无锡市羊尖中学数学中考一模试题
无锡市羊尖中学数学中考一模试题
无锡市羊尖中学数学中考一模试题Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT九年级数学调研测试2010年04月09日一、选择题(本题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在答题卡相应位置.......上)1、如果□×(- 23)=1,则“□”内应填的实数是(▲)A.32B.23C.-23D.-322、下列各式计算不正确...的是(▲)A.-(-3)=3B.4=2C.(3x)3=9x3D.2-1=1 23、视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E”之间的变化是(▲)A.平移 B.旋转 C.对称 D.位似4、如图,A、D是⊙O上的两个点,BC是直径,若∠D=35°,则∠OAC的度数是(▲)A.35°B.55°C.65°D.70°5、某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:完成引体向上的个数7 8 9 10人数 1 1 3 5这组同学引体向上个数的众数与中位数依次是(▲)A.9和10 B.和10 C.10和9 D.10和6、方程(x-3)(x+1)=x-3的解是(▲)A.x=0B.x=3C.x=3或x=-1D.x=3或x=07、如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm,底为10cm的等腰三角形,则这个几何的侧面积是(▲)A.60πcm2 B.65πcm2 C.70πcm2 D.75πcm28、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③ACCD=ABBC;④AC2=AD·AB.其中单独能够判定△ABC∽△ACD的个数为(▲)A.1 B.2 C.3 D.49、某校生物老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n组应该有种子数(▲)粒.A. 2n+1B. 2n-1C. 2nD. n+210、如图,直线l和双曲线y = kx(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、OP,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则有(▲)A.S1<S2<S3B.S1>S2>S3C. S1=S2<S3D.S1=S2>S3二、填空题(本大题共有8小题,每小题2分,共16分.不需写出解答过程,请把结果直接填在答题卡相应位置.......上)OACBDACDB第3题第4题第7题第8题第10题11、 计算:|-3|-2= ▲ .12、 在函数y =x+3中,自变量x 的取值范围是 ▲ .13、 截止2010年1月7日,京沪高铁累计完成投资1224亿元,为总投资的%.1224亿元用科学记数法表示为 ▲ 亿元.14、 如图,是一个正比例函数的图像,把该图像向上平移1个单位长度,得到的函数图像的解析式为 ▲ .15、 某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是▲ . 16、 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D 1、C 1的位置.若∠EFB =65°,则∠AED 1等于 ▲ 度.1· ACBOCE第16题 第17题 第18题17、 如图,∠ACB =60°,半径为1cm 的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离是 ▲ cm .18、 如图,直角三角形ABC 中, AC=1,BC=2,P 为斜边AB 上一动点。
2024年中考数学第一次模拟试卷(无锡卷)(全解全析)
2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。
无锡市中考数学一模试卷
无锡市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·黄石港模拟) 人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A . 1.56×10﹣6mB . 1.56×10﹣5mC . 156×10﹣5mD . 1.56×106m2. (2分)(2020·下城模拟) 九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24252627282930人数▄▄23679下列关于成绩的统计量中,与被遮盖的数据无关的是()A . 平均数,方差B . 中位数,方差C . 中位数,众数D . 平均数,众数3. (2分)已知一次函数y=kx+b的图象经过第一、二、四象限,则函数y= 的图象在()A . 第一、三象限B . 第二、四象限C . 第三、四象限D . 第一、二象限4. (2分)(2017·七里河模拟) 如图,1,2,3,4,T是五个完全相同的正方体,将两部分构成一个新的几何体得到其正视图,则应将几何体T放在()A . 几何体1的上方B . 几何体2的左方C . 几何体3的上方D . 几何体4的上方5. (2分)下列各式:① ,② ,③ ,④ 中,最简二次根式有()A . 1个B . 2个C . 3个D . 4个6. (2分)(2020·西安模拟) 如图,中,,是的中线,E是的中点,连接,若,,则()A .B .C .D .7. (2分)如图,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,则PA的长为()A . 16cmB . 48cmC . 6 cmD . 4 cm8. (2分) (2018九上·上虞月考) 将抛物线y=x2-2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A . y=(x-1)2+4B . y=(x-4)2+4C . y=(x+2)2+6D . y=(x-4)2+69. (2分) (2019八下·苏州期中) 菱形的周长为20 cm,两邻角的比为1:2,则较长的对角线长为()A . 5 cmB . 4 cmC . 5 cmD . 4 cm10. (2分)(2020·奉化模拟) 如图,Rt△ABC中,AB⊥BC,AB=4,BC=3,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A . 1B . 1.6C . -2D . 2二、填空题 (共8题;共8分)11. (1分)(2017·青浦模拟) 函数y= 的定义域是________.12. (1分)若关于x , y的二元一次方程组的解也是二元一次方程的解,则k 的值为________ 。
【3套试卷】无锡市中考第一次模拟考试数学试题含答案
中考模拟考试数学试卷一、选择题(每小题3分,共9小题,共27分)1.已知x =-1是一元二次方程x 2-m =0的一个解,则m 的值是( )A .1B .-2C .2D .-12.下列图形中,是中心对称图形但不是..轴对称图形的是( )3.下列说法正确的是( )A .哥哥的身高比弟弟高是必然事件B .2017年元旦武汉下雨是随机事件C .随机掷一枚均匀的硬币两次,都是正面朝上是不可能事件D .“彩票中奖的概率为15”表示买5张彩票肯定会中奖4.抛物线y =-3(x +1)2-2的项点坐标是( )A .(-1,-2)B .(-1,2)C .(1,-2))D .(1,2)5.小军的旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开旅行箱的概率是( )A .110 B .19 C .16 D .15 6.如图,PA ,PB 是⊙O 的两条切线,A ,B 为切点,AC 为⊙O 的直径,∠P =70°,则∠PBC的度数是( )A .110°B .120°C .135°D .145°第 6 题图PO第 6 题图OCBAP7.如图,P 为∠AOB 边OA 上ー点,∠AOB =45°,OP =4cm ,以P 为圆心,2cm 长为半径的圆与直线OB 的位置关系是( )A .相离B .相交C .相切D .无法确定8.如图,扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的底面积为( )A .9π cm 2B .6π cm 2C .4π cm 2D .12π cm 2120°O AB9.函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是( )A .k <3B .k <3且k ≠0C .k ≤3D .k ≤3且k ≠0 二、填空题(每小题3分,共4小题,共12分)11.如图,在平面直角坐标系中,若△ABC 与△A 1B 1C 1关于E 点成中心对称,则对称中心E 点的坐标是 .12.如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一个点C ,使△ABC 为等腰三角形的概率是 .第 12 题图AB13.武汉某区的消费品月零售总额持续增长,十月份为1.2亿元,十一月,十二月两个月一共为28亿元.设九月份到十一月份平均每月增长的百分率为x ,则可列方程 . 14.把抛物线向下平移1个单位,再向左平移3个单位后得到抛物线y =2x 2,则平移前的抛物线解析式为 . 三、解答题(共8题,共61分)17.(本题8分)已知关于x 的方程x 2+ax -2=0. (1)当该方程的一个根为1时,求a 的值;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.18.(本题8分)已知,点P 是半径为1的⊙O 外的一点,PA 与⊙O 相切于点A ,且PA =1,AB 是⊙O 的弦.(1)如图,若PB =1,求弦AB 的长; (2)若AB 2,求PB 的长.PBO19.(本题8分)甲、乙两校分别有一男一女共4名教师报名到农村中学支教.(1)若从甲、乙两校报名的教师中分别随机选1名,则所选的2名教师性别相同的概率是 ;(2)若从报名的4名教师中随机选2名,用列表或画树状图的方法求出这2名教师来自同一所学校的概率.20.(本题9分)如图,正方形ABCD 中,P 是BC 边上一点,将△ABP 绕点A 逆时针旋转90°,点P 旋转后的对应点为P '. (1)画出旋转后的三角形;(2)连接PP ',若正方形边长为1,∠BAP =15°,求PP '的长.DCPBA21.(本题10分)如图1,AB 为⊙O 的直径,BD 为⊙O 的弦,C 为⊙O 上一点,过C 作⊙O 的切线交直线BD 于点M ,且CM ⊥DM . (1)求证:AC =DC .C图 2图 1C22.(本题10分)某商场销售的某种商品每件的标价是80元,若按标价的八折销售,仍可盈利60%,此时该种商品每星期可卖出220件,市场调查发现:在八折销售的基础上,该种商品每降价1元,每星期可多卖20件.设每件商品降价x 元(x 为整数),每星期的利润为y 元.(1)求该种商品每件的进价为多少元; (2)当售价为多少时,每星期的利润最大?(3)若要求该种商品每星期的售价均为每件m 元,且该周的利润要超过6000元,请直接写出的m 的取值范围.23.(1)(本题4分)如图,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且DE =EC ,△BCE 绕点E 顺时针旋转至△ACF ,连接EF .求证:AB =DB +AF .FEA BCD24.(1)(本题4分)如图,抛物线y=ax2-2ax-3a(a<0)与x轴交于点A,B,经过点A的直线y=ax+a与抛物线交于点C,求C点的坐标(用含a的式子表示).参考答案一、选择题1.A2.A3.B4.A5.A6.D7.A8.C9.C 二、填空题11.(3,-1) 12.5713.1.2(1+x )+1.2(1+x )2=2.8 14.y =2(x -3)2+1三、解答题 17.(1)a =1;(2)△=a 2=-4×1×(-2)=a 2+8>0.18.(1)连接OA ,OB ,证四边形OAPB 是正方形,∵AB(2)(如图),AB ,∴OA 2+OB 2=AB 2,∴∠AOB =90°, ①当B ,P 在OA 的同侧时,易证四边形OAPB 是正方形,∴PB =OA =1;②当B ,P 在OA 的异侧时,则B ',O ,B 三点共线,PB∴PB =1.B BP19.(1)12; (2)列表略,P =41=123. 20.(1)略;(2)由旋转可得,AP =AP ',∠PAP '=90°,BP =DP ',△APP '是等腰直角三角形,∴∠APP '=45°,又∵∠BAP =15°,∠APB =75°,∠CPP '=60°,∴Rt △PCP '中,∠CP 'P =30°,设CP =x ,则BP =DP '=1-x ,PP '=2x ,∴CP 2+P 'C 2=P 'P 2,∴x 2+(2-x )2=(2x )2,解得x 1,(负值舍去),∴CP 1,PP '=2.21.解:(1)连AD ,延长CO 交AD 于H ,证四边形CMDH 为矩形,∴CH ⊥AD ,又CH过⊙O 的圆心O ,由垂径定理得»C A =»CD . (2)由»C A =»C D ,»AE =»ED可得CE 为直径,连CD ,过O 作OH ⊥BD 于H ,则OC =MH =5,又OB =OC =5,∴OH =4,∴CM =4,CD CE =20C =10,∴DE图2C图1C22.解:(1)设或本为n元,80×0.8-a=0.6a,∴a=40.(2)y=(80×0.8-x-40)(220+20x)=-20x2+260x+5280=-20(x-6.5)2+6125.又∵x为整数,∴x1=7,x2=6时,y最大=6120,∴当x=6或7时,80×0.8-6=58(元),80×0.8-7=57(元),即售价为57元或58元时,每星期利润最大;(3)55<m<60.23.解:作EG∥BC交AC于G,证△EDB≌△CEC.△AEG是等边三角形,BD=EG=AE,则AB=AE+BE=D B+AF.24.解:联立223y ax ax ay ax a⎧=--⎨=+⎩,可求C(4,5a).中考模拟考试数学试题含答案一.选择题(满分48分,每小题4分)1.下列说法正确的是()A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.﹣1的倒数是﹣12.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列运算正确的是()A.a+a=a2B.a3÷a=a3C.a2•a=a3D.(a2)3=a54.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°5.已知点P(a,3+a)在第二象限,则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣36.如图,八个大小相同的小矩形可拼成下面两个大矩形,拼成图2时,中间留下了一个边长为1的小正方形,则每个小矩形的面积是()A.12 B.14 C.15 D.167.某中学篮球队12名队员的年龄情况如下表:年龄/岁12 13 14 15 16人数 1 3 4 2 2关于这12名队员的年龄,下列说法中正确的是()A.众数为14 B.极差为3 C.中位数为13 D.平均数为14 8.在关于x的函数y=+(x﹣1)0中,自变量x的取值范图是()A.x≥﹣2 B.x≥﹣2且x≠0 C.x≥﹣2且x≠1 D.x≥19.如图,正方形ABCD的边长为4,动点M、N同时从A点出发,点M沿AB以每秒1个单位长度的速度向中点B运动,点N沿折现ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒,则△CMN的面积为S关于t函数的图象大致是()A.B.C.D.10.下列说法错误的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行,另一组对边相等的四边形是平行四边形D.一组对边平行且相等的四边形是平行四边形11.我们可以只用直尺和圆规作出圆的部分内接正多边形.在我们目前所学知识的范围内,下列圆的内接正多边形不可以用尺规作图作出的是()A.正三角形B.正四边形C.正六边形D.正七边形12.如图①,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线BD,FH剪开,拼成如图②所示的四边形KLMN,若中间空白部分四边形OPQR恰好是正方形,且四边形KLMN的面积为52,则正方形EFGH的面积是()A.24 B.25 C.26 D.27二.填空题(满分16分,每小题4分)13.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为”,则这个袋中白球大约有个.14.(x﹣3y)(x+3y)=.15.如图,AB是半圆O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,,AD=3.给出下=5,其中正确的是列结论:①AC平分∠BAD;②△ABC∽△ACE;③AB=3PB;④S△ABC(写出所有正确结论的序号).16.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(﹣3,0),B(0,6)分别在x轴,y轴上,反比例函数的图象经过点D,且与边BC交于点E,则点E的坐标为.三.解答题17.(8分)计算:4sin60°﹣|﹣1|+(﹣1)0+18.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(8分)黄岩岛自古以来就是中国的领土,如图,为维护海洋利益,三沙市一艘海监船在黄岩岛附近海域巡航,某一时刻海监船在A处测得该岛上某一目标C在它的北偏东45°方向,海监船沿北偏西30°方向航行60海里后到达B处,此时测得该目标C在它的南偏东75方向,求此时该船与目标C之间的距离CB的长度,(结果保留根号)20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某数学兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):步数频数频率0≤x<4000 8 a4000≤x<8000 15 0.38000≤x<12000 12 b12000≤x<16000 c0.216000≤x<20000 3 0.0620000≤x<24000 d0.04 请根据以上信息,解答下列问题:(1)写出a,b,c,d的值并补全频数分布直方图;(2)我市约有5000名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,用树形图或列表法求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.21.(12分)如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画圆,P是⊙O 上一动点且在第一象限内,过点P作⊙O的切线,与x、y轴分别交于点A、B.(1)求证:△OBP与△OPA相似;(2)当点P为AB中点时,求出P点坐标;(3)在⊙O上是否存在一点Q,使得以Q,O,A、P为顶点的四边形是平行四边形.若存在,试求出Q点坐标;若不存在,请说明理由.22.(12分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(12分)如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.24.(14分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB 于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、负数有倒数,例如﹣1的倒数是﹣1,选项错误;B、正数的倒数不一定比自身小,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、﹣1的倒数是﹣1,正确.故选:D.2.解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选:C.3.解:A、a+a=2a,此选项计算错误;B、a3÷a=a2,此选项计算错误;C、a2•a=a3,此选项计算正确;D、(a2)3=a6,此选项计算错误;故选:C.4.解:由三角形的外角性质可得,∠3=∠1+∠B=65°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣65°﹣90°=25°.故选:B.5.解:∵点P(a,3+a)在第二象限,∴,解得﹣3<a <0.故选:C .6.解:设小矩形的长为x ,宽为y , 根据题意得:, 解得:, ∴xy =5×3=15.故选:C .7.解:A 、这12个数据的众数为14,正确;B 、极差为16﹣12=4,错误;C 、中位数为=14,错误; D 、平均数为=,错误; 故选:A .8.解:根据题意得:x +2≥0且x ﹣1≠0,解得:x ≥﹣2且x ≠1.故选:C .9.解:当0≤t ≤2时,AM =t ,AN =2t ,所以S =S 正方形ABCD ﹣S △AMN ﹣S △BCM ﹣S △CDN =4×4﹣•t •2t ﹣•4•(4﹣t )﹣•4•(4﹣2t )=﹣t 2+6t ;当2<t ≤4时,CN =8﹣2t ,S =•(8﹣2t )•4=﹣4t +16,即当0≤t ≤2时,S 关于t 函数的图象为开口向下的抛物线的一部分,当2<t ≤4时,S 关于t 函数的图象为一次函数图象的一部分.故选:D .10.解:由平行四边形的判定方法可知:两组对边分别平行、两组对边分别相等、一组对边平行且相等的四边形是平行四边形,故A 、B 、D 说法正确,当一组对边平行,另一组对边相等时,该四边形可能为等腰梯形,故C 是说法错误的, 故选:C .11.解:取圆上一点为圆心,相同的长度为半径画弧,重复此种作法可得到圆的六等分点,据此可得圆的内接正六边形;在以上所得六等分点中,间隔取点,首尾连接可得圆的内接正三角形;由于圆的直径可以将圆二等分、两条互相垂直的直径可以将圆四等分,据此可作出圆的内接正四边形;综上可知,不可以用尺规作图作出的是圆的内接正七边形,故选:D.12.解:如图,设PM=PL=N R=KR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=52,∴a2=26,∴正方形EFGH的面积=a2=26,故选:C.二.填空题(共4小题,满分16分,每小题4分)13.解:∵袋中装有6个黑球和n个白球,∴袋中一共有球(6+n)个,∵从中任摸一个球,恰好是黑球的概率为,∴=,解得:n=2.故答案为:2.14.解:(x﹣3y)(x+3y)=x2﹣9y2.15.解:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;故①正确,∵AB是直径,∴∠ACB=∠AEC=90°,∵∠CAE=∠CAB,∴△AEC∽△ACB,故②正确,∵∠BAC+∠ABC=90°,∵OB=OC,∴∠OCB=∠ABC,∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC,∵∠P是公共角,∴△PCB∽△PAC,∴=,∴PC2=PB•PA,∵PB:PC=1:2,∴PC=2PB,∴PA=4PB,∴AB=3PB;故③正确过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,∴OC=HE,∴AE=+OC,∵OC∥AE,∴△PCO∽△PEA,∴=,∵AB=3PB,AB=2OB,∴OB=PB,∴===∴OC=,∴AB=5,∵△PBC∽△PCA,∴==,∴AC=2BC,在Rt△ABC中,AC2+BC2=AB2,∴(2BC)2+BC2=52,∴BC=,∴AC=2,=AC•BC=5.故④正确.∴S△ABC故答案为①②③④.16.解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则,解得:,∴直线BC的解析式为:y=﹣x+6②,联立①②得:或(舍去),∴点E的坐标为:(﹣2,7).