《完全平方公式》 (第2课时)示范公开课教学设计【北师大版七年级数学下册】
北师大版七年级数学下册1.6《完全平方公式》教案
(2)完全平方公式的性质与证明:学生需要了解完全平方公式的性质,如对称性、可逆性等,并学会运用这些性质解决实际问题。
举例:证明(a+b)²=(b+a)²,让学生通过具体例子,理解并掌握完全平方公式的性质。
其次,在新课讲授环节,我发现学生们对于完全平方公式的推导过程存在一定的难度。为此,我采用了图形演示和实际操作的方式,帮助他们更好地理解公式。从学生的反馈来看,这种方法是有效的。在以后的教学中,我将继续探索更多直观、易懂的教学方法,降低学生的理解难度。
此外,在实践活动和小组讨论环节,学生们积极参与,课堂氛围活跃。这表明学生们喜欢通过合作交流来解决问题。但同时,我也注意到有些学生在讨论过程中较为被动,可能是因为他们对知识点掌握不够熟练。针对这一问题,我将在接下来的教学中加强对这些学生的个别辅导,帮助他们提高自信心和参与度。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了完全平方公式的基本概念、推导过程、重要性和应用。通过实践活动和小组讨论,我们加深了对完全平方公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
解决方法:提供丰富的例题和练习,指导学生识别何时使用完全平方公式,并教授分解因式的方法。
(3)完全平方公式的性质证明:对于初中生来说,用代数方法证明完全平方公式的性质具有一定难度。
解决方法:采用分步指导,逐步引导学生完成证明过程,强调证明过程中的逻辑推理。
6完全平方公式第2课时-初中七年级下册数学(教案)(北师大版)
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《完全平方公式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算两个数的和或差的平方的情况?”(如计算正方形边长为a+b的面积)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索完全平方公式的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解完全平方公式的概念。完全平方公式是指(a±b)² = a²±2ab+b²,它可以帮助我们快速计算两个数的和或差的平方。
2.案例分析:接下来,我们来看一个具体的案例,如计算(3x+4)²。这个案例展示了完全平方公式在实际中的应用,以及它如何帮助我们简化计算过程。
6完全平方公式第2课时-初中七年级下册数学(教案)(北师大版)
一、教学内容
本节课为“6完全平方公式第2课时”,依据北师大版初中七年级下册数学教材,教学内容主要包括以下两点:
1.掌握完全平方公式的结构特点和应用方法,即:(a±b)² = a²±2ab+b²。
2.学会利用完全平方公式进行简便计算,解决实际问题,并能将其应用于合并同类项、因式分解等相关数学运算中。
3.重点难点解析:在讲授过程中,我会特别强调公式中“±”的用法和完全平方公式的应用场景。对于难点部分,我会通过具体例题和比较来帮助大家理解。
(三)实践活动平方公式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算不同长方形和正方形的面积,观察完全平方公式的应用。
1.6完全平方公式第2课时-2023-2024学年七年级数学下册同步课件(北师大版)
拿出糖果招待他们.如果来1个孩子,老人就给这个孩子1块糖果;如果来2
个孩子,老人就给每个孩子2块糖果;如果来3个孩子,老人就给每个孩子3
块糖果……
假如第一天有a个孩子一起去看老人,第二天有b个孩子一起去看老
人,第三天有(a+b)个孩子一起去看老人,那么第三天老人给出去的糖果
刀沿图中折痕剪开,把它分成四块完全相同的小长方形,然后按图②那样
拼成一个大正方形,则中间空白部分的面积是( C )
A.2m
B.(m+n)2
C.(m-n)2
D.m2-n2
四、当堂练习
6.化简:(x+2)2+4(1-x)= x2+8 .
7.一个正方形的边长增加3 cm,它的面积就增加45 cm2,则这个正方形的
思考:怎样计算1022,992更简便呢?
解:(1)1022=(100+2)2
(2)1972=(200-3)2
=1002+2×100×2+22
=2002-2×200×3+32
=10000+400+4
=40000-1200+9
=10404.
=38809.
你是怎样做的?与同伴进行交流.
二、新知探究
跟踪练习
方法二:逆用平方差公式
=a2+2ab+b2-9.
(x+3)2- x2
=(x+3+x)(x+3- x)
=(2x+3)·3=6x+9.
(3)(x+5)2-(x-2)(x-3).
(3)(x+5)2-(x-2)(x-3)
2024北师大版数学七年级下册1.6.2《完全平方公式》教案2
2024北师大版数学七年级下册1.6.2《完全平方公式》教案2一. 教材分析《完全平方公式》是北师大版数学七年级下册第1章第6节的内容,本节课主要让学生掌握完全平方公式的概念和运用。
完全平方公式是初中数学中的一个重要概念,也是解决二次方程和二次不等式问题的关键。
通过对完全平方公式的学习,学生可以更好地理解和运用二次方程和二次不等式,为后续的学习打下基础。
二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法、完全平方数等知识,对于二次方程和二次不等式有一定的了解。
但学生对于完全平方公式的理解和运用还不够熟练,需要通过本节课的学习来进一步掌握。
三. 教学目标1.让学生理解完全平方公式的概念,掌握完全平方公式的运用。
2.培养学生解决二次方程和二次不等式的能力。
3.培养学生合作学习、积极思考的能力。
四. 教学重难点1.完全平方公式的概念和运用。
2.解决二次方程和二次不等式。
五. 教学方法1.采用问题驱动法,引导学生主动探究完全平方公式。
2.采用案例分析法,让学生通过具体案例理解完全平方公式的运用。
3.采用小组合作学习,培养学生合作学习的能力。
六. 教学准备1.PPT课件2.相关案例和练习题3.笔记本和文具七. 教学过程1.导入(5分钟)利用PPT课件,展示一些生活中的完全平方现象,如正方形的面积公式等,引导学生对完全平方公式产生兴趣,激发学生的学习热情。
2.呈现(10分钟)通过PPT课件,呈现完全平方公式的定义和公式,让学生初步了解完全平方公式的概念。
3.操练(10分钟)让学生通过PPT上的练习题,运用完全平方公式进行计算,巩固对完全平方公式的理解和运用。
4.巩固(10分钟)让学生分组讨论,总结完全平方公式的运用方法和注意事项,加深对完全平方公式的理解和运用。
5.拓展(10分钟)通过PPT上的案例分析,让学生运用完全平方公式解决实际问题,提高学生解决二次方程和二次不等式的能力。
6.小结(5分钟)让学生对自己在本节课中学到的知识进行总结,提高学生的自我学习能力。
初中数学北师大版七年级下册《完全平方公式的认识》教学设计
北师大版数学七年级下册完全平方公式的认识教学设计=m2+2×3m+9 =4+2×2×3x+9x2=m2+6m+9 =4+12x+9x2师:观察算式左边,你发现了什么规律?观察算式右边,你又发现了什么规律?师:非常好,再举两个例子。
教师根据学生举的例子出示两个例子。
(p+1)2 (a+b)2= (p+1) (p+1) = (a+b)(a+b)=p2+p+p+1 =a2+ab+ab+b2=p2+2p+1 =a2+2ab+b2师:让我们归纳(a+b)2 = a2+2ab+b2.师:试着用自己的语言叙述这一公式!师:【思考】你能根据下图解释这个公式吗?大正方形的面积是:大正方形的面积又可以由4小块组成,它们的面积分别为:___、___、___、___所以(a+b)2=a2+b2+ab+ab=a2+2ab+b2师:让我们再讨论讨论(a-b) 2=?你是怎样做的?教师出示正确答案。
【归纳】(a-b)2 = a2-2ab+b2.试着用自己的语言叙述这一公式!【思考】你能设计一个图形解释这个公式吗?(a-b)2 = a2-2ab+b2.阴影部分的面积是:阴影部分的面积也可以由大正方形减去______和_________所以(a-b)2=a2-ab-b(a-b)=a2-2ab+b2【总结归纳】(a+b) 2=a2+2ab+b2(a -b) 2=a2-2ab+b2上面两个公式称为完全平方公式。
语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍.【例】计算:(1) (2x-3)2 (2) (4x+5y)2; (3) (mn-a)2【解】(1) (2x-3)2 (2) (4x+5y)2= (2x)2-2·2x·3+32 = (4x)2 +2·4x·5y+ (5y)2= 4x2-12x + 9; = 16x2 +40xy+ 25y2;。
《完全平方公式》第2课时示范公开课PPT教学课件【七年级数学下册北师大版】
平方差公式是怎样的呢?
