还是放热?热量是多少?[解] 因COA 是等温线,COA 过程中J 100CA CA -==Q A 又因AB 、DC 为绝热线,AB AB A E -=∆ DC DC A E -=∆ OAB 过程系统作负功,ODC 过程系统作正功,整个循环过程系统作功 3070CA DC BD AB -=+++A A A ABOD 过程中系统吸热A C BD DC AB BD BD 140140E E E E E E A Q -+=∆+∆+∆+=∆+=由于COA 是等温过程,过程中系统内能变化为零,即 0A C =-E E 因此BOD 过程中系统吸热 J 140=Q9-15 一制冷机进行如图所示的循环过程,其中ab 、cd 分别是温度为1T 、2T 的等温线,bc 、da 为等压过程,设工作物质为理想气体.证明这制冷机制冷系数为:12121ln22p p i T T T ++-=ω[证明] ab 为等温过程,吸收热量为12111lnp p RT A Q ν==cd 为等温过程,其放出的热量大小为12222lnp p RT A Q ν==bc 为等压过程,吸收的热量为 ()12p 3T T C Q -=ν da 为等压过程,放出的热量大小为 ()12p 4T T C Q -=ν所以致冷系数 ()()12121314231ln22p p i T T T Q Q Q Q Q Q Q Q Q AQ ++-=+-++=-==吸放吸吸ω9-16 mol 1单原子理想气体,初态压强为1p ,体积为1V ,经等温膨胀使体积增加一倍,然后保持压强不变,使其压缩到原来的体积,最后保持体积不变,使其回到初态. (1)试在V p -图上画出过程曲线;(2)求在整个过程中内能的改变,系统对外作的净功、从外界吸收的净热量以及循环效率.[解] (1) 过程曲线(2) 系统经过循环又回到初态,所以其内能改变量0=∆E a →b 为等温过程,系统对外作正功2ln ln11121V p V V RT A ==νa2p 1p 2V 1V OVb →c 为等压过程,系统对外作负功,其数值大小为()()122111222V V V V p V V p A -=-=过程中总功 ()1112211112119.02ln V p V V V V p V p A A A =--=-=系统从外界吸收的净热量 1119.0V p A Q == a →b 过程吸热为 2ln 1111V p A Q ==c →a 过程中吸收的热量为 ()c a V 2T T C Q -=ν()V p V V V p p V p p 112111121432323=⎪⎪⎭⎫ ⎝⎛-=-=所以 %2.13432ln 19.011111121=+=+=V p V p V p Q Q A η9-17 一可逆卡诺热机低温热源的温度为27℃,热机效率为 40%,它的高温热源的温度是多少? 今欲将热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加多少度?[解] 可逆卡诺循环的效率为121T T -=η所以 K 5004.01300121=-=-=ηT T若 %50='η,则 K 6005.01300121=-='-='ηT T所以 K 10050060011=-=-'=∆T T T9-18 有一卡诺热机,用29kg 空气为工作物质,高温热源和低温热源的温度分别为C 27o 和C 73-o ,求此热机的效率.若在等温膨胀过程中工作物质的体积增大到2.718倍,则此热机每一循环所作的功是多少?[解] 此热机的效率为 %3.333002001112=-=-=T T η在等温膨胀过程中,吸收的热量为J 1049.2718.2ln 30031.8291029ln631211⨯=⨯⨯⨯⨯==V V RT Q ν又 1Q A =η所以 J 103.81049.231561⨯=⨯⨯==Q A η9-19 在高温热源为127℃、低温热源为27℃之间工作的卡诺热机,一次循环对外作净功为8000J ,今维持低温热源温度不变,提高高温热源的温度,使其一次循环对外做功10000J ,若两次循环该热机都工作在相同的两条绝热线之间,试求: (1)后一卡诺循环的效率.(2)后一卡诺循环的高温热源的温度.[解] (1) 设前一卡诺循环从高温热源吸收热量为1Q ,则有11Q A =η又 414003001112=-=-=T T η所以 J 320004800011=⨯==ηA Q 后一卡诺循环从高温热源吸收热量为J 34000800010000320001211=-+=-+='A A Q Q所以第二个卡诺循环的效率为 %4.29%100340001000012=⨯='='Q A η(2) 第二个卡诺循环的高温热源温度为 K 425294.01300121=-='-='ηT T9-20 一台家用冰箱,放在气温为300K 的房间内,做一盘C 13-o 的冰需从冷冻室取走J 1009.25⨯的热量.设冰箱为理想卡诺制冷机. (1)求做一盘冰所需要的功;(2)若此冰箱能以s J 1009.22⨯的速率取走热量,求所要求的电功率是多少瓦? (3)做一盘冰需时若干?[解] (1) 致冷系数为 2122T T T A Q -==ω因此 ()()J 1022.32602603001009.2452212⨯=-⨯⨯=-=T T T Q A(2) 取走制一盘冰的热量所需要的时间为 s 101009.21009.2325=⨯⨯=t所以电功率为 W 2.32101022.334=⨯==tA P(3) 做一盘冰所需要的时间为 s 103.9-21 绝热容器中间有一无摩擦、绝热的可动活塞,如图所示,活塞两侧各有mol ν的理想气体,5.1=γ,其初态均为0p 、0V 、0T .现将一通电线圈置入左侧气体中,对气体缓慢加热,左侧气体吸热膨胀推动活塞向右移,使右侧气体压强增加为0375.3p ,求; (1)左侧气体作了多少功?(2)右侧气体的终态温度是多少?(3)左侧气体的终态温度是多少? (4)左侧气体吸收了多少热量?