高斯赛德尔法潮流计算

合集下载

高斯赛德尔法潮流计算

高斯赛德尔法潮流计算

....高斯——赛德尔法潮流计算潮流计算高斯——赛德尔迭代法(Gauss 一 Seidel method) 是求解电力系统潮流的方法。

潮流计算高斯——赛德尔迭代法又分导纳矩阵迭代法和阻抗矩阵迭代法两种。

前者是以节点导纳矩阵为基础建立的赛德尔迭代格式 ; 后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。

高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。

本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:高斯 --- 赛德尔法的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵和各节点电压、功率。

通过实验教学加深学生对高斯 --- 赛德尔法概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。

高斯 --- 赛德尔法潮流计算框图开始输入数据,定义数组给定 PQ 节点电压初值给定 PV 节点电压实部(或虚部)置迭代计数 b=0计算 PQ节点电压实部和虚部先计算 PV 节点无功功率再用其计算 PV 节点电压实部和虚部计算平衡节点的有功和无功....求=+N判断所有 | |是否 <0.000001b=b+1Y结果输出结束[1]系统节点的分类根据给定的控制变量和状态变量的不同分类如下① P、Q节点(负荷节点),给定 Pi 、Qi 求 Vi 、Si ,所求数量最多;②负荷节点,变电站节点(联络节点、浮游节点),给定 P Gi、Q Gi的发电机节点,给定 Q Gi的无功电源节点;③PV节点(调节节点、电压控制节点),给定 P i、Q i求 Q n、S n,所求数量少,可以无有功储备的发电机节点和可调节的无功电源节点;④平衡节点(松弛节点、参考节点(基准相角)、S 节点、 VS节点、缓冲节点),给定 V i,δi =0,求 P n、 Q n (V s、δs、P s、Q s) 。

潮流计算

潮流计算

高斯-赛德尔法:Matlab代码:P2=0;Q2=0;P3=-1.0567;Q3=-0.5447;U10=1;U20=1;U30=1;y10=0.00145-0.00744i;y20=0.102i;y30=0.102i;y11=0.4368-11.4325i;y12=-0.4353+11.4251i;y13=0;y21=y12;y22=1.5681-17.0625i;y23=-1.1328+5.7394i;y31=y13;y32=y23;y33=1.1328-5.6374i;Y1=[y11 y12 0];Y2=[y21 0 y23];Y3=[y31 y32 0];m=50;while m>0A2=(P2-Q2*i)/U20;A3=(P3-Q3*i)/U30;U21=(A2/U20-Y2*[U10;U20;U30 ])/y22;U20=U21;U31=(A3/U30-Y3*[U10;U20;U30 ])/y33;U30=U31;m=m-1;endS1=U10*(Y1*[U10;U20;U30])'; S12=(U10^2)*y10'+U10*(U10'-U20')*y12';S21=(U20^2)*y20'+U20*(U20'-U10')*y21';dS12=S12+S21; S23=(U20^2)*y20'+U20*(U20'- U30')*y23';S32=(U30^2)*y30'+U30*(U30'-U20')*y32';dS23=S23+S32;fprintf('高斯法计算结果:\n'); fprintf('U2的结果是:');disp(U20);fprintf('U3的结果是:');disp(U30);fprintf('节点1的功率为:'); disp(S1);fprintf('节点12之间的功率损耗为:');disp(dS12);fprintf('节点23之间的功率损耗为:');disp(dS23);仿真计算结果:高斯法计算结果:U2的结果是:1.0214 - 0.0974i U3的结果是:1.0159 - 0.2868i 节点1的功率为:1.1047 - 0.2796i 节点12之间的功率损耗为: -0.0232 - 0.2116i节点23之间的功率损耗为: -0.1204 - 0.4084i牛拉法:Matlab代码:P2=0;Q2=0;P3=-1.0567;Q3=-0.5447;Ue10=1;Uf10=0;Ue20=0.9;Uf20=0;Ue30=0.8;Uf30=0;y10=0.00145-0.00744i; y20=0.102i;y30=0.102i;y11=0.4368-11.4325i; y12=-0.4353+11.4251i; y13=0;y21=y12;y22=1.5681-17.0625i; y23=-1.1328+5.7394i; y31=y13;y32=y23;y33=1.1328-5.6374i;G11=0.4368;B11=-11.4325;G12=-0.4353;B12=11.4251;G13=0;B13=0;G21=G12;B21=B12;G22=1.5681;B22=-17.0625;G23=-1.1328;B23=5.7394;G31=G13;B31=B13;G32=G23;B32=B23;G33=1.1328;B33=-5.6374; G1=[G11 G12 G13];G2=[G21 G22 G23];G3=[G31 G32 G33];B1=[B11 B12 B13];B2=[B21 B22 B23];B3=[B31 B32 B33];m=50;while m>0syms eu20 f20 eu30 f30 syms f p veu=[1;eu20;eu30];f=[0;f20;f30];p =[P2-eu20*(G2*eu-B2*f)-f20*( G2*f+B2*eu);Q2-f20*(G2*eu-B 2*f)+eu20*(G2*f+B2*eu);P3-e u30*(G3*eu-B3*f)-f30*(G3*f+ B3*eu);Q3-f30*(G3*eu-B3*f)+ eu30*(G3*f+B3*eu)];v = [eu20, f20, eu30, f30];R = jacobian(p,v);J=subs(R,{eu20,f20,eu30,f30 },[Ue20,Uf20,Ue30,Uf30]); disp(J);eu1=[1;Ue20;Ue30];f1=[0;Uf20;Uf30];F1=P2-Ue20*(G2*eu1-B2*f1)-U f20*(G2*f1+B2*eu1);F2=Q2-Uf20*(G2*eu1-B2*f1)+U e20*(G2*f1+B2*eu1);F3=P3-Ue30*(G3*eu1-B3*f1)-U f30*(G3*f1+B3*eu1);F4=Q3-Uf30*(G3*eu1-B3*f1)+U e30*(G3*f1+B3*eu1);J0=J\[F1;F2;F3;F4];H=[Ue20;Uf20;Ue30;Uf30]-J0; Ue20=H(1,1);Uf20=H(2,1);Ue30=H(3,1);Uf30=H(4,1);m=m-1;endU10=1;U20=Ue20+i*Uf20;U30=Ue30+i*Uf30;S1=U10*([y11 y12y13]*[U10;U20;U30])';S12=(U10^2)*y10'+U10*(U10'-U20')*y12';S21=(U20^2)*y20'+U20*(U20'-U10')*y21';dS12=S12+S21;S23=(U20^2)*y20'+U20*(U20'-U30')*y23';S32=(U30^2)*y30'+U30*(U30'-U20')*y32';dS23=S23+S32;fprintf('牛拉法计算结果:\n'); fprintf('U2的结果是:');disp(U20);fprintf('U3的结果是:');disp(U30);fprintf('节点1的功率为:'); disp(S1);fprintf('节点12之间的功率损耗为:');disp(dS12);fprintf('节点23之间的功率损耗为:');disp(dS23); 仿真计算结果:牛拉法计算结果:U2的结果是:0.9026 - 0.0972i U3的结果是:0.6697 - 0.2504i节点1的功率为:1.1544 + 1.0781i 节点12之间的功率损耗为: -0.0247 - 0.2911i节点23之间的功率损耗为: -0.1401 - 0.5673i。