平方差公式
两数和与这两数差的积,等于它们的平方差.
(a+b)(ab)=a2b2
完全平方公式又是怎样的呢?
完全平方公式
两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.
(a+b)2=a2+2ab+b2
(a−b)2=a2−2ab+b2
解:(1)原式= (x+3)2-x2
=6x+9
= x2+6x+9-x2
例2 计算:
分析:(2)把a+b看作整体(一项),再利用平方差公式求解即可.
解:(2)原式= [(a+b)+3][(a+b)-3]
= (a+b)2-32
=a2+2ab+b2-9.
a+b看作整体.
(1) (x+3)2-x2; (2) (a+b+3)(a+b-3); (3) (x+5)2-(x-2) (x-3).
a2-ab+b2=(a2+b2)-ab
=37-(-6)=43.
完全平方公式的常见变形:
应用:
完全平方公式的应用
①用于简便运算时,关键是找到与原数接近的类似整十、整百的数,再将原数变形成(a+b)2 或者(a−b)2 的形式,使之符合公式的特点,再用完全平方公式进行求解.
②对于两个三项式相乘的式子,可将相同的项或互为相反数的项添括号视为一个整体,转化成平方差公式的形式,再利用平方差公式和完全平方公式进行计算.
=m2+2mn+n21=n源自2nm2+1看作一项
北师大版七年级下册数学教学设计:1.6.2 《完全平方公式》
北师大版七年级下册数学教学设计:1.6.2 《完全平方公式》一. 教材分析《完全平方公式》是北师大版七年级下册数学的一个重要内容。
本节课主要让学生掌握完全平方公式的推导过程及应用。
完全平方公式是初中学历阶段数学知识的重要组成部分,对于培养学生的运算能力、逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经掌握了有理数的运算、整式的乘法等基础知识,对于本节课的完全平方公式,他们需要将已有的知识进行迁移,从而理解并掌握完全平方公式。
学生在学习过程中,需要通过观察、思考、操作、交流等活动,体验完全平方公式的发现和探究过程,提高他们的数学素养。
三. 教学目标1.让学生掌握完全平方公式的推导过程及应用。
2.培养学生观察、思考、操作、交流等能力,提高他们的数学素养。
3.激发学生学习数学的兴趣,培养他们克服困难的信心。
四. 教学重难点1.完全平方公式的推导过程。
2.完全平方公式的应用。
五. 教学方法1.引导发现法:教师引导学生观察、思考、操作、交流,让学生自主发现完全平方公式的推导过程。
2.实例讲解法:教师通过具体的例子,讲解完全平方公式的应用,让学生在实践中掌握知识。
六. 教学准备1.课件:制作课件,展示完全平方公式的推导过程及应用。
2.练习题:准备一些练习题,用于巩固学生对完全平方公式的掌握。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾已学的有理数运算、整式乘法等知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师利用课件,展示完全平方公式的推导过程。
引导学生观察、思考,让学生自主发现完全平方公式的规律。
3.操练(15分钟)教师给出一些具体的例子,让学生运用完全平方公式进行计算。
教师引导学生操作,并及时给予反馈,纠正学生的错误。
4.巩固(10分钟)教师布置一些练习题,让学生独立完成。
教师及时批改,并对学生的错误进行讲解,帮助学生巩固完全平方公式的应用。
5.拓展(10分钟)教师提出一些拓展问题,引导学生运用完全平方公式进行解决。
北师大版七年级下册数学教学设计:1.6.1《 完全平方公式》
北师大版七年级下册数学教学设计:1.6.1《完全平方公式》一. 教材分析《完全平方公式》是北师大版七年级下册数学的一个重要内容。
本节课的主要内容是完全平方公式的探究和应用。
完全平方公式是代数中一个重要的公式,它在解决二次方程、二次函数等方面有广泛的应用。
本节课通过引导学生探究完全平方公式的形成过程,让学生理解并掌握完全平方公式的结构特征和应用方法。
二. 学情分析学生在七年级上学期已经学习了有理数的乘法、平方根等概念,对代数有一定的认识。
但是,对于完全平方公式的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知基础,通过引导学生的探究活动,帮助学生理解和掌握完全平方公式。
三. 教学目标1.理解完全平方公式的结构特征和形成过程。
2.能够运用完全平方公式解决相关问题。
3.培养学生的探究能力和合作精神。
四. 教学重难点1.完全平方公式的形成过程和结构特征。
2.完全平方公式的应用。
五. 教学方法1.引导探究法:通过学生的探究活动,引导学生发现完全平方公式的形成过程和结构特征。
2.案例分析法:通过具体的例子,让学生理解并掌握完全平方公式的应用方法。
3.合作学习法:鼓励学生进行小组合作,共同解决问题。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示完全平方公式的形成过程和应用例子。
2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾上节课所学的内容,如平方根的概念。
然后,教师提出本节课的学习目标,引出完全平方公式的探究。
2.呈现(10分钟)教师通过PPT展示完全平方公式的形成过程,引导学生观察和思考完全平方公式的结构特征。
同时,教师可以给出一些例子,让学生尝试运用完全平方公式进行计算。
3.操练(10分钟)教师给出一些练习题,让学生独立完成。
学生在完成练习题的过程中,巩固对完全平方公式的理解和应用。
教师可以在课堂上进行解答和讲解,帮助学生纠正错误和解决疑惑。
北师大版七年级数学下册1.完全平方公式第二课时优秀教学案例
(一)情景创设
为了激发学生的学习兴趣和主动性,我将在教学过程中创设情境,让学生在实际情境中感受和理解完全平方公式的应用。例如,我可以设计一些实际问题,如几何问题、物理问题等,让学生在解决实际问题的过程中自然地引入完全平方公式,从而激发他们的学习兴趣和主动性。
(二)问题导向
在教学过程中,我将采用问题导向的教学方法,引导学生通过观察、分析、归纳和推理等数学活动,自主地探索完全平方公式的内涵和外延。我会提出一系列问题,引导学生思考和探究,从而促进他们深入理解完全平方公式的本质特征。
二、教学目标
(一)知识与技能
本节课的教学目标之一是让学生深入理解完全平方公式的内涵和外延,掌握完全平方公式的推导过程和证明方法。通过观察、分析、归纳和推理等数学活动,引导学生理解完全平方公式的本质特征,提高他们在实际问题中运用完全平方公式的能力。此外,我还希望学生能够通过本节课的学习,提高他们的数学解题能力,培养他们的逻辑思维能力和创新能力。
(二)过程与方法
在本节课的教学过程中,我将注重启发学生思考,引导学生通过观察、分析、归纳和推理等数学活动,深入理解完全平方公式的本质特征。我还将设计一系列具有针对性的练习题,让学生在实践中掌握完全平方公式的应用技巧,提高他们的数学解题能力。此外,我将运用多媒体教学手段,如PPT、数学软件等,以直观、生动的方式展示完全平方公式的推导过程和应用实例,激发学生的学习兴趣,帮助他们更好地理解和掌握完全平方公式。