[解] (1) 右侧气体所发生的过程为绝热过程.它对外所做的功的负值就是左侧气体所作的功.所以左侧气体作功为 12200---='-=γV p V p A A又对右侧气体: γγγ202200375.3V p V p V p == 因此 γ102375.3V V =所以 000000122001375.3375.31V p V p V p V p V p A =--=---=γγγ(2) 对右侧气体,由绝热方程知 ()γγγγ----=210010375.3T p T p得到 00325.1375.3T T T ===(3) 左侧气体末态体积为 γ1002001375.32V V V V V V -=-+=得到 00000010011125.525.212375.3375.312375.3T T T V p V V p RV p T =⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫⎝⎛-==γν(4) 左侧气体吸收热量()()0000V 01V 1125.5V p T T C A T T C A E Q +-=+-=+∆=νν由 000RT V p ν= 知 RV p T ν000=又由 5.1VV Vp =+==C R C C C γ, 得到 R C 2V =所以 00000015.925.42V p V p RV p R Q =+⨯⨯⨯=νν9-22 如图所示,在刚性绝热容器中有一可无摩擦移动而且不漏气的导热隔板,将容器分为A 、B 两部分,各盛有1mol 的He 气和2O 气.初态He 、2O 的温度各为K 300A =T ,K 600B =T ;压强均为atm 1.求:(1)整个系统达到平衡时的温度T 、压强p (氧气可视为刚性理想气体); (2)He气和2O 气各自熵的变化,系统的熵变.[解] (1) 因中间是导热隔板,过程中两部分气体热量变化和作功的数值都相等,所以内能变化量的数值也相等,且由于初温度不同而末温度相同所以一正一负.因此 ()()T T C T T C '-=-'B VB B A VA A νν解得 K 5.487536005300325232523BA VBVA BVB A VA =+⨯+⨯=++=++='RR RT RT C C T C T C T因平衡时温度、压强都相等,且都是1mol ,所以体积也相等.()A B A A B B B A AA BA B A45021212p RT T p R p RT p RT V V V V =+=⎪⎪⎭⎫ ⎝⎛+=+='='νν 根据理想气体状态方程得到压强为atm 08.114505.478450A =⨯=⋅'=''='p T V T R p ν(2) He 气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S AAAd d d d d A VA A He He He ννK J 42.93002600300ln31.83005.487ln31.8232lnln23ABA A=⨯+⨯+⨯⨯=++'=T T T R T T R氧气熵变⎰⎰⎰⎰''+=+==∆T T V V VVR TTC TVp E TQ S BBB222d d d d d B VB B O O O ννK J 70.66002600300ln31.86005.487ln31.8252lnln25-=⨯+⨯+⨯⨯=++'=BBA BT T T R T T R系统的熵变 K J 72.270.642.92O He =-=∆+∆=∆S S S9-23 已知在0℃1mol 的冰溶化为0℃的水需要吸收热量 6000 J ,求: (1)在0℃条件下这些冰化为水时的熵变;(2)0℃时这些水的微观状态数与冰的微观状态数的比. [解] (1) 温度不变时,熵变为 K J 0.222736000d 1d 0====∆⎰⎰Q T TQ S(2) 根据玻尔兹曼熵公式 冰冰Ω=ln k S 水水Ω=ln k S冰水冰水冰水ΩΩ=Ω-Ω=-=∆lnln ln k k k S S S根据(1)结果,得2423106.11038.10.22⨯⨯∆===ΩΩ-ee ekS 冰水9-24 把2mol 的氧从40℃冷却到0℃,若(1)等体(积)冷却;(2)等压冷却.分别求其熵变是多少?[解] 在等容压缩过程中 T C Q d d V ν= 因此 K J 68.5313273ln252d d d 273313VV -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν在等压冷却过程中, T C Q d d p ν=K J 95.7313273ln272d d d 273313pp -=⨯====∆⎰⎰⎰R TT C TTC TQ S νν9-25 取1mol 理想气体,按如图所示的两种过程由状态A 到达状态C . (1)由A 经等温过程到达状态 C ;(2)由A 经等体(积)过程到达状态B ,再经等压过程到达状态C . 按上述两种过程计算该系统的熵变A C S S -.已知A C 2V V =,A C 21p p =.[解] (1) 根据理想气体状态方程得 RV p RV p T A A AA A ==ν因此等温过程中熵变为⎰⎰⎰⎰====∆V VRTT T Vp T QTQS C Ad 1d d d AAAν2ln lnd AC AA CAR V V R VV T RT V V ===⎰(2) A →C 与A →B →C 两过程初末状态相同,熵是状态函数,只与初末位置有关,因此两过程熵变相同等于2ln R .或:根据理想气体状态方程得 A A BB B 211V p RRV p T ⋅==νA →B →C 过程熵变等于A →B 等容过程和B →C 等压过程中熵变的和⎰⎰⎰⎰+=+=+=∆CBB ACBB ATTC TTC TQ TQ S S S d d d d p V 21νν2ln 2ln 2ln p V R C C =+-=。