电力系统潮流计算高斯

电力系统潮流计算高斯

一、高斯——塞德尔法潮流计算以导纳矩阵为基础的潮流计算。

设系统中有n 个节点,其中有m 个PQ 点、n-(m+1)个PV 节点和一个平衡节点。

平衡节点不参加迭代。

从方程式可以解出:111[]ni i iijji ii ij P jQ V Y V Y V =≠-=-∑ 。

(12-14)将上式改写成高斯——塞德尔法德迭代格式,1(1)1()111[]i nk k h i iiij jij jj j i ii iP jQ V Y V Y V Y V -++==+-=--∑∑。

(12-15) 在用这个迭代公式时,PQ 节点的功率是给定的,因此只要给出节点电压的初值(0)iV ,可以进行迭代计算。

对于PV 节点,节点有功功率iP 和电压幅值iV 是给定的。

但是节点的无功功率只在迭代开始时给出初值(0)iQ ,此后的迭代值必须在迭代过程中依次的算出。

因此,在每一次迭代中,对于PV 节点,必须作以下几项计算。

1、 修正节点电压在迭代计算中,由公式(12-15)求得的节点电压,其幅值不一定等于给定的电压幅值isV 。

为满足这个条件,我们只保留节点电压的相位()k iδ,而把其幅值直接取为给定值isV ,即令()()k k i isV V δ=∠ 。

(12-16)2、 计算节点无功功率 其计算公式为:1()()()()(1)(1)1Im []Im [()]i nk k k k k k i ii iijjij jj j iQV I V Y V Y V -++====+∑∑(12-17)3、 无功功率越线检查由上式算出的无功功率须按以下的不等式进行检验:()m in m axk i ii Q Q Q << 。

(12-18)如果()m ax k ii QQ >,则令()m ax k i i Q Q =;如果()m ink ii Q Q <,则令()m ink ii QQ =。

做完上述三项计算后,才应用公式(12-15)计算节点电压的新值。

第四章复杂电力系统潮流计算-高斯-赛德尔法潮流计算

第四章复杂电力系统潮流计算-高斯-赛德尔法潮流计算


大地电压 U0 0 令
无 Ui 项
Yij yij
Yii
j 0, j i

n
yij ,
节点 i 的自导纳 则
节点 i 和 i 之间的互自导纳
I i YijU j
j 1
n
Yi 1U 1 Yi 2U 2 YiiU i YinU n
1:k
Y11 Y1i Yi 1 Yii Y Y Y ji j1 Yn1 Yni
Y1 j Y1 n Yij Yin Y jj Y jn Ynj Ynn
Y11 Yi 1 Y Y n1 yij 0
Y1i Y1n Yii Yin Yni Ynn Y ji 0
0 Yij i 行 0 Y jj j 行
导纳矩阵阶数增加 1 阶,改变 节点 i 所对应的主对角元及与 节点 j 所对应的行和列即可。
I ij I ij
j
I ik
I ij yij (U i U j ) Ii
i
Ii
k
I il
j 0, j i

n
n
I ij
j 0, j i n

n
yij (U i U j ) yijU j

l
j 0, j i
功率方程
每个节点的复功率为 Si
* * P jQ U I U Y U Si i i i i i ij j * j 1 n
通常将上面的复数方程表示为有功和无功的实数 方程,这样每个节点均可列出两个功率方程式。

电力系统潮流计算方法分析

电力系统潮流计算方法分析

电力系统潮流计算方法分析1.黎曼法是最简单和最直接的计算方法。

该方法直接利用电力系统的基本方程式,即功率平衡方程式和节点电压方程式来计算潮流分布。

然而,黎曼法需要利用复杂的矩阵方程式来解决系统中节点电压的计算,计算量大且计算速度较慢,对大型复杂系统不适用。

2.高斯-赛德尔法是一种迭代法,将电网中的节电清设置为未知数,并采用全局迭代求解。

该方法通过迭代计算不断逼近潮流分布,直到满足系统中所有节点的电压和功率平衡方程为止。

高斯-赛德尔法具有迭代次数多、耗时较长的缺点,但计算稳定可靠,对于小型系统具有较好的适用性。

3.牛顿-拉夫逊法是一种基于牛顿迭代思想的高效潮流计算方法。

该方法通过利用电力系统中的雅可比矩阵,将潮流计算问题转化为解非线性方程组的问题。

牛顿-拉夫逊法的迭代速度和稳定性较高,适用于大型复杂系统的潮流计算。

综上所述,电力系统潮流计算方法可以选择黎曼法、高斯-赛德尔法和牛顿-拉夫逊法等不同的算法进行计算。

选择合适的计算方法应根据系统的规模、复杂度以及计算时间要求来综合考虑。

实际应用中,通常会根据具体情况采用不同的方法进行潮流计算,以获得准确和高效的结果。

同时,随着电力系统的发展和智能化技术的应用,也出现了一些基于机器学习和深度学习的潮流计算方法。

这些方法利用大数据和智能算法,通过学习和分析系统历史数据,能够更好地预测和计算系统潮流分布,提高计算效率和准确性。

这些方法在未来的电力系统潮流计算中具有潜力和广阔的应用前景。

总结起来,电力系统潮流计算是电力系统分析和规划的重要工作,不同的计算方法有不同的优劣势,合理选择计算方法对于准确评估系统稳定性和可靠性至关重要。

随着技术的进步和应用的发展,电力系统潮流计算方法也在不断演化和改进,以满足电力系统智能化和可持续发展的需求。

高斯赛德尔法潮流计算

高斯赛德尔法潮流计算

3
& =S & −S &′ ∆S 12 12 12
其它支路相同求法。
迭代结束
& ( k +1) − U & (k ) ≤ ε U 2 2
( k + 1) (k ) & & U3 − U3 ≤ ε
ห้องสมุดไป่ตู้
求各支路输入功率、输出功率、功率损失。
1
& S 12
y12
&′ S 12
2
y13
y23
∗ ∗ & & & & & & S12 = U1 I 12 = U1 y12 (U1 − U 2 ) ∗ ∗ & & & & & & ′ S12 = U 2 I 12 = U 2 y12 (U1 − U 2 )
节点电压 发电机注入功率 & MW Mvar U 1.05+j0.0 ? ? 1.03 20 ? 0 0 ?
i
负荷 MW Mvar 0 0 50 20 60 25
分析:
由已知条件可知:节点1为平衡节点,节点2 为PV节点,节点3为PQ节点。
解:(1)形成节点导纳矩阵
y23 = 1/ Z 23 = 1.667 − j5.0
& = 1.05∠0o ,U & = 1.03∠0o ,U & = 1.0∠0o 设U 1 2 3
(0) & (0) ∑ Y 2 j U j ) =Im(U Q2 2 j =1 3 ∗ ∗ (0)
=Im[1.03∠0o × (−1.25 − j 3.73) × 1.05∠0o + 1.03∠0o × (2.9167 + j8.75) × 1.03∠0o + 1.03∠0o × (−1.6667 − j 5.0) × 1.0∠0o ] = 0.07766