(五)作业小结
在总结归纳后,我将布置一些作业,让学生在课后巩固所学知识。作业将包括一些练习题和思考题,以培养学生的数学解题能力和创新思维。在作业中,我会强调完全平方公式的应用,鼓励学生在解决实际问题中灵活运用所学知识。同时,我还会要求学生在课后进行自我反思和评价,总结自己的学习成果和不足之处,为下一节课的学习做好准备。
《完全平方公式》北师大版七年级数学-教学教案
经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平方公式的运用。
二、教学过程:1.检查学生的“预习知识树”,导入课题:师:前面学习了平方差公式,同学们对平方差公式的结构特点、运用以及学习公式的意义有了初步的认识。
今天,我们继续学习、研究另一种“乘法公式”——完全平方公式。
请拿出你的“预习知识树”,小组内互查并交流,在预习中有疑问的同学请询问。
(活动:老师巡视、检查学生的预习情况,并解答学生在预习中存在的问题)生:(互查、讨论“预习知识树”,有问题的询问问题。
)师:(老师点评学生预习情况,并出示老师做的“知识树”,引出课题:完全平方公式。
)说明:把预习提到课前,利用“知识树”引导学生自学,学生可以独立思考、自主学习,也可合作交流、讨论研究,这样预习会更充分,听讲时就能有准备、有选择;一上课,老师就检查“预习知识树”,了解学生新课学习情况,适当点拨,在课堂上留出更多的时间大量拓展、提高,发展学生的能力。
2.自学检测,制造通用工具:师:下面进行自学检测.计算:⑴(x+3)2;⑵(2x-5)2;⑶(mn+t)2;⑷(-4x+y2)2。
(活动:投影显示练习题。
)生:(四人到黑板上板演,答错了,由学生纠正,老师再点评。
)师:观察练习,公式中的a、b可代表什么?生:可以表示一个数,也可以表示一个单项式、多项式。
说明:点评时,老师反复引导学生分清题目中哪部分相当于公式中的a,哪部分相当于公式中的b,就是让学生明确“公式中的a、b可表示数,也可表示一个单项式、多项式或其他的式子”的变化规律,即制造通用工具。
在前面学习平方差公式时,学生应该认识到这个道理,在这里再次强化。
师:说得非常好,明确“公式中的a、b可以表示一个数,也可以表示一个单项式、多项式”的变化规律,就能正确运用公式解题了。
新北师大版七年级数学下册《完全平方公式(2)》教案
第一章 整式的乘除第6节 完全平方公式教学过程一 引导回顾 搭建桥梁[师]同学们,我们已经学完了完全平方公式,那么什么是完全平方公式?学生默写,找几个学生回答.学生活动:(提问学生积极回答问题,下边学生默写.)[生1]首平方,尾平方,2倍乘积加减放中央.[生2]2222)(b ab a b a ++=+ ; 2222)(b ab a b a +-=-.[师]很好,利用公式完成下面的题目:(1) 2)2(y x + ; (2)2)32(y x +-;(3) 2)32(y x --; (4) 2)31(a - .学生活动:(同学们积极回答问题,学生板演,运用完全平方公式完成4道题.) [生1]答案为(1)224y x +;(2) 2294y x +;[生2]答案为 (3) 229124y xy x ++;(4) 2961a a +-.[师]大家看做的好不好?[生1]第一个学生做错了,他忘了完全平方公式展开的是三项的,他漏掉了中间的二倍的乘积这一项.[师]很好.同学们平时做题的时候一定要注意展开的项数.今天我们来进一步学习完全平方公式的应用.(导入新课,师板书课题.)(设计意图:本堂课的学习方向首先仍是对于完全平方公式的进一步巩固应用,因而复习是很有必要的,这为后面的学习奠定了一定的基础.)二 新课讲解1自主探究:[师]如果没有计算器,我们该怎样计算2102, 2197更简单呢?给同学们两分钟时间独立思考.[生1]可以直接用102102⨯,197197⨯这样算出来。
[生2]可以把2102看做()22100+,运用完全平方公式展开.同样可以把2197看做()23200-,再运用完全平方公式展开. [师]很好.同学们的思维很敏捷.那同学们观察一下哪个同学的做法简便呀? [生1]第二个学生的做法简便.[师]那同学们尝试把第二种做法写下来,找两个学生黑板板演.[生1]2102=()22100+=21002221002+⨯⨯+10404440010000=++=.[生2]2197=()23200-38809912004000033200220022=+-=+⨯⨯-=. [师]写的非常好,和你对比一下,看谁写的更好?(教师对每位答案正确的学生都给予积极的评价和鼓励,如:好!很棒!这位同学思维敏捷!很扎实等,进一步调动学生的积极性.)(设计意图:能够运用完全平方公式进行一些有关数的简便运算, 进一步体会完全平方公式在实际当中的应用.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.) 2合作探究:[师]你们能不能利用已经学完的平方差公式和完全平方公式来解决下面的几道题?例2 计算:(1)22)3(x x -+;(2))3(++b a )3(-+b a ; (3) ()()32)5(2---+x x x . [师]同学们,你们选一道题老师来解决.(学生选择了第二题)[师]解:)3(++b a )3(-+b a=()[]3++b a ()[]3-+b a=223)(-+b a=9222-++b ab a .[生1]解:22)3(x x -+=2296x x x -++=96+x .[生2] ()()32)5(2---+x x x=()65251022+--++x x x x=65251022-+-++x x x x=1915+x .[师]步骤写的非常好.大家来观察一下第一题还有别的解题方法吗?学生活动:(学生分组讨论,不容易想到借助逆向使用平方差公式来进行计算,教师巡视引导.)[生3]解:22)3(x x -+=)3(x x -+)3(x x ++=()323+x=96+x .(设计意图:使学生进一步熟悉乘法公式的运用, 同时进一步体会完全平方公式中字母 a, b 的含义是很广泛的,它可以是数,也可以是整式,并且在解题过程中体会解题前观察与思考的重要性,学会一题多解情况下的优化选择,并通过例题中的第二个题目体会整体思想, 同时渗透添加括号的思想.)3巩固训练:[师]同学们做的很好,我相信下面的题同学们做得会更好,3分钟完成巩固练习. 计算:(1)296; (2))3(+-b a )3(--b a ;(3) ()221)1(--+ab ab ; (4) ()()()312)2(-+-+-x x x x . 学生活动:(学生自主完成4道题,对于第三题学生习惯先用完全平方公式展开,再合并,较少一部分学生采用平方差公式来做.几个学生黑板板演,有不同做法的黑板展示.)(设计意图:通过学生板演做题过程,展示自己的能力.进一步加深学生对完全平方公式和平方差公式的综合应用.)三 合作交流有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果招待他们, 来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个, 就给每人三块糖,…… 第一天有a 个孩子一起去了老人家, 第二天有b 个孩子一起去了老人家, 第三天有)(b a +个孩子一起去看老人,那么第三天老人给出去的糖果和前两天给出去的糖果总数一样多吗?