大学物理第九章振动学基础习题答案

大学物理第九章振动学基础习题答案

第九章 振动学习题9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0⎪⎭⎫ ⎝⎛+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。

解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,ϕ0=π/3,m A ω=v ,2m a A ω=(2)π=8π3t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。

设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。

(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。

解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。

(2)ω==,2π2T ω==9-3 设地球是一个密度为ρ的均匀球体。

现假定沿直径凿通一条隧道,一质点在隧道内做无摩擦运动。

(1)证明此质点的运动是谐振动;(2)计算其振动周期。

解:以球心为原点建立坐标轴Ox 。

质点距球心x 时所受力为324433x m F G G mx x πρπρ=-=- 令43k G m πρ=,则有F kx =-,即质点做谐振动。

(2)ω==2πT ω== 9-4 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s 。

当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。

求以上各种情况的振动方程。

解:ω=2π/T=4πs -1(1)ϕ0=0,0.02cos4(m)x t π=(2)ϕ0=π/2,0.02cos 4(m)2x t ππ⎛⎫=+ ⎪⎝⎭ (3)ϕ0=π/3,0.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭ (4)ϕ0=4π/3,40.02cos 4(m)3x t ππ⎛⎫=+ ⎪⎝⎭9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。

《大学物理学》第二版下册习题解答

《大学物理学》第二版下册习题解答

第九章 静电场中的导体9.1 选无穷远处为电势零点,半径为R 的导体球带电后,其电势为U 0,则球外离球心距离为r 处的电场强度的大小为(A) 302rU R . (B) R U 0. (C) 20rRU . (D) r U 0. [ C ] 9.2如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B)2εσ. (C) 0εσh . (D) 02εσh. [ A ]9.3 一个未带电的空腔导体球壳,内半径为R .在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去.选无穷远处为电势零点,则球心O 处的电势为 (A) 0 . (B)dq04επ.(C)R q 04επ-. (D) )11(4Rd q -πε. [ D ]9.4 在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳内场强分布改变,球壳外不变. (C) 球壳外场强分布改变,球壳内不变.(D) 球壳内、外场强分布均改变. [ B ]9.5在一个孤立的导体球壳内,若在偏离球中心处放一个点电荷,则在球壳内、外表面上将出现感应电荷,其分布将是:(A) 内表面均匀,外表面也均匀. (B) 内表面不均匀,外表面均匀. (C) 内表面均匀,外表面不均匀.(D) 内表面不均匀,外表面也不均匀. [ B ]9.6当一个带电导体达到静电平衡时: (A) 表面上电荷密度较大处电势较高. (B) 表面曲率较大处电势较高. (C) 导体内部的电势比导体表面的电势高.(D) 导体内任一点与其表面上任一点的电势差等于零. [ D ]9.7如图所示,一内半径为a 、外半径为b 的金属球壳,带有电荷Q ,在球壳空腔内距离球心r 处有一点电荷q .设无限远处为电势零点,试求: (1) 球壳内外表面上的电荷. (2) 球心O 点处,由球壳内表面上电荷产生的电势. (3) 球心O 点处的总电势.解:(1) 由静电感应,金属球壳的内表面上有感生电荷-q ,外表面上带电荷q +Q .(2) 不论球壳内表面上的感生电荷是如何分布的,因为任一电荷元离O 点的 距离都是a ,所以由这些电荷在O 点产生的电势为adqU q 04επ=⎰-aq04επ-=(3) 球心O 点处的总电势为分布在球壳内外表面上的电荷和点电荷q 在O 点产生的电势的代数和q Q q q O U U U U +-++=r q 04επ=a q 04επ-b q Q 04επ++ )111(40b a r q +-π=εbQ04επ+9.8有一"无限大"的接地导体板 ,在距离板面b 处有一电荷为q 的点电荷.如图所示,试求: (1) 导体板面上各点的感生电荷面密度分布.(2) 面上感生电荷的总电荷.解:(1) 选点电荷所在点到平面的垂足O 为原点,取平面上任意点P ,P 点距离原点为r ,设P 点的感生电荷面密度为σ.在P 点左边邻近处(导体内)场强为零,其法向分量也是零,按场强叠加原理,()024cos 0220=++=⊥εσεθb r q E P π 2分 ∴ ()2/3222/b r qb +-=πσ 1分(2) 以O 点为圆心,r 为半径,d r 为宽度取一小圆环面,其上电荷为 ()2/322/d d b r qbrdr S Q +-==σ总电荷为 ()q brrdrqb dS Q S-=+-==⎰⎰∞2/322σ 2分O9.9 如图所示,中性金属球A ,半径为R ,它离地球很远.在与球心O 相距分别为a 与b 的B 、C 两点,分别放上电荷为q A 和q B 的点电荷,达到静电平衡后,问: (1) 金属球A 内及其表面有电荷分布吗?(2) 金属球A 中的P 点处电势为多大?(选无穷远处为电势零点)B解:(1) 静电平衡后,金属球A 内无电荷,其表面有正、负电荷分布,净带电荷为零. (2) 金属球为等势体,设金属球表面电荷面密度为σ. ()()0004///4/d εεσπ++π⋅==⎰⎰a q a q R S U U B A S P A∵0d =⋅⎰⎰AS S σ∴ ()()04///επ+=a q a q U B A P9.10三个电容器如图联接,其中C 1 = 10×10-6 F ,C 2 = 5×10-6 F ,C 3 = 4×10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16×10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111×10-3 C第十章 静电场中的电介质10.1 关于D的高斯定理,下列说法中哪一个是正确的? (A) 高斯面内不包围自由电荷,则面上各点电位移矢量D为零.(B) 高斯面上处处D为零,则面内必不存在自由电荷.(C) 高斯面的D通量仅与面内自由电荷有关.(D) 以上说法都不正确. [ C ]10.2一导体球外充满相对介电常量为εr 的均匀电介质,若测得导体表面附近场强为E ,则导体球面上的自由电荷面密度σ为(A) ε 0 E . (B) ε 0 ε r E .(C) ε r E . (D) (ε 0 ε r - ε 0)E . [ B ]10.3 一平行板电容器中充满相对介电常量为εr 的各向同性均匀电介质.已知介质表面极化电荷面密度为±σ′,则极化电荷在电容器中产生的电场强度的大小为:(A) 0εσ'. (B) r εεσ0'. (C) 02εσ'. (D)rεσ'. [ A ]10.4一平行板电容器始终与端电压一定的电源相联.当电容器两极板间为真空时,电场强度为0E ,电位移为0D,而当两极板间充满相对介电常量为εr 的各向同性均匀电介质时,电场强度为E ,电位移为D,则(A) r E E ε/0 =,0D D =. (B) 0E E =,0D D rε=.(C) r E E ε/0 =,r D D ε/0 =. (D) 0E E =,0D D=. [ B ]10.5如图所示, 一球形导体,带有电荷q ,置于一任意形状的空腔导体中.当用导线将两者连接后,则与未连接前相比系统静电场能量将 (A) 增大. (B) 减小.(C) 不变. (D) 如何变化无法确定. [ B ]q10.6将一空气平行板电容器接到电源上充电到一定电压后,断开电源.再将一块与极板面积相同的各向同性均匀电介质板平行地插入两极板之间,如图所示. 则由于介质板的插入及其所放位置的不同,对电容器储能的影响为:(A) 储能减少,但与介质板相对极板的位置无关. (B) 储能减少,且与介质板相对极板的位置有关. (C) 储能增加,但与介质板相对极板的位置无关.(D) 储能增加,且与介质板相对极板的位置有关. [ A ]介质板10.7静电场中,关系式 P E D+=0ε(A) 只适用于各向同性线性电介质. (B) 只适用于均匀电介质. (C) 适用于线性电介质.(D) 适用于任何电介质. [ D ]10.8一半径为R 的带电介质球体,相对介电常量为εr ,电荷体密度分布ρ = k / r 。