故答案为:(﹣2,7).三.解答题17.解:原式=4×﹣1+1+4=2+4=6.18.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.19.解:由题意得:∠EBA=∠FAB=30°,∴∠ABC=∠EBC﹣∠EBA=75°﹣30°=45°,∴∠C=180°﹣45°﹣75°=60°;过A作AD⊥BC于D,则BD=AD=AB•sin∠ABD=2×30×=30,CD=,∴CB=BD+CD=(30+10)海里.答:该船与岛上目标C之间的距离即CB的长度为(30+10)海里.20.解:(1)a==0.16;b==0.24;c=50×0.2=10;d=50×0.04=2;如图,(2)5000×(0.2+0.06+0.04)=1500,所以估计日行走步数超过12000步(包含12000步)的教师有1500名;(3)步数超过16000步(包含16000步)的三名教师用A、B、C表示,步数超过20000步(包含20000步)的两名教师用a、b表示,画树状图为:共有20种等可能的结果数,其中被选取的两名教师恰好都在20000步(包含20000步)以上的结果数为2,所以被选取的两名教师恰好都在20000步(包含20000步)以上的概率==.21.解:(1)证明:∵AB是过点P的切线,∴AB⊥OP,∴∠OPB=∠OPA=90°;(1分)∴在Rt△OPB中,∠1+∠3=90°,又∵∠BOA=90°∴∠1+∠2=90°,∴∠2=∠3;(1分)在△OPB中△APO中,∴△OPB∽△APO.(2分)(2)∵OP⊥AB,且PA=PB,∴OA=OB,∴△AOB是等腰三角形,∴OP是∠AOB的平分线,∴点P到x、y轴的距离相等;(1分)又∵点P在第一象限,∴设点P(x,x)(x>0),∵圆的半径为2,∴OP=,解得x=或x=﹣(舍去),(2分)∴P点坐标是(,).(1分)(3)存在;①如图设OAPQ为平行四边形,∴PQ∥OA,OQ∥PA;∵AB⊥OP,∴OQ⊥OP,PQ⊥OB,∴∠POQ=90°,∵OP=OQ,∴△POQ是等腰直角三角形,∴O B是∠POQ的平分线且是边PQ上的中垂线,∴∠BOQ=∠BOP=45°,∴∠AOP=45°,设P(x,x)、Q(﹣x,x)(x>0),(2分)∵OP=2代入得,解得x=,∴Q点坐标是(﹣,);(1分)②如图示OPAQ为平行四边形,同理可得Q点坐标是(,﹣).(1分)22.解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得,解得.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100﹣x),即y=﹣50x+15000;②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时最大利润是y=﹣50×34+15000=13300.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是13300元.23.解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴y=2x﹣6,令y=0,解得:x=3,∴B的坐标是(3,0).∵A为顶点,∴设抛物线的解析为y=a(x﹣1)2﹣4,把B(3,0)代入得:4a﹣4=0,解得a =1,∴y =(x ﹣1)2﹣4=x 2﹣2x ﹣3.(2)存在.∵OB =OC =3,OP =OP ,∴当∠POB =∠POC 时,△POB ≌△POC ,此时PO 平分第二象限,即PO 的解析式为y =﹣x .设P (m ,﹣m ),则﹣m =m 2﹣2m ﹣3,解得m =(m =>0,舍),∴P (,). (3)①如图,当∠Q 1AB =90°时,△DAQ 1∽△DOB , ∴=,即=,∴DQ 1=,∴OQ 1=,即Q 1(0,);②如图,当∠Q 2BA =90°时,△BOQ 2∽△DOB , ∴=,即=,∴OQ 2=,即Q 2(0,);③如图,当∠AQ 3B =90°时,作AE ⊥y 轴于E ,则△BOQ 3∽△Q 3EA , ∴=,即=,∴OQ 32﹣4OQ 3+3=0,∴OQ 3=1或3,即Q 3(0,﹣1),Q 4(0,﹣3).综上,Q 点坐标为(0,)或(0,)或(0,﹣1)或(0,﹣3).24.解:(1)∵一次函数y =﹣2x +8的图象与x 轴,y 轴分别交于点A ,点C ,∴A (4,0),C (0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).中考一模数学试卷及答案时间:60分钟 满分100分一.选择题(每小题3分,共9小题,共27分)1.方程2x 2+3x=3的一次项系数、常数项分别为( )A .3和-3B .3和3C .-3和2D .3和22.在下列四个图案中,不是中心对称图形的是( )A .B .C .D .3.下列说法正确的是( )A .随机抛掷一枚均匀的硬币,落地后反面一定朝上B .某彩票中奖率为36%,说明买100张彩票,一定有36张中奖C .从1、2、3、4、5中随机取一个数,取得奇数的可能性较大D .打开电视,中央一套正在播放新闻联播4.抛物线y=2(x+3)2+5的对称轴和顶点坐标分别为( )A .x=3B .x=-5C .x=5D .x=-35.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )A .B .C .D .6.如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,∠BOD=48°,则∠BAC 的大小是( )A .60°B .48°C .30°D .24°7.圆的直径为12cm ,如果圆心与直线的距离是d ,则( )A .当d=8cm 时,直线与圆相交B .当d=4.5cm 时,直线与圆相离C .当d=6cm 时,直线与圆相切D .当d=10cm 时,直线与圆相切8.一个凸多边形共有20条对角线,则这个多边形的边数是( )A .6B .7C .8D .99.关于x 的一元二次方程22210kx k x -+=+有两个不相等的实数根,则k 的取值范围是()A.-1≤k<1B.K>-1且k≠0C.K<1且k≠0D.-1≤k<1且k≠0且k≠0二.填空题(共5小题,每小题3分,共15分)11.平面直角坐标系内与点P(2,-1)关于原点的对称点的坐标是.12.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.13.某村种的水稻前年平均每公顷产7300千克,今年平均每公顷产8500千克,设这两年该村每公顷产量的年平均增长率为x,根据题意,所列方程为14.在平面直角坐标系中,将抛物线y=-2x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是.15.半径为6cm的圆内接正八边形的面积为.三.解答题(共9小题)17.已知2是关于x的方程x2-3x+a=0的一个根,求a的值及方程的另一根.18.不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出两个小球,直接写出用列表或画村状图的方法求出”两球颜色不一样”的概率.(2)随机摸出一个小球后,放回并摇匀,再随机摸出一个,直接写出“两球都是绿色”的概率;19.已知△ABC的外心为O,△ABC的内心为I.(1)如图所示,若B、O、I、C四点在同一个圆上,求∠BIC的度数;(2)若∠BOC=110°,求∠BIC的度数.20.如图,已知正方形ABCD中,E、F分别是AD、DC边上的点,且AE=DF,△ADF可看作是由△BAE绕着某一点旋转而来的.(1)请画出旋转中心,并简要说明理由;(2)设AF与BE交于点K,连接CK,若AE=2,AB=6,求CK的长.21(本题8分)已知PA、PB分别与相切于A、B,连接OP.(1)如图1,AB交OP与点C,D为PB的中点,求证:CD∥PA,1CD=PA2;(2)如图1,OP交圆O与点E,EF⊥PB于点F,若PA=45,圆O的半径为25,求EF的长。
4月无锡羊尖中学初三下中考一模测试试卷01
模拟练习(01)一、选择题(本大题共8小题,每小题3分,共24分,每题的四个选项中,只有一个符合题意) 1.31-的相反数是( ) A 、-3 B 、3 C 、31 D 、-31 2.下列计算正确的是( )A .3232a a a =+B .428a a a =÷ C .623·a a a = D .623)(a a =3.如图,a ∥b ,∠1=105°,∠2=140°,则∠3的度数是( )A 、75°B 、65°C 、55°D 、50°4.已知某种商品的售价为204元,即使促销降价20%仍有20%的利润,则该商品的成本价是( ) A .133 B .134 C .135 D .1365.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M 、N .则线段BM 、DN 的大小关系是( ) A. DN BM > B. DN BM < C. DN BM = D. 无法确定6.如图,是某工件的三视图,其中圆的半径为10cm ,等腰三角形的高为30cm ,则此工件的侧面积是( )2cm . A .π150 B .π300 C. D.7.如图,已知正三角形ABC 的边长为1,E 、F 、G 分别是AB 、BC 、CA上的点,且AE =BF =CG ,设△EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数的图象大致是( )FA GEBCA.D.A 1 23ab8.如图,已知等边三角形ABC 的边长为2,DE 是它的中位线,则下面四个结论:(1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4.其中正确的有( )A .0个B .1个C .2个D .3个二、填空题(本大题共10小题,每小题2分,共20分,请把答案直接填写在题目中的横线上) 9.若m n ,互为相反数,则555m n +-= .10.在抗震救灾过程中,共产党员充分发挥了先锋模范作用,截止2008年5月28日17时,全国党员已缴纳特殊党费26.84亿元,用科学记数法表示为 元(结果保留两个有效数字).11.函数y =中,自变量x 的取值范围是 . 12.因式分解:322a a a ++= .13.经过点(12)A ,的反比例函数解析式是 . 14.一元二次方程2x 2x 1=0--的根为 .15.如图,菱形ABCD 中,O 是对角线AC BD ,的交点,5cm AB =,4cm AO =,则BD = cm .16.如图,一个宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆的两个交点的读数恰好为“2”与“8”(单位:cm ),那么该圆的半径为 . 17.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数. 如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,则2009a = .18.如图,菱形OABC 中,120A =∠,1OA =,将菱形OABC 绕点O 按顺时针方向旋转90,则图中由,B'A',,CB 围成的阴 影部分的面积是 .三、解答题(本大题共10小题,满分86分,解答应写出必要的计算过程、推演步骤或文字说明) 19. (本题6分)(1)计算:322tan 45-+-(2)解不等式组⎩⎪⎨⎪⎧()23+x ≥4+x 1-x 2 <120. (本题8分)如图,在Rt OAB △中,90OAB ∠=,且点B 的坐标为(4,2). ①画出OAB △向下平移3个单位后的111O A B △;②画出OAB △绕点O 逆时针旋转90后的22OA B △,并求点A 旋转到点2A 所经过的路线长(结果保留π).21. (本题8分)AB 是⊙O 的直径,PA 切⊙O 于A ,OP 交⊙O 于C ,连结BC .若30P ∠= ,求B ∠的度数.AP22. (本题8分)2008年5月12日14时28分我国四川汶川发生了8.0级大地震,地震发生后,我市某中学全体师生踊跃捐款,支援灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.已知甲班平均每人捐款金额是乙班平均每人捐款金额的1.2倍,乙班比甲班多2人,那么这两个班各有多少人?23. (本题8分)如图,在离水面高度为5米的岸上有人用绳子拉船靠岸,开始时绳子与水面的夹角为30°,此人以每秒0.5米收绳.问:8秒后船向岸边移动了多少米?(结果精确到O.1米)24. (本题8分)在“首届中国西部(银川)房·车生活文化节”期间,某汽车经销商推出A B C D 、、、四种型号的小轿车共1000辆进行展销.C 型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中. (1)参加展销的D 型号轿车有多少辆? (2)请你将图2的统计图补充完整;(3)通过计算说明,哪一种型号的轿车销售情况最好?(4)若对已售出轿车进行抽奖,现将已售出A B C D 、、、四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A 型号轿车发票的概率.25. (本题8分)如图,桌面上放置了红、黄、蓝三个不同颜色的杯子,杯口朝上.我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏. (1)随机翻一个杯子,求翻到黄色杯子的概率;(2)随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.DC20% B 20% A 35%各型号参展轿车数的百分比已售出轿车/辆(图2)(图1)红 黄 蓝26. (本题8分)下面图像反应的是甲、乙两人以每分钟80米的速度从公司出发步行到火车站乘车的过程。
江苏省无锡市中考数学一模考试试卷
江苏省无锡市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(下列各题的四个选项中只有一个符合题意.共12小题,每 (共12题;共33分)1. (3分) (2019七下·乌兰浩特期中) 4的算术平方根是()A . -2B . 2C .D .2. (3分)(2017·东平模拟) 下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (3分)对于任意的正整数n ,能整除代数式(3n+1)(3n-1)-(3-n)(3+n)的整数是()A . 3B . 6C . 10D . 94. (2分) (2018七上·深圳期末) 某运动会颁奖台如右图所示。
它的主视图是()A .B .C .D .5. (3分) (2017八下·西城期末) 如果关于x的方程有两个相等的实数根,那么以下结论正确的是().A .B .C . k>D . k>16. (3分)下列说法正确的是()A . 为了解我国中学生的体能情况,应采用普查的方式B . 若甲队成绩的方差是2,乙队成绩的方差是3,说明甲队成绩比乙队成绩稳定C . 明天下雨的概率是99%,说明明天一定会下雨D . 一组数据4,6,7,6,7,8,9的中位数和众数都是67. (2分)(2017·肥城模拟) 如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是()A . 10 海里B . 10 海里C . 10 海里D . 20 海里8. (3分)(2019·和平模拟) 某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程()A .B .C .D .9. (3分)(2016·兰州) 如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A . πcmB . 2πcmC . 3πcmD . 5πcm10. (2分)(2018·拱墅模拟) 四张分别画有平行四边形、等腰直角三角形、正五边形、圆的卡片,它们的背面都相同,现将它们背面朝上,从中任取一张,卡片上所画图形恰好是中心对称图形的概率是()A .B .C .D .11. (3分)等腰三角形中,两边的长分别为3和7,则此三角形周长是()A . 13B . 17C . 13或17D . 1512. (3分)(2013·海南) 直线l1∥l2∥l3 ,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()A .B .C .D .二、填空题 (共5题;共15分)13. (3分)(2019·宁波模拟) 4x2﹣36因式分解的结果________.14. (3分)(2016·盐城) 已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是________.15. (3分) (2017八上·哈尔滨月考) 已知a+b=3,ab=1,则 + 的值等于________.16. (3分)如图,△ABC的内心在x轴上,点B的坐标是(2,0),点C的坐标是(0,﹣2),点A的坐标是(﹣3,b),反比例函数y=(x<0)的图象经过点A,则k= ________.17. (3分) (2017七上·灵武期末) 观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有________个★.三、解答题(本题4个小题,每小题6分,共24分) (共4题;共20分)18. (6分) (2020九上·高平期末) 计算:.19. (2分)(2017·河西模拟) 解不等式组,并把解集在数轴上表示出来.20. (6分)(2019·兰坪模拟) 在如图所示的直角坐标系中,解答下列问题:(1)分别写出A、B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1;(3)求出线段B1A所在直线 l 的函数解析式,并写出在直线l上从B1到A的自变量x 的取值范围.21. (6分)某校开展了以“人生观、价值观”为主题的班会活动,活动结束后,初三(1)班数学兴趣小组提出了5个主要观点并在本班50名学生中进行了调查(要求每位同学只选自己最认可的一项观点),并制成了如下扇形统计图.(1)该班学生选择“和谐”观点的有几个人,在扇形统计图中,“和谐”观点所在扇形区域的圆心角是多少度(2)如果该校有400名初三学生,利用样本估计选择“感恩”观点的初三学生约有多少人.(3)如果数学兴趣小组在这5个主要观点中任选两项观点在全校学生中进行调查,求恰好选到“和谐”和“感恩”观点的概率.(用树状图或列表法分析解答)四、(本题7分) (共2题;共14分)22. (7.0分) (2019九上·台州月考) 在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“衍生三角形”.已知抛物线与其“衍生直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.(1)填空:该抛物线的“衍生直线”的解析式为________,点A的坐标为________,点B的坐标为 ________ ;(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN 为该抛物线的“衍生三角形”,求点N的坐标;(3)当点E在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.23. (7.0分) (2018七上·铁西期末) 某校为了解七年级学生体育课足球运球的掌握情况,随机抽取部分七年级学生足球运球的测试成绩作为一个样本,按A、B、C、D四个等级进行统计,制成了如图所示的不完整的统计图(说明:A等级:8分~10分;B等级:7分~7.9分;C等级:6分~6.9分;D等级:1分~5.9分):根据所给信息,解答以下问题:(1)在扇形统计图中,求等级C对应的扇形圆心角的度数,并补全条形统计图;(2)该校七年级有300名学生,请估计足球运球测试成绩达到A等级的学生有多少人?五、(本题8分) (共1题;共8分)24. (8分)(2017·青岛模拟) 在菱形ABCD中,对角线AC、BD交于点O,且AC=16cm,BD=12cm;点P从点A出发,沿AD方向匀速运动,速度为2cm/s;点Q从点C出发,沿CO方向匀速运动,速度为1cm/s;若P、Q两点同时出发,当一个点停止运动时,另一个点也停止运动.过点Q作MQ∥BC,交BD于点M,设运动时间为t(s)(0<t<5).解答下列问题:(1)求t为何值时,线段AQ、线段PM互相平分.(2)设四边形APQM的面积为Scm2,求S关于t的函数关系式;设菱形ABCD的面积为SABCD,求是否存在一个时刻t,使S:SABCD=2:5?如果存在,求出t,如果不存在,请说明理由.(3)求时刻t,使得以M、P、Q为顶点的三角形是直角三角形.六、(本题10分) (共1题;共10分)25. (10分) (2018九上·下城期末) 一个斜抛物体的水平运动距离为x(m),对应的高度记为h(m),且满足h=ax2+bx﹣11a(其中a≠0).已知当x=0时,h=2;当x=10时,h=2.(1)求h关于x的函数表达式.(2)求斜抛物体的最大高度和达到最大高度时的水平距离.七、(本题13分) (共1题;共13分)26. (13.0分) (2016九上·海门期末) 如图,在⊙O中,OE垂直于弦AB,垂足为点D,交⊙O于点C,∠EAC=∠CAB.(1)求证:直线AE是⊙O的切线;(2)若AB=8,sin∠E= ,求⊙O的半径.参考答案一、选择题(下列各题的四个选项中只有一个符合题意.共12小题,每 (共12题;共33分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共15分)13-1、14-1、15-1、16-1、17-1、三、解答题(本题4个小题,每小题6分,共24分) (共4题;共20分)18-1、19-1、20-1、20-2、20-3、21-1、四、(本题7分) (共2题;共14分) 22-1、22-2、23-1、23-2、五、(本题8分) (共1题;共8分)24-1、24-2、24-3、六、(本题10分) (共1题;共10分) 25-1、25-2、七、(本题13分) (共1题;共13分) 26-1、26-2、。
(江苏无锡卷)2023年中考数学第一次模拟考试卷(解析版)