[师]请你用所学的公式解释自己的结论.(设计意图:数学源自于生活,通过生活当中的一个有趣的分糖场景,使学生进一步巩 固了2222)(b ab a b a ++=+,同时帮助学生进一步理解了2)(b a + 与22b a + 的关系,同时通过教师提示用所学的公式解释,降低了难度.再通过自主探究和交流学到了新的知识,巩固了旧的知识,学生的学习积极性和主动性得到大大的激发.)四 课堂小结与收获共享本节课你学会了什么?谈谈你的感想.[生1]主要学习了利用完全平方公式进行一些数的简便运算,还有把完全平方公式和平方差公式结合起来进行运算.[生2]还学习了2)(b a +与22b a +的关系,知道了两者之间并不是相等的. [生3]这节课主要学习了完全平方公式的一些应用,包括一些较大数的平方怎样做,完全平方公式和平方差公式的综合应用,以及学习了2)(b a +与22b a +的联系,它们之间是不等的.[师]总结的非常好.我们在平时做题时一定要多总结.(设计意图:让学生自己进行总结完成,互相补充交流,从而达到对本节课的回顾与整理,让学生不仅把所学的知识进行梳理,同时锻炼学生的归纳能力和语言表达,分享成功与收获,增强学生间的团结和互助精神.)[师]最后,我想知道大家这节课知识的落实情况,请大家完成下面的自我检测题.五 达标检测A 级选择题1.下列等式能成立的是( ).A. 222)(b ab a b a +-=-B. 2229)3(b a b a +=+C. 2222)(b ab a b a ++=+D. ()99)9(2-=-+x x x2.()223)3(b a b a +-+计算的结果是( ). A.2)(8b a - B.2)(8b a +C.2288a b -D.2288b a -计算3.2998 ;4.()2223)23(b a b a --+ . B 级5.-+2)(b a ( )()2b a -=; 6.()123)123(22+++-a a a a = .六 拓展延伸C 级7.证明:()225)9(+--m m 是28的倍数,其中m 为整数.(提示:只要将原式化简后各项均能被28整除)(设计意图:这部分一共设置了三个等级,满足了不同程度的学生.让不同程度的学生对本节课都有收获.A 级部分采用边做边改的方式解决,较为简单,巩固了本节知识点.B 级主要是完全平方公式和平方差公式的变形训练,采用小组合作交流的方式解决.C 级作为选作题,让程度较好的学生课下思考.)七 布置作业1 必做题:课本27页 习题 1、32 选做题:课本27页 2、4(设计意图:复习巩固检测本节知识训练提高运算技能和解决问题的能力.分为必做题与选做题,让不同的学生得到不同的发展,体会到不一样的成功.)八板书设计九教学反思本节课让学生从复习完全平方公式入手,使学生从数的运算过渡到算式的计算,来进一步理解完全平方公式和平方差公式的综合应用.学生在这一部分对于数来说很简单,但是对于两个公式的综合应用,学生存在一定的难度,特别是一题多解的题,学生对方法还不是很熟练.接着又让学生亲身经历将老人分糖的实际问题抽象成数学模型并进行解释和应用的过程,进而使学生获得对完全平方公式的理解.在整个新课的教学中,主要是给学生“动脑想,动手写,会观察,齐讨论,得结论”的学习方法,让学生这样做,增加了学生的参与机会,增强了参与意识,教给了学生获取公式的途径,采用小组合作方式,使学生真正成为教学的主体;这样做,使学生“学”有所“思”,“思”有所“得”.本节课的不足之处:让学生说的少,下一步应在培养学生的语言表达能力上努力.。
北师大版数学七年级下册1.6.2完全平方公式优秀教学案例
1.培养学生对数学的兴趣和热情,激发学生主动学习的动机。
2.培养学生勇于探究、善于发现的精神,增强学生的自信心。
3.通过数学学习,培养学生严谨、细致的学习态度,提高学生的责任心。
4.使学生认识到数学在生活中的重要作用,培养学生的数学素养,为学生的终身发展奠定基础。
在教学过程中,教师应关注学生的全面发展,将知识与技能、过程与方法、情感态度与价值观有机地结合起来,以提高学生的数学素养为目标,为学生的未来发展提供有力支持。通过本章节的学习,使学生不仅在知识与技能上得到提升,还能在情感态度与价值观上获得全面发展。
三、教学策略
(一)情景创设
为了让学生更好地理解和掌握完全平方公式,教师应结合学生的生活实际,创设富有启发性的教学情境。例如,可以引用面积为1的正方形分割成四个相同的小正方形,通过提问“如何用代数式表示这个过程?”引导学生观察、思考,激发学生的学习兴趣。通过情境创设,让学生感受到数学与生活的紧密联系,提高学生学习数学的积极性。
(五)作业小结
1.教师布置作业,包括基础题、提高题和应用题,涵盖完全平方公式的各个方面,让学生巩固所学知识。
2.学生完成作业后,教师及时批改,给予反馈,帮助学生找到自己的不足,提高解题能力。
3.教师针对作业中存在的问题,进行针对性的辅导,确保每位学生都能掌握完全平方公式。
五、案例亮点
1.生活情境的巧妙融入
3.各小组汇报讨论成果,教师给予点评,总结完全平方公式的应用方法和技巧。
(四)总结归纳
1.教师带领学生回顾本节课所学内容,总结完全平方公式的推导过程、结构特点和应用方法。
2.教师强调完全平方公式在解决实际问题中的重要性,提醒学生要熟练掌握。
3.学生分享学习心得,交流学习过程中遇到的困难和解决方法,共同提高。
北师大版数学七年级下册 1.6.1 完全平方公式的认识 教案设计
《完全平方公式》教案一.教学目标知识与技能:1.经理探索完全平方公式的过程,进一步发展符号感和推理能力;2.会推到完全平方公式,并能运用公式进行简单的计算。
过程与方法:在探索讨论、归纳总结中培养学生的语言表达能力和逻辑思维能力。
情感态度与价值观:培养学生在独立思考的基础上,积极参与对数学问题的探讨并敢于表达自己的观点二.教学重难点重点:体会完全平方公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。
难点:判别要计算的代数式是哪两个数的和(或差)的平方。
三.教(学)具:多媒体课件。
四.教学过程:1、创设情景,导入新知创设情境:有一个边长为a米的正方形试验田,因其需要需要扩建,要求将其边长增加b米,形成四块种植不同品种的试验田。
试问这个正方形试验田的面积有多大?设计意图:从现实生活中的数学情景出发,培养学生对数学的热爱和运用数学的能力。
要求:用不同的形式表示试验田的总面积,并进行比较.你发现了什么?可用填空形式引导:⑴四块面积分别为:______、______、______、______;⑵两种形式表示广场的总面积:①整体看:边长为______的大正方形,S=__________;②部分看:四块面积的和,S=____________________。
在学生探究出2222)(b ab a b a ++=+的基础上,提问:你能用多项式乘法法则说明理由吗?设计意图:学生运用多项式乘法法则推导出2222)(b ab a b a ++=+并说出每一步运算的道理。