河北科技大学大学物理答案第9章

河北科技大学大学物理答案第9章

第9章思考题9-1 理想气体物态方程是根据哪些实验定律导出的,其适用条件是什么?9-2内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度愈高,则热量愈多;(2) 物体的温度愈高,则内能愈大?9-3 在p-V图上用一条曲线表示的过程是否一定是准静态过程?理想气体经过自由膨胀由状态(p1,V1,T1)改变到状态(p2,V2,T1),这一过程能否用一条等温线表示。

9-4有可能对物体传热而不使物体的温度升高吗?有可能不作任何热交换,而系统的温度发生变化吗?9-5在一个房间里,有一台电冰箱在运转着,如果打开冰箱的门,它能不能冷却这个房间?空调为什么会使房间变凉?9-6根据热力学第二定律判别下列两种说法是否正确?(1) 功可以全部转化为热,但热不能全部转化为功;(2) 热量能够从高温物体传到低温物体,但不能从低温物体传到高温物体。

9-7 一条等温线和一条绝热线是否能有两个交点?为什么?9-8 为什么热力学第二定律可以有许多不同的表述?9-9 瓶子里装一些水,然后密闭起来。

忽然表面的一些水温度升高而蒸发成汽,余下的水温变低,这件事可能吗?它违反热力学第一定律吗?它违反热力学第二定律吗?9-10有一个可逆的卡诺机,以它做热机使用时,若工作的两热源温差愈大,则对做功越有利;当作制冷机使用时,如果工作的两热源温差愈大时,对于制冷机是否也愈有利?(从效率上谈谈)9-11可逆过程是否一定是准静态过程?准静态过程是否一定是可逆过程?有人说―凡是有热接触的物体,它们之间进行热交换的过程都是不可逆过程。

‖这种说法对吗?9-12如果功变热的不可逆性消失了,则理想气体自由膨胀的不可逆性也随之消失,是这样吗?9-13热力学第二定律的统计意义是什么?如何从微观角度理解自然界自发过程的单方向性?9-14西风吹过南北纵贯的山脉:空气由山脉西边的谷底越过,流动到山顶到达东边,在向下流动。

空气在上升时膨胀,下降时压缩。

若认为这样的上升、下降过程是准静态的,试问这样的过程是可逆的吗?9-15 一杯热水置于空气中,他总要冷却到与周围环境相同的温度。

大学物理第9章答案

大学物理第9章答案

大学物理第9章答案第三篇电磁学综合练习题一、填空题1、把一根导线弯成形状固定的平面曲线放在均匀磁场B中,绕其一端α点以角速率逆时针方向旋转,转轴与B平行,如图9-52所示。

则整个回路电动势为,ab两端的电动势为图9-52图-532、引起动生电动势的非静电力是力,其非静电场强度Ek=3、如图9-53所示,在通有电流为I的长直导线近旁有一导线段ab长l,离长直导线距离d,当它沿平行于长直导线的方向以速度平移时,导线中的i=____4、感应电场是由产生的,它的电场线是的,它对导体中的自由电荷的作用力大小为5、如图9-54所示,导体AB长为L,处在磁感应强度为B的匀强磁场中,磁感应线垂直纸面向里,AB搁在支架上成为电路的一部分。

当电路接通时,导体AB弹跳起来,此时导体AB中的电流方向为6、半径为r的小导线圆环置于半径为R的大导线圆环的中心,二者在同一平面内。

且rR。

若在大导线圆环中通有电流iI0int,其中,I0为常量,t为时间。

则任意时刻,小导线圆环中感应电动势的大小为7、一个折成角形的金属导线aoc(aoocl)位于某oy平面中,磁感强度为B的匀强磁场垂直于某oy平面,如图9-55所示。

当aoc以速度沿某轴正方向运动时,导线a,c两点的电势差Vac=;当aoc以速度沿y 轴正方向运动时,导线上o,a两点的电势差Voa=8、自感为0.25H的线圈中,当电流在(1/16)内由2A均匀减少到零时,线圈中自感电动势的大小为63第三篇电磁学图9-54图9-559、在磁感强度为B的磁场中,以速率垂直切割磁力线运动的—长度为L的金属杆,相当于它的电动势为,产生此电动势的非静电力是二、选择题1、如图9-56所示,当闭合线圈ABCD以速度平行长直导线运动时,判断下哪种说法是正确的:()A、线圈磁通不变,线圈上电动势处处相等,故无电流;B、AB、CD切割磁力线,线圈的动生电动势不为零,线圈中存在感应电流;C、线圈中AB、CD存在动生电动势,但线圈总的动生电动势为零,故无感应电流;D、以上说法都不对。

大学物理(第4版)主编赵近芳-第9章课后答案

大学物理(第4版)主编赵近芳-第9章课后答案

习题99.1选择题(1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零,则Q与q的关系为:()(A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q[答案:A](2)下面说法正确的是:()(A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷;(B)若高斯面内没有电荷,则该面上的电场强度必定处处为零;(C)若高斯面上的电场强度处处不为零,则该面内必定有电荷;(D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。

[答案:A](3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度()(A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0[答案:C](4)在电场中的导体内部的()(A)电场和电势均为零;(B)电场不为零,电势均为零;(C)电势和表面电势相等;(D)电势低于表面电势。

[答案:C]9.2填空题(1)在静电场中,电势梯度不变的区域,电场强度必定为。

[答案:零](2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中心向外移动至无限远,则总通量将。

[答案:q/6ε0, 将为零](3)电介质在电容器中作用(a)——(b)——。

[答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命](4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。