基于MATLAB实现高斯赛德尔迭代潮流计算

基于MATLAB实现高斯赛德尔迭代潮流计算

Yn Vn Ys Vs I n




(7-2)
平衡节点 s 的电压 Vs 给定,n 个节点的注入电流矢量 I n 已知,则有
Yn Vn I n Ys Vs



(7-3)
实际电力系统给定量是 n 个节点的注入功率。 注入电流和注入功率之间的关 系是
Ii 写成矢量形式为Si ,n(7-13)
即 刚 刚 计 算 出 的
max(| xi ( k 1) xi ( k ) |, i 1, 2,
x
值 在 下 次 迭 代 中 被 立 即 应 用 。 当
, n) 时,迭代收敛。
2、网络节点导纳矩阵 如图(1)所示的一个三母线电力系统,在母线①和母线③之间的输电线的

,n
(7-8)
给定 Vi (0) , i 1, 2,
, n ,代入上式可求得电压新值,逐次迭代直到前后两次
迭代求得的电压值的差小于某一精度为止。这是高斯迭代法的基本结算步骤。 1.2 高斯-赛德尔迭代法 式( 7-8 ) ,每次迭代要从 1 扫描到节点 n 。在计算 Vi ( k 1 ) 时, V j ( k 1 ) ,
A =
-1.0000 1.0000 0
-0.9524 0 1.0000
0 -1.0000 1.0000
1.0000 0 0
0 1.0000 0
0 0 1.0000
请输入各支路导纳: [0.2494-4.9875*j,0.9901-9.9010*j,0.4905-4.9505*j,0.01*j,0.03*j,0.02*j ] 导纳矩阵为:
Vi
( k 1)
N
e max{Vi

简单电力系统分析潮流计算

简单电力系统分析潮流计算

简单电力系统分析潮流计算电力系统潮流计算是电力系统分析中的一项重要任务。

其目的是通过计算各个节点的电压、电流、有功功率、无功功率等参数,来确定系统中各个元件的运行状态和互相之间的相互影响。

本文将介绍电力系统潮流计算的基本原理、计算方法以及应用。

潮流计算的基本原理是基于电力系统的节点电压和支路功率之间的网络方程。

通过对节点电压进行迭代计算,直到满足所有支路功率平衡方程为止,得到系统的运行状态。

潮流计算的基本问题可以表示为以下方程组:P_i = V_i * (G_i * cos(θ_i - θ_j ) + B_i * sin(θ_i -θ_j )) - V_j * (G_i * cos(θ_i - θ_j ) - B_i * sin(θ_i -θ_j )) (1)Q_i = V_i * (G_i * sin(θ_i - θ_j ) - B_i * cos(θ_i -θ_j )) - V_j * (G_i * sin(θ_i - θ_j ) + B_i * cos(θ_i -θ_j )) (2)其中,P_i为节点i的有功功率注入;Q_i为节点i的无功功率注入;V_i和θ_i分别为节点i的电压幅值和相角;V_j和θ_j分别为节点j的电压幅值和相角;G_i和B_i分别为支路i的导纳的实部和虚部。

对于一个电力系统,如果知道了节点注入功率和线路的导纳,就可以通过潮流计算求解出各节点的电压和功率。

这是一种不断迭代的过程,直到系统达到平衡状态。

潮流计算的方法有多种,常见的有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。

其中,高斯-赛德尔迭代法是最常用的一种方法。

高斯-赛德尔迭代法的思想是从已知节点开始,逐步更新其他节点的电压值,直到所有节点的电压值收敛为止。

具体步骤如下:1.初始化所有节点电压的初始值;2.根据已知节点的注入功率和节点电压,计算其他节点的电压值;3.判断节点电压是否收敛,如果收敛则结束计算,否则继续迭代;4.更新未收敛节点的电压值,返回步骤2高斯-赛德尔迭代法的优点是简单有效,但其收敛速度较慢。

电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。

将所求方程 改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:反复猜测则方程的根优点:1. 原理简单,程序设计十分容易。

2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。

3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。

缺点:1. 收敛速度很慢。

2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路(如某些三绕组变压器或线路串联电容等)的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的系统。

3. 平衡节点所在位置的不同选择,也会影响到收敛性能。

二、牛顿-拉夫逊法:求解 设 ,则按牛顿二项式展开:当△x 不大,则取线性化(仅取一次项)则可得修正量对 得: 作变量修正: ,求解修正方程()0f x =()0f x =10()x x ϕ=迭代 0x 21()x x ϕ=1()k k x x ϕ+=()x x ϕ=()0f x =k k x x lim *∞→=0x x x =+∆0()0f x x +∆=23000011()()()()()()02!3!f x f x x f x x f x x ''''''+∆+∆+∆+=00()()0f x f x x '+∆=()100()()x f x f x -'∆=-10x x x =+∆00()()f x x f x '∆=-1k k k x x x +=+∆牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。

自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。

电力系统潮流计算的方法

电力系统潮流计算的方法

电力系统潮流计算的方法电力系统潮流计算是电力系统运行中的重要环节,用于确定电力系统各节点的电压、电流以及功率等参数。

通过潮流计算可以得到电力系统的状态,为电力系统的运行和控制提供参考依据。

电力系统潮流计算的基本原理是基于电力系统的节点电压和支路参数的关系,通过建立节点电压和支路电流之间的数学模型,利用电力系统的功率平衡条件,求解节点电压和支路电流的未知量。