学生在直观认识的基础上,从代数角度推导公式,可以培养学生的逻辑推理能力。
(两种思路:利用图形方法、利用多项式乘法)在学生探究出的基础上,提问:你能用多项式乘法法则说明2222)(b ab a b a +-=-成立的理由吗?设计意图:通过实际操作,鼓励学生经历观察、操作、交流等过程,培养学生的自主探究的学习习惯。
鼓励学生自己探索,鼓励算法多样化,尤其是对22)]([)(b a b a -+=-这种用已获得的知识来解决问题的方法,渗透了转化的数学思想,应给予肯定。
北师大版七年级数学下册第一章《完全平方公式》优质公开课课件 (2)
=(
)
(a+b)2=a2+2ab+b2, (a -b)2 =a2-2ab+b
例1.运用完全平方公计算⑴(x+2y)2,⑵(x-2y)2
( a+ b)2=a2+2 a b+ b2
解: ⑴ (x+2y)2=x2+ 2·x·2y + (2y)2 =x2+4xy+4y2
(a - b )2 =a2 - 2 a b + b2
又∵a+b=5,ab=4,∴(a+b)2=25;2ab=8
∴a2+b2=(a+b)2-2ab
=25-8
∴
=17
你能算出(a-b)2的值吗?
• 4题答案:
• (1) (y-6)²=y²-2y×6+6²=y²-12y+36 • (2) (-1+½y) ²=(-1) ²+2×(-1)(½y)+ (½y) ²
• 10、阅读一切好书如同和过去最杰出的人谈话。2021/7/292021/7/292021/7/297/29/2021 7:22:45 AM
• 11、一个好的教师,是一个懂得心理学和教育学的人。2021/7/292021/7/292021/7/29Jul-2129-Jul-21
• 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/7/292021/7/292021/7/29Thursday, July 29, 2021
猜想 (a+b)2= a2+2ab+b2 (a -b)2= a2 - 2ab+b2
你能证明你的猜想吗? 动手算一算
《完全平方公式》 (第2课时)示范公开课教学设计【北师大版七年级数学下册】
第一章整式的乘除1.6完全平方公式(2)教学设计一、教学目标1.通过有趣的分糖情景,使学生进一步巩固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.2.运用完全平方公式进行一些有关数的简便运算,提高最基本的运算技能.3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.二、教学重点及难点重点:1.巩固完全平方公式,区分(a+b)2与a2+b2的关系.2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.难点:熟练乘法公式的运用,体会公式中字母a、b的广泛含义.三、教学准备多媒体课件四、相关资源相关图片五、教学过程【复习回顾】一个正方形的边长为a厘米,减少2厘米后,这个正方形的面积减少了多少平方厘米?提示:原来正方形的面积为a2平方厘米,边长减少2厘米后的正方形的面积为(a-2)2平方厘米,所以这个正方形的面积减少了a2-(a-2)2平方厘米,因为a2-(a-2)2=a2-(a2-4a+4)=a2-a2+4a-4=4a-4,所以面积减少了(4a-4)平方厘米.设计意图:解决问题的过程中我们用到了完全平方公式,这节课我们继续探究巩固完全平方公式的应用.【问题情境】老师给学生出了两道抢答题,看哪个学生做的快:1.1022=?2.1972=?老师题目刚在黑板上写完,就立刻有一个学生刷地站起来抢答说:“第一题等于10404,第二题等于38809.”其速度之快,简直就是脱口而出.同学们,你知道他是如何计算的吗?这其中的奥秘,其实我们已经接触过了,通过本节课的学习我们都能这位同学一样聪明,能够迅速得到结果,我们今天来探究原因.设计意图:通过速算问题情境创设,引发学生学习的兴趣,同时激发了学生的好奇心和求知欲,顺利引入新课.【探究新知】活动1.怎样计算1022,1972更简便呢?你是怎样做的?与同伴进行交流.提示:由前面学习平方差公式的应用,就联想能不能用完全平方公式计算呢? 把1022改写成(a+b)2还是(a−b)2?于是1022 =(100+2)2=1002+2×100×2+22=1000+400+4=104041972 =(200-3)2=2002-2×200×3+32=4000-1200+9=38809由此联想到:靠近10的整数次幂的数的平方,可以借助完全平方式进行快速运算.用字母表示为:设这个自然数为a,与它相邻的两个自然数为a-1,a+1,则有:(a-1)2 =a2-2a+1,(a+1)2 =a2+2a+1.设计意图:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.活动2.老人分糖有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一块去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?分析:根据题意,可知:第一天有a个男孩去了老人家,老人给每个孩子发a块糖,所以一共发了a2块糖.第二天有b个女孩去了老人家,老人给每个孩子发b块糖,所以一共发了b2块糖.第三天有(a+b)个孩子去了老人家,老人给每个孩子发(a+b)块糖,所以一共发了(a+b)2块糖.前两天他们得到的糖果总数是(a2+b2)块,因为(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.由于a>0,b>0,所以2ab>0.由此可知这些孩子第三天得到的糖果数比前两天他们得到的糖果总数要多,多2ab块糖果.讨论:为什么会多出2ab块糖果呢?下面讨论多出2ab块糖的原因:对于a个男孩来说,每个男孩第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.设计意图:通过此游戏充分说明了(a+b)2与a2+b2的关系,即(a+b)2≠a2+b2.【典型例题】例1.计算:(1) (x+3)2- x2 (2) (a+b+3)(a+b-3)(3)(x+5)2–(x-2)(x-3)解: (1)(x+3)2-x2=x2+6x+9-x2=6x+9(2)(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9(3)(x+5)2–(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19设计意图:通过此例可以发现运用完全平方公式进行一些有关数的运算会很简便,也更进一步体会到符号运算对解决问题的作用.例2.利用完全平方公式计算:(1)2)32(x -;(2)2)42(a ab +;(3)2)221(b am -.解:(1)22229124)3(3222)32(x x x x x +-=+⨯⨯-=-;(2)222222216164)4(422)2()42(a b a b a a a ab ab a ab ++=+⨯⨯+=+;(3)22224241)221(b amb m a b am +-=-. 