[答案:1:5]9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题9.3图示(1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题9.3图 题9.4图9.4 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题9.4图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题9.4图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 9.5 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.9.6 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.9.7 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9 C/m 的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题9.7图所示(1) 在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε 222)(d π4d x a xE E l l P P -==⎰⎰-ελ题9.7图]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理2220d d π41d +=x xE Q λε 方向如题9.7图所示由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x=以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向9.8 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如9.8图在圆上取ϕRd dl =题9.8图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.9.9 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E . 解: 如9.9图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为 ()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题9.9图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿OP9.10 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题9.10图所示. 题9.10 图9.11 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C/m 3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外.9.12 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题9.13图9.13 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题9.13图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.9.14 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题9.14图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题9.14图(a).(1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'd π4π3430320OO r E ερ=∴ O 点电场'd 33030OO r E ερ= ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E 'OO题9.14图(a) 题9.14图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题8-13(b)图)则 03ερrE PO =,3ερr E O P '-=' ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.9.15 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N/C 的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p在外场E 中受力矩E p M ⨯= ∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅9.16 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题9.17图9.17 如题9.17图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题9.17图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=9.18 如题9.18图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题9.18图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O9.19 一电子绕一带均匀电荷的长直导线以2×104m/s 的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ==∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅9.20 空气可以承受的场强的最大值为E =30 kV/cm ,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场 4105.1d ⨯==E U V9.21 证明:对于两个无限大的平行平面带电导体板(题9.21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题9.21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题9.21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.9.22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题9.22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题9.22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题9.22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV9.23两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εε题9.23图(2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=9.24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题9.24图所示,设金属球感应电荷为q ',则球接地时电势0=O U题9.24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q9.25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力0022018348342F r πqr π"q 'q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r qq F ==ε9.26 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4rrQ E r r Q D r εε ==内; 介质外)(2R r <场强303π4,π4rrQ E r Qr D ε ==外 (2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞ 外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r-+=εεε9.27 如题9.27图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题9.27图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ 由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21UE E == rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内∴r r E E εεεεσσ==102012题9.27图 题9.28图9.28 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222=== (2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε==题9.29图9.29 如题9.29 图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 9.30 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.9.31半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题9.31图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r r Q W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R Q W C -==ε 121049.4-⨯=F。

大学物理学习指导习题解答-第9章

大学物理学习指导习题解答-第9章
选 D。绝热过程, p V
53 1 1
R3
c
p2V2
53
pV5 3 p2 1 51 3 , V2
a
d
p1V15 3 O V2 p1V1 V p2V2 p1V1 V25 3 V1 2 3 3 题 9-12 图 A p1V1 1 ( ) 1 2 V2 2 3 9-12 一系统从同一初态 a 经三个不同的过程变化到相同的末态 d ,过程 R1 、过程 R2 和 过程 R3 分别如图所示。比较这三个过程中系统对外作的功为【 】
2 ghL 。 P0 P0 选 D。设玻璃管的截面积为 S,静止时封闭气体压强为 p ,显然 p p0 gh ,让玻
ghL

(D) h =h +
璃管做自由落体运动,则水银重力提供重力加速度,因此此时封闭气体压强为 p0 ,由理想
气体方程有 pLS p0 LS ,L

EH 2
5 m 5 5 m 5 RT mRT ; Eo2 RT mRT ; 2 M mol 4 2 M mol 64 3 m 3 EH e RT mRT 。TH 2 THe TO2 ,TH 2 THe TO2 。 2 M mol 8 9-10 同一种气体的定压比热 C P 大于定容比热 CV ,其主要原因是【 】
的绝热压缩至体积 V2 ,外界需作多少功【 (A)

p
b
R2
R1
V V 3 5 p1V1 ( 1 ) 2 3 1 ; (B) p1V1 ( 1 ) 2 5 1 ; 2 2 V2 V2 V 23 V 2 3 3 (C) p1V1 ( 1 ) 1 ; (D) p1V1 1 ( 1 ) 。 2 V2 V2

太原理工大学大学物理第五版第9章课后题答案

太原理工大学大学物理第五版第9章课后题答案

第9章 真空中的静电场(习题选解)9-补充 三个电量为q -的点电荷各放在边长为r 的等边三角形的三个顶点上,电荷(0)Q Q >放在三角形的重心上。

为使每个负电荷受力为零,Q 之值应为多大解:以三角形上顶点所置的电荷(q -)为例,其余两个负电荷对其作用力的合力为1f ,方向如图所示,其大小为题6-1图22221004330cos 42r q r q f πεπε=︒⨯=中心处Q 对上顶点电荷的作用力为2f ,方向与1f 相反,如图所示,其大小为2233200434r Qqr Qq f πεπε==⎪⎪⎭⎫ ⎝⎛由12f f =,得3Q q =。

6-补充 在某一时刻,从238U 的放射性衰变中跑出来的α粒子的中心离残核234Th 的中心为159.010r m -=⨯。

试问:(1)作用在α粒子上的力为多大(2)α粒子的加速度为多大解:(1)由反应238234492902U Th+He →,可知α粒子带两个单位正电荷,即 1912 3.210Q e C -==⨯Th 离子带90个单位正电荷,即1929014410Q e C -==⨯它们距离为159.010r m -=⨯由库仑定律可得它们之间的相互作用力为:191991221520 3.21014410(9.010)5124(9.010)Q Q F N r πε---⨯⨯⨯==⨯⨯=⨯(2)α粒子的质量为:2727272()2(1.6710 1.6710) 6.6810p n m m m Kg α---=+=⨯⨯+⨯=⨯由牛顿第二定律得:282275127.66106.6810F a m s m α--===⨯⋅⨯ 9-1 如图所示,有四个电量均为C q 610-=的点电荷,分别放置在如图所示的1,2,3,4点上,点1与点4距离等于点1与点2的距离,长m 1,第3个电荷位于2、4两电荷连线中点。