电力系统潮流计算的方法主要分为直流潮流计算和交流潮流计算两种。

直流潮流计算是电力系统潮流计算的最简单方法。

在直流潮流计算中,假设电力系统中的所有元件都是直流的,不考虑电抗器件的影响。

直流潮流计算的基本原理是根据欧姆定律和功率平衡条件,建立电压和电流之间的线性关系,通过求解线性方程组得到电力系统的潮流分布。

直流潮流计算适用于电力系统的初始状态估计和简化模型计算。

交流潮流计算是电力系统潮流计算的常用方法。

在交流潮流计算中,考虑了电力系统中的电抗器件对电流和电压的影响。

交流潮流计算的基本原理是建立节点电压和支路电流之间的非线性关系,通过迭代求解非线性方程组得到电力系统的潮流分布。

交流潮流计算考虑了电力系统中的电气特性,可以更准确地描述电力系统的运行状态。

交流潮流计算主要有牛顿-拉夫逊法、高斯-塞德尔法和快速潮流计算法等几种方法。

牛顿-拉夫逊法是一种常用的交流潮流计算方法。

该方法通过迭代求解牛顿方程组,利用雅可比矩阵的逆矩阵来计算节点电压和支路电流的未知量。

牛顿-拉夫逊法收敛速度较快,适用于大规模电力系统的潮流计算。

高斯-塞德尔法是一种经典的交流潮流计算方法。

该方法通过迭代求解高斯方程组,逐步更新节点电压和支路电流的未知量。

高斯-塞德尔法的计算速度较慢,但收敛性较好,适用于小规模电力系统的潮流计算。

快速潮流计算法是一种基于功率因子校正的交流潮流计算方法。

该方法通过迭代求解校正方程组,根据功率因子的变化来调整节点电压和支路电流的未知量。

快速潮流计算法具有较快的收敛速度和较好的稳定性,适用于电力系统的实时潮流计算。

高斯赛德尔法

高斯赛德尔法

近似最佳加速因子改进高斯-赛德尔法潮流计算
高斯-赛德尔潮流计算方法的收敛性比较缓慢, 为提高算法 的收敛速度, 常用的一种方法是在迭代过程中加入加速因子, 一般是首先给出α 的取值范围( 通常取1< α<2) , 然后采用 试探法在给定的范围内求得一个最佳收敛因子, 其工作量很 大。 最佳加速因子理论是由Young于1950 年提出的,他给出的 最佳加速因子公式为
( x (0 ) = (x1(0 ) , x20 ) , x3(0 ) ) = (0 ,0 ,0 ,)
x
( k +1 ) i
i 1 n 1 ( k +1 ) = [ bi ∑ aij x j ∑ aij x(j k ) j =1 j =i +1 aii
]
高斯-赛德尔迭代
i = 1,2,Ln,
k = 0,1,2,...
的系数矩阵A可逆且主对角元素都不为零,令
)
并将A分解成
A = (A D) + D
Dx = (D A)x + b 从而方程可以写成 x = B1 x + f1 令 B = I D A, f = D b 其中
1 1 1 1
以 B 为迭代矩阵的迭代法 称为雅克比迭代法。
1
x ( k +1) = B1 x ( k ) + f1
x = B2 x + f 2 即 B = (D L ) U , f = (D L ) 其中 以 B2 为迭代矩阵的迭代法 x ( k +1) = B2 x ( k ) + f 2 称为高斯-赛德尔迭代法。
1 2 2
1
b
用高斯-赛德尔迭代法求解上例 解:取初值 x ( ) = (x ( ) , x ( ) , x ( ) ) = (0 ,0 ,0 ,) ,按迭代公式

电力系统稳态分析大作业——基于高斯赛德尔法潮流计算

电力系统稳态分析大作业——基于高斯赛德尔法潮流计算

电力系统稳态分析姓名: 学号:学院(系):自动化学院专业: 电气工程题目: 基于Matlab的高斯和高斯—赛德尔法的潮流计算指导老师:2014年12月摘要电力系统潮流计算是电力系统稳态运行分析中最基本和最重要的计算之一,是电力系统其他分析计算的基础,也是电力网规划、运行研究分析的一种方法,在电力系统中具有举足轻重的作用。

经典算法有高斯法,高斯-赛德尔迭代法及牛顿法等,近年来学者们开始应用非线性规划法及智能算法等优化方法求解潮流问题,提高了收敛的可靠性。

高斯-赛德尔迭代法开始于上世纪50年代,是一种直接迭代求解方程的算法,既可以解线性方程组,可以解非线性方程组。

高斯法求解节点电压的特点是: 在计算节点 i第k+1次的迭代电压时,前后所用的电压都是第k次迭代的结果,整个一轮潮流迭代完成后,把所有计算出的电压新值用于下一轮电压新值的计算过程中。

该计算方法简单,占用计算机内存小,能直接利用迭代求解节点电压方程,对电压初值的选取要求不是很严格。

但它的收敛性能较差,系统规模增大时,迭代次数急剧上升。

本文首先对高斯—赛德尔算法进行了综述,然后推导了该算法的计算过程,通过MATLAB软件计算了该算法的实例。

关键字:潮流计算高斯法高斯-赛德尔法迭代AbstractPower flow calculation is the one of the most basic and the most important calculation in the steady state analysis of power system .It is the foundation of other analytical calculation of power system, a method of analysis and planning, operation of power network.So it plays a decisive role in the power system. The classical algorithm is the Gauss method, Gauss - Seidel iterative method and Newton's method, in recent years.Scholars began to applicate nonlinear programming method and intelligent algorithm optimization method for solving power flow problem, enhances the reliability of convergence.Gauss - Seidel iterative method began in the 50's of last century, is a direct iteration equation algorithm, which can solve the linear equation and nonlinear equations. Characteristics of Gauss's method to calculate the node voltage is: in the iterative calculation of node i’s K + 1-times voltage, the voltage is used the results of K-times iterative.After completing the whole round of power flow iteration, all voltage value is used to calculate the next round of new voltage value of . The method is simple and captures small memory.It also can directly use the iterative solution of the node voltage equation .the selection of initial values are not very strict. But it has poor convergence performance. The system scale increases,when the number of iterations rise.This paper gives an overview of the Gauss Seidel algorithm at the first.Then it show the calculation process of this algorithm through the MATLAB software.Keywords: Gauss Gauss - Seidel iterative method the method of power flow calculation目录1 高斯迭代法和高斯—赛德尔迭代法概述 (5)2 节点导纳矩阵 (6)2.1不定导纳矩阵 (6)2.2导纳矩阵 (6)3 高斯迭代法 (7)4 高斯-赛德尔迭代法 (8)4.1高斯-赛德尔法的原理 (8)4.2 关于高斯法和高斯-赛德尔法的讨论 (8)5实例验证 (9)5.1 案例描述 (9)5.2 模型的建立 (10)5.3 案例程序流程图 (11)5.4 案例程序 (13)5.5 程序运行步骤和结果 (17)6结果分析 (20)7总结 (21)7参考文献 (22)一高斯迭代法和高斯—赛德尔迭代法概述电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

煤矿电力系统高斯赛德尔法潮流计算与实现

煤矿电力系统高斯赛德尔法潮流计算与实现

煤矿电力系统高斯赛德尔法潮流计算与实现[摘要]分析了电力系统分析中的一种最基本的计算:潮流计算。

以导纳矩阵为基础的高斯-塞德尔潮流计算方法简单,占用计算机内存小,但它的收敛性能较差,当系统规模增大时,迭代次数急剧上升。

通过matlab编程计算算例,证明了该方法更加适用于为其它潮流计算方法计算合适的初值。

[关键词]电力系统;潮流计算;高斯-赛德尔中图分类号:tm744 文献标识码:a 文章编号:1009-914x(2013)22-0014-02一、电力系统潮流计算概述1.1 潮流计算简介电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如电力系统中电压,有功功率和无功功率的分布等。

电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。

潮流计算也分为离线计算和在线计算。

前者主要用于系统规划设计和安排系统运行方式,后者用于正在运行系统的经常监视以及实时控制。

对潮流计算的要求可以归纳为下面几点:(1)算法的可靠性或收敛性(2)计算速度和内存占用量(3)计算的方便性和灵活性电力系统潮流计算问题在数学上是一组多元非线性方程式求解问题,其解法离不开迭代。