设计意图:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现223124)32(x x x +-=-的错误.例3.(1)若a 2+b 2=2,a +b =1,则ab 的值为( )BA .-1B .-12C .-32D .3 (2)已知x -y =4,xy =12,则x 2+y 2的值是( )BA .28B .40C .26D .25例4.(1)(a -b )2+________=(a +b )2,x 2+21x+__________=(x -_____)2.4ab ,2,1x (2)如果a 2+ma +9是一个完全平方式,那么m =_________.±6例5.计算:(1)2)13(-a ;(2)2)32(y x +-;(3)2)3(y x --. 解:(1)2221132)3()13(+⋅⋅-=-a a a1692+-=a a(2)原式22)3(3)2(2)2(y y x x +⋅-⋅+-=229124y xy x +-=或原式=2)23(x y -22)2(232)3(x x y y +⋅⋅-=224129x xy y +-=(3)原式2)]3([y x +-=2)3(y x +=2232)3(y y x x +⋅⋅+=2269y xy x ++=或原式22)3(2)3(y y x x +⋅-⋅--=2269y xy x ++=设计意图:完全平方公式的灵活应用.例6. 用乘法公式计算:(1)20022(2) 20202-4040×2019+20192.解:(1) 原式=(2000+2)2=20002+2×2×2000+22=4000000+8000+4=4008004(2)原式=20202-2×2020×2019+20192=(2020-2019)2=12.例7.利用整式乘法公式计算:(a -b -3)(a -b +3)解:(a -b -3)(a -b +3)=[(a -b )-3][(a -b )+3]=(a -b )2-32=a 2-2ab +b 2-9设计意图:考查学生的计算能力,解题的关键是将各式化为平方差公式或者完全平方公式进行运算.【随堂练习】1.选择题(1)下列等式成立的是( )CA 、(a -b )2=a 2-ab +b 2B 、(a +3b )2=a 2+9b 2C 、(a +b )2=a 2+2ab +b 2D 、(x +9)(x -9)=x 2-9(2)(a +3b )2-(3a +b )2计算结果是( )CA .8(a -b )2B .8(a +b )2C .8b 2-8a 2D .8a 2-8b 2(3)(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( )BA .-25x 4-16y 4B .-25x 4+40x 2y 2-16y 4C .25x 4-16y 2D .25x 4-40x 2y 2+16y 4(4)运算结果为x 4y 2-2x 2y +1的是( )CA .(x 2y 2-1)2B .(x 2y +1)2C .(x 2y -1)2D .(-x 2y -1)22.填空题(1)(4a -b 2)2=_______________.16a 2-8ab 2+b 4(2)(-21m -1)2=________________.41m 2+m +1(3)(m +n +1)(1-m -n )=________________.1-m 2-2mn -n 2(4)(7a +A )2=49a 2-14ab 2+B ,则A =___________,B =________________.-b 2b 4(5)(a +2b )2-_____________=(a -2b )2.8ab3.已知,a +b =8,ab =24.求21(a 2+b 2)的值.8解:a 2+b 2=(a +b )2-2ab =64+48=16, ()2212a b +=8.4.已知x +x 1=4,求x 2+21x 的值.解:由x +x 1=4,得(x +x 1)2=16.x 2+2+21x =16.所以x 2+21x =16-2=14.5.已知:x 2-2x +y 2+6y +10=0,求x +y 的值.-2解:∵x 2-2x+1+y 2+6y+9=0, ∴(x-1)2+(y+3)2=0,∵x+1=0,y-3=0,∴x=-1,y=3.6. 利用完全平方公式进行计算:(1)2201;(2)299;(3)2)3130(解:(1)4040112002200)1200(201222=+⨯+=+=;(2)980111002100)1100(99222=+⨯-=-=.(3)2)3130(=222)31(3130230)3130(+⨯⨯+=+ .219209120900=++= 7.已知12,3-==+ab b a ,求下列各式的值.(1)22b a +;(2)22b ab a +-;(3)2)(b a -.解:(1)33249)12(232)(2222=+=-⨯-=-+=+ab b a b a(2)451233)12(33)(2222=+=--=-+=+-ab b a b ab a(3)ab b a b ab a b a 2)(2)(22222-+=+-=-572433)12(233=+=-⨯-=设计意图:结合学生情况进行综合练习,巩固完全平方公式的灵活应用. 六、课堂小结1. 完全平方公式的应用:(1)快速运算:靠近10的整数次幂的数的平方,可以借助完全平方式进行快速运算(2)通过实例,我更进一步体会到完全平方公式中的字母a ,b 的含义是很广泛的,它可以是数,也可以是整式.2.在有趣的分糖情景中,不仅巩固了完全平方公式,而且更进一步理解了(a +b )2与a 2+b 2的关系.设计意图:通过归纳总结,使学生熟练掌握完全平方公式,并能灵活地运用公式进行计算.七、板书设计。
完全平方公式(第二课时)课件 2022-2023学年北师大版数学七年级下册
A.2 cm2 B.2a cm2C.4a cm2 D.(a2﹣1) cm2
2.若(x+m)2=x2﹣6x+n,则m、n的值分别为( C )
A.3,9 B.3,﹣9 C.﹣3,9 D.﹣3,﹣9
ZYT
课堂检测
基础巩固题
3.利用完全平方公式计算:
(1) 0.982
(2) 10012
解:(1) 原式 = ( 1 − 0.02)2
的值.
解:因为a+b=7, 所以(a+b)2=49. 所以a2+b2=(a+b)2-2ab=49-2×10=29.
(a-b)2=a2+b2-2ab=29-2×10=9.
解题时常用结论: a2+b2=(a+b)2-2ab=(a-b)2+2ab; 4ab=(a+b)2-(a-b)2.
ZYT
典例精析
请你用所学的公式解释自己关于老人给糖果问题的结论. 第一天a个孩子,给出去的糖果a×a=a2. 第二天b个孩子,给出去的糖果b×b=b2. 第二天(a+b)个孩子,给出去的糖果 (a+b)2=a2+2ab+b2.
方法总结:要把其中两项看 成一个整体,再按照完全平 方公式进行计算.
ZYT
典例精析
例4 化简:(x-2y)(x2-4y2)(x+2y). 解:原式=(x-2y)(x+2y)(x2-4y2)
=(x2-4y2)2 =x4-8x2y2+16y4.