求作用在第3个点电荷上的力。

解:由图可知,第3个电荷与其它各电荷等距,均为2r =。

大学物理教程第9章习题答案

大学物理教程第9章习题答案

⼤学物理教程第9章习题答案思考题9.1 为什么要引进视见函数?答:辐射通量虽然是⼀个反映光辐射强弱程度的客观物理量,但是,它并不能完整地反映出由光能量所引起的⼈们的主观感觉——视觉的强度(即明亮程度).因为⼈的眼睛对于不同波长的光波具有不同的敏感度,不同波长的数量不相等的辐射通量可能引起相等的视觉强度,⽽相等的辐射通量的不同波长的光,却不能引起相同的视觉强度.所以⽤视见函数概念反映⼈的眼睛对于不同波长的光波具有不同的敏感度.它表⽰⼈眼对光的敏感程度随波长变化的关系.9.2 在杨⽒双缝实验中,若将⼊射光由正⼊射改为斜⼊射,则屏幕上⼲涉图样如何改变?答:⼲涉条纹沿着垂直条纹的⽅向整体移动。

9.3 将劈尖由空⽓中放⼊折射率为n 的介质中,条纹间距如何变化?答:条纹间距变⼩。

9.4 在单缝的夫琅⽲费衍射中,单缝宽度对衍射图样有何影响?答:单缝宽度越⼩衍射图样的中央亮纹越宽。

9.5什么是缺级?产⽣缺级的条件是什么?答:当衍射⾓θ满⾜光栅⽅程λθk b a ±=+sin )(时应产⽣主极⼤明条纹,但如果衍射⾓⼜恰好满⾜单缝衍射的暗纹条件λk a '±=sin ,那么这时这些主极⼤明条纹将消失,这种现象就是缺级。

两个条件联⽴得...)2,1,0(=''±=k k k λ,即所缺的级数由光栅常数d 和缝宽a 的⽐值决定。

9.6 偏振现象反映光波的什么性质?答:偏振现象表明光波是横波。

9.7 试解释我们看到的天空是蓝⾊的⽽宇航员看到的天空却是⿊⾊的?答:我们看到的天空是蓝⾊的是由于空⽓对太阳光散射造成的。

⽽在宇宙空间中,物质的分布密度极低,对太阳光的散射也就基本不存在,所以宇航员看到的天空是⿊⾊的。

习题9.1 某汽车前灯发光强度为75,000cd ,光束发散⽴体⾓为5Sr ,求其发出的光通量。

解:发光强度I 为光通量F 对⽴体⾓Ω的微分Ωd dFI =所以375000575000=?===??ΩΩI Id F lm9.2 ⼀光源辐射出555nm 和610nm 的光,两者的辐射通量分别为2W 和1W ,视见函数分别为1.000和0.503,求光源发出的总光通量各为多少?解:(1)1366000.12683)()(683=??==λΦλV F lm52.343503.01683)()(683=??==λΦλV F lm9.3 ⼀氦氖激光器发出1?10-2W 的激光束,其波长为6.328?10-7m ,激光束的⽴体⾓为3.14?10-6Sr ,已知该激光的视见函数为0.24。

大学物理简明教程习题解答第9章

大学物理简明教程习题解答第9章

----------专业最好文档,专业为你服务,急你所急,供你所需-------------第9章 波动光学9-1 杨氏双缝干涉实验中,两缝中心距离为0.60mm ,紧靠双缝的凸透镜的焦距为2.50m ,屏幕置于焦平面上。

(1)用单色光垂直照射双缝,测得屏上条纹的间距为2.30mm 。

求入射光的波长。

(2)当用波长为480nm 和600nm 的两种光垂直照射时,问它们的第三级明条纹相距多远。

解 (1)杨氏双缝干涉的条纹间距λd Dx =Δ, 故入射光的波长nm 550m 1050.5Δ7=⨯==-x Ddλ (2)当光线垂直照射时,明纹中心位置 ,2,1,0=±=k k dD x λ1λ和2λ两种光的第三级明纹相距mm 1.50m 1050.1)(331233=⨯=-='--λλdDx x9-2 在杨氏双缝干涉实验中,若用折射率分别为1.5和1.7的二块透明薄膜覆盖双缝(膜厚相同),则观察到第7级明纹移到了屏幕的中心位置,即原来零级明纹的位置。

已知入射光的波长为500nm ,求透明薄膜的厚度。

解 当厚度为e ,折射率为1n 和2n 的薄膜分别覆盖双缝后,两束相干光到达屏幕上任一位置的光程差为λδ7)()(121122+-=+--+-=r r e n e r e n e r对于屏幕中心位置有12r r =,两束相干光到达屏幕中心位置的光程差为 λδ7)(12=-=e n n 故薄膜厚度nm 5.17m 1075.17512=⨯=-=-n n e λ9-3 一束波长为600nm 的光波与一束波长未知的光波同时照射到双缝上(缝间距未知)。

观察到波长已知的光波在屏上的第四级干涉明纹,恰与波长未知光波的第五级干涉暗纹重合。

求未知的波长。

解 屏上明暗纹重合处同时满足双缝干涉的明纹条件11λδk =和暗纹条件2)12(22λδ-=k题9-2图----------专业最好文档,专业为你服务,急你所急,供你所需-------------式中,41=k ,52=k ,故 2)152(421λλ-⨯=解得nm 5339812==λλ9-4 楔形玻璃片夹角θ=1.0×10-4 rad ,在单色光垂直照射下观察反射光的干涉,测得相邻条纹的间距为0.20cm 。

大学物理第章习题分析与解答

大学物理第章习题分析与解答

第九章 电磁感应9-1 在感应电场中电磁感应定律可写成tΦd d d LK -=⎰⋅l E ,式中K E 为感生电场的电场强度.此式表明[ ]。

(A) 闭合曲线L 上K E 处处相等 (B)感生电场的电场强度线不是闭合曲线(C) 感生电场是保守力场 (D) 在感生电场中不能像对静电场那样引入电势的概念分析与解 感生电场与位移电流是麦克斯韦两个重要假设,感生电动势总是等于感生电场沿该闭合回路的环流,故感生电场不是保守场,称为有旋电场,不能象静电场那样引入电势的概念。