2023年中考数学第一次模拟考试卷(江苏无锡卷)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一个选项是符合题目要求的)1.|-2022|的倒数是()A.2022B.12022C.-2022D.-12022品,其文字上方的图案是中心对称图形的是()A.B.C.D.【答案】B【分析】根据中心对称图形的定义解答即可.【详解】解:选项A、C、D都不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形,故选:B.【点睛】本题考查中心对称图形的识别,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.在简便运算时,把47249948⎛⎫⨯-⎪⎝⎭变形成最合适的形式是()A.12410048⎛⎫⨯-+⎪⎝⎭B.12410048⎛⎫⨯--⎪⎝⎭C.47249948⎛⎫⨯--⎪⎝⎭D.47249948⎛⎫⨯-+⎪⎝⎭近5个月内每人阅读课外书的数量,数据如下表所示:人数3485课外书数量(本)12131518则阅读课外书数量的中位数和众数分别是()A.13,15B.14,15C.13,18D.15,15【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.5.若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是()A .0,2-B .0,0C .2-,2-D .2-,0【答案】B【分析】直接把2x =-代入方程,可求出m 的值,再解方程,即可求出另一个根.【详解】解:根据题意,∵2x =-是一元二次方程220x x m ++=的一个根,把2x =-代入220x x m ++=,则2(2)2(2)0m -+⨯-+=,解得:0m =;∴220x x +=,∴(2)0x x +=,∴12x =-,0x =,∴方程的另一个根是0x =;故选:B【点睛】本题考查了解一元二次方程,方程的解,解题的关键是掌握解一元二次方程的步骤进行计算.6.一副三角板按如图所示的位置摆放,若BC DE ∥,则∠1的度数是()A .65°B .70°C .75°D .80°【答案】C【分析】由平行线的性质可得∠2=∠B =45°,再由三角形的外角性质可得∠1=∠2+∠D 即可求解.【详解】如图所示:∵BC ∥DE ,∴∠2=∠B =45°,∴∠1=∠2+∠D =45°+30°=75°,故C 正确.【点睛】本题主要考查了平行线的性质,三角形的外角性质,解答的关键是结合图形分析清楚角与角之间的关系.7.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.5152x yx y=+⎧⎪⎨=-⎪⎩B.5152x yx y=-⎧⎪⎨=+⎪⎩C.525x yx y=+⎧⎨=-⎩D.525x yx y=-⎧⎨=+⎩A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形【答案】D【分析】根据平行四边形的判定判断A选项,根据菱形的判定判断B选项,根据矩形的判定判断C选项,根据正方形的判定判断D选项,真命题选择选项说法正确的即可.【详解】解:A选项,一组对边平行且相等的四边形是平行四边形,故A选项错误,不符合题意;B选项,对角线互相垂直的平行四边形是菱形,故B选项错误,不符合题意;C选项,对角线相等的平行四边形是矩形,故C选项错误,不符合题意;D选项,一组邻边相等的矩形是正方形,故D选项正确,符合题意故选D.【点睛】本题考查了真命题、平行四边形的判定、菱形的判定、矩形的判定、正方形的判定的知识点,熟练掌握这些判定是解答本题的关键.9.函数y=ax与y=ax2+a(a≠0)在同一直角坐标系中的大致图象可能是()A .B .C .D .【答案】D【分析】先根据一次函数的性质确定a>0与a<0两种情况分类讨论抛物线的顶点位置即可得出结论.【详解】解:函数y =ax 与y =ax 2+a (a ≠0)A.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向下正确,当顶点坐标为(0,a ),应交于y 轴负半轴,而不是交y 轴正半轴,故选项A 不正确;B.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向下正确,当顶点坐标为(0,a ),应交于y 轴负半轴,而不是在坐标原点上,故选项B 不正确;C.函数y =ax 图形可得a >0,则y =ax 2+a (a ≠0)开口方向向上正确,当顶点坐标为(0,a ),应交于y 轴正半轴,故选项C 不正确;D.函数y =ax 图形可得a <0,则y =ax 2+a (a ≠0)开口方向向上正确,当顶点坐标为(0,a ),应交于y 轴正半轴正确,故选项D 正确;故选D .【点睛】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.10.如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是()A 33B .22C .13D .3【答案】C【分析】由()1,1P 可知,OP 与x 轴的夹角为45°,又因为OP AB ∥,则OAB 为等腰直角形,设OC =x ,OB =2x ,用勾股定理求其他线段进而求解.【详解】∵P 点坐标为(1,1),则OP 与x 轴正方向的夹角为45°,又∵OP AB ∥,则∠BAO =45°,OAB 为等腰直角形,∴OA =OB ,设OC =x ,则OB =2OC =2x ,则OB =OA =3x ,∴tan 133OC x OAP OA x ∠===.【点睛】本题考查了等腰三角形的性质、平行线的性质、勾股定理和锐角三角函数的求解,根据P 点坐标推出特殊角是解题的关键.第Ⅱ卷二、填空题(本大题共8小题,每小题3分,共24分)11.分解因式:am an bm bn +--=_________________【答案】()()m n a b +-【分析】利用分组分解法和提取公因式法进行分解因式即可得.【详解】解:原式()()am an bm bn =+-+()()a m n b m n +-+=()()m n a b +=-,故答案为:()()m n a b +-.【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键.12.命题:“两直线平行,同位角相等”的逆命题是:___________________________.【答案】同位角相等,两直线平行【分析】将原命题的条件与结论互换即可得到逆命题.【详解】解:∵原命题的条件为:两直线平行,结论是:同位角相等,∴逆命题为:同位角相等,两直线平行,故答案为:同位角相等,两直线平行.【点睛】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题.13.“y的2倍与6的和比1小”用不等式表示为_____________.y+<【答案】261y+再列不等式即可.【分析】根据题干的描述“y的2倍与6的和”可表示为26,y+<【详解】解:“y的2倍与6的和比1小”用不等式表示为:261,y+<故答案为:26 1.【点睛】本题考查的是列不等式,理解题意,注意运算的顺序,再列不等式是解本题的关键.14.我国古代数学家名著《九章算术》记载“米谷粒分”问题:粮仓开仓收粮,有人送来谷米512石,验得其中夹有谷粒.从中抽取谷米一把,共数得256粒,其中夹有谷粒16粒,估计这批谷米内夹有谷粒约是______石.【点睛】本题考查了无理数的估算和大小比较,掌握无理数估算的方法是正确解答的关键.16.如图,在矩形ABCD 中,E 是AD 边上一点,且2AE DE =,BD 与CE 相交于点F ,若DEF 的面积是3,则BCF △的面积是______.【答案】27【分析】根据矩形ABCD 的性质,很容易证明DEF ∽BCF △,相似三角形之比等于对应边比的平方,即可求出BCF △的面积.【详解】解: 四边形ABCD 是矩形,AD BC ∴=,AD BC ∥EDF CBF ∠∠∴=,EFD CFB ∠∠= ,EDF CBF∠∠=DEF ∴ ∽BCF △,2AE DE = ,AD BC =,DE ∴:1BC =:3,DEF S ∴ :2BCF S DE = :2BC ,即3:1BCF S = :9,27BCF S ∴= .故答案为:27.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,综合性比较强,学生要灵活应用.掌握相似三角形的面积比是相似比的平方是解题的关键.17.如图,长方形ABCD 中,34AB BC ==,,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,将EF 绕着点E 顺时针旋转45︒到EG 的位置,连接FG 和CG ,则CG 的最小值为__.18.如图,已知正比例函数2y x =与反比例函数y x=交于A 、B 两点,点C 是第三象限反比例函数上一点,且点C 在点A 的左侧,线段BC 交y 轴的正半轴于点P ,若PAC △的面积是12,则点C 的坐标是______.【答案】()6,1--【分析】过A 作y 轴的平行线交BC 于点Q ,联立正比例函数32y x =与反比例函数6y x=求得()2,3A --,()2,3B ,得到BC 的解析式为363y x m m=-++,利用PAC △的面积即可求得点C 的坐标【详解】联立326y x y x⎧=⎪⎪⎨⎪=⎪⎩,解得:()2,3A --,()2,3B ,设6,C m m ⎛⎫⎪⎝⎭,BC L :y kx b =+,则236k b mk b m +=⎧⎪⎨+=⎪⎩,解得:3k m =-,63b m =+,BC L ∴:363y x m m=-++过A 作y 轴的平行线交BC 于点Q ,则122,3Q m ⎛⎫-+ ⎪⎝⎭,126AQ m∴=+19.(8分)解方程(1)2230x x --=(2)2620x x +-=20.(8分)解不等式组21132x x -≤⎧⎪-+⎨<-⎪⎩,并把不等式组的解集表示在数轴上.【答案】13x -<≤,数轴见解析【分析】先求解不等式组的解集,然后再数轴上表示即可.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.21.(10分)如图,点C、D在线段AB上,且ACDE=CF.【答案】见解析【分析】只要证明△ADE≌△BCF即可解决问题.【详解】证明:∵AC=BD,∴AC+CD=BD+CD,即:AD=BC,∵AE∥BF,∴∠A=∠B,∵AE=BF,∴△ADE≌△BCF,∴DE=CF.【点睛】本题考查全等三角形的判定和性质、平行线的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.22.(10分)如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数3456α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:98,81,98,85,98,97,91,100,88,84.八年级10名学生的竞赛成绩在C 组中的数据是93,90,94,93.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数9292中位数94b 众数c 93八年级抽取的学生的竞赛成绩扇形统计图根据以上信息,解答下列问题:(1)填空:=a ___________,b =___________,c =___________;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到90分及以上的学生共有多少名?(1)证明:ADB AED ∆∆ ;(2)若3AE =,5AD =,求AB 的长.点E 恰好落在边BC 上.(1)求证:AE 平分CED ∠;(2)连接BD ,求证:90DBC ∠=︒.【答案】(1)见解析(2)见解析【分析】(1)根据旋转性质得到对应边相等,对应角相等,进而根据等边对等角性质可将角度进行等量转化,最后可证得结论;(2)根据旋转性质、等腰三角形的性质以及三角形内角和定理对角度进行等量转化可证得结论.【详解】(1)证明:由旋转性质可知:AE AC =,AED C ∠=∠,AEC C∴∠=∠AED AEC∴∠=∠AE ∴平分CED ∠.(2)证明:如图所示:由旋转性质可知:AD AB =,90DAE BAC ∠=∠=︒,ADB ABD ∴∠=∠,DAE BAE BAC BAE ∠-∠=∠-∠,即DAB EAC ∠=∠,=1802DAB ABD ∠︒-∠ ,1802EAC C ∠=︒-∠,ABD C ∴∠=∠,∵在Rt ABC △中,90BAC ∠=︒,90ABC C ∴∠+∠=︒,90ABC ABD ∴∠+∠=︒,即90DBC ∠=︒.【点睛】本题考查了三角形的旋转变化,熟练掌握旋转前后图形的对应边相等,对应角相等以及合理利用三角形内角和定理是解决本题的关键.26.(10分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y (件)与每件售价x (元)之间存在一次函数关系(其中8≤x ≤15,且x 为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y 与x 之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w (元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)5150y x =-+(2)13(3)每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【分析】(1)根据给定的数据,利用待定系数法即可求出y 与x 之间的函数关系式;(2)根据每件的销售利润×每天的销售量=425,解一元二次方程即可;(3)利用销售该消毒用品每天的销售利润=每件的销售利润×每天的销售量,即可得出w 关于x 的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】(1)解:设y 与x 之间的函数关系式为()0y kx b k =+≠,根据题意得:91051195k b k b +=⎧⎨+=⎩,解得:5150k b =-⎧⎨=⎩,∴y 与x 之间的函数关系式为5150y x =-+;(2)解:(-5x +150)(x -8)=425,整理得:2383450x x -+=,解得:1213,25x x ==,∵8≤x ≤15,∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;(3)解:根据题意得:()()()851508w y x x x =-=-+-251901200x x =-+-()2519605x =--+∵8≤x ≤15,且x 为整数,当x <19时,w 随x 的增大而增大,∴当x =15时,w 有最大值,最大值为525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数的应用,解题的关键是找准题目的等量关系,27.(10分)如图在△ABC 和△CDE 中,AC =BC ,CD =CE ,∠ACB =∠DCE ,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上,且∠ACB =∠DCE =45°时,可以得到图中的一对全等三角形,即______≌______;(2)当点D 不在直线BC 上时,如图2位置,且∠ACB =∠DCE =α.①试说明AD =BE ;②直接写出∠EMD 的大小(用含α的代数式表示).【答案】(1)△BCE ,△ACD(2)①见解析;②∠EMD =α.【分析】(1)由“SAS”可证△BCE ≌△ACD ;(2)①由“SAS”可证△BCE ≌△ACD ,可得AD =BE ,②由全等三角形的性质可得∠CAD =∠CBE ,由三角形的内角和定理可求解.【详解】(1)解:∵∠ACB =∠DCE =45°,∴∠ACD =∠BCE ,在△BCE 和△ACD 中,BC AC BCE ACD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△ACD(SAS ),故答案为:△BCE ,△ACD ;(2)①证明:∵∠ACB =∠DCE =α,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD =BE ;②解:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,∵∠BAC +∠ABC =180°-α,∴∠BAM +∠ABM =180°-α,∴∠AMB =∠EMD =180°-(180°-α)=α.【点睛】本题考查了全等三角形的判定和性质,证明△ACD ≌△BCE 是解题的关键.28.(10分)如图,抛物线2y ax bx c =++与x 轴交于()2,0A -,()6,0B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的坐标为()4,3.(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD 面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.213n n -++。
2023年江苏省无锡市中考数学第一次模拟考试试卷附解析
2023年江苏省无锡市中考数学第一次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.有一个被等分成 16 个扇形的转盘,其中有3个扇形,涂上了红色,其余均是白色,转动转盘,当它停止时,指针落在红色区域的概率是( )A .316B .38C .34D .13162.下列多边形一定相似的为( )A .两个矩形B .两个菱形C .两个正方形D .两个平行四边形3.对于反比例函数y =2x,下列说法不正确...的是( ) A .点(―2,―1)在它的图象上B .它的图象在第三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小4.下列属于反比例函数的是( )A .y =-x 3B .yx =- 2C .y=-43xD .y=1x5.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.306.下列命题中正确的有( )①面积相等的两个三角形全等;②锐角小于它的余角;③两个全等三角形的周长相等;④一组同位角的平分线互相平行.A .1个B .2个C 3个D .4个 7.分式2221m m m m-+-约分后的结果是( ) A .1m m n -+ B .1(1)m m m --+ C .1m m - D .1(1)m m m -+ 8.方程组251x y x y -=⎧⎨+=⎩的解是( )A .31x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .21x y =⎧⎨=-⎩D .21x y =-⎧⎨=⎩ 9.下列等式是由 5x-1 =4x 根据等式性质变形得到的,其中正确的有( )①5x-4x=1;②4x-5x=1;③51222x x -=;④6x-1=3x A .0 个 B .1 个 C .2 个 D .3 个二、填空题10.如图是引拉线固定电线杆的示意图.已知:CD ⊥AB ,CD 33=m ,∠CAD=∠DBD=60°,则拉线AC 的长是 m .11. 在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示,P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.12. 如图,在数轴上,A ,B 两点之间表示整数的点有 个.13.一个四边形的边长分别为a ,b ,c ,d ,其中a ,c 为对边,且满足a 2+b 2+c 2+d 2=2ac +2bd ,则此四边形为 .14.等腰直角三角形一条直角边的长为1cm ,那么它斜边上的高长是________cm .15.若一次函数y =kx +b 的图象经过点(0,-2)和(-2,0),则y 随x 的增大而 ___ .16.如图,OB ⊥OA 于点0,以 OA 为半径画弧,交OB 于点B ,P 是半径OA 上的动点.已知0A=2cm .设0P=xcm ,阴影部分的面积为ycm 2,则y(cm 2)关于x(cm)的函数解析式为 .17.函数y=3x+5中,自变量x 的取值范围为 .18.如图,将长方形纸片沿EF 折叠,使C ,D 两点分别落在C ′,D ′处,如果∠1=40°,那么∠2= .19.如图,DE∥BC,且∠ADE= 62°,∠DEC=112°,则∠B= ,∠C= .20.如图,在6个图形中,图形①与图形可经过平移变换得到,图形①与图形可经过旋转变换得到,图形①与图形可经过轴对称变换得到,图形⑤与图形可经过相似变换得到(填序号).21.请你写出一个次数是 3 次的多项式.22.已知24-=,则2a bb a b a---+= .2(2)3(2)1三、解答题23.用反证法证明“三角形三内角中,至少有一个内角小于或等于60°”.已知:∠A,∠B,∠C是△ABC的内角.求证:∠A,∠B,∠C中至少有一个小于或等于60°.证明:假设求证的结论不成立,即 .∴∠A+∠B+∠C> ,这与相矛盾,∴假设不成立,∴ .24.如图所示,□ABCD中,E,F分别为AD,BC的中点,AF与BE交于点G,DF与CE交于点H,则四边形EGFH是平行四边形吗?请说明理由.25.如图,已知△ABC .(1)求AC 的长;(2)若将△ABC 向右平移2个单位.得到A B C '''∆,求点A 的对应点A '的坐标;(3)若将△ABC 绕点C 按顺时针方向旋转90°后,得到△11A B C ∆,求点A 的对应点1A 的坐标.26.试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.27.下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题:(π≈3.14)(1)甲工人用的刷具形状是一根细长的棍子(如图(1),长度AB 为20cm (宽度忽略不计),他把刷具绕A 点旋转90度,则刷具扫过的面积是多少?(2)乙工人用的刷具形状是圆形(如图(2)),直径CD 为20cm ,点O 、C 、D 在同一直线上,OC=30cm ,他把刷具绕O 点旋转90度,则刷具扫过的面积是多少?28.认真观察图①的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征一:;特征二:.(2)请在图②中设计出你心中最美丽的图案,使它也具备你所写出的上述特征.29.甲、乙两车站相距400 km,慢车从甲站出发,速度为100 km/h,快车从乙站出发,速度为l40 km/h.(1)两车相向而行,慢车先开24 min,快车行驶多长时间两车相遇?(2)两车同时开出,同向而行,慢车在前,两车出发多久后快车追上慢车?30.图中 3×3 方格是从月历表中取下的,正中方格的日期是n,请用适当的代数式填入各个空格,表示所填入空格的日期,然后比较两条对角线的五个日期数之和,你发现了什么规律?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.C3.C4.C5.D6.A7.C8.C9.C二、填空题10.611.0.512.413.平行四边形14.15.减小16.y x π=-(0≤x ≤2)17.任何实数18.70°19.62°,68°20.③,②,④,⑥21.如. 3221x x ++22.45三、解答题23.没有一个内角小于或等于60°,180°,三角形的内角和为 180°,三角形三内角中至少有一个小于或等于60°24.证明四边形AFCE ,EBFD 是平行四边形,得AF ∥CE ,BE ∥DF ,即四边形EGFH 是平行四边形25.(1)AC =(2)A ′(1,2):(3)A1(3,0)26.是直角三角形,理由略27.(1)314cm2;(2)1570cm 2.28.(1)特征一:都是轴对称图形;特征二:这些图形的面积都等于4个单位面积等;(2)图略29.(1)32h (2)10 h30.两条对角线上的三个日期数之和都等于3n。
无锡市数学中考一模试卷