方法总结:先运用平方差公式,再运用完全平方公式.
典例精析 例4 已知a+b=7,ab=10,求a2+b2,(a-b)2
ZYT
课堂检测
能力提升题
3.若a﹣b=1,则代数式a2﹣b2﹣2b的值为1 .
【教案】完全平方公式北师大版数学七年级下册
1.6完全平方公式(第2课时)教学设计(选自七下第一章)一.教材分析:完全平方公式是对多项式乘法中出现的较为特殊的算式的一种归纳、总结。
通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用。
虽然本节课是完全平方公式的第二个课时,但其实也是对乘法公式及整式乘法运算的简单的综合运用。
是在学生已经经历了完全平方公式的探索和推导过程之后,并能够运用完全平方公式进行简单计算的基础上,是对完全平方公式的进一步巩固,并能将其运用到有关数的简便运算当中去.在运算中体会一些数学思想---整体思想、逆向思维等。
二.学情分析:学生通过上一节课的学习,已经经历了探索和推导完全平方公式的过程,并能运用公式进行简单的计算,同时通过前面的学习,学生已经基本掌握了整式的乘法运算,并能简单运用平方差公式和完全平方公式进行计算,这些知识的掌握为本节课的学习奠定了良好的知识技能基础.并且七年级学生已具备一定的逆向思维能力和自主学习的习惯,因此在教学中采取“目标导学,测练定教”的教学方式,让学生自主学习,合作交流,养成积极探索和及时归纳的习惯。
教师引导学习并点评总结。
三.教学任务分析:知识目标:1、进一步掌握完全平方公式。
2、灵活运用完全平方公式进行计算。
能力目标:能够运用完全平方公式解决简单的实际问题,并在活动当中培养学生数学建模的意识及应用数学解决实际问题的能力,感悟换元变换的思想方法,提高灵活应用乘法公式的能力,体会符号运算对解决问题的作用,进一步发展学生的符号感.情感目标:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
重点:运用完全平方公式进行一些数的简便运算。
难点:灵活运用平方差公式和完全平方公式进行整式的简便运算。
北师大版七年级下册1.6《完全平方公式》教案
北师大版七年级下册1.6《完全平方公式》教案《完全平方公式》教案一、教学目标【知识与技能】掌握完全平方公式,并能利用完全平方公式化简计算。
二、教学重难点【重点】完全平方公式。
【难点】完全平方公式的探究过程。
三、教学过程(一)复习旧知,导入新课1.两数和的平方.(a+b)2=(a+b)(a+b)=_______________=_________.2.两数差的平方.(a-b)2=(a-b)(a-b)=______________=____________.(二) 探究如图,最大正方形的面积可用两种形式表示:①______,②_________,由于这两个代数式表示同一块面积,所以应相等,即______= _________.(三) 归纳概括:(完全平方公式)(1) (a+b) 2 = a2+b2(2) (a-b)2=a2 - b2 . (3)(a-b)2=a2-2ab-b2. (七)、巩固训练1.已知x2+16x+k是完全平方式,则常数k等于( )(A)64 (B)48 (C)32 (D)16解析:选A.因为16x=2×x×8,所以这两个数是x,8,所以k=82=64.2.整式A与m2-2mn+n2的和是(m+n)2,则A=_____.解析:A=(m+n)2-(m2-2mn+n2)=4mn.3.计算:(1) (-m-n)2. (2) (-5a-2)(5a+2).解析:(1)(-m-n)2=(-m)2+2(-m)(-n)+(-n)2=m2+2mn+n2.(2)(-5a-2)(5a+2)=-(5a+2)(5a+2)=-(5a+2)2=-(25a2+20a+4)=-25a2-20a-4.(八)作业作业:课后练习并计算(a+b+c)2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章整式的乘除1.6完全平方公式(2)教学设计一、教学目标1.通过有趣的分糖情景,使学生进一步巩固(a+b)2=a2+2ab+b2,同时帮助学生进一步理解(a+b)2与a2+b2的关系.2.运用完全平方公式进行一些有关数的简便运算,提高最基本的运算技能.3.进一步熟悉乘法公式的运用,体会公式中字母的广泛含义,它可以是数,也可以是整式.二、教学重点及难点重点:1.巩固完全平方公式,区分(a+b)2与a2+b2的关系.2.熟悉乘法公式的运用,体会公式中字母a、b的广泛含义.难点:熟练乘法公式的运用,体会公式中字母a、b的广泛含义.三、教学准备多媒体课件四、相关资源相关图片五、教学过程【复习回顾】一个正方形的边长为a厘米,减少2厘米后,这个正方形的面积减少了多少平方厘米?提示:原来正方形的面积为a2平方厘米,边长减少2厘米后的正方形的面积为(a-2)2平方厘米,所以这个正方形的面积减少了a2-(a-2)2平方厘米,因为a2-(a-2)2=a2-(a2-4a+4)=a2-a2+4a-4=4a-4,所以面积减少了(4a-4)平方厘米.设计意图:解决问题的过程中我们用到了完全平方公式,这节课我们继续探究巩固完全平方公式的应用.【问题情境】老师给学生出了两道抢答题,看哪个学生做的快:1.1022=?2.1972=?老师题目刚在黑板上写完,就立刻有一个学生刷地站起来抢答说:“第一题等于10404,第二题等于38809.”其速度之快,简直就是脱口而出.同学们,你知道他是如何计算的吗?这其中的奥秘,其实我们已经接触过了,通过本节课的学习我们都能这位同学一样聪明,能够迅速得到结果,我们今天来探究原因.设计意图:通过速算问题情境创设,引发学生学习的兴趣,同时激发了学生的好奇心和求知欲,顺利引入新课.【探究新知】活动1.怎样计算1022,1972更简便呢?你是怎样做的?与同伴进行交流.提示:由前面学习平方差公式的应用,就联想能不能用完全平方公式计算呢? 把1022改写成(a+b)2还是(a−b)2?于是1022 =(100+2)2=1002+2×100×2+22=1000+400+4=104041972 =(200-3)2=2002-2×200×3+32=4000-1200+9=38809由此联想到:靠近10的整数次幂的数的平方,可以借助完全平方式进行快速运算.用字母表示为:设这个自然数为a,与它相邻的两个自然数为a-1,a+1,则有:(a-1)2 =a2-2a+1,(a+1)2 =a2+2a+1.设计意图:能够运用完全平方公式进行一些有关数的简便运算,进一步体会完全平方公式在实际当中的应用,并通过练习加以巩固.需要注意的是,本题的目的是进一步巩固完全平方公式,体会符号运算对解决问题的作用,不要在简便运算上做过多练习.活动2.老人分糖有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?(3)第三天有(a+b)个孩子一块去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?分析:根据题意,可知:第一天有a个男孩去了老人家,老人给每个孩子发a块糖,所以一共发了a2块糖.第二天有b个女孩去了老人家,老人给每个孩子发b块糖,所以一共发了b2块糖.第三天有(a+b)个孩子去了老人家,老人给每个孩子发(a+b)块糖,所以一共发了(a+b)2块糖.前两天他们得到的糖果总数是(a2+b2)块,因为(a+b)2-(a2+b2)=a2+2ab+b2-a2-b2=2ab.