因此对潮流计算方法,首先要求它可靠地收敛,并给出正确答案。

随着电力系统规模的不断扩大,潮流问题的方程式阶数越来越高,目前已达到几千阶甚至上万阶,对这样规模的方程式并不是采用任何数学方法都能保证给出正确答案的。

这种情况促使电力系统的研究人员不断寻求新的更可靠的计算方法。

1.2 潮流计算的意义与作用电流系统潮流计算的主要作用可以通过下述体现:(1)在电网规划阶段,通过潮流计算,合理规划电源容量及接入点,合理规划网架,选择无功补偿方案,满足规划水平的大、小方式下潮流交换控制、调峰、调相、调压的要求。

(2)在编制年运行方式时,在预计负荷增长及新设备投运基础上,选择典型方式进行潮流计算,发现电网中薄弱环节,供调度员日常调度控制参考,并对规划、基建部门提出改进网架结构,加快基建进度的建议。

潮流的计算机算法

潮流的计算机算法

∆x ( k +1) = − J −1[ y ( x ( 0 ) ) − y s + y∆x ( k ) ]
x
( k +1)
=x
(0)
+ ∆x
( k +1)
式中: 表示迭代次数; (0)估计而 式中:k表示迭代次数;J为按x=x(0)估计而 得
2012-3-7
与牛拉法比较: 与牛拉法比较:
雅克比矩阵是定值, 雅克比矩阵是定值,而牛拉法雅克比矩阵需重新计算 ) 的修正量, 修正量 ∆x (k 是相对初始估计值 ∆x ( 0 ) 的修正量,而牛拉法 ∆x (k )是相对上一次迭代所得到的迭代点的 修正量 保留达到收敛所需的迭代次数比牛拉法要多, 保留达到收敛所需的迭代次数比牛拉法要多,但由于每次 迭代所需的计算量要节省很多, 迭代所需的计算量要节省很多,总的计算速度是提高很多 的 对初始值的要求更高 对于具有大R/X比值元件或有串联支路的系统,保留非线 比值元件或有串联支路的系统, 对于具有大 比值元件或有串联支路的系统 性法有更好的收敛可靠性
线路特别重载以致两节点间相角差特别大
2012-3-7
保留非线性潮流算法
为何提出? 为何提出? 牛拉法迭代时,采用的是逐次线性化, 牛拉法迭代时,采用的是逐次线性化,略去了泰 勒级数的高阶项, 勒级数的高阶项,出于对精确数学模型可能会提高算 法的收敛性能及计算速度的考虑而提出此算法。 法的收敛性能及计算速度的考虑而提出此算法。 算法的发展 保留非线性的快速潮流算法(极坐标形式) 保留非线性的快速潮流算法(极坐标形式) 保留非线性的快速潮流算法(直角坐标形式) 保留非线性的快速潮流算法(直角坐标形式) 采用直角坐标形式的包括二阶项的快速潮流算法
2012-3-7

电力系统的潮流计算

电力系统的潮流计算

电力系统的潮流计算电力系统的潮流计算是电力系统分析中的基础工作,主要用于计算电力系统中各节点的电压和功率流动情况。

通过潮流计算可以得到电力系统的电压、功率、功率因数等关键参数,为电力系统的运行和规划提供有效的参考依据。

本文将介绍电力系统潮流计算的基本原理、计算方法和应用。

一、电力系统潮流计算的基本原理电力系统潮流计算基于电力系统的能量守恒原理和基尔霍夫电流定律,通过建立电力系统的节点电压和功率平衡方程组来描述系统中各节点间的电压和功率流动关系。

潮流计算的基本原理可简述为以下三个步骤:1.建立节点电压方程:根据基尔霍夫电流定律,将电力系统中各节点的电流状况表达为节点电压和导纳矩阵之间的乘积关系。

2.建立功率平衡方程:根据能量守恒原理,将电力系统中各支路的功率流动表达为节点电压和导纳矩阵之间的乘积关系。

3.解算节点电压:通过求解节点电压方程组,得到系统中各节点的电压值。

二、电力系统潮流计算的常用方法电力系统潮流计算常用的方法有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法和快速潮流法等。