无锡市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 9的算术平方根是()A . -9B . 9C . 3D . ±32. (2分)(2012·钦州) 如图是由4个小正方体组成的立体图形,它的主视图是()A .B .C .D .3. (2分) (2019七上·顺德月考) 一种新定义运算为:对于任意两个数a与b ,a※b=2a+b ,若x※4=26,则﹣2※x=()A . 14B . 13C . 7D . 64. (2分)下列说法:①相等的角是对顶角;②两条不相交的直线是平行线;③在同一平面内,经过一点有且只有一条直线与已知直线垂直;④同位角相等,两直线平行;⑤内角和为720度的多边形是五边形.其中正确的有()A . 2个B . 3个C . 4个D . 5个5. (2分)关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,则k的取值范围是()A . k>B . k<C . k ≠D . k<且k ≠ 06. (2分)小明记录了某市连续10天的最高气温如下:最高气温(℃)10202530天数1324那么关于这10天的最高气温的说法正确的是()A . 中位数30B . 众数20C . 方差39D . 平均数21.257. (2分)(2017·临沂模拟) 如图,直线x=2与反比例函数y= ,y= 的图象分别交于A,B两点,若点P是y轴上任意一点,则△PAB的面积是()A .B . 1C .D . 28. (2分)圆内接四边形ABCD的四个内角的度数之比∠A:∠B:∠C:∠D可以是()A . 3:2:4:1B . 1:3:4:2C . 3:3:1:4D . 4:1:2:39. (2分)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米求两车的速度各为多少?设货车的速度为千米/小时,依题意列方程正确的是()A .B .C .D .10. (2分)抛物线y=(x-1)2+3的对称轴是()A . 直线x=1B . 直线x=3C . 直线x=-1D . 直线x=-3二、填空题 (共8题;共9分)11. (1分)(2018·恩施) 因式分解:8a3﹣2ab2=________.12. (1分)(2019·常州) 计算: ________.13. (1分)不等式组的所有正整数解之和为________.14. (1分)如上图,反比例函数的图象位于第一、三象限,其中第一象限内的图象经过点A(1,2),请在第三象限内的图象上找一个你喜欢的点P,你选择的P点坐标为________.15. (1分)(2017·朝阳模拟) 如图,直线AD∥BE∥CF,它们分别交直线l1、l2于点A,B,C和点D,E,F.若AB=2,BC=4,则的值为________.16. (2分)(2016·眉山) 如图,已知点A是双曲线在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线上运动,则k的值是________17. (1分) (2017八下·西安期末) 如图,矩形纸片ABCD的边长AB=4,AD=2,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),着色部分的面积为________.18. (1分) (2016八上·东莞开学考) 下列图案由边长相等的黑、白两色正方形按一定规律拼接而成,第5个图案中白色正方形的个数________.三、解答题 (共10题;共67分)19. (5分)(2017·临沂) 计算:|1﹣|+2cos45°﹣ +()﹣1 .20. (5分)(1)计算:﹣4sin30°+(2015﹣π)0﹣(﹣3)2(2)先化简,再求值:1﹣÷,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=0.21. (10分)(2018·巴中) 学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.22. (5分)(2019·丹阳模拟) 如图,学校教学楼对面是一幢实验楼,小朱在教学楼的窗口C测得实验楼顶部D的仰角为20°,实验楼底部B的俯角为30°,量得教学楼与实验楼之间的距离AB=30m.求实验楼的高BD.(结果精确到1m.参考数据tan20°≈0.36,sin20°≈0.34,cos20°≈0.94,23. (10分)(2018·溧水模拟) 一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同.(1)从中随机摸取1个球,则摸到黑球的概率为________;(2)小明和小贝做摸球游戏,游戏规则如下.你认为这个游戏公平吗?请说明理由.24. (11分) (2017七下·泸县期末) 6月5日是世界环境日,中国每年都有鲜明的主题,2017世界环境日中国主题为:“绿水青山就是金山银山”,旨在释放和传递“尊重自然,顺应自然,共建美丽中国”信息,凯文同学积极学习与宣传,并从四个方面A﹣空气污染,B﹣淡水资源危机,C﹣土地荒漠化,D﹣全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项),以下是它收集数据后,绘制的不完整的统计图表:关注问题频数频率A24bB120.2C n0.1D18m合计a1根据表中提供的信息解答以下问题:(1)表中的a=________,b=________.(2)请将条形统计图补充完整;(3)如果凯文所在的学校有3600名学生,那么根据凯文提供的信息估计该校关注“全球变暖”的学生大约多少人?25. (2分)(2018·市中区模拟) 如图,一次函数()与反比例函数()的图象交于点A(﹣1,2),B(m,﹣1).(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.26. (2分) (2017八下·潮阳期中) 如图,将▱ABCD的边BA延长到点E,使AE=AB,连接EC,交AD于点F,连接AC、ED.(1)求证:四边形ACDE是平行四边形;(2)若∠AFC=2∠B,求证:四边形ACDE是矩形.27. (2分) (2019九上·余杭期末) 如图,已知点的坐标是,点的坐标是,以线段为直径作⊙ ,交轴的正半轴于点,过、、三点作抛物线.(1)求抛物线的解析式;(2)连结,,点是延长线上一点,的角平分线交⊙ 于点,连结,在直线上找一点,使得的周长最小,并求出此时点的坐标;(3)在(2)的条件下,抛物线上是否存在点,使得,若存在,请直接写出点的坐标;若不存在,请说明理由.28. (15分)(2017·营口模拟) 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q 从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB 交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H 为顶点的四边形为菱形?请直接写出t的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共67分)19-1、20-1、21-1、21-2、21-3、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
【3套试卷】无锡市中考第一次模拟考试数学试题含答案
中考一模数学试卷及答案姓名:得分:日期:一、选择题(本大题共12 小题,共36 分)1、(3分) -5的绝对值是()A.5B.-5C. D.-2、(3分) 下列运算正确的是()A.x3•x3=x9B.(ab3)2=ab6C.x8÷x4=x2D.(2x)3=8x33、(3分) 下列生态环保标志中,是中心对称图形的是()C. D.A.B.4、(3分) 已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当()A.平均数B.中位数C.众数D.方差5、(3分) 据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10-9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10-9mB.2.8×10-8mC.28×109mD.2.8×108m6、(3分) 在下列几何体中,主视图是圆的是()A. B.C.D.7、(3分) 如图,点A,B,C,D都在⊙O上,AC,BD相交于点E,则∠ABD=()A.∠ACDB.∠ADBC.∠AEDD.∠ACB8、(3分) 将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED′=55°,则∠BAD′的大小是()A.30°B.35°C.45°D.60°9、(3分) 若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,则b+c的值是()A.-10B.10C.-6D.-110、(3分) 已知反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m<0B.m>0C.m<D.m>11、(3分) 程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人12、(3分) 抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图,则下列结论:①4ac-b2<0;②2a-b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共 6 小题,共18 分)13、(3分) 函数中自变量x的取值范围是______.14、(3分) 已知点M(3,-2),将它先向左平移2个单位,再向上平移4个单位后得到点N,则点N的坐标是______.15、(3分) 如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______°.16、(3分) 如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为______.17、(3分) 在-9,-6,-3,-1,2,3,6,8,11这九个数中,任取一个作为a 值,能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根的概率是______.18、(3分) 记S n=a1,+a2+…a n,令T n=,则称T n为a1,a2,…,a n这列数的“凯森和”,已知a1,a2,…a500的“凯森和”为2004,那么1,a1,a2,…a500的“凯森和”为______.三、解答题(本大题共 5 小题,共42 分)19、(6分) 计算20、(8分) 如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C 处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)21、(9分) 从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22、(9分) 如图,在△ABC中,∠BAC=90°,线段AC的垂直平分线交AC于D 点,交BC于E点,过点A作BC的平行线交直线ED于F点,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=10,∠ACB=30°,求菱形AECF的面积.23、(10分) 如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB 的延长线交于点P,AC=PC,∠COB=2∠PCB.(1)求证:PC是⊙O的切线;(2)求证:BC=AB;(3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值.四、计算题(本大题共 3 小题,共24 分)24、(6分) 先化简,再求值:(a-2b)(a+2b)-(a-2b)2+8b2,其中a=-6,b=25、(8分) 为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤2 2 0.042<t≤4 3 0.064<t≤615 0.306<t≤8 a 0.50t>8 5 b请根据图表信息回答下列问题:(1)频数分布表中的a=______,b=______;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?26、(10分) 如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求△ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F.问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,求点E的坐标;若不存在,请说明理由.2019年湖南省娄底市中考数学模拟试卷(二)【第 1 题】【答案】A【解析】解:根据负数的绝对值等于它的相反数,得|-5|=5.故选:A.根据绝对值的性质求解.此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【第 2 题】【答案】D【解析】解:A、x3•x3=x6,故A错误;B、(ab3)2=a2b6,故B错误;C、x8÷x4=x4,故C错误;D、(2x)3=8x3,故D正确;故选:D.根据同底数幂的乘法、积的乘方和幂的乘方、同底数幂的除法进行计算即可.本题考查了同底数幂的乘法,积的乘方和幂的乘方,同底数幂的除法,掌握运算法则是解题的关键.【第 3 题】【答案】B【解析】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:B.根据中心对称图形的定义对各选项分析判断即可得解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.【第 4 题】【答案】D【解析】解:∵=75,=75;甲的中位数为75,乙的中位数为75;甲的众数为90,60,乙的众数为80,70;∴通过平均数、中位数、众数不能区别两组成绩,∴应通过方差区别两组成绩更恰当,故选:D.根据平均数、中位数、众数以及方差的意义进行选择即可.本题考查了统计量的选择,掌握平均数、中位数、众数以及方差的意义是解题的关键.【第 5 题】【答案】B【解析】解:28nm=28×10-9m=2.8×10-8m.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【第 6 题】【答案】D【解析】解:A、主视图是三角形,错误;B、主视图是矩形,错误;C、主视图是等腰梯形,错误;D、主视图是圆,正确.故选:D.找到从正面看所得到的图形比较即可.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.【第7 题】【答案】A【解析】解:A、∵∠ABD对的弧是弧AD,∠ACD对的弧也是AD,∴∠ABD=∠ACD,故A选项正确;B、∵∠ABD对的弧是弧AD,∠ADB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACD不相等,故B选项错误;C、∠AED>∠ABD,故C选项错误;D、∵∠ABD对的弧是弧AD,∠ACB对的弧也是AB,而已知没有说=,∴∠ABD和∠ACB不相等,故D选项错误;故选:A.根据圆周角定理即可判断A、B、D,根据三角形外角性质即可判断C.本题考查了圆周角定理和三角形外角性质的应用,注意:在同圆或等圆中,同弧或等弧所对的圆周角相等.【第8 题】【答案】B【解析】解:∵如图所示△EDA≌△ED′A,∴∠D=∠D′=∠DAE=90°,∵∠CED′=55°,∴∠DED′=125°,∴∠DAD′=55°,∴∠BAD′=35°.故选:B.由题意推出∠DED′=125°,得∠DAD′=55°,所以∠BAD′=35°.本题主要考查翻折变换的性质、正方形的性质、四边形内角和定理,解题的关键在于求出∠DAD′的度数.【第9 题】【答案】A【解析】解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=-2,x2=4,∴根据根与系数的关系,可得-2+4=-b,-2×4=c,解得b=-2,c=-8∴b+c=-10.故选:A.根据根与系数的关系得到-2+4=-b,-2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=-,x1x2=.【第10 题】【答案】C【解析】解:∵反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴反比例函数的图象在一三象限,∴1-2m>0,解得m<.故选:C.先根据当x1<0<x2时,有y1<y2,判断出1-2m的符号,求出m的取值范围即可.本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数y=的图象在一、三象限是解答此题的关键.【第11 题】【答案】A【解析】解:设大和尚有x人,则小和尚有(100-x)人,根据题意得:3x+=100,解得x=25则100-x=100-25=75(人)所以,大和尚25人,小和尚75人.故选:A.根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.本题考查了一元一次方程的应用,关键以和尚数和馒头数作为等量关系列出方程.【第12 题】【答案】C【解析】解:函数与x轴有两个交点,则b2-4ac>0,即4ac-b2<0,故①正确;函数的对称轴是x=-1,即-=-1,则b=2a,2a-b=0,故②正确;当x=1时,函数对应的点在x轴下方,则a+b+c<0,则③正确;则y1和y2的大小无法判断,则④错误.故选:C.根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.本题考查了二次函数的性质,主要考查了利用图象求出a,b,c的范围,以及特殊值的代入能得到特殊的式子.【第13 题】【答案】x>4【解析】解:根据题意得:x-4>0,解得x>4.根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.本题考查的知识点为:分式有意义,分母不为0.二次根式有意义,被开方数是非负数.【第14 题】【答案】(1,2)【解析】解:∵点M(3,-2),将它先向左平移2个单位,再向上平移4个单位后得到点N,∴点N的坐标是(3-2,-2+4),即(1,2),故答案为(1,2).将点M的横坐标减去2,纵坐标加上4即可得到点N的坐标.本题考查了坐标与图形变化-平移:解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【第15 题】【答案】120【解析】解:∵∠CDE=150°,∴∠CDB=180-∠CDE=30°,又∵AB∥CD,∴∠ABD=∠CDB=30°;∵BE平分∠ABC,∴∠ABC=60°,∴∠C=180°-60°=120°.故答案为:120.本题主要利用邻补角互补,平行线性质及角平分线的性质进行做题.本题主要考查了平行线的性质,两直线平行,内错角相等,同旁内角互补.【第16 题】【答案】π【解析】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×=60°,的长为=π.故答案为:π.求出圆心角∠AOB的度数,再利用弧长公式解答即可.本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.【第17 题】【答案】【解析】解:在-9,-6,-3,-1,2,3,6,8,11这九个数中,任取一个作为a值每个数被抽到的机会相同,因而是列举法求概率的问题,方程x2+ax+9=0有两个不相等的实数根的条件是a2-36>0,就是要看一下在-9,-6,-3,-1,2,3,6,8,11中有3个满足a2-36>0.∴P(能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根)=.列举出所有情况,让能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根的情况数除以总情况数即为所求的概率.正确理解列举法求概率的条件以及一元二次方程根的判定方法是解决问题的关键.用到的知识点为:概率=所求情况数与总情况数之比.【第18 题】【答案】2001【解析】解:∵Tn=,∴T500=2004,设新的“凯森和”为Tx,501×Tx=1×501+500×T500,Tx=(1×501+500×T500)÷501=(1×501+500×2004)÷501=1+500×4=2001.故答案为:2001.先根据已知求出T500的值,再设出新的凯森和T x,列出式子,把得数代入,即可求出结果.此题考查了数字的变化类,解题的关键是掌握“凯森和”这个新概念,找出其中的规律,再根据新概念对要求的式子进行变形整理即可.【第19 题】【答案】解:原式=-1+1+3-3×=-1+1+3-=3.【解析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.【第20 题】【答案】解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°-45°-15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=135≈190.4米【解析】根据速度乘以时间得出CE的长度,通过坡度得到∠ECF=30°,作辅助线EF⊥AC,通过平角减去其他角从而得到∠AEF=45°即可求出AE的长度.本题考查了解直角三角形的应用,解答本题的关键是作辅助线EF⊥AC,以及坡度和坡角的关系.【第21 题】【答案】解:(1)设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x 千米,根据题意得,-=2,解得:x=90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米;(2)405÷270=1.5,则坐车共需要1.5+1.5=3(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.【解析】(1)设普通列车平均速度每小时x千米,则高速列车平均速度每小时3x千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.【第22 题】【答案】(1)证明:∵EF垂直平分AC,∴FA=FC,EA=EC,∵AF∥BC,∴∠1=∠2.∵AE=CE,∴∠2=∠3.∴∠1=∠3.∵EF⊥AC,∴∠ADF=∠ADE=90°.∵∠1+∠4=90°,∠3+∠5=90°.∴∠4=∠5.∴AF=AE,∴AF=FC=CE=EA,∴四边形AECF是菱形.(2)解:∵∠BAC=∠ADF=90°,∴AB∥FE,∵AF∥BE,∴四边形ABEF为平行四边形,∵AB=10,∴FE=AB=10,∵∠ACB=30°,∴AC==10,.∴.【解析】(1)只要证明AF=FC=CE=EA,即可判断四边形AECF是菱形;(2)求出菱形的对角线的长,根据菱形的面积等于对角线乘积的一半计算即可.本题考查菱形的判定和性质、相等的垂直平分线的性质、锐角三角函数等知识,解题的关键是熟练掌握菱形的判定,属于基础题,中考常考题型.【第23 题】【答案】(1)证明:∵OA=OC,∴∠A=∠AC O.又∵∠COB=2∠A,∠COB=2∠PCB,∴∠A=∠ACO=∠PCB.又∵AB是⊙O的直径,∴∠ACO+∠OCB=90°.∴∠PCB+∠OCB=90°.即OC⊥CP,∵OC是⊙O的半径.∴PC是⊙O的切线.(2)证明:∵AC=PC,∴∠A=∠P,∴∠A=∠ACO=∠PCB=∠P.又∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB,∴∠COB=∠CBO,∴BC=OC.∴BC=AB.(3)解:连接MA,MB,∵点M是的中点,∴,∴∠ACM=∠BCM.∵∠ACM=∠ABM,∴∠BCM=∠ABM.∵∠BMN=∠BMC,∴△MBN∽△MCB.∴.∴BM2=MN•MC.又∵AB是⊙O的直径,,∴∠AMB=90°,AM=BM.∵AB=4,∴BM=2.∴MN•MC=BM2=8.【解析】(1)已知C在圆上,故只需证明OC与PC垂直即可;根据圆周角定理,易得∠PCB+∠OCB=90°,即OC⊥CP;故PC是⊙O的切线;(2)AB是直径;故只需证明BC与半径相等即可;(3)连接MA,MB,由圆周角定理可得∠ACM=∠BCM,进而可得△MBN∽△MCB,故BM2=MN•MC;代入数据可得MN•MC=BM2=8.此题主要考查圆的切线的判定及圆周角定理的运用和相似三角形的判定和性质的应用.【第24 题】【答案】解:原式=a2-4b2-a2+4ab-4b2+8b2=4ab,当a=-6,b=时,原式=-8.【解析】原式利用平方差公式,完全平方公式计算,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.【第25 题】【答案】解:(1)根据题意得:2÷0.04=50(人),则a=50-(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【解析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.【第26 题】【答案】解:(1)依题意,设抛物线的解析式为y=a(x-2)2-1,代入C(O,3)后,得:a(0-2)2-1=3,a=1∴抛物线的解析式:y=(x-2)2-1=x2-4x+3.(2)由(1)知,A(1,0)、B(3,0);设直线BC的解析式为:y=kx+3,代入点B的坐标后,得:3k+3=0,k=-1∴直线BC:y=-x+3;由(1)知:抛物线的对称轴:x=2,则D(2,1);∴AD==,AC==,CD==2,即:AC2=AD2+CD2,△ACD是直角三角形,且AD⊥CD;∴S△ACD=AD•CD=××2=2.(3)由题意知:EF∥y轴,则∠FED=∠OCB,若△OCB与△FED相似,则有:①∠DFE=90°,即DF∥x轴;将点D纵坐标代入抛物线的解析式中,得:x2-4x+3=1,解得x=2±;当x=2+时,y=-x+3=1-;当x=2-时,y=-x+3=1+;∴E1(2+,1-)、E2(2-,1+).