由于a>0,b>0,所以2ab>0.由此可知这些孩子第三天得到的糖果数比前两天他们得到的糖果总数要多,多2ab块糖果.讨论:为什么会多出2ab块糖果呢?下面讨论多出2ab块糖的原因:对于a个男孩来说,每个男孩第三天得到的糖果数是(a+b)块,每个男孩比第一天多b块,一共多了ab块;同理可知这b个女孩第三天得到的糖果总数比第二天也多了ab块.因此,这些孩子第三天得到的糖果数与前两天相比,共计多出了2ab块.设计意图:通过此游戏充分说明了(a+b)2与a2+b2的关系,即(a+b)2≠a2+b2.【典型例题】例1.计算:(1) (x+3)2- x2 (2) (a+b+3)(a+b-3)(3)(x+5)2–(x-2)(x-3)解: (1)(x+3)2-x2=x2+6x+9-x2=6x+9(2)(a+b+3)(a+b-3)=[(a+b)+3][(a+b)-3]=(a+b)2-32=a2+2ab+b2-9(3)(x+5)2–(x-2)(x-3)=(x2+10x+25)-(x2-5x+6)=x2+10x+25-x2+5x-6=15x+19设计意图:通过此例可以发现运用完全平方公式进行一些有关数的运算会很简便,也更进一步体会到符号运算对解决问题的作用.例2.利用完全平方公式计算:(1)2)32(x -;(2)2)42(a ab +;(3)2)221(b am -.解:(1)22229124)3(3222)32(x x x x x +-=+⨯⨯-=-;(2)222222216164)4(422)2()42(a b a b a a a ab ab a ab ++=+⨯⨯+=+;(3)22224241)221(b amb m a b am +-=-. 设计意图:(1)必须注意观察式子的特征,必须符合完全平方公式,才能应用该公式;(2)在进行两数和或两数差的平方时,应注意将两数分别平方,避免出现223124)32(x x x +-=-的错误.例3.(1)若a 2+b 2=2,a +b =1,则ab 的值为( )BA .-1B .-12C .-32D .3 (2)已知x -y =4,xy =12,则x 2+y 2的值是( )BA .28B .40C .26D .25例4.(1)(a -b )2+________=(a +b )2,x 2+21x+__________=(x -_____)2.4ab ,2,1x (2)如果a 2+ma +9是一个完全平方式,那么m =_________.±6例5.计算:(1)2)13(-a ;(2)2)32(y x +-;(3)2)3(y x --. 解:(1)2221132)3()13(+⋅⋅-=-a a a1692+-=a a(2)原式22)3(3)2(2)2(y y x x +⋅-⋅+-=229124y xy x +-=或原式=2)23(x y -22)2(232)3(x x y y +⋅⋅-=224129x xy y +-=(3)原式2)]3([y x +-=2)3(y x +=2232)3(y y x x +⋅⋅+=2269y xy x ++=或原式22)3(2)3(y y x x +⋅-⋅--=2269y xy x ++=设计意图:完全平方公式的灵活应用.例6. 用乘法公式计算:(1)20022(2) 20202-4040×2019+20192.解:(1) 原式=(2000+2)2=20002+2×2×2000+22=4000000+8000+4=4008004(2)原式=20202-2×2020×2019+20192=(2020-2019)2=12.例7.利用整式乘法公式计算:(a -b -3)(a -b +3)解:(a -b -3)(a -b +3)=[(a -b )-3][(a -b )+3]=(a -b )2-32=a 2-2ab +b 2-9设计意图:考查学生的计算能力,解题的关键是将各式化为平方差公式或者完全平方公式进行运算.【随堂练习】1.选择题(1)下列等式成立的是( )CA 、(a -b )2=a 2-ab +b 2B 、(a +3b )2=a 2+9b 2C 、(a +b )2=a 2+2ab +b 2D 、(x +9)(x -9)=x 2-9(2)(a +3b )2-(3a +b )2计算结果是( )CA .8(a -b )2B .8(a +b )2C .8b 2-8a 2D .8a 2-8b 2(3)(5x 2-4y 2)(-5x 2+4y 2)运算的结果是( )BA .-25x 4-16y 4B .-25x 4+40x 2y 2-16y 4C .25x 4-16y 2D .25x 4-40x 2y 2+16y 4(4)运算结果为x 4y 2-2x 2y +1的是( )CA .(x 2y 2-1)2B .(x 2y +1)2C .(x 2y -1)2D .(-x 2y -1)22.填空题(1)(4a -b 2)2=_______________.16a 2-8ab 2+b 4(2)(-21m -1)2=________________.41m 2+m +1(3)(m +n +1)(1-m -n )=________________.1-m 2-2mn -n 2(4)(7a +A )2=49a 2-14ab 2+B ,则A =___________,B =________________.-b 2b 4(5)(a +2b )2-_____________=(a -2b )2.8ab3.已知,a +b =8,ab =24.求21(a 2+b 2)的值.8解:a 2+b 2=(a +b )2-2ab =64+48=16, ()2212a b +=8.4.已知x +x 1=4,求x 2+21x 的值.解:由x +x 1=4,得(x +x 1)2=16.x 2+2+21x =16.所以x 2+21x =16-2=14.5.已知:x 2-2x +y 2+6y +10=0,求x +y 的值.-2解:∵x 2-2x+1+y 2+6y+9=0, ∴(x-1)2+(y+3)2=0,∵x+1=0,y-3=0,∴x=-1,y=3.6. 利用完全平方公式进行计算:(1)2201;(2)299;(3)2)3130(解:(1)4040112002200)1200(201222=+⨯+=+=;(2)980111002100)1100(99222=+⨯-=-=.(3)2)3130(=222)31(3130230)3130(+⨯⨯+=+ .219209120900=++= 7.已知12,3-==+ab b a ,求下列各式的值.(1)22b a +;(2)22b ab a +-;(3)2)(b a -.解:(1)33249)12(232)(2222=+=-⨯-=-+=+ab b a b a(2)451233)12(33)(2222=+=--=-+=+-ab b a b ab a(3)ab b a b ab a b a 2)(2)(22222-+=+-=-572433)12(233=+=-⨯-=设计意图:结合学生情况进行综合练习,巩固完全平方公式的灵活应用. 六、课堂小结1. 完全平方公式的应用:(1)快速运算:靠近10的整数次幂的数的平方,可以借助完全平方式进行快速运算(2)通过实例,我更进一步体会到完全平方公式中的字母a ,b 的含义是很广泛的,它可以是数,也可以是整式.2.在有趣的分糖情景中,不仅巩固了完全平方公式,而且更进一步理解了(a +b )2与a 2+b 2的关系.设计意图:通过归纳总结,使学生熟练掌握完全平方公式,并能灵活地运用公式进行计算.七、板书设计。