其中,高斯-赛德尔迭代法是一种基于节点电压的迭代算法,通过在每一次迭代中更新节点电压值来逐步逼近系统潮流平衡状态。

牛顿-拉夫逊迭代法是一种基于节点电压和节点功率的迭代算法,通过在每一次迭代中同时更新节点电压和节点功率值来逼近系统潮流平衡状态。

快速潮流法则是一种通过行列式运算直接求解节点电压的方法,对于大规模复杂的电力系统具有较高的计算效率和精度。

三、电力系统潮流计算的应用电力系统潮流计算在电力系统的规划和运行中有广泛应用。

具体应用包括:1.电力系统规划:通过潮流计算可以预测系统中各节点的电压和功率流动情况,为电力系统的设计和扩建提供参考依据。

2.电力系统稳定性分析:潮流计算可以帮助分析系统中节点电压偏差、功率瓶颈等问题,为系统的稳态和暂态稳定性分析提供基础数据。

3.运行状态分析:潮流计算可以实时监测系统中各节点的电压和功率流动情况,为电力系统的运行调度提供参考。

电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用; 将所求方程改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:反复猜测 则方程的根 优点:1. 原理简单,程序设计十分容易;2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省;3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系;缺点:1. 收敛速度很慢;2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路如某些三绕组变压器或线路串联电容等的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的系统;3. 平衡节点所在位置的不同选择,也会影响到收敛性能;二、牛顿-拉夫逊法:求解 设 ,则按牛顿二项式展开:当△x 不大,则取线性化仅取一次项则可得修正量对 得:作变量修正: ,求解修正方程 牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性;自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法;优点:1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭代4—5次便可以收敛到一个非常精确的解;而且其迭代次数与所计算网络的规模基本无关;2. 具有良好的收敛可靠性,对于前面提到的对以节点导纳矩阵为基础的高斯一塞德尔法呈病态的系统,牛顿法均能可靠地收敛;3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多,并与程序设计技巧有密切关系;缺点:牛顿法的可靠收敛取决于有一个良好的启动初值;如果初值选择不当,算法有可能根本不收敛或收敛到一个无法运行的解点上;()0f x =10()x x ϕ=迭代 0x 21()x x ϕ=1()k k x x ϕ+=()x x ϕ=()0f x =0x x x =+∆1k k k x x x +=+∆解决方法:对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各节点间的相位角差也不大,所以对各节点可以采用统一的电压初值也称为“平直电压”,“平直电压”法假定:︒==0100i i U θ 或 );,...,2,1(0100s i n i f e i i ≠===这样一般能得到满意的结果;但若系统因无功紧张或其它原因导致电压质量很差或有重载线路而节点间角差很大时,仍用上述初始电压就有可能出现问题;可以先用高斯一塞德尔法迭代1-2次;以此迭代结果作为牛顿法的初值,也可以先用直流法潮流求解一次以求得一个较好的角度初值,然后转入牛顿法迭代;三、P-Q 分解法:电力系统中常用的PQ 分解法派生于以极坐标表示的牛顿—拉夫逊法,其基本思想是把节点功率表示为电压向量的极坐标形式,以有功功率误差作为修正电压向量角度的依据,以无功功率误差作为修正电压幅值的依据,把有功和无功分开进行迭代其主要特点是以一个n-1阶和一个m 阶不变的、对称的系数矩阵B ,B '''代替原来的n+m-1阶变化的、不对称的系数矩阵M,以此提高计算速度,降低对计算机贮存容量的要求;P-Q 分解法在计算速度方面有显着的提高,迅速得到了推广;原理:修正方程为:⎥⎥⎦⎤⎢⎢⎣⎡∆∆⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∆∆V V δL K N H Q P 雅克比矩阵元素的表达如下:a) 当i ≠j 时b) 当i =j 时对修正方程的第一个简化是:上式可分别写成以下两式在一般情况下,线路两端电压的相角差是不大的不超过100~200,因此可以认为δδij ij ij G sin ,1cos ≈B ij因此可得:B V V H ij j i ij = i,j=1,2,…,n-1B V V L ij j i ij = i,j=1,2,…,m经一系列化简得P —Q 分解法的修正方程式: ⎭⎬⎫∆''=∆∆'=∆V B Q B P δ 原P —Q 分解法的修正方程的简化形式为: ⎪⎭⎪⎬⎫∆''=∆∆'=∆V B V Q V B V PδPQ分解法的修正方程式的特点:'、替代原有的系数矩阵J,提高了计算速度, 1.以一个n-1阶和一个m-1阶系数矩阵BB''降低了对贮存容量的要求;'、替代原有的系数矩阵J,显着的提高了计算2.以迭代过程中保持不变的系数矩阵BB''速度;'、替代原有的系数矩阵J,使求逆等运算量和所需的储存容量3.以对称的系数矩阵BB''都大为减少;P-Q分解法两个主要特点:1.降阶在潮流计算的修正方程中利用了有功功率主要与节点电压相位有关,无功功率主要与节点电压幅值有关的特点,实现P-Q分解,使系数矩阵由原来的2N×2N阶降为N×N 阶,N为系统的节点数不包括缓冲节点;2.因子表固定化利用了线路两端电压相位差不大的假定,使修正方程系数矩阵元素变为常数,并且就是节点导纳的虚部;由于以上两个特点,使快速分解法每一次迭代的计算量比牛顿法大大减少;P-Q分解法只具有一次收敛性,因此要求的迭代次数比牛顿法多,但总体上快速分解法的计算速度仍比牛顿法快;快速分解法只适用于高压网的潮流计算,对中、低压网,因线路电阻与电抗的比值大,线路两端电压相位差不大的假定已不成立,用快速分解法计算,会出现不收敛问题;。

电力系统稳态分析大作业——基于高斯赛德尔法潮流计算

电力系统稳态分析大作业——基于高斯赛德尔法潮流计算

电力系统稳态分析大作业——基于高斯赛德尔法潮流计算电力系统稳态分析姓名: 学号:学院(系):自动化学院专业: 电气工程题目: 基于Matlab的高斯和高斯—赛德尔法的潮流计算指导老师:2014年12月摘要电力系统潮流计算是电力系统稳态运行分析中最基本和最重要的计算之一,是电力系统其他分析计算的基础,也是电力网规划、运行研究分析的一种方法,在电力系统中具有举足轻重的作用。

经典算法有高斯法,高斯-赛德尔迭代法及牛顿法等,近年来学者们开始应用非线性规划法及智能算法等优化方法求解潮流问题,提高了收敛的可靠性。

高斯-赛德尔迭代法开始于上世纪50年代,是一种直接迭代求解方程的算法,既可以解线性方程组,可以解非线性方程组。

高斯法求解节点电压的特点是: 在计算节点 i第k+1次的迭代电压时,前后所用的电压都是第k次迭代的结果,整个一轮潮流迭代完成后,把所有计算出的电压新值用于下一轮电压新值的计算过程中。

该计算方法简单,占用计算机内存小,能直接利用迭代求解节点电压方程,对电压初值的选取要求不是很严格。

但它的收敛性能较差,系统规模增大时,迭代次数急剧上升。

本文首先对高斯—赛德尔算法进行了综述,然后推导了该算法的计算过程,通过MATLAB软件计算了该算法的实例。

关键字:潮流计算高斯法高斯-赛德尔法迭代AbstractPower flow calculation is the one of the most basic and the most important calculation in the steady state analysis of power system .It is the foundation of other analytical calculation of power system, a method of analysis and planning, operation of power network.So it plays a decisive role in the power system. The classical algorithm is the Gauss method, Gauss - Seidel iterative method and Newton's method, in recent years.Scholars began to applicate nonlinear programming method and intelligent algorithm optimization method for solving power flow problem, enhances the reliability of convergence.Gauss - Seidel iterative method began in the 50's of last century, is a direct iteration equation algorithm, which can solve the linear equation and nonlinear equations. Characteristics of Gauss's method to calculate the node voltage is: in the iterative calculation of node i’s K + 1-times voltage, the voltage is used the results of K-times iterative.After completing the whole round of power flow iteration, all voltage value is used to calculate the next round of new voltage value of . The method is simple and captures small memory.It also can directly use the iterative solution of the node voltage equation .the selection of initial values are not very strict. But it has poor convergence performance. The system scale increases,when the number of iterations rise.This paper gives an overview of the Gauss Seidel algorithm at the first.Then it show the calculation process of this algorithm through the MATLAB software.Keywords: Gauss Gauss - Seidel iterative method the method of power flow calculation目录1 高斯迭代法和高斯—赛德尔迭代法概述 (5)2 节点导纳矩阵 (6)2.1不定导纳矩阵 (6)2.2导纳矩阵 (6)3 高斯迭代法 (7)4 高斯-赛德尔迭代法 (8)4.1高斯-赛德尔法的原理 (8)4.2 关于高斯法和高斯-赛德尔法的讨论 (8)5实例验证 (9)5.1 案例描述 (9)5.2 模型的建立 (10)5.3 案例程序流程图 (11)5.4 案例程序 (13)5.5 程序运行步骤和结果 (17)6结果分析 (20)7总结 (21)7参考文献 (22)一高斯迭代法和高斯—赛德尔迭代法概述电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。

(完整word版)电力系统三种潮流计算方法的比较

(完整word版)电力系统三种潮流计算方法的比较

反复猜测
x2 ( x1 ) xk 1 ( xk )
迭代
则方程的根 x* lim xk k
优点: 1. 原理简单,程序设计十分容易。 2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。 3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包
含的节点数成正比关系。 缺点: 1. 收敛速度很慢。 2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负
0
牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。自从 20 世纪 60 年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速 度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。 优点: 1. 收敛速度快,若选择到一个较好的初值,算法将具有平方收敛特性,一般迭
代 4—5 次便可以收敛到一个非常精确的解。而且其迭代次数与所计算网络 的规模基本无关。 2. 具有良好的收敛可靠性,对于前面提到的对以节点导纳矩阵为基础的高斯一 塞德尔法呈病态的系统,牛顿法均能可靠地收敛。 3. 牛顿法所需的内存量及每次迭代所需时间均较前述的高斯一塞德尔法为多, 并与程序设计技巧有密切关系。 缺点: 牛顿法的可靠收敛取决于有一个良好的启动初值。如果初值选择不当,算法有可 能根本不收敛或收敛到一个无法运行的解点上。 解决方法: 对于正常运行的系统,各节点电压一般均在额定值附近,偏移不会太大,并且各 节点间的相位角差也不大,所以对各节点可以采用统一的电压初值(也称为“平 直电压”),“平直电压”法假定:
代替原来的(n+m-1)阶变化的、不对称的系数矩阵 M,以此提高计算速度,降
低对计算机贮存容量的要求。P-Q 分解法在计算速度方面有显著的提高,迅速得
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高斯——赛德尔法潮流计算潮流计算高斯——赛德尔迭代法(Gauss一Seidel method)是求解电力系统潮流的方法。