②∠EDF=90°;易知,直线AD:y=x-1,联立抛物线的解析式有:x2-4x+3=x-1,x2-5x+4=0,解得x1=1、x2=4;当x=1时,y=-x+3=2;当x=4时,y=-x+3=-1;∴E3(1,2)、E4(4,-1).综上,存在符合条件的点E,且坐标为:(2+,1-)、(2-,1+)、(1,2)或(4,-1).【解析】(1)已知抛物线的顶点,可先将抛物线的解析式设为顶点式,再将点C的坐标代入上面的解析式中,即可确定待定系数的值,由此得解.(2)可先求出A、C、D三点坐标,求出△ACD的三边长后,可判断出该三角形的形状,进而得到该三角形的面积.(也可将△ACD的面积视为梯形与两个小直角三角形的面积差)(3)由于直线EF与y轴平行,那么∠OCB=∠FED,若△OBC和△EFD相似,则△EFD中,∠EDF和∠EFD中必有一角是直角,可据此求出点F的横坐标,再代入直线BC的解析式中,即可求出点E的坐标.此题主要考查了函数解析式的确定、图形面积的解法以及相似三角形的判定和性质等知识;需要注意的是,已知两个三角形相似时,若对应边不相同,那么得到的结果就不一定相同,所以一定要进行分类讨论.中考第一次模拟考试数学试卷含答案九年级数学试卷2020.3(测试时间:100分钟,满分:150分考生注意1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.考试中不能使用计算器.一、选择题(本大题共6题,毎题4分,满分24分) 1.下列实数中,是无理数的是( )A .3.14;B .13; C D2.下列计算正确的是( )A =B .23a a a +=a ;C .()3322a a =;D .632a a a ÷=.3.函数1y kx =-(常数0k <)的图像不经过的象限是( ) A .第一象限;B .第二象限;C .第三象限;D .第四象限.4.某校从各年级随机抽取50名学生,每人进行10次投篮,投籃进球次数如下表所示:次数 0 1 2 3 4 5 6 7 8 9 10 人数18107665412该投篮进球数据的中位数是( ) A .2;B .3;C .4;D .55.下列所述图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形;B .平行四边形;C .菱形;D .正五边形.6.已知1O e 的半径16r =,2O e 的半径为2r ,圆心距123O O =,如果1O e 与2O e 有交点,那么2r 的取值范围是( ) A .23r ≥;B .29r ≤;C .239r <<;D .239r ≤≤.二、填空题(本大题共12题,每题4分,满分48分)7.因式分解:236x x -=__________. 8.不等式组1023x x x-<⎧⎨+>⎩的解集是__________.9.函数12y x =-的定义域是__________. 10.用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是__________.11.从1到10的十个自然数中,随意取出一个数,该数为3的倍数的概率是__________. 12.如果关于x 的方程240x k +-=有两个相等的实数根,那么实数k 的值是__________. 13.如果将抛物线221y x x =+-向上平移,使它经过点()1,3A ,那么所得新抛物线的表达式是__________.14.某校组织了主题为“共建生态岛”的电子小报作品征集活动,先从中随机抽取了部分作品,按A ,B ,C ,D 四个等级进行评分,然后根据统计结果绘制了如下两幅不完整的统计图,那么此次抽取的作品中等级为B 的作品数为__________.15.如图,在ABC △,点D 在AC 边上且:1:2AD DC =,若AB m =u u u r u r ,BD n =u u u r r,那么DC =u u u r__________(用向量m u r 、n r表示).16.如图,正六边形ABCDEF 的顶点B 、C 分别在正方形AGHI 的边AG 、GH 上,如果4AB =,那么CH 的长为__________.17.如果一个平行四边形一个内角的平分线分它的一边为1:2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为__________.18.如图,Rt ABC △,90BAC ∠=︒,将ABC △绕点C 逆时针旋转,旋转后的图形是A B C ''△,点A 的对应点A '落在中线AD 上,且点A '是ABC △的重心,A B ''与BC 相交于点E ,那么:BE CE =__________.三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 化简:2231642x x x x x x +⎛⎫-÷⎪+--+⎝⎭,并求23x =-时的值. 20.(本题满分10分)1251x x +-=.21.(本题满分10分,第(1)、(2)小题满分各5分)己知圆O 的直径12AB =,点C 是圆上一点,且30ABC ∠=︒,点P 是弦BC 上一动点,过点P 作PD OP ⊥交圆O 于点D .图1图2(1)如图1,当PD AB P 时,求PD 的长; (2)如图2,当BP 平分OPD ∠时,求PC 的长. 22.(本题满分10分,第(1)、(2)小题满分各5分)小明家买了一台充电式自动扫地机,每次完成充电后,在使用时扫地机会自动根据设定扫地时间,来确定扫地的速度(以使每次扫地结束时尽量把所储存的电量用完),下图是“设定扫地时间”与“扫地速度”之间的函数图像(线段AB ),其中设定扫地时间为x 分钟,扫地速度为x 平方分米/分钟.(1)求y 关于x 的函数解析式;(2)现在小明需要扫地机完成180平方米的扫地任务,他应该设定的扫地时间为多少分钟? 23.(本题满分12分,第(1)、(2)小题满分各6分)如图,菱形ABCD ,以A 为圆心,AC 长为半径的圆分别交边BC 、DC 、AB 、D 于点E 、F 、G 、H .(1)求证:CE CF =;(2)当E 为弧»CG中点时,求证:2BE CE CB =⋅. 24.(本题满分12分,其中每小题各4分)如图,已知抛物线22y ax x c =-+经过ABC △的三个顶点,其中点()0,1A ,点()9,10B ,AC x P 轴.(1)求这条抛物线的解析式; (2)求tan ABC ∠的值;(3)若点D 为抛物线的顶点,点E 是直线AC 上一点,当CDE △与ABC △相似时,求点E 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,四边形ABCD 中,90BCD D ∠=∠=︒,E 是边AB 的中点.已知1AD =,2AB =.(1)设BC x =,CD y =,求y 关于x 的函数关系式,并写出定义域; (2)当70B ∠=︒时,求AEC ∠的度数; (3)当ACE △为直角三角形时,求边BC 的长.2019学年第二学期3月阶段测试九年级数学试卷2020.3(参考答案)1.C 2.B 3.A 4.B 5.C6.D 7.()32x x - 8.31x -<< 9.2x ≠10.230y y +-=11.31012.4- 13.22y x x =+ 14.4815.22m n +u r r16.6- 17.8或10 18.4:319.22x -20.无解21.(1)(2)3 22.(1)5600y x =-+;(2)60 23.(1)证明略;(2)证明略. 24.(1)21213y x x =-+;(2)12;(3)()4,1或()3,1-25.(1))3y x =-<<;(2)105︒;(3)2或12+中考第一次模拟考试数学试题含答案一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A .B .C .D .2.下列运算正确的是()A.2a3+5a2=7a5B.3﹣=3C.(﹣x2)•(﹣x3)=﹣x5D.(m﹣n)(﹣m﹣n)=n2﹣m23.如图所示的工件,其俯视图是()A .B .C .D .4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件45678数人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,65.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D .=6.关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥17.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.8.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.729.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=30010.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.1二.填空题(共6小题)11.计算:2cos60°+tan45°=.12.点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离为9m,则AB与CD间的距离是m.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为.三.解答题(共9小题)17.计算:4cos30°﹣3tan60°+2sin45°•cos45°.18.解方程:x(x﹣2)+x﹣2=0.19.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字﹣1和3;乙袋中有三个完全相同的小球,分别标有数字1、0和﹣3.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(2)求点A在反比例函数y=图象上的概率.20.如图所示,点O是矩形ABCD对角线AC的中点,过点O作EF⊥AC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.21.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.23.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.24.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.25.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;。
江苏省无锡市中考一模试卷(数学)
江苏省无锡市中考一模试卷一.填空题:(本大题共13 题,每题 3 分,共39 分)1. -6 的绝对值是; 8 的平方根是;-1 的相反数是。
2.“世界银行全世界扶贫大会”于2004年5月 26 日在上海开幕 . 从会上获知,我国公民生产总值达到 11.69 万亿元,人民生活整体上达到小康水平,此中11.69 万亿用科学记数法表示应为亿元。
3.分解因式:2x3 8x 。
1中,自变量 x 的取值范围是。
4.函数y5 x5.一个口袋中装有 4 个白球, 1 个红球, 7 个黄球,搅匀后随机从袋中摸出 1 个球是白球的概率是__________ 。
6.二次函数y x 2 6x 5 ,对称轴是__________________。
7.如图,正方形的面积是144,则暗影部分面积的小正方形边长是。
8.已知点 P(- 3,2),点 A 与点 P 对于 y 轴对称,则点 A 的坐标是 _________。
9.某班初二年级甲、乙两班举行电脑汉字输入速度竞赛,两个班参加竞赛的学生每分钟输入汉字的个数,经统计和计算后结果以下表:班级参加人数均匀字数中位数方差有一位同学依据上表得出以下结甲55 135 149 191 论:①甲、乙两班学生的均匀水平乙55 135 151 110 同样;②乙班优异的人数比甲班优秀的人数多(每分钟输入汉字达150BCD 个以上为优异);③甲班学生竞赛成绩的颠簸比乙班学生竞赛成绩的颠簸大。
上述结果正E确的是 __________________ (填序号)。
O10.如右图: AB是⊙ O的直径,弦CD⊥ AB,垂足为 E,假如 AB= 12 cm, CD= 8 cm,那么 AE的长为cm ; A11.函数y1k1 x1的图象经过P( 2,3)点,且与函数y2k2 x2的图象对于y 轴对称,那么它们的分析式y1= ,y 2= 。
12.右图描绘的是李平同学下学回家过程中,离校的行程行程 A与所用时间之间的函数关系。
江苏无锡羊尖中学九年级下一模考前模拟练习试卷
模拟练习(02)一、选择题(每题3分,共24分) 1.23-的值是( )A. -3B. 3C. 9D. -9 2.计算)3(623m m -÷的结果是( )A. m 3-B. m 2-C. m 2D. m 33.已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距O 1O 2为1cm ,则这两圆的位置关系是( )A. 相交B. 内含C. 内切D. 外切4.在平面直角坐标系中,若点()13-+,m m P 在第四象限,则m 的取值范围为( ) A. -3<m <1 B. m >1 C. m <-3 D. m >-35.如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA =8,OA =6,则tan ∠APO 的值为( ) A.43 B. 53 C. 54 D. 34 6.对于正实数a 与b ,定义新运算“*”如下:*aba b a b=+,则4*(4*4)等于( )A. 1B. 2C.43 D. 347.如图,某电信公司提供了A B ,两种方案的移动通讯费用y (元)与通话时间x (元)之间的关系,则以下说法错误..的是( ) A .若通话时间少于120分,则A 方案比B 方案便宜20元 B .若通话时间超过200分,则B 方案比A 方案便宜12元 C .若通讯费用为60元,则B 方案比A 方案的通话时间多 D .若两种方案通讯费用相差10元,则通话时间是145分或185分8.如图,用长为8m 的材料围成一个扇形花坛OAB ,则花坛面积的最大值是( ) A. 2m 2B.5m 2 C. 3m 2 D. 4m 27050 30120 170200 250 x (分)y (元)A 方案B 方案二、填空题(每题2分,共20分)9.在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为 4.581亿帕的钢材.把 4.581亿帕用科学计数法表示为_______________帕(保留两位有效数字).10.函数11-+=x x y 的自变量x 的取值范围为 . 11.若反比例函数xky =(k ≠0)的图象经过点A (1,-3),则k 的值为 . 12.如图,已知AB ∥CD ,BE 平分∠ABC ,∠CDE=150°,则∠C =_______.13.已知x 1、x 2是方程x 2-3x -2=0的两个实根,则(x 1-2) (x 2-2)= . 14.如图,已知AB 是⊙O 的直径,BC 为弦,∠ABC=30°过圆心O 作OD ⊥BC 交弧BC 于点D ,连接DC ,则∠DCB = °. 15.已知A 、B 、C 三点在同一条直线上,M 、N 分别为线段AB 、BC 的中点,且 AB = 60,BC = 40,则MN 的长为 .16.已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为 . 17.图中有大小不同的菱形,第1幅图中有1个,第2幅图中有3个,第3幅图中有5个,则第n 幅图中共有 个.123n… …18.如图,校园内有一块梯形草坪ABCD ,草坪边缘本有道路通过甲、乙、丙路口,可是有少数同学为了走捷径,在草坪内走了一条直“路”EF ,假设走1步路的跨度为0.5米,结果他们仅仅为了少走________步路,就踩伤了绿化我们校园的小草(“路”宽忽略不计).三、解答题(共86分) 19.(本题6分)(1)计算:()2234|1|-+-+--π (2)解方程:11262213x x=---OBD CAEDCBA20.(本题8分)先化简,再求值:⎪⎭⎫ ⎝⎛+---÷--11211222x x x x x x ,其中21=x21.(本题8分)已知:如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB ⊥BE ,垂足为B ,DE ⊥BE ,垂足为E ,且AB =DE ,BF =CE. 求证:(1)△ABC ≌△DEF ;(2)GF =GC.GFEDC BA22 题图22.(本题8分)实验中学组织爱心捐款支援灾区活动,九年级一班55名同学共捐款1180元,捐款情况见下表.表中捐款10元和20元的人数不小心被墨水污染已经看不清楚,请你帮助确定表中的数据.23.(本题8分)典典同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:年龄请根据以上不完整的统计图提供的信息,解答下列问题:⑴典典同学共调查了名居民的年龄,扇形统计图中a=,b=;⑵补全条形统计图;⑶若该辖区年龄在0~14岁的居民约有3500人,请估计年龄在15~59岁的居民的人数.24.(本题8分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(2)求点Q落在直线y=x-3上的概率.25.(本题8分)如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°.翻折梯形ABCD,使点B 重合于点D,折痕分别交边AB、BC于点F、E,若AD=2,BC=8,求:(1)BE的长;(2)∠CDE的正切值.A DFB26.(本题8分)宏达纺织品有限公司准备投资开发A 、B 两种新产品,通过市场调研发现:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间满足正比例函数关系:A y kx =;如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间满足二次函数关系:2B y ax bx =+.根据公司信息部的报告,A y ,B y (万元)与投资金额x (万元)的部分对应值(如下表)(1)填空:A y = ;B y = ;(2)如果公司准备投资20万元同时开发A 、B 两种新产品,设公司所获得的总利润为w (万元),试写出w 与某种产品的投资金额x 之间的函数关系式.(3)请你设计一个在(2)中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元?27.(本题12分)刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A 镇;二分队因疲劳可在营地休息a (0≤a ≤3)小时再往A 镇参加救灾。
【3套试卷】无锡市中考第一次模拟考试数学精选含答案
中考第一次模拟考试数学试卷含答案一、选择题1.3的同类二次根式是( ) 【A 】8 【B 】323 【C 】12【D 】2122.列方程中有实数解的是 【A 】012=+x 【B 】11122-=-x x x【C 】x x -=-1 【D 】12=-x x3.学校篮球集训队8名队员进行定点投篮训练,这8名队员在1分钟内投进篮筐的球数如图所示,这组数据的众数与中位数分别为( )【A 】8与8.5 【B 】8与9 【C 】9与8【D 】8.5与94.已知平行四边形ABCD ,AC 与BD 交于O ,则下列条件中,不能判定这个平行四边形为矩形的是( ) 【A 】∠AOB =∠COD 【B 】∠OAB =∠OBA 【C 】BO =DO 【D 】AO =CO5.桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则( ) 【A 】能够事先确定抽取的扑克牌的花色 【B 】抽到黑桃的可能性更大【C 】抽到黑桃和抽到红桃的可能性一样大【D 】抽到红桃的可能性更大6.如图1,已知30POQ ∠=︒,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为1的A 与直线OP 相切,半径长为2的B 与A 相交,那么OB 的取值范围是( )【A 】53<<OB 【B 】52<<OB 【C 】43<<OB 【D 】42<<OB 二、填空题7.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是 . 8.已知函数()11-=x x f ,那么()=2f .9.3x -x 的取值范围为 .10.关于x 的方程()021=--x x 的解是 .11.边心距为4的正六边形的半径为 ,中心角等于 度,面积为 . 12.已知反比例函数xky -=2(k 是常数,k ≠2)的图像有一支在第二象限,那么k 的取值范围是 .13.在不透明的布袋中,装有大小、形状完全相同的3个黑球、1个红球,从中摸一个球,摸出1个黑球这一事件是 事件14.二次函数122-+=x kx y 与x 轴有两个不相同的交点,那么k 的取值范围是 . 15.在△ABC 中,设CA a =,CB b =,P 是中线AE 与中线CF 的交点,则BP = (用,a b 表示)16.如图4,已知正方形DEFG 的顶点D 、E 在ABC ∆的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =8,ABC ∆的面积是24,那么这个正方形的边长是 .图1PBAO17. 定义一种新计算,2(,)x y T x y x y +=+,其中0x y +≠,比如:2257(2,5)259T ⨯+==+,则(1,2)(2,3)...(100,101)(101,101)(101,100)...(3,2)(2,1)T T T T T T T ++++++++的值为18.△ABC 中, AC 、BC 上的中线BE 、AD 垂直相交于点O ,若BC =10,BE =6,则AB 的长为 . 三、解答题19.先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中32x =-. 20.解方程组⎪⎩⎪⎨⎧=+++-=+124242222y xy x xyy x y x 21.如图,港口B 位于港口A 的南偏东37︒方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km ,到达E 处,测得灯塔C 在北偏东45︒方向上.这时,E 处距离港口A 有多远? (参考数据:sin370.60,cos370.80,tan370.75︒≈︒≈︒≈)22.为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪调查,发现每天它的销售价与销售量之间有如下关系:每千克售价(元) 25 24 23 … 15 每天销售量(千克) 303234…50如果单价从最高25元/千克下调到x 元/千克时,销售量为y 千克,已知y 与x 的函数关系是一次函数.(1)求y 与x 之间的函数解析式(不写定义域);(2)若该种商品的成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?24.已知平面直角坐标系xOy (如图8),抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B (点A 在点B 左侧),与y 轴交于点C ,顶点为D ,其中AB =4, (1)求抛物线的解析式及其顶点坐标(2)若点C 与点E 关于对称轴对称,求四边形ACDE 的面积 (3)若抛物线上存在一点P ,使∠AEP =∠DAE ,求P 的坐标.25.如图,圆O 的半径OA =1,点M 是线段OA 延长线上的任意一点,圆M 与圆O 内切于点B ,过点A 作CD ⊥OA 交圆M 于C 、D ,联结CM 、OC ,OC 交圆O 于E . (1)若设OM =x ,y S OMC =△,求y 关于x 的函数解析式,并写出函数的定义域; (2)将圆O 沿弦CD 翻折得到圆N ,当x =4时,试判断圆N 与直线CM 的位置关系;(3)将圆O 绕着点E 旋转180°得到圆P ,如果圆P 与圆M 内切,求x 的值.