正确答案为(D )。

9-2 E 和E k 分别表示静电场和有旋电场的电场强度,下列关系式中,正确的是[ ]。

(A )0d L=⎰⋅l E (B )0Ld ≠⎰⋅l E(C )0d kL=⎰⋅l E (D )0d kL≠⎰⋅l E分析与解 静电场的环流恒为零,而感生电场的环流不一定为零。

正确答案为(A )。

9-3 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感,则[ ]。

(A) 铜环中有感应电流,木环中无感应电流 (B) 铜环中有感应电流,木环中有感应电流 (C) 铜环中感生电场大,木环中感生电场小(D )铜环中感生电场小,木环中感生电场大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但木环中不会形成电流。

正确答案为(A )。

9-4 关于位移电流,有下面四种说法,正确的是[ ]。

(A )位移电流的实质是变化的电场(B )位移电流和传导电流一样是定向运动的电荷 (C )位移电流的热效应服从焦耳—楞兹定律 (D )位移电流的磁效应不服从安培环路定律分析与解 位移电流的实质是变化的电场。

变化的电场激发磁场,这一点位移电流等效于传导电流;但位移电流不是定向运动的电荷,也不服从焦耳热效应、安培力等定律。

正确答案为(A )。

9-5 用导线制成一半径为r =10cm 的闭合圆形线圈,其电阻R =10Ω,均匀磁场B 垂直于线圈平面,欲使电路中有一稳定的感应电流i =0.01A ,B 的变化率应为d B /d t =____ ___。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 真空中的静电场 习题解答9-1 精密的实验已表明,一个电子与一个质子的电量在实验误差为e 2110-±的范围内是相等的,而中子的电量在e 2110-±的范围内为零。

考虑这些误差综合的最坏情况,问一个氧原子(含8个电子、8个质子、8个中子)所带的最大可能净电荷是多少?若将原子看成质点,试比较两个氧原子间的电力和万有引力的大小,其净力是引力还是斥力?解:(1)一个氧原子所带的最大可能净电荷为 e q 21max 1024-⨯±= (2)两个氧原子间的电力和万有引力的大小之比为6222711221921122222max 0108.2)1067.116(1067.6)106.11024(1085.84141------⨯≈⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯=≤r r rm G r q f f G e ππε氧 其净力是引力。

9-2 如习题9-2图所示,在直角三角形ABC 的A 点处,有点电荷q 1 = 1.8×10-9C ,B 点处有点电荷q 2 = -4.8×10-9C ,AC = 3cm ,BC = 4cm ,试求C 点的场强。

解:根据点电荷场强大小的公式22014q qE kr r==πε, 点电荷q 1在C 点产生的场强大小为112014q E AC =πε 994-1221.810910 1.810(N C )(310)--⨯=⨯⨯=⨯⋅⨯ 方向向下。

点电荷q 2在C 点产生的场强大小为2220||14q E BC =πε994-1224.810910 2.710(N C )(410)--⨯=⨯⨯=⨯⋅⨯, 方向向右。

C 处的总场强大小为E =44-110 3.24510(N C )==⨯⋅,总场强与分场强E 2的夹角为12arctan33.69E E ==︒θ.9-3 半径为R 的一段圆弧,圆心角为60°,一半均匀带正电,另一半均匀带负电,其电荷线密度分别为+λ和-λ,求圆心处的场强。

解:在带正电的圆弧上取一弧元d s = R d θ,电荷元为d q = λd s ,在O 点产生的场强大小为220001d 1d d d 444q s E R R Rλλθπεπεπε===, 场强的分量为d E x = d E cos θ,d E y = d E sin θ。

对于带负电的圆弧,同样可得在O 点的场强的两个分量.由于弧形是对称的,x 方向的合场强为零,总场强沿着y 轴正方向,大小为2d sin y LE E E ==⎰θ/6/60000sin d (cos )22R R ==-⎰ππλλθθθπεπε0(12R=λπε。

9-4 均匀带电细棒,棒长a = 20cm ,电荷线密度为λ = 3×10-8C·m -1,求: (1)棒的延长线上与棒的近端相距d 1 = 8cm 处的场强; (2)棒的垂直平分线上与棒的中点相距d 2 = 8cm 处的场强。

解:(1)建立坐标系,其中L = a /2 = 0.1(m),x = L+d 1= 0.18(m)。

在细棒上取一线元d l ,所带的电量为d q = λd l , 根据点电荷的场强公式,电荷元在P 1点产生的场强的大小为1220d d d 4()q l E kr x l ==-λπε 场强的方向沿x 轴正向.因此P 1点的总场强大小 通过积分得120d 4()L L l E x l λπε-=-⎰014LLx lλπε-=-011()4x L x Lλπε=--+ 220124L x L λπε=- ① 将数值代入公式得P 1点的场强为8912220.13109100.180.1E -⨯⨯⨯=⨯⨯- = 2.41×103(N·C -1)方向沿着x 轴正向。

(2)建立坐标系,y = d 2。

在细棒上取一线元d l ,所带的电量为d q = λd l在棒的垂直平分线上的P 2点产生的场强的大小为2220d d d 4q lE kr r λπε==由于棒是对称的,x 方向的合场强为零,y 分量为 d E y = d E 2sin θ。

由图可知:r = d 2/sin θ,l = d 2cot θ 所以 d l = -d 2d θ/sin 2θ 因此 02d sin d 4y E d λθθπε-=总场强大小为02sin d 4Ly l LE d λθθπε=--=⎰02cos 4Ll Ld λθπε=-=L L=-==②将数值代入公式得P 2点的场强为89221/220.13109100.08(0.080.1)y E -⨯⨯⨯=⨯⨯+ = 5.27×103(N·C -1)方向沿着y 轴正向讨论:(1)由于L = a /2,x = L+d 1,代入①式,化简得1011011144/1a E d d a d d a λλπεπε==++ 保持d 1不变,当a →∞时,可得1014E d λπε→③这就是半无限长带电直线在相距为d 1的延长线上产生的场强大小(2)由②式得y E ==当a →∞时,得 022y E d λπε→, ④这就是无限长带电直线在线外产生的场强公式。