潮流计算高斯——赛德尔迭代法又分导纳矩阵迭代法和阻抗矩阵迭代法两种。

前者是以节点导纳矩阵为基础建立的赛德尔迭代格式;后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。

高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。

本实验通过对电力网数学模型形成的计算机程序的编制与调试,获得形成电力网数学模型:高斯---赛德尔法的计算机程序,使数学模型能够由计算机自行形成,即根据已知的电力网的接线图及各支路参数由计算程序运行形成该电力网的节点导纳矩阵和各节点电压、功率。

通过实验教学加深学生对高斯---赛德尔法概念的理解,学会运用数学知识建立电力系统的数学模型,掌握数学模型的形成过程及其特点,熟悉各种常用应用软件,熟悉硬件设备的使用方法,加强编制调试计算机程序的能力,提高工程计算的能力,学习如何将理论知识和实际工程问题结合起来。

高斯---赛德尔法潮流计算框图[1]系统节点的分类根据给定的控制变量和状态变量的不同分类如下①P、Q节点(负荷节点),给定Pi、Qi求Vi、Si,所求数量最多;②负荷节点,变电站节点(联络节点、浮游节点),给定PGi 、QGi的发电机节点,给定QGi的无功电源节点;③PV节点(调节节点、电压控制节点),给定Pi 、Qi求Qn、Sn,所求数量少,可以无有功储备的发电机节点和可调节的无功电源节点;④平衡节点(松弛节点、参考节点(基准相角)、S节点、VS节点、缓冲节点),给定Vi,δi=0,求Pn、Qn(Vs、δs、Ps、Qs)。

[2]潮流计算的数学模型1)线性的节点电压方程 YV=I根据S=V错误!未找到引用源。

可得非线性的节点电压方程(错误!未找到引用源。

为I的共轭) YV=I=错误!未找到引用源。

=错误!未找到引用源。

节点功率与节点电流的关系:错误!未找到引用源。

2)在国外,对于复数变量不打点,其模要加绝对值符号;在国,对于复数变量,在S、V、I上要打点,Y、Z上不打点,其模不加绝对值符号。

3)错误!未找到引用源。

式2—5对于发电机Pi、Qi为正,对负荷来说Pi、Qi为负4)展开YV=I得错误!未找到引用源。

上式代入式2—5得n维的非线性复数电压方程组错误!未找到引用源。

式2—6该式为潮流计算的基本方程[3]高斯—赛德尔法潮流计算1)高斯法潮流计算①将式2—6展开成电压方程错误!未找到引用源。

式2—7假设系统节点数是n,PQ节点数为m,m+1及之后的节点是PV节点,第n个节点是平衡节点。

展开式2—7得高斯法潮流计算的基本方程错误!未找到引用源。

式2—8②考虑到i=1时matlab中for语句的使用可写成错误!未找到引用源。

③由于平衡节点的电压和相角给定,不用计算,只要计算i=1—n-1节点的电压,但平衡节点的参数和变量要用于其他节点的电压计算.式2—8的计算过程中有错误!未找到引用源。

i=1、2、···n-1④特点:在计算i节点的k+1次电压时,所用的i节点前后(包括i节点)的电压都是k次迭代的结果。

2)高斯—赛德尔法潮流计算①在高斯法潮流计算中引入赛德尔法迭代方式即为高斯—赛德尔法潮流计算②对应式2—8的高斯—赛德尔法潮流计算的方程为错误!未找到引用源。

式2—9在式2—9的计算中有错误!未找到引用源。

③特点:在计算i节点的k+1次电压时,1~i-1节点的电压用的是k+1次时的电压,而i~n-1节点的电压用的是k次时的电压,即在迭代过程中每个被求的电压新值立即被带入到下一个电压新值的计算中。

3)基于导纳矩阵的直角坐标高斯—赛德尔法潮流计算①设错误!未找到引用源。

错误!未找到引用源。

展开式2—6并将实、虚部分列错误!未找到引用源。

式2—10错误!未找到引用源。

式2—11②令错误!未找到引用源。

式2—12错误!未找到引用源。

注:错误!未找到引用源。

、错误!未找到引用源。

中不包括j=i的参数和变量;错误!未找到引用源。

、错误!未找到引用源。

中分别有k+1次和k次的变量;错误!未找到引用源。

在错误!未找到引用源。

、错误!未找到引用源。

中没有单独列出。

(错误!未找到引用源。

)③错误!未找到引用源。

④将2—12代入式2—10和2—11得错误!未找到引用源。

式2—13错误!未找到引用源。

式2—14⑤将式2—9展开,实、虚部分列,再将式2—12代入,得节点电压的实部、虚部错误!未找到引用源。

式2—15错误!未找到引用源。

式2—16⑥对P、V节点,根据错误!未找到引用源。

常数错误!未找到引用源。

式2—174)部分求解方程对于P、Q节点:用式2—15求错误!未找到引用源。

,用式2—16求错误!未找到引用源。

对于P 、V 节点:用式2—14求错误!未找到引用源。

用式2—15求错误!未找到引用源。

,式2—16求错误!未找到引用源。

5)为了加速收敛,引入加速因子α,α=1~1.8之间,复数电压: 错误!未找到引用源。

式2—18 6)实数模型:错误!未找到引用源。

式2—19 错误!未找到引用源。

) 式2—20 错误!未找到引用源。

、错误!未找到引用源。

是式2—15~式2—17计算出的值,错误!未找到引用源。

、错误!未找到引用源。

是考虑到α修正后的值,错误!未找到引用源。

、错误!未找到引用源。

是上一次用于迭代的实际值(不一定是式2—15~式2—17计算出的值) 7)三种加速过程①每次求出的错误!未找到引用源。

、错误!未找到引用源。

立即用于求解下一个电压新值;②每次求出的错误!未找到引用源。

、错误!未找到引用源。

同时立即用α进行修正,得到的错误!未找到引用源。

、错误!未找到引用源。

同时用于求解下一个电压新值;③每次求出的错误!未找到引用源。

、错误!未找到引用源。

分别用α进行修正,得到的错误!未找到引用源。

、错误!未找到引用源。

分别用于求解下一个电压新值。

注:三种加速过程中,速度又快到慢依次为③②①。

8)收敛判据:复数模型:错误!未找到引用源。

实数模型:错误!未找到引用源。

,错误!未找到引用源。

9)三种收敛判据情况:①用前后两次经α修正后的电压值;②用前后两次式2—15~式2—17计算出来的值;③前一次用α修正的值,后一次用式2—15~式2—17计算出的值。