图8 xyo11中考第一次模拟考试数学试题含答案(1)一.填空题(满分18分,每小题3分)1.|x﹣3|=3﹣x,则x的取值范围是.2.一个多边形的每个外角都等于72°,则这个多边形的边数为.3.将数12000000科学记数法表示为.4.在函数y=中,自变量x的取值范围是.5.如图:∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于.6.已知△ABC的周长是1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2018个三角形的周长为.二.选择题(满分32分,每小题4分)7.在2,﹣4,0,﹣1这四个数中,最小的数是()A.2 B.﹣4 C.0 D.﹣18.如图所示的几何体的俯视图是()A.B.C.D.9.下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.10.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°11.下列各命题是真命题的是()A.平行四边形对角线互相垂直B.矩形的四条边相等C.菱形的对角线相等D.正方形既是矩形,又是菱形12.若数组2,2,x,3,4的平均数为3,则这组数中的()A.x=3 B.中位数为3 C.众数为3 D.中位数为x 13.已知|a+b﹣1|+=0,则(b﹣a)2019的值为()A.1 B.﹣1 C.2019 D.﹣201914.下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角三.解答题15.(6分)已知:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.16.(6分)已知:AD是△ABC中BC边上的中线,延长AD至E,使DE=AD,连接BE,求证:△ACD≌△EBD.17.(8分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?18.(6分)为了美化环境,建设宜居城市,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)试求出y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉的种植面积的2倍.①试求种植总费用W元与种植面积x(m2)之间的函数关系式;②应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用W最少?最少总费用为多少元?19.(7分)如图,在平面直角坐标系中,一次函数y=x﹣3的图象与x轴交于点A,与y 轴交于点B,点B关于x轴的对称点是C,二次函数y=﹣x2+bx+c的图象经过点A和点C.(1)求二次函数的表达式;(2)如图1,平移线段AC,点A的对应点D落在二次函数在第四象限的图象上,点C的对应点E落在直线AB上,求此时点D的坐标;(3)如图2,在(2)的条件下,连接CD,交x轴于点M,点P为直线AC上方抛物线上一动点,过点P作PF⊥AC,垂足为点F,连接PC,是否存在点P,使得以点P,C,F为顶点的三角形与△COM相似?若存在,求点P的横坐标;若不存在,请说明理由.20.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.21.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?22.(9分)如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.(12分)如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.参考答案一.填空题1.解:3﹣x≥0,∴x≤3;故答案为x≤3;2.解:多边形的边数是:360÷72=5.故答案为:5.3.解:12 000 000=1.2×107,故答案是:1.2×107,4.解:由题意,得2x+1≠0,解得x≠﹣.故答案为:x≠﹣.5.解:作DG⊥AC,垂足为G.∵DE∥AB,∴∠BAD=∠ADE,∵∠DAE=∠ADE=15°,∴∠DAE=∠ADE=∠BAD=15°,∴∠DEG=15°×2=30°,∴ED=AE=8,∴在Rt△DEG中,DG=DE=4,∴DF=DG=4.故答案为:4.6.解:设第n个三角形的周长为∁,n∵C1=1,C2=C1=,C3=C2=,C4=C3=,…,∴∁n=()n﹣1,∴C2018=()2017.故答案为:()2017.二.选择题(共8小题,满分32分,每小题4分)7.解:根据有理数比较大小的方法,可得﹣4<﹣1<0<2,∴在2,﹣4,0,﹣1这四个数中,最小的数是﹣4.故选:B.8.解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.9.解:A、a6÷a3=a3,故本选项错误;B、=2,故本选项错误;C、1÷()﹣1=1÷=,故本选项正确;D、(a3b)2=a6b2,故本选项错误.故选:C.10.解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.11.解:A、平行四边形对角线互相平分但不一定垂直,故错误,是假命题;B、矩形的四边不一定相等,故错误,是假命题;C、菱形的对角线垂直但不一定相等,故错误,是假命题;D、正方形既是矩形,又是菱形,正确,是真命题;故选:D.12.解:根据平均数的定义可知,x=3×5﹣2﹣2﹣4﹣3=4,这组数据从小到大的顺序排列后,处于中间位置的数是3,那么由中位数的定义和众数的定义可知,这组数据的中位数是3,故选:B.13.解:∵|a+b﹣1|+=0,∴,解得:,则原式=﹣1,故选:B.14.解:∵矩形的对边平行且相等,对角线互相平分且相等,∴选项C正确故选:C.三.解答题15.解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x ﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.16.证明:∵AD是△ABC的中线,∴BD=CD,在△ACD和△EBD中,,∴△ACD ≌△EBD (SAS ).17.解:设矩形的长为x 步,则宽为(60﹣x )步,依题意得:x (60﹣x )=864,整理得:x 2﹣60x +864=0,解得:x =36或x =24(不合题意,舍去),∴60﹣x =60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.18.解:(1)当0≤x ≤300时,设y =k 1x ,根据题意得300k 1=39000,解得k 1=130,即y=130x ;当x >300时,设y =k 2x +b ,根据题意得,解得,即y =80x +15000,∴y =; (2)①当200≤x ≤300时,w =130x +100(1200﹣x )=30x +120000;当x >300时,w =80x +15000+100(1200﹣x )=﹣20x +135000;②设甲种花卉种植为 am 2,则乙种花卉种植(1200﹣a )m 2,∴, ∴200≤a ≤800当a =200 时.W min =126000 元当a =800时,W min =119000 元∵119000<126000∴当a =800时,总费用最少,最少总费用为119000元.此时乙种花卉种植面积为1200﹣800=400m 2.答:应该分配甲、乙两种花卉的种植面积分别是800m 2 和400m 2,才能使种植总费用最少,最少总费用为119000元.19.(1)解:∵一次函数y =x ﹣3的图象与x 轴、y 轴分别交于点A 、B 两点,∴A(3,0),B(0,﹣3),∵点B关于x轴的对称点是C,∴C(0,3),∵二次函数y=﹣x2+bx+c的图象经过点A、点C,∴∴b=2,c=3,∴二次函数的解析式为:y=﹣x2+2x+3.(2)∵A(3,0),C(0,3),平移线段AC,点A的对应为点D,点C的对应点为E,设E(m,m﹣3),则D(m+3,m﹣6),∵D落在二次函数在第四象限的图象上,∴﹣(m+3)2+2(m+3)+3=m﹣6,m 1=1,m2=﹣6(舍去),∴D(4,﹣5),(3)∵C(0,3),D(4,﹣5),∴解得,∴直线CD的解析式为y=﹣2x+3,令y=0,则x=,∴M(,0),∵一次函数y=x﹣3的图象与x轴交于A(3,0),C(0,3),∴AO=3,OC=3,∴∠OAC=45°,过点P作PF⊥AC,点P作PN⊥OA交AC于点E,连PC,∴△PEF和△AEN都是等腰直角三角形,设P(m,﹣m2+2m+3),E(m,﹣m+3),∴PE=PN﹣EN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,∴EN=﹣m+3,AE=,FE=,∴CF=AC﹣AE﹣EF=,①当△COM∽△CF P,,∴,=0,舍去,,解得m1②当△COM∽△PFC时,,∴,解得m=0(舍去),,1综合可得P点的横坐标为或.20.解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.21.解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为:144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC ∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形中考一模数学试卷及答案1. 1的一个有理化因式是()【A【B【C 1【D 12. 为了了解学生双休日做作业的时间,老师随机抽查了10位学生双休日做作业时间,结果如下表所示:作业时间(分钟)90 100 120 150 200 人数2 2 23 1 那么这10位学生双休日做作业时间的中位数与众数分别是()【A 】150,150【B 】120,150【C 】135,150【D 】150,1203. 已知P 是ABC ∆内一点,联接PA 、PB 、PC ,把ABC ∆的面积三等分,则P 点一定是()【A 】ABC ∆的三边中垂线的交点【B 】ABC ∆的三条角平分线的交点【C 】ABC ∆的三条高的叫点【D 】ABC ∆的三条中线的交点4. 下列运算正确的是个数是①236x x x +=;②235x x x =;③236(3x )9x =;④224(2x )4x =()【A 】1个【B 】2个【C 】3个【D 】4个5. 在平面直角坐标系内,点A 的坐标为(1,0),点B 的坐标为(a,0),圆A 的半径为2,下列说法中不正确的是()【A 】当a=-1时,点B 在圆A 上【B 】当a 〈1时,点B 在圆A 内【C 】当a 〈 -1时,点B 在圆A 外【D 】当-1 〈a 〈3时,点B 在圆A 内6. 下列命题中,属于假命题的是()【A 】 对角线相等的梯形是等腰梯形【B 】两腰相等的梯形是等腰梯形【C 】底角相等的梯形是等腰梯形 【D 】等腰三角形被平行于底边的直线截成两部分,所截得的四边形的等腰梯形一、填空题(本大题共12题,每题4分,满分48分)7. 科学家发现一种病毒的直径为0.000104米,用科学计数法表示为_______米8. 方程的23x x +=-根是_______9. 已知关于x 的一元二次方程210x bx ++=有两个不相等的实数根,则b 的值为_________10. 将抛物线22y x x =+向左平移两个单位长度,再向下平移3个长度单位,得到的抛物线的表达式为_________11. 已知反比例函数的图像经过点(2,1)p -,则这个函数的图像分别在第_________象限。
2022年江苏省无锡市中考数学第一次模拟考试试卷附解析
2022年江苏省无锡市中考数学第一次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个四边形被灯光投影到屏幕上的影子()A.与原四边形全等 B.与原四边形相似C.与原四边形不一定相似 D.与原四边形各角对应相等2.已知PA是⊙O的切线,A为切点,PBC是过点O的割线,PA=10cm,PB=5cm,则⊙O 的半径长为()A.15cm B.10 cm C.7.5 cm D.5 cm3.下列四组条件中,能判定△ABC与△DEF相似的是()A.∠A=45°,∠B=55°,∠D=45°,∠F=75°B.AB=5,BC=4,∠A=45°,DE=5,EF=4,∠D=45°C.AB=6,BC=5,∠B=40°,DE=12,EF=10,∠E=40°D.AB=BC,∠A=50°,DE=EF,∠E=50°4.等腰三角形一个外角是80°,其底角是()A.40°B.100°或40°C.100°D.80°5.以l、3为根的一元二次方程是()A.x2+4x―3=0 B.x2―4x+3=0 C.x2+4x+3=0 D.―x2+4x+3=06.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能..与其自身重合的是()A.72B.108C.144D.2167.下列说法中正确的个数有()①两点确定一条直线;②线段上有无数个点;③两条直线至多只有一个公共点;④经过三个点能确定一条直线.A.1个B.2个C.3个D.4个8.数学课上老师给出下面的数据,精确的是()A.2002年美国在阿富汗的战争每月耗费10亿美元B.地球上煤储量为5万亿吨以上C.人的大脑有l×1010个细胞D.七年级某班有51个人二、填空题9.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .10.放大镜下的“5”和原来的“5”是 ,下列各组图形中,属于相似形的是 .(填序号).①两个三角形;②两个长方形;③两个平行四边形;④两个正方形;⑤两个圆11.某工厂选了一块矩形铁皮加工一个底面半径为20cm ,母线长为60cm 的锥形泥斗, 则栽出的扇形圆心角应是 度.12.某村共有银行储户110户,存款在2~3万元之间的银行储户的频率是0.2,则该村存款在2~3万元的银行储户有 户.13.一等腰三角形的腰长与底边长之比为 5:8,它的底边上的高为33的周长为 ,面积为 .14.如图,数轴上表示的关于x 的一元一次不等式组的解集为 .15.当x _ _时,12x -的值为正;当x _ _时,221x x -+的值为负. 16.下图是一些国家的国旗,其中是轴对称图形的有__________个.17.在ABC △中,∠C=90°,AD 为△ABC 角平分线,BC=40,AB=50,若BD ∶DC=5∶3,则△ADB 的面积为_______.解答题18.已知矩形的面积是)7(3522>--x x x ,其中一边长是7-x ,则表示矩形的另一边的代数式是 .19.幂的乘方,底数 ,指数 .20.下列方程组中,其中是二元一次方程组的有 (填序号).①235571x y x y +=⎧⎨--=⎩,②123x y y x ⎧+=⎪⎨⎪-=⎩,③32027x y y z -=⎧⎨+=⎩,④304x y -=⎧⎨=⎩ 21.∠α的补角为125°,∠β的余角为37°,则∠α、∠β的大小关系为∠α ∠β(填“>”、“<”或“=”).22.某种零件,标明要求是0.050.0350φ+-(φ表示直径,单位:mm). 经检验,一零件的直径是49.9mm ,它合格吗?答: . (填“合格”或“不合格”)23.在直角三角形ABC 中,∠ACB=90O ,∠A=30O ,先以点C 为旋转中心,将ΔABC 按逆时针方向旋转45O ,得ΔA 1B 1C.然后以直线A 1C 为对称轴,将ΔA 1B 1C 轴对称变换,得ΔA 1B 2C,则A 1B 2与AB 所夹的∠α的度数为 .三、解答题24.如图所示,水坝的横断面为梯形 ABCD,迎水坡 AD 的坡角为 30°,背水坡 BC 的坡度为 1:1: 2,坝顶 AB 的宽为 3 m,坝高为5m,求:(1)坝底 CD 的长;(2)迎水玻 AD 的坡度.25.(1)求正△ABC 的高线长 h 与边长 a 之比;(2)求正方形的边长与对角线长之比.26.已知圆锥的全面积为12πcm2,侧面积为8πcm2,试求圆锥的高与母线之间的夹角.27.阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-l=y,则(x2-1)2=y2,原方程化为y2-5y+4=0.①解得y1=1,y2=4当y=1时,x2-1=1.∴x2=2.∴x=±2;当y=4时,x2-1=4,∴x2=5,∴x=±5。
【3套试卷】无锡市中考第一次模拟考试数学试题含答案
中考一模数学试题及答案一、选择题1. 的相反数是 ( )A. B. C. D.2. 年月日起,海口辖区内省、市属公立医院全部实行取消药品加成,破除"以药补医",有效降低患者医药费用负担.同时,继续在所有公立医疗机构住院病房实施"先看病后付费"诊疗服务模式,全年累计受益人,群众得到了实实在在的好处.数据用科学记数法表示为 ( )A. B.C. D.3. 一组数据,,,,的众数是 ( )A. B. C. D.4. 在中,,,则 ( )A. B. C. D.5. 方程的解是 ( )A. B. C. D.6. 如图所示,几何体的俯视图为 ( )A. .B.C. D.7. 如图,为的中位线,,则为 ( )A. B. C. D.8. 下列式子从左到右变形属于因式分解的是 ( )A.B.C.D.9. 某城市2016 年底已有绿化面积公顷,经过两年绿化,绿化面积逐年增加,到2018年底增加到公顷,设绿化面积平均每年增长率为,由题意,所列方程正确的是 ( )A. B.C. D.10. 已知是的外接圆,,,则劣弧的长为 ( )A. B. C. D.11. 在一个不透明的袋子里有个球,标有,,,,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于的概率是 ( )A. B. C. D.12. 在平面直角坐标系中,点与点关于原点对称,则点的坐标为 ( )A. B.C. D.13. 为得到抛物线,需将抛物线经过怎样的平移可以得到 ( )A. 向左平移个单位B. 向右平移个单位C. 向上平移个单位D. 向下平移个单位14. 一次函数与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则,的取值范围是 ( )A. B. C. D.二、填空题15. 小王到文具店买文具,水性笔的单价是元,练习本比水性笔的单价少元,小王买个练习本和支水性笔共需要元.16. 函数中自变量的取值范围是.17. 如图,平行四边形,将沿着对角线折叠,使得与重合,交于点,,则.18. 已知☉是的外接圆,为直径,为☉上一点,分别连接,,交于点,且为的中点,,,则= .三、解答题19. (1)Ⅱ解下列不等式,并把解集表示在数轴上20. 某校为了解"课程选修"的情况,对报名参加"机器人制作","话剧表演","口语训练","国学赏析"这四个选修项目的学生(每人限报一课)进行抽样调查,下面是根据收集的数据绘制的不完整的统计图:请根据图中提供的信息,解答下面的问题:Ⅰ此次共调查了名学生,报名"话剧表演"的学生占被调查学生总数的百分比为;Ⅱ请把这个条形统计图补充完整;Ⅲ若绘制扇形统计图,报名"国学赏析"的人,对应的圆心角的度数为度.Ⅳ现该校共有名学生报名参加这四个选修项目,请你估计其中有多少名学生选修"口语训练"项目.21. 小明和小华约定周日早上同时从家出发到汽车站会合,一起去南山寺游玩,小明骑自行车到汽车站,小华步行到汽车站,小明家到汽车站的距离是小华家到汽车站的距离的倍,小明的速度是千米/小时,小华的速度是小明的,结果小明比小华早到分钟,求小明家和小华家距离汽车站的距离分别是多少千米?小华家到汽车站的距离为千米,则小明家到汽车站的距离为千米.22. 如图,某渔船在海面上朝正西方向以海里/时匀速航行,在处观测到灯塔在北偏西方向上,航行小时到达处,此时观察到灯在北偏西方向上,若该船继续向西航行至离灯塔距离最近的位置,求到的距离(参考数据:,,,结果保留两位小数)23. 如图,正方形中,,分别为,边上的点,且,,连接分别交,于,点.Ⅰ求证:≌;Ⅱ是否为等腰三角形?若是,请证明;若不是,请说明理由;Ⅲ若,求的值(结果保留根号).24. 如图,抛物线经过点,,三点.已知,,,.Ⅰ求抛物线的解析式;Ⅱ当经过抛物线的顶点,且时,求的长;Ⅲ如图,设是抛物线上的点,且,①求的值;②若五边形的周长最小,求的值.答案第一部分1. 答案:B解析:符号相反,绝对值相等的两个数互为相反数.所以的相反数是.2. 答案:A解析:科学记数法是把一个数写成的形式,其中,是原数整数部分的位数减,所以用科学记数法表示为.3. 答案:C解析:众数是指一组数中出现次数最多的数据.该组数据中出现一次,出现一次,出现两次,出现一次,所以众数是.4. 答案:D解析:三角形的内角和为,所以.5. 答案:B解析:由得,故.6. 答案:B解析:俯视图是从上向下看,可以看到两个正方形.7. 答案:C解析:∵是的中位线,∴∥∴.8. 答案:C解析:把一个多项式分解为几个整式乘积的形式叫做因式分解.A、B、D选项等号右边都不是乘积的形式,所以都不是因式分解;C选项符合因式分解的定义.9. 答案:B解析:2016年底绿化面积为公顷,且绿化面积平均每年增长率为,则2017年底绿化面积为公顷,2018 年底绿化面积为,所以列方程为.10. 答案:B解析:如图,过作与,连接、∵,∴∵且∴,在中,,∴.11. 答案:C解析:如图,先抽取一个记住放回,再抽取一个,可出现以下种情况,抽取的两个球数字之和大于的有种情况,所以概率为.12. 答案:B解析:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以点的坐标为.13. 答案:A解析:抛物线的顶点坐标为,抛物线的顶点坐标为,点需向左平移两个单位得到点,所以,为得到抛物线需将抛物线向左平移个单位.14. 答案:C解析:因为一次函数的图象交与轴的负半轴,所以可得,因为反比例函数的图象在二、四象限,所以可得.第二部分15. 答案:解析:因为水性笔的单价是元,练习本比水性笔的单价少元,所以练习本的单价为元,则个练习本和支水性笔共需要元.16. 答案:且解析:根据题意列出不等式可得的取值范围为且.17. 答案:解析:∵是沿对角线翻折后的图形,∴,∵∥,∴.18. 答案:解析:∵为的中点,由垂径定理可得,,∵是直径∴,∵,由勾股定理可得,∵,∴.第三部分19. (1)答案:解析:(2)答案:;解析:.20. (1)答案:,解析:抽样调查的样本总数为名(对应人数除以对应百分比);话剧表演人数为人,则所占百分比为(2)答案:如图:解析:略(3)答案:解析:报名"国学赏析"人数的百分比为,所以对应的圆心角为(4)答案:解析:报名"口语训练"人数的百分比为,所以可估计选修"口语训练"的人数为名.21. 答案:小华家到汽车站的距离为千米,小明家到汽车站的距离为千米.解析:设小华家到汽车站的距离为千米,则小明家到汽车站的距离为千米分钟小时小明家到汽车站的距离是千米答:小华家到汽车站的距离为千米,小明家到汽车站的距离为千米.22. 答案:海里.解析:如图,连接,则由题意得,,,,∴∴在中,海里.答:到的距离为海里23. (1)答案:证明略解析:∵正方形∴;∵∴,∴在和中,∴(2)答案:是等腰三角形,证明略解析:如图,连接交于点,则为直角三角形,,为等腰直角三角形,,∵,∴,又由(1)知,∴,∴,∵,∴,∴,∴∴为等腰三角形.(3)答案:解析:如图,过作于,设,则,∵- ,∴∵∴∴,则,在中,由勾股定理得:,∴,∵∴.24. (1)答案:解析:设抛物线解析式为,∵点,,在抛物线上,∴将三个点代入抛物线解析式中得:解得:所以抛物线解析式为:.(2)答案:解析:设抛物线的顶点坐标为,则,设直线的解析式为:,代入点两点坐标得:解得:,所以,如图,连接,作轴于点,则轴,在和中,∴∴∴∴.(3)答案:① ;②解析:①将代入抛物线解析式得:解得:(舍),所以.②如图,将点向下平移一个单位得到,分别作关于轴对称点,作关于轴对称点,连接分别交轴,轴于点,,此时五边形的周长最小.此时,,设直线方程为:,则两式相加,整理得点坐标为,则.中考一模数学试题及答案姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 下列计算正确的是()A.-|-2|=2B.-22=-4C.