如果d 1=d 2,则有大小关系E y = 2E 1。

9-5 一无限长均匀带电细棒被弯成如习题9-5图所示的对称形状,试问θ为何值时,圆心O 点处的场强为零。

解: 设电荷线密度为λ,先计算圆弧的电荷在圆心产生的场强。

在圆弧上取一弧元 d s =R d φ 所带的电量为 d q = λd s在圆心处产生的场强的大小为2200d d d d 44q s E kr R Rλλϕπεπε=== 由于弧是对称的,场强只剩x 分量,取x 轴方向为正,场强为d E x = -d E cos φ 总场强为2/20/2cos d 4x E Rπθθλϕϕπε--=⎰2/20/2sin 4Rπθθλϕπε--=0sin 22R λθπε=方向沿着x 轴正向。

再计算两根半无限长带电直线在圆心产生的场强.根据上一题的公式③可得半无限长带电直线在延长上O 点产生的场强大小为`04E Rλπε=由于两根半无限长带电直线对称放置,它们在O 点产生的合场强为``02coscos 222x E E R θλθπε==方向沿着x 轴负向当O 点合场强为零时,必有`x x E E =,可得 tan θ/2 = 1因此 θ/2 = π/4, 所以 θ = π/29-6 一宽为b 的无限长均匀带电平面薄板,其电荷密度为σ,如习题9-6图所示。

试求平板所在平面内,离薄板边缘距离为a 的P 点处的场强。

解: 建立坐标系。

在平面薄板上取一宽度为d x 的带电直线,电荷的线密度为d λ = σd x根据直线带电线的场强公式02E rλπε=得带电直线在P 点产生的场强为00d d d 22(/2)xE rb a x λσπεπε==+-其方向沿x 轴正向。

由于每条无限长直线在P 点的产生的场强方向相同,所以总场强为/20/21d 2/2b b E x b a x σπε-=+-⎰ /2/2ln(/2)2b b b a x σπε--=+-0ln(1)2baσπε=+ ① 场强方向沿x 轴正向。

9-7 有一半径为r 的半球面,均匀地带有电荷,电荷面密度为σ,求球心处的电场强度。

解: 如图所示,在球面上任取一面元ϕθθd d s i n d 2r S =,其上带电量为ϕθθσσd d sin d d 2r S q =⋅=,电荷元q d 在球心处产生的场强的大小为22020d d sin 41d 41d r r r q E ϕθθσπεπε== 方向如图。

由对称性分析可知,球心处场强方向竖直向下,其大小为2024 d cos sin 4d cos d εσθθθπεσϕθππ====⎰⎰⎰E E E z9-8(1)点电荷q 位于一个边长为a 的立方体中心,试求在该点电荷电场中穿过立方体一面的电通量是多少?(2)如果将该场源点电荷移到立方体的的一个角上,这时通过立方体各面的电通量是多少?解:点电荷产生的电通量为Φe = q/ε0.(1)当点电荷放在中心时,电通量要穿过6个面,通过每一面的电通量为Φ1 = Φe /6 = q /6ε0.(2)当点电荷放在一个顶角时,电通量要穿过8个卦限,立方体的3个面在一个卦限中,通过每个面的电通量为Φ1 = Φe /24 = q /24ε0;立方体的另外3个面的法向与电力线垂直,通过每个面的电通量为零.9-9 面电荷密度为σ的均匀无限大带电平板,以平板上的一点O 为中心,R 为半径作一半球面,如习题9-9图所示。

求通过此半球面的电通量。

解:设想在平板下面补一个半球面,与上面的半球面合成一个球面。

球面内包含的电荷为q = πR 2σ通过球面的电通量为 Φe = q /ε0 通过半球面的电通量为Φ`e = Φe /2 = πR 2σ/2ε09-10 两无限长同轴圆柱面,半径分别为R 1和R 2(R 2 > R 1),带有等量异号电荷,单位长度的电量分别为λ和-λ,求(1)r < R 1;(2) R 1 < r < R 2;(3)r > R 2处各点的场强。

解:由于电荷分布具有轴对称性,所以电场分布也具有轴对称性。

(1)在内圆柱面内做一同轴圆柱形高斯面,由于高斯内没有电荷,所以E = 0,(r < R 1)(2)在两个圆柱之间做一长度为l ,半径为r 的同轴圆柱形高斯面,高斯面内包含的电荷为 q = λl 穿过高斯面的电通量为 ⎰⎰==⋅=ΦSSe rl E EdS S d E π2根据高斯定理Φe = q /ε0,所以02E rλπε=, (R 1 < r < R 2) (3)在外圆柱面之外做一同轴圆柱形高斯面,由于高斯内电荷的代数和为零,所以E = 0,(r > R 2)9-11 一厚度为d 的均匀带电无限大平板,电荷体密度为ρ,求板内外各点的场强。

解:方法一:高斯定理法(1)由于平板具有面对称性,因此产生的场强的方向与平板垂直且对称于中心面:E = E`在板内取一底面积为S ,高为2r 的圆柱面作为高斯面,场强与上下两表面的法线方向平等而与侧面垂直,通过高斯面的电通量为d e SΦ=⋅⎰E S2d d d S S S =⋅+⋅+⋅⎰⎰⎰E S E S E S 1`02ES E S ES =++=高斯面内的体积为 V = 2rS , 包含的电量为 q =ρV = 2ρrS 根据高斯定理 Φe = q/ε0可得场强为 E = ρr/ε0,(0≦r ≦d /2) ①(2)穿过平板作一底面积为S ,高为2r 的圆柱形高斯面,通过高斯面的电通量仍为Φe = 2ES高斯面在板内的体积为 V = Sd , 包含的电量为 q =ρV = ρSd , 根据高斯定理 Φe = q/ε0,可得场强为 E = ρd /2ε0,(r ≧d /2) ②方法二:场强叠加法(1)由于平板的可视很多薄板叠而成的,以r 为界,下面平板产生的场强方向向上,上面平板产生的场强方向向下。

相关文档
最新文档