10)高斯—赛德尔法是用前后两次迭代的最大电压误差作收敛判据,ε取10-5~10-6,牛顿法是用最大功率误差为收敛判据,ε取10-3~10-5,所以后者为好。

[4]编程程序步骤如下第一步:设定初值0max =∆V ,1=i 定义Z 矩阵,s 设定循环次数100=k 第二步:用一判据(0)2,(==i Z )先求PQ 节点用2-15式求)1(+k i e ,再代入2-16替代)(k i e 求)1(+k i f 。

则);(;;)1()1()1()()1()1()1()1()1(++++++++•=-=∆+=k i k i k i k i k i k i k i k i k e f arctg V V V jf e V iδif;;)1(max max )1(++∆=∆∆>∆k i k i V V V V 根据收敛判据5max 10-=<∆εV 输出代求量,即if;)7,(;)6,(10)1()1(6max ++-==<∆k i k i i Z V i Z V δ第三步:(0)!2,(=i Z )求PV 节点用2-14求i Q再用2-16求)1(+k i f ,将其代入2-17,求)1(+k i e , 则);/(;;)1()1()1()()1()1()1()1()1(++++++++•=-=∆+=k i k i k i k i k i k i k i k i k e f arctg V V V jf e V iδif;)1(max max )1(++∆=∆∆>∆k i k i V V V V 根据收敛判据6max 10-=<∆εV 输出代求量,即if;)7,(;)3,(10)1()1(6max ++-==<∆k i k i i Z Q i Z V δ第四步:求平衡节点n利用式2-13和2-14式求i P 和i Q ,然后输出, 即;)3,(;)2,(i i Q i Z P i Z ==最后输出Z 矩阵试验题目:用形成Y 阵的五节点系统,假定节点1、2、3为PQ 节点,节点4为PV 节点、节点5为平衡节点,试分别用高斯—赛德尔法潮流计算其潮流。

取 收敛判据为|△m ax V |<610-。

给定:程序如下:clearclcI=[-2,-3,2,2,3];J=[4,5,3,1,1];R=[0,0,0.08,0.04,0.1];X=[0.015,0.03,0.3,0.25,0.35];K=[1.05,1.05,0.25,0.25,0];n=5;L=5;Y=zeros(2*n,n);for m=1:Li=I(m);j=J(m);r=R(m);x=X(m);k=K(m);if i*j==0Y(2*i-1,i)=Y(2*i-1,i)+r;Y(2*i,i)=Y(2*i,i)-x;endif i*j>0Y(2*i-1,j)=Y(2*i-1,j)-r/(r^2+x^2); Y(2*i,j)=Y(2*i,j)+x/(r^2+x^2);Y(2*j-1,i)=Y(2*i-1,j);Y(2*j,i)=Y(2*i,j);Y(2*i-1,i)=Y(2*i-1,i)+r/(r^2+x^2); Y(2*i,i)=Y(2*i,i)-x/(r^2+x^2)+k;Y(2*j-1,j)=Y(2*j-1,j)+r/(r^2+x^2); Y(2*j,j)=Y(2*j,j)-x/(r^2+x^2)+k;endif i*j<0i=-i;Y(2*i-1,j)=Y(2*i-1,j)-r/(r^2+x^2)/k;Y(2*i,j)=Y(2*i,j)+x/(r^2+x^2)/k;Y(2*j-1,i)=Y(2*i-1,j);Y(2*j,i)=Y(2*i,j);Y(2*i-1,i)=Y(2*i-1,i)+r/(r^2+x^2)/k^2; Y(2*i,i)=Y(2*i,i)-x/(r^2+x^2)/k^2;Y(2*j-1,j)=Y(2*j-1,j)+r/(r^2+x^2);Y(2*j,j)=Y(2*j,j)-x/(r^2+x^2);endendYP=[-1.6,-2.0,-3.7,5.0,0];Q=[-0.8,-1.0,-1.3,0,0];E=[1,1,1,1.05,1.05];F=[0,0,0,0,0];k=0;V=[1,1,1,1.05,1.05];A=[0,0,0,0,0];h=3;m=0.000001;Vm=1;while Vm>mVm=0;for i=1:n-1j=1;A1=0;A2=0;if i>jfor j=1:i-1g=Y(2*i-1,j);b=Y(2*i,j);e=E(j);f=F(j);A1=A1+g*e-b*f;A2=A2+g*f+b*e;endendfor j=i+1:ng=Y(2*i-1,j);b=Y(2*i,j);e=E(j);f=F(j);A1=A1+g*e-b*f;A2=A2+g*f+b*e;ende=E(i);f=F(i);p=P(i);q=Q(i);g=Y(2*i-1,i);b=Y(2*i,i);if i>hg=Y(2*i-1,i);b=Y(2*i,i);Q(i)=-b*(e^2+f^2)-e*A2+f*A1;q=Q(i);E(i)=g/(g^2+b^2)*((p*e+q*f)/(e^2+f^2)-A1)+b/(g^2+b^2)*((p*f-q*e)/(e^2 +f^2)-A2);v=V(i);F(i)=sqrt(v^2-E(i)^2);A(i)=atan(F(i)/E(i));A(i)=A(i)*180/pi;continueendE(i)=g/(g^2+b^2)*((p*e+q*f)/(e^2+f^2)-A1)+b/(g^2+b^2)*((p*f-q*e)/(e^2 +f^2)-A2);F(i)=g/(g^2+b^2)*((p*f-q*e)/(e^2+f^2)-A2)+b/(g^2+b^2)*((p*e+q*f)/(e^2 +f^2)-A1);v=sqrt(E(i)^2+F(i)^2);Vc=v-V(i);Vc=abs(Vc);if Vc>VmVm=Vc;endV(i)=v;A(i)=atan(F(i)/E(i));A(i)=A(i)*180/pi;endk=k+1;endfor j=1:ne=E(j);f=F(j);g=Y(2*i-1,j);b=Y(2*i,j);P(n)=P(n)+E(n)*(g*e-b*f);Q(n)=Q(n)-E(n)*(g*f+b*f);endkPQVA运行结果:Y =1.3787 -0.6240 -0.7547 0 0-6.2917 3.9002 2.6415 0 0 -0.6240 1.4539 -0.8299 0 03.9002 -66.9808 3.1120 63.4921 0-0.7547 -0.8299 1.5846 0 02.64153.1120 -35.7379 0 31.74600 0 0 0 00 63.4921 0 -66.6667 00 0 0 0 00 0 31.7460 0 -33.3333 k =11P =-1.6000 -2.0000 -3.7000 5.0000 0.5238Q =-0.8000 -1.0000 -1.3000 1.3885 0.5238V =0.8885 1.0817 1.0579 1.0500 1.0500A =-11.6107 -0.4133 1.1798 0.0028 0>>。

相关文档
最新文档