(-2)2=-4D.33=92、(3分) 一个代数式减去-2x得-2x2-2x+1,则这个代数式为()A.-x2+1B.-2x2-4x+1C.-2x2+1D.-2x2-4x3、(3分) 将五个相同的小正方体堆成如图所示的物体,它的俯视图是()A.B.C. D.4、(3分) 某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则新各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.调配后平均数变小了B.调配后众数变小了C.调配后中位数变大了D.调配后方差变大了5、(3分) 不等式-4x-k≤0的负整数解是-1,-2,那么k的取值范围是()A.8≤k<12B.8<k≤12C.2≤k<3D.2<k≤36、(3分) 如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4-2C.2D.4-47、(3分) 如图是一次函数y1=kx+b与y2=x+a的图象,则下列结论①k<0;②a>0;③当x<3时,kx+b<x+a中,正确的个数是()A.0B.1C.2D.38、(3分) 如图,在▱OABC中C(2,0),AC⊥OC,反比例函数y=(k>0)在第一象限内的图象过点A,且与BC交于点D,点D的横坐标为3,连接AD,△ABD的面积为,则k的值为()A.4B.5C. D.9、(3分) 小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①abc<0;②a+b+c<0;③b+2c>0;④4ac-b2>0;⑤a=b.你认为其中正确信息的个数有()A.2B.3C.4D.510、(3分) 如图,在△ABC中,点D,E分别是边AC,AB的中点.BD与CE交干点O,连接DE.下列结论:①OE•OB=OD•OC;②;③=;④=.其中正确的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共 5 小题,共 15 分)11、(3分) 春节期间,某景区共接待游客约1260000人次,将“1260000”用科学记数法表示为______.12、(3分) 如图,一副三角尺有公共的顶点O,若∠BOD=40°,则∠AOC=______.13、(3分) 若一个角的补角是它的余角的5倍,则这个角的度数为______.14、(3分) 如图,在平面直角坐标系中,⊙O的半径为5,弦AB的长为6,过O作OC⊥AB于点C,⊙O内一点D的坐标为(-2,1),当弦AB绕O点顺时针旋转时,点D到AB的距离的最小值是______.15、(3分) 如图,⊙O为等腰三角形ABC的外接圆,AB是⊙O的直径,AB=12,P为上任意一点(不与点B,C重合),直线CP交AB的延长线于点Q,⊙O在点P处的切线PD交BQ于点D,则下列结论:①若∠PAB=30°,则的长为π;②若PD∥BC,则AP平分∠CAB;③若PB=BD,则PD=6;④无论点P在上的位置如何变化,CP•CQ=108.其中正确结论的序号为______.三、计算题(本大题共 2 小题,共 13 分)16、(6分) 计算:|-5|-+(-2)2+4÷(-).17、(7分) 先化简,再求值:(1-)÷,其中a=2-1+(π-2018)0四、解答题(本大题共 7 小题,共 62 分)18、(7分) 如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=CD,连接CF.(1)求证:△AEF≌△DEB;(2)若AB=AC,试判断四边形ADCF的形状,并证明你的结论.19、(8分) 某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:第一次第二次第三次第四次第五次第六次第七次第八次甲10 8 9 8 10 9 10 8乙10 7 10 10 9 8 8 10(1)根据表格中的数据,计算出甲的平均成绩是______环,乙的平均成绩是______环;(2)分别计算甲、乙两名运动员8次测试成绩的方差;(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适,并说明理由.20、(8分) 为进一步促进义务教育均衡发展,某市加大了基础教育经费的投入,已知2015年该市投入基础教育经费5000万元,2017年投入基础教育经费7200万元.(1)求该市这两年投入基础教育经费的年平均增长率;(2)如果按(1)中基础教育经费投入的年平均增长率计算,该市计划2018年用不超过当年基础教育经费的5%购买电脑和实物投影仪共1500台,调配给农村学校,若购买一台电脑需3500元,购买一台实物投影需2000元,则最多可购买电脑多少台?21、(8分) 某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN 的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)22、(9分) 如图,直线y1=kx+1分别交x轴,y轴于点A、B,交反比例函数y2=(x>0)的图象于点C,CD⊥y轴于点D,CE⊥x轴于点E,S△OAB=1,=.(1)点A的坐标为______;(2)求直线和反比例函数的解析式;(3)根据图象直接回答:在第一象限内,当x取何值时,y1≥y2.23、(10分) 如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D.过点D作EF⊥AC,垂足为E,且交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)已知AB=4,AE=3.求BF的长.24、(12分) 如图,抛物线y=x-2与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.(1)求A,B两点的坐标.(2)点P是线段BC下方的抛物线上的动点,连结PC,PB.①是否存在一点P,使△PBC的面积最大,若存在,请求出△PBC的最大面积;若不存在,试说明理由.②连结AC,AP,AP交BC于点F,当∠CAP=∠ABC时,求直线AP的函数表达式.2019年四川省广元市昭化区中考数学一模试卷【第 1 题】【答案】B【解析】解:A、-|-2|=-2,错误;B、-22=-4,正确;C、(-2)2=4,错误;D、33=27,错误;故选:B.根据绝对值、有理数的乘方判断即可.此题考查有理数的乘方,关键是根据绝对值、有理数的乘方的法则解答.【第 2 题】【答案】B【解析】解:设这个代数式为A,∴A-(-2x)=-2x2-2x+1,∴A=-2x2-2x+1-2x=-2x2-4x+1,故选:B.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【第 3 题】【答案】B【解析】解:从上面可看到第一横行右下角有一个正方形,第二横行有3个正方形.故选:B.根据俯视图是从上面看到的图形判定则可.本题主要考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.【第 4 题】【答案】D【解析】解:A、调配后的平均数不变,故本选项错误;B、原小组的众数是4,调配后的众数仍然是4,故本选项错误;C、把原数从小到大排列为:4,4,5,6,7,8,则中位数是=5.5,调配后中位数的中位数是=5.5,则调配后的中位数不变.故本选项错误;D、原方差是:[2(4-5.5)2+(6-5.5)2+(5-5.5)2+(7-5.5)2+(8-5.5)2]=,调配后的方差是[3(4-5.5)2+2(7-5.5)2+(8-5.5)2]=,则调配后方差变大了,故本选项正确;故选:D.根据平均数、中位数、众数和方差的意义分别对每一项进行分析,即可得出正确答案.此题考查了平均数、中位数、众数和方差的意义,解题的关键是正确理解各概念的含义.【第 5 题】【答案】A【解析】解:∵-4x-k≤0,∴x≥-,∵不等式的负整数解是-1,-2,∴-3<-≤-2,解得:8≤k<12,故选:A.解不等式得出x≥-,根据不等式的负整数解是-1,-2,知-3<-≤-2,解之可得.本题主要考查解一元一次不等式的能力,根据一元一次不等式的整数解确定k的取值范围是解题的关键.【第 6 题】【答案】B【解析】解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC-OD=4-2.故选:B.由题意得,OB⊥BC,∠BOC=2∠A=30°,因为BC=2,所以OC=4,OB=OD=2,根据DC=OC-OD即可得出DC的长.本题考查圆的切线的性质,直角三角形的性质,解题的关键是掌握切线的性质.【第 7 题】【答案】B【解析】解:由图象可得,一次函数y1=kx+b中k<0,b>0,故①正确,一次函数y2=x+a中a<0,故②错误,当x<3时,kx+b>x+a,故③错误,故选:B.根据函数图象可以判断题目中的各个小题是否正确,本题得以解决.本题考查一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.【第 8 题】【答案】D【解析】解:作DE⊥AB于E,∵四边形OABC是平行四边形,∴AB∥OC,AB=OC=2,∵△ABD的面积为,∴AB•DE=,∴DE=,∵C(2,0),AC⊥OC,反比例函数y=(k>0)在第一象限内的图象过点A,且与BC交于点D,∴A(2,),∵点D的横坐标为3,∴D(3,),∴DE=-,即=-,解得k=,故选:D.由平行四边形的性质得出AB=2,根据三角形面积求得DE=,由A(2,),D(3,),得到DE=-,从而得到=-,解得即可.此题主要考查了平行四边形的性质以及反比例函数图象上点的坐标特征,得出A、D点坐标是解题关键.【第 9 题】【答案】B【解析】解:∵图象开口向下,∴a<0,∵对称轴x=-=-,∴3b=2a,则a=b,∴b<0,∵图象与x轴交与y轴正半轴,∴c>0,∴abc>0,故选项①错误;选项⑤正确;②由图象可得出:当x=1时,y<0,∴a+b+c<0,故选项②正确;③当x=-1时,y=a-b+c>0,∴b-b+c>0,∴b+2c>0,故选项③正确;④抛物线与x轴有两个交点,则b2-4ac>0,则4ac-b2<0,故选项④错误.故正确的有3个.故选:B.利用函数图象分别求出a,b,c的符号,进而得出x=1或-1时y的符号,进而判断得出答案.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.【第 10 题】【答案】A【解析】解:∵点D,E分别是边AC,AB的中点.∴DE=BC,DE∥BC∴△DEO∽△BCO∴∴OE•OB=OD•OC,BO=2DO,CO=2EO故①②正确∵△DEO∽△BCO∴=()2=故③正确∵BO=2DO∴BD=3OD∴=故④正确故选:A.由三角形中位线定理可得DE=BC,DE∥BC,可得△DEO∽△BCO,由相似三角形的性质可依次判断即可求解.本题考查了相似三角形的判定和性质,三角形中位线定理,证明△DEO∽△BCO是本题的关键.【第 11 题】【答案】1.26×106【解析】解:将“1260000”用科学记数法表示为1.26×106.故答案为:1.26×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【第 12 题】【答案】140°【解析】解:∵∠AOB=∠COD=90°,∴∠AOD+∠BOD=∠BOC+∠BOD=90°,∴∠AOD=∠BOC=90°-∠BOD=50°,∴∠AOC=∠AOD+∠BOD+∠BOC=140°,故答案为:140°.根据同角的余角相等即可求解.此题主要考查了余角和补角,熟记余角的性质是解题的关键.【第 13 题】【答案】67.5°【解析】解:设这个角的度数是x,则180°-x=5(90°-x),解得x=67.5°.故答案为:67.5°.根据补角和余角的定义,利用“一个角的补角是它的余角的度数的5倍”作为相等关系列方程求解即可.本题考查的是余角和补角的定义,如果两个角的和是一个直角,那么称这两个角互为余角.如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角.【第 14 题】【答案】4-【解析】解:连接OB,如图所示:∵OC⊥AB,∴BC=AB=3,由勾股定理得,OC===4,当OD⊥AB时,点D到AB的距离的最小,由勾股定理得,OD==,∴点D到AB的距离的最小值为:4-,故答案为:4-.连接OB,根据垂径定理求出BC,根据勾股定理计算求出OC,根据勾股定理求出OD,即可求出点D到AB的距离的最小值.本题考查的是垂径定理、勾股定理、旋转的性质以及最短距离;熟练掌握垂径定理和勾股定理是解题的关键.【第 15 题】【答案】②③【解析】解:如图,连接OP,∵AO=OP,∠PAB=30°,∴∠POB=60°,∵AB=12,∴OB=6,∴的长为=2π,故①错误;∵PD是⊙O的切线,∴OP⊥PD,∵PD∥BC,∴OP⊥BC,∴=,∴∠PAC=∠PAB,∴AP平分∠CAB,故②正确;若PB=BD,则∠BPD=∠BDP,∵OP⊥PD,∴∠BPD+∠BPO=∠BDP+∠BOP,∴∠BOP=∠BPO,∴BP=BO=PO=6,即△BOP是等边三角形,∴PD=OP=6,故③正确;∵AC=BC,∴∠BAC=∠ABC,又∵∠ABC=∠APC,∴∠APC=∠BAC,又∵∠ACP=∠QCA,∴△ACP∽△QCA,∴=,即CP•CQ=CA2=72,故④错误;故答案为:②③.①根据∠POB=60°,OB=6,即可求得弧的长;②根据切线的性质以及垂径定理,即可得到=,据此可得AP平分∠CAB;③根据BP=BO=PO=6,可得△BOP是等边三角形,据此即可得出PD=6;④判定△ACP∽△QCA,即可得到=,即CP•CQ=CA2,据此即可判断;本题主要考查了相似三角形的判定与性质,垂径定理,切线的性质以及弧长公式的综合应用,解决问题的关键是作辅助线,构造三角形,解题时注意:垂直弦的直径平分这条弦,并且平分弦所对的弧.【第 16 题】【答案】解:原式=5-3+4-6=0【解析】根据绝对值的性质、立方根的性质以及实数的运算法则化简计算即可;本题考查实数的混合运算,解题的关键是:掌握先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.【第 17 题】【答案】解:原式=(-)÷=•=,当a=2-1+(π-2018)0=+1=时,原式===.【解析】先根据分式的混合运算顺序和运算法则化简原式,再由负整数指数幂与零指数幂得出a的值,继而代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及负整数指数幂、零指数幂.【第 18 题】【答案】证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∠EAF=∠EDB,∴△AEF≌△DEB(AAS);(2)连接DF,∵AF∥CD,AF=CD,∴四边形ADCF是平行四边形,∵△AEF≌△DEB,∴BE=FE,∵AE=DE,∴四边形ABDF是平行四边形,∴DF=AB,∵AB=AC,∴DF=AC,∴四边形ADCF是矩形.【解析】(1)由AF∥BC得∠AFE=∠EBD,继而结合∠EAF=∠EDB、AE=DE即可判定全等;(2)根据AB=AC,且AD是BC边上的中线可得∠ADC=90°,由四边形ADCF是矩形可得答案.此题主要考查了平行四边形的判定以及全等三角形的判定与性质、矩形的判定、三角形中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.【第 19 题】【答案】解:(1)甲的平均成绩为:×(10+8+9+8+10+9+10+8)=9,乙的平均成绩为:×(10+7+10+10+9+8+8+10)=9,故答案为:9;9;(2)甲的方差为:[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2+(10-9)2+(8-9)2]=0.75,乙的方差为:[(10-9)2+(7-9)2+(10-9)2+(10-9)2+(9-9)2+(8-9)2+(8-9)2+(10-9)2]=1.25,(3)∵0.75<1.25,∴甲的方差小,∴甲比较稳定,故选甲参加全国比赛更合适.【解析】(1)根据平均数的计算公式计算即可;(2)利用方差公式计算;(3)根据方差反映了一组数据的波动大小,方差越大,波动性越大解答即可.本题考查的是方差的概念和性质,一般地设n个数据,x1,x2,…x n的平均数为,方差S2=[(x1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【第 20 题】【答案】解:(1)设该市这两年投入基础教育经费的年平均增长率为x,根据题意得:5000(1+x)2=7200,解得:x1=0.2=20%,x2=-2.2(舍去).答:该市这两年投入基础教育经费的年平均增长率为20%.(2)2018年投入基础教育经费为7200×(1+20%)=8640(万元),设购买电脑m台,则购买实物投影仪(1500-m)台,根据题意得:3500m+2000(1500-m)≤86400000×5%,解得:m≤880.答:2018年最多可购买电脑880台.【解析】(1)设该市这两年投入基础教育经费的年平均增长率为x,根据2015年及2017年投入的基础教育经费金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据年平均增长率求出2018年基础教育经费投入的金额,再根据总价=单价×数量,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其中的最大值即可.本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据2015年及2017年投入的基础教育经费金额,列出关于x的一元二次方程;(2)根据总价=单价×数量,列出关于m的一元一次不等式.【第 21 题】【答案】解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP-NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.【解析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.此题主要考查了解直角三角形的应用-仰角俯角问题,根据已知直角三角形得出AP的长是解题关键.【第 22 题】【答案】解:(1)当x=0时,y=kx+1=1,即OB=1.∵S△OAB=1,∴OA=2.∴A点的坐标为(-2,0).故答案为(-2,0);(2)把A(-2,0)代入y1=kx+1,得k=.∴直线解析式为y1=x+1.∵OB∥CE,∴△AOB∽△AEC.∴.所以CE=,OE=3,∴点C坐标为(3,).∴m=3×=7.5.∴反比例函数解析式为y2=.(3)从图象可看出当x≥3时,y1≥y2.【解析】(1)先根据直线解析式求出OB长度,再根据面积求出OA长度,即可得A点坐标;(2)把A点坐标代入直线y1=kx+1中求出k值就能得到直线解析式;由△AOB∽△AEC,得到比例式求出CE、OE长,从而根据C点坐标得到m值,即得反比例函数解析式;(3)观察图象上下位置即可求解.本题主要考查了反比例函数与一次函数的交点问题,同时考查了相似三角形的判定和性质,运用待定系数法求函数解析式是解题的关键.【第 23 题】【答案】(1)证明:连接OD,AD,∵AB是⊙O的直径,∴AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∵EF⊥AC,∴OD⊥EF,∴EF是⊙O的切线;(2)解:∵OD∥AE,∴△ODF∽△AEF,∴,∵AB=4,AE=3,∴,∴BF=2.【解析】(1)作辅助线,根据等腰三角形三线合一得BD=CD,根据三角形的中位线可得OD∥AC,所以得OD⊥EF,从而得结论;(2)证明△ODF∽△AEF,列比例式可得结论.本题主要考查的是圆的综合应用,解答本题主要应用了圆周角定理、相似三角形的性质和判定,圆的切线的判定,掌握本题的辅助线的作法是解题的关键.【第 24 题】【答案】解:(1)令y=0,则x=1或-4,令x=0,则y=2,即点A、B、C的坐标分别为(-1,0)、(4,0)、(0,-2);(2)①存在,理由:过点P作HP∥y轴交BC于点H,将点B、C的坐标代入一次函数表达式y=kx+b得:,解得:,故直线BC的表达式为:y=x-2,设点P坐标为(x,x-2)、H(x,x-2),S△PBC=×PH×OB=×(x-2-+x+2)×4=-x2+4x,∵-1<0,故S△PBC有最大值,当x=2时,面积的最大值为4,此时点P(2,-3);②∠CAP=∠ABC,∠ACF=∠ACF,∴△ACF∽△BCA,∴AC2=BC•CF,其中AC=,BC=2,故:CF=,BF=BC-CF=,设点F的坐标为(m,m-2),则:BF2=(m-4)2+(m-2)2=()2,解得:m=1或7(舍去m=7),故点F坐标(1,-),将点A、F坐标代入一次函数表达式y=kx+b,同理可得:直线AF(或直线AP)的表达式为:y=-x-.【解析】(1)令y=0,则x=1或-4,令x=0,则y=2,即可求解;(2)①S△PBC=×PH×OB,即可求解;②证明△ACF∽△BCA,求得:CF=,BF=BC-CF=,由BF2=(m-4)2+(m-2)2=()2,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.中考一模数学试题及答案数学(考试时间:120分钟,满分:120分)第Ⅰ卷(选择题)一、选择题(每小题3分,共36分)1. |-2019|的相反数是()A.2019B.-2019C.D. 2.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3.国家体育场“鸟巢”建筑面积达25.8万平方米,25.8万用科学记数法表示应为()A.2.58×10B. 25.8×104C.2.58×105D.0.258×1024.下列运算正确的是()A.3a 2-2a 2=1B.a 2·a 3=a 6C.(a-b)2=a 2-b 2D.(a+b)2=a 2+2ab+b 25.下列各组线段能构成直角三角形的一组是( )A .7,12,13B . 30,40,50C .5,9,12D .3,4,66.下列命题中真命题是( )A. 一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形7.我县今年5月份某星期每天的最高气温如下(单位:℃):26,25,27,28,27,25,25, 则这个星期每天的最高气温的众数和中位数分别是()A.25,26B.25,26.5C.27,26D.25,288.下列四个物体的俯视图与右边给出视图一致的是( )2019120191-22)(a a =。
羊尖高级中学数学中考适应卷
江苏省无锡市初中毕业升学模拟考试数 学 试 题注意事项:1.本试卷满分130分,考试时间为120分钟。
2.卷中处要求近似计算的结果取近似值,其余各题均应给出精确结果。
一 、细心填一填(本大题共有13小题,15个空,每空2分,共30分。
请把结果直接填在题中的横线上,只要你理解概念,仔细运算,相信你一定会填对的!) 1.-21的绝对值是 . 2.据新浪网统计:在年NBA 全明星投票中,我国篮球明星姚明的票数位居第一,达到了1775413票,把这一数据保留三位有效数字为: 票.3.分解因式:4x 2-b 2= 。
4.写出单项式a 2b 的一个同类项: 。
5.函数x 313y +=中,自变量x 的取值范围是 ; 函数x31y -=中,自变量x 的取值范围是 .6.点P (-2,3)到y 轴的距离为 。
7.若反比例函数x1y -=的图像经过点A (2,m ),则m 的值是 。
8.如图,在四边形ABCD 中,若∠A=∠C =90°,∠B =62°,则∠D = .题号 一 二 三总分 21 22 23 24 25 26 27 28 29 30 分数得分评卷人9.如图,以坐标原点为圆心的⊙O 交y 轴的负半轴于点A 、交x 轴的正半轴于点B ,C 是⊙O 位于第一象限部分上的一点,则∠ACB = .10.学生小颍自制一个无底的圆锥形纸帽,圆锥底面半径为5cm ,母线长为16cm ,围成这个纸帽的面积(不计接缝)是 cm 2(结果保留π)。
11.一位射击兴趣爱好者在一次射击练习中打了8枪,打出的成绩是(单位:环)7 ,8,9,8,6,5,10,8,这组数据的众数是 ;中位数是 .12.若关于x 的不等式2x -m <0有且只有一个正整数解,则m 的取值范围是 。
13.定义一种运算,符号为○×,规定:当a >b 时,a ○×b=a+b ;当a ≤b 时,a ○×b=a-b ,其他运算符号的意义不变。
江苏无锡羊尖中学0910学年九年级下一模考前模拟练习试卷03
江苏无锡羊尖中学0910学年九年级下一模考前模拟练习试卷03一、选择题(本大题共8题,每小题3分,共计24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填在括号内)1.-2的相反数是 ( ) A .12B .-12C .-2D .22.在函数y =3x 中,自变量x 的取值范畴是 ( ) A .x >3 B .x ≥3 C .x <3D . x ≤33.下列运算正确的是 ( ) A .x 2+x 2=2x 4B .x 2·x 3=x 6C .()-2x 2=4x 2D .x 3-x =x 24.始于2008年的“世界金融风暴”也阻碍着我国的经济,为预防经济进一步下滑,中国政府出台了多项政策,其中有一项是4万亿元经济刺激方案.将4万亿元用科学记数法可表示为 ( ) A .4×108元 B .4×1010元 C .4×1012元D .4×1014元5.在“5·18世界无烟日”来临之际,小明和他的同学为了解某街道大约有多少成年人吸烟,因此随机调查了该街道1000个成年人,结果有180个成年人吸烟.关于那个数据的收集与处理过程,下列说法正确的是 ( )A .调查的方式是普查B .该街道约有18%的成年人吸烟C .该街道只有820个成年人不吸烟D .样本是180个吸烟的成年人6.在学习“四边形”一章时,小勇的书上有一张图因不小心被滴上墨水(如图),看不清所印的字,请问被墨迹遮盖了的文字应是 ( ) A .菱形 B .等腰梯形C .四边形D .等边三角形7. 如图是一个底面半径为1,母线长为4的圆锥,一只蚂蚁从A 点动身,绕圆锥侧面爬行一周又回到A 点,则它爬行的最短路线长是( )A .2πB .4 2C .4 3D .5AS(第7题)平行四边形矩形正方形(第6题)8. 如图,在2×2的正方形网格中,有一个格点△ABC (阴影部分),则网格中所有与△ABC 成轴对称的格点三角形的个数为 ( ) A .2 B .3 C .4 D .5二、填空题(本大题共10小题,每小题2分,共计20分.请把答案直截了当填写在横线上) 9.判定:22分数.(填“是”或“不是”) 10.分解因式:a 2-3a = .11.不等式组⎩⎨⎧2x -4≥03-x >0的解集为__________________.12.若x =y +13,则代数式3x 2-6xy +3y 2 的值为 .13.将抛物线y =x 2 向右平移3个单位,所得抛物线的函数关系式为_________________. 14. 若一个正多边形的每一个外角差不多上72°,则它的内角和是 °.15. 如图,等腰梯形ABCD 的中位线EF =5, 腰AD =4,则等腰梯形ABCD 的周长为_______.16. 抛掷一枚各面分别标有“1”、“2”、“3”、“4”、“5”、“6”的质地平均的正方体骰子,则朝上的数字为奇数的概率是__________.17. 如图,⊙O 是△ABC 的外接圆,⊙O 的半径为2,sin B = 34,则弦AC 的长为___________.18. 如图,在Rt △ABC 中,∠C =90°,四边形CDEF 为其内接正方形,若AE =2cm ,BE =1cm ,则图中阴影部分的面积为 cm 2.三、解答题(本大题共10小题,共计86分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本大题满分6分)运算或化简:(1) 2-1-()π+20090÷ 4 + tan60° (2) a 2-b 2a÷⎝⎛⎭⎪⎫a -2ab -b 2a(第15题)BAD CEF (第8题) C AB(第17题)OCBAECDAB F(第18题)20.(本题满分8分)解方程: 1-x 2-x = 1x -2-3.21.(本题满分8分)如图,将□ABCD 沿对角线BD 翻折,点C 落到点C ′处,BC ′交AD 于点E ,求证:AE =C ′E .22.(本题满分8分)从无锡开往南京的D451次“和谐”号动车,沿途只停靠常州和镇江两站,若A 、B 两名互不相识的旅客都从无锡站上车.请用画树状图或列表的方法,求这两人在同一车站下车的概率.23.(本题满分8分)王老师为了了解学生作业的订正情形,依照学生平常的常见错误,重新编制了10EC'DCB A道试题,每题3分,对任教的初三(1)班和(2)班进行了检测.图1、图2分别表示(1)班、(2)班各随机抽取的10名学生的得分情形:0 1 2 3 4 5 6 7 8 9 10 编号成绩(分)36 9 12 15 18 21 24 27 30 (图1)0 1 2 3 4 5 6 7 8 9 10 编号成绩(分)36 9 12 15 18 21 24 27 30 (图2)(1)依照图中提供的信息,补全下表:班级 平均数(分) 中位数(分) 众数(分)(1)班 24 24 (2)班24(2)已知两班各有50名学生,若把24分以上(含24分)记为“优秀”,请估量两班各有多少名学生成绩达优秀?(3)你认为哪个班的订正工作做得更好一些?请说明理由.24.(本大题8分)如图,在10×10的正方形网格中(每个小正方形的边长都为1个单位),△ABC 的三个顶点都在格点上. (1)画出将△ABC 向右平移3个单位,再向上平移1个单位所得的△A ′B ′C ′;(友情提醒:对应点的字母不要标错!) (2)建立如图的直角坐标系,请标出△A ′B ′C ′的外接圆的圆心P 的位置,并写出圆心P 的坐标:P (_______,_______);(3)将△ABC 绕BC 旋转一周,求所得几何体的全面积.(结果保留π)CBA O yx123456879101097865432125.(本题满分8分)如图,在某一时刻,太阳光线恰与坡角为60°的斜坡的坡面垂直,现在测得建筑物AB 在坡面上的影长CD 为6米,在地平面上的影长BC 为9米.试求建筑物AB 的高度.DCBA6026.(本题满分8分)我们明白,三条边都相等的三角形叫等边三角形.类似地,我们把弧长等于半径的扇形称为“等边扇形”.小明预备将一根长为120cm 的铁丝剪成两段,并把每一段铁丝围成一个“等边扇形”.(1)小明想使这两个“等边扇形”的面积之和等于625 cm 2,他该如何剪?(2)这两个“等边扇形”的面积之和能否取得最小值?若能,要求出那个最小值;若不能,请说明理由.27.(本题满分12分)如图,在平面直角坐标系中,直线y =kx 与双曲线y =-8x交于点A ,且A 点的横坐标是-2.(1)求k 的值;(2)将直线y =kx 沿y 轴正方向平移10个单位,分别交x 、y 轴于B 、C 两点,D 点在直线BC 上,试问:在平面直角坐标系中是否存在点P ,使得以O 、B 、P 、D 为顶点的四边形是菱形?若存在,要求出点P 的坐标,若不存在,请说明理由.BCAyxO28.(本题满分12分)如图,在直角梯形ABCD 中,AD ∥BC ,∠A =90°,AD =2cm ,BC =6cm ,AB =43cm .动点P 从点A 动身,沿A →D →C 的路线,以2cm/s 的速度,向点C 运动;动点Q 从点C 动身,沿C →B 的路线,以1cm/s 的速度,向点B 运动.若点P 、Q 同时动身,当其中有一点到达终点时整个运动随之终止.设运动时刻为t (s ). (1)当t 为何值时,PQ 与DC 平行?(2)在整个运动过程中,设△PBQ 的面积为S (cm 2),求S (cm 2)与t (s )之间的函数关系式; (3)当点P 运动到DC 上时,以P 为圆心、PD 长为半径作⊙P ,以B 为圆心、BQ 长为半径作⊙B ,问:是否存在如此的t ,使得⊙P 与⊙B 相切?若存在,要求出所有符合条件的t 的值;若不存在,请说明理由.D CB AQPDCBA (备用图2)D C BA (备用图1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无锡市羊尖中学数学中考一模试题Prepared on 22 November 2020九年级数学调研测试 2010年04月09日一、选择题(本题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在答题卡相应位置.......上)1、 如果□×(- 23)=1,则“□”内应填的实数是( ▲ )A .32B .23C .- 23D .- 322、 下列各式计算不正确...的是( ▲ )A .-(-3)=3B .4=2C .(3x)3=9x 3D .2-1 = 123、 视力表对我们来说并不陌生.如图是视力表的一部分,其中开口向上的两个“E ”之间的变化是( ▲ )A .平移B .旋转C .对称D .位似4、 如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =35°,则∠OAC 的度数是( ▲ )A .35°B .55°C .65°D .70°5、 某校九年级学生参加体育测试,一组10人的引体向上成绩如下表:完成引体向上的个数 7 8 9 10人 数 1 1 3 5这组同学引体向上个数的众数与中位数依次是( ▲ )A .9和10B .和10C .10和9D .10和 6、 方程(x-3)(x+1)=x-3的解是( ▲ )A .x=0B .x=3C .x=3或x=-1D .x=3或x=07、 如图是一个几何体的三视图,其中主视图、左视图都是腰为13cm ,底为10cm 的等腰三角形,则这个几何的侧面积是( ▲ ) A .60πcm 2 B .65πcm 2 C .70πcm 2 D .75πcm 2 8、 如图所示,给出下列条件: ①∠B =∠ACD ;②∠ADC =∠ACB ;③AC CD =AB BC;④AC 2=AD ·AB .其中单独能够判定△ABC ∽△ACD 的个数为( ▲ )A .1B .2C .3D .4 9、 某校生物老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( ▲ )粒.A. 2n+1B. 2n-1C. 2nD. n+210、 如图,直线l 和双曲线y = kx(k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则有( ▲ ) A .S 1<S 2<S 3 B .S 1>S 2>S 3 C . S 1=S 2<S 3 D .S 1=S 2>S 3二、填空题(本大题共有8小题,每小题2分,共16分.不需写出解答过程,请把结果直接填在答题卡相应位置.......上)11、 计算:|-3|-2= ▲ . OA CBD A C DB Oy x2 -1 ·第3题第4题 第7题第8题第10题12、 在函数y =x+3中,自变量x 的取值范围是 ▲ .13、 截止2010年1月7日,京沪高铁累计完成投资1224亿元,为总投资的%.1224亿元用科学记数法表示为 ▲ 亿元.14、 如图,是一个正比例函数的图像,把该图像向上平移1个单位长度,得到的函数图像的解析式为 ▲ .15、 某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 ▲ . 16、 如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D 1、C 1的位置.若∠EFB =65°,则∠AED 1等于 ▲ 度.1· ACBOCE第16题 第17题 第18题17、 如图,∠ACB =60°,半径为1cm 的⊙O 切BC 于点C ,若将⊙O 在CB 上向右滚动,则当滚动到⊙O 与CA 也相切时,圆心O 移动的水平距离是 ▲ cm .18、 如图,直角三角形ABC 中, AC=1,BC=2,P 为斜边AB 上一动点。
PE ⊥BC ,PF ⊥CA ,则线段EF 长的最小值为▲ .三、解答题(本大题共有10小题,共84分.请在答题卡指定区域.......内作答,解答需写出必要的文字说明、演算步骤或证明过程.)19、 (本题有2小题,每小题5分,共10分)(1)计算:(- 12)-1- 12+(1- 2)0+4sin60° (2)化简:(1+ 4a 2-4)·a+2a20、 (本题满分7分)如图,四边形ABCD 是正方形,BE⊥BF ,BE =BF ,EF 与BC 交于点G. (1)求证:△ABE≌△CBF ;(2)若∠ABE =50o ,求∠EGC 的大小.ABCDEG21、 (本题满分7分)京沪高速铁路全长1320公里,与既有京沪铁路的走向大体并行.京沪高速铁路建成后,北京至上海高速列车平均运营时速是目前京沪间“和谐号”动车组平均运营时速的倍,运行时间缩短6小时,可以大大释放现有京沪铁路的能力.求京沪高速铁路的平均运营时速.第14题22、 (本题满分8分)某校课题研究小组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分A 、B 、C 、D 四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图. 请根据以上不完整的统计图提供的信息,解答下列问题: (1)该课题研究小组共抽查了 ▲ 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b = ▲ ;(2)补全条形统计图;(3)若该校九年级共有400名同学,请估计该校九年级同学体育测试达标(测试成绩C 级以上,含C 级)约有 ▲ 名.23、 (本题满分8分)如图,电路上有四个开关A 、B 、C 、D 和一个小灯泡,闭合开关D 或同时闭合开关A 、B 、C 都可使小灯泡发光.(1) 任意闭合其中一个开关,则小灯泡发光的概率等于 ▲ .(2) 任意闭合其中两个开关,请用画树状图或列表的方法求出小灯泡发光的概率.24、 (本题满分8分)某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y (人)与售票时间x (分)的函数关系如图①所示;每个售票窗口售出票数y (人)与售票时间x (分)的函数关系如图②所示.某天售票厅排队等候购票的人数y (人)与售票时间x (分)的函数关系如图③所示,已知售票的前a 分钟开放了两个售票窗口. (1)求a 的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口(图①) (图②)(图③)25、 (本题满分8分)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时 (即503米/秒),并在离该公路100米处设置了一个监测点A .在如图所示的直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段.(1)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速(2)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少26、 (本题满分8分)春节期间,国美电器商城推出了两种促销方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送购物券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠购物券100元;不少于600元的,所赠购物券是购买电器金额的14,另再送..50..元现金...(注:每次购买电器时只能使用其中一种优惠方式)(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x (x ≥400)元,优惠券金额为y 元,则:①当x =500时,y = ▲ ;②当x ≥600时,y = ▲ ; (2)如果小张想一次性购买原价为x (400≤x <600)元的电器,在上面的两种促销方式中,试通过计算帮他确定一种比较合算的方式(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(且第二次购买时未使用第一次的优惠券),所得优惠券金额累计达800元,设他购买电器的金额为W 元,W 至少..应为多少(W =支付金额-所送现金金额)27、 (本题满分10分)桌面上有周长是4a 的线圈.(1)如图1所示,证明当线圈做成正方形时,能被半径是a 的圆形纸片完全盖住;(2)如图2所示,证明当线圈做成平行四边形时,也能被半径是a 的圆形纸片完全盖住;(3)如图3所示,当线圈不论做成什么形状的曲线,还能被半径是a 的圆形纸片完全盖住吗若能盖住,请证明;若不能盖住,请说明理由.A图2图3ADCB图128、 (本题满分10分)在Rt △ABC 中,∠C =90°,BC =6cm ,∠ABC =30°.D 是CB 上一点,DC =1cm.P 、Q 是直线CB 上的两个动点,点P 从C 点出发,以1cm/s 的速度沿直线CB 向右运动,同时,点Q 从D 点出发,以2cm/s 的速度沿直线CB 向右运动,以PQ 为一边在CB 的上方作等边三角形PQR ,下图是其运动过程中的某一位置.设运动的时间是t (s ).(1)△PQR 的边长是 ▲ cm (用含有t 的代数式表示);当t = ▲ 时,点R 落在AB 上.(2)若等边△PQR 与△ABC 重叠部分的面积为y (cm 2),求y 与t 之间的函数关系式,并写出自变量t 的取值范围.(3)在P 、Q 移动的同时,以点A 为圆心、tcm 为半径的⊙A 也在不断变化,请直接写出⊙A 与△PQR 的三边所在的直线.....相切时t 的值.C P九年级数学调研测试 参考答案 2010年04月09日一、选择题(本题共有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在答题卡相应位置.......上) 1. D 2. C 3. D 4.B5. D6. D7. B8.C9. A 10. C二、填空题(本大题共有8小题,每小题2分,共16分.不需写出解答过程,请把结果直接填在答.题卡相应位置......上) 11. 1 12. x ≥-3 13. ×10314. y =-2x+115.3200(1-x)2=2500 或 32x 2-64x+7=0 或 32(1-x)2=25… 16. 50 17. 318. 255三、解答题(本大题共有10小题,共84分.请在答题卡指定区域.......内作答,解答需写出必要的文字说明、演算步骤或证明过程.)19. (本题有2小题,每小题5分,共10分) (1)原式=-2-23+1+4×32…………4分 =-1…………1分(2)原式=a 2-4+4a 2-4·a+2a…………2分=a 2(a+2)(a-2)·a+2a …………2分 =aa-2…………1分 20. (本题满分7分)(1)证明:∵∠CBF+∠EBC =90°,∠ABE+∠EBC =90°,∴∠ABE =∠CBF …………2分又∵AB =CB ,BE =BF , ∴△ABE≌△CBF …………2分 (2)∵∠ABE =50°,∴∠EBC =40°…………1分 ∵BE =BF, ∠BEF =90°,∴∠BEG =45°…………1分 ∴∠EGC =40°+45°=85°…………1分 21. (本题满分7分)解:设目前京沪间“和谐号”动车组平均运营时速为x 公里/小时. 则1320x–错误!= 6…………3分 解得x =132…………2分经检验,x =132是原方程的根,也符合题意. …………1分 当x =132时,=330公里/小时…………1分答:京沪高速铁路的平均运营时速为330公里/小时. 22. (本题满分8分)(1)80,40%;…………4分(2)补全条形图(如图);…………2分(3)380…………2分 23. (本题满分8分)解:(1)14…………2分(2)画出树状图如下:闭合的第1个开关 闭合的第2个开关…………3分任意闭合其中两个开关的情况共有12种,其中能使小灯泡发光的情况有6种…………2分∴小灯泡发光的概率为612=12…………1分24. (本题满分8分)解:(1)由图①②可知,每分钟新增购票人数4人,每个售票窗口每分钟售票3人, 则300+4×a-3×2×a =240…………2分 解得a =30,即a 的值为30…………1分(2)设第30~78分钟时,售票厅排队等候购票的人数y 与售票时间x 的函数关系式为y =kx+b 则⎩⎪⎨⎪⎧30k+b=24078k+b=0 …………1分 解得⎩⎪⎨⎪⎧k=-5b=390 ∴y =-5x+390…………1分当x =60时,y =-5×60+390=90…………1分因此,售票到第60分钟时,售票厅排队等候购票的旅客有90人.(3)设至少同时开放n 个售票窗口,依题意得300+30×4≤30×3×n …………1分解得n ≥143因此至少同时开放5个售票窗口…………1分 25. (本题满分8分)解:(1)在Rt △AOB 中,OA =100,∠BAO =60°,OB =OA ·tan ∠BAO =100 3 在Rt △AOC 中,∠CAO =45° ∴OC =OA =100∴BC =BO +OC =1003+100…………2分∴1003+100 15 ≈18>503…………1分∴这辆车超速了. …………1分(2)设大货车行驶到某一时刻行驶了x 米,则此时小汽车行驶了2x 米 两车的距离为y =(100-x)2+(100-2x)2 =5(x-60)2+2000 …………2分 当x =60时,y 有最小值是2000 =205(米)…………2分答:两车相距的最近距离为205米.26. (本题满分8分)解:(1)y =100;y =14x …………2分(2)设y 1=,y 2=x-100,由=x-100得x =500,此时y 1=y 2;当400≤x <500时y 1>y 2;当500<x <600时y 1<y 2; ∴当x =500时,两种方式一样合算;当400≤x <500时,选第二种方式合算;当500<x <600时,选第一种方式合算;…………2分(3)设第一次购买花了m 元,第二次花了n 元,①当400≤m <600,400≤n <600时,所得优惠券金额为200元,故不合题意…………1分 ②当400≤m <600,n ≥600时,100+14n =800,得n =2800W =m +n-50=m +2750∵400≤m <600,∴3150≤W <3350…………1分③当400≤n <600,m ≥600时,100+14m =800,得m =2800W =m +n-50=n +2750∵400≤n <600,∴3150≤W <3350…………1分④当m ≥600,n ≥600时,14(m +n )=800,得m +n =3200∴W =m +n-100=3200-100=3100…………1分∵3100<3150,∴W 至少为3100 27. (本题满分10分)ADCBO图2图3ADCBO图1AB OC解:(1)如图1,因为四边形ABCD 是正方形,所以OA =OB =OC =OD = 22a <a ,故以O 为圆心,a 为半径的圆把正方形ABCD 盖住.…………3分(2)如图2,因为四边形ABCD 为平行四边形,所以BD <AB+AD =2a ,故12BD <a即OB =OD <a ,同理,OA =OC <a 所以平行四边形ABCD 能被以O 为圆心,a 为半径的圆形纸片完全盖住.…………3分(3)如图3,在曲线上任取两点A 、B 将曲线分成周长相等(都为2a )的两部分,连结AB ,在曲线上任取一点C ,连结C 与AB 的中点O ,则在ΔABC 中, ∵OA =OB ∴CO <12(AC +BC )≤a ∴ 点C 在圆内∵AB <AC+BC =2a ∴OA =OB <a ∴ 点A 、B 也在圆内因此,不论线圈做成什么形状的曲线,都可以被半径为a 的圆形纸片完全盖住.…………4分 28. (本题满分10分)(1)t +1…………………………1分,43…………………………1分(2)当0≤t <43时,y = 34(t +1)2;…………………………1分当43≤t <52时,y = 3 4(t +1)2 - 3 8(3t -4)2= -7 3 8t 2+ 7 3 2t - 7 34=- 7 3 8(t -2)2+ 7 3 4;…………………………1分当52≤t <6时,y = 38(6- t )2 ;…………………………1分 当t ≥6时,y =0.…………………………1分(3)t = 3- 3 4 , 3+ 3 4 ,23,6+43…………………………4分。