1勾股定理综合应用(北师版八上数学培优版)
北师大版八年级数学上册:1.3《勾股定理的应用》教案
北师大版八年级数学上册:1.3《勾股定理的应用》教案一. 教材分析《勾股定理的应用》是北师大版八年级数学上册第一章第三节的内容。
本节课主要让学生掌握勾股定理在实际问题中的应用,培养学生的解决问题的能力。
教材通过引入古希腊数学家毕达哥拉斯的故事,引导学生探索直角三角形斜边与两直角边的关系,从而引入勾股定理。
学生通过观察、实验、猜想、验证等过程,体验数学的探索乐趣,提高解决问题的能力。
二. 学情分析学生在七年级已经学习了直角三角形的性质,对直角三角形的边长关系有一定了解。
但勾股定理的应用涉及实际问题,对学生来说是一个新的挑战。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,提高解决问题的能力。
3.培养学生的合作、交流、探究能力,体验数学探索的乐趣。
四. 教学重难点1.重难点:勾股定理的应用。
2.难点:如何将实际问题转化为勾股定理的形式,求解问题。
五. 教学方法1.采用问题驱动法,引导学生探究勾股定理的应用。
2.运用合作学习法,让学生在小组内讨论、交流,共同解决问题。
3.采用启发式教学法,教师提问、学生回答,激发学生的思维。
4.利用多媒体辅助教学,展示勾股定理的应用实例。
六. 教学准备1.准备相关课件、教学素材。
2.设计好教学问题,准备好答案。
3.安排好教学过程中的各个环节。
七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的动画故事,引导学生了解勾股定理的背景。
同时,提问学生:“你们认为直角三角形的斜边与两直角边有什么关系?”2.呈现(10分钟)教师提出一组实际问题,如:“一个直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
”让学生尝试解决。
学生在解决过程中,发现无法直接运用已知的直角三角形性质解决问题,从而引出勾股定理。
3.操练(10分钟)教师提出多个关于勾股定理的应用问题,让学生在小组内讨论、交流,共同解决。
新北师大版数学八年级上册同步培优练习全册全集
第一章勾股定理1探索勾股定理第1课时勾股定理知识点一认识勾股定理精练版P1我们可以通过求网格中大正方形的面积来探索勾股定理.在求正方形网格中大正方形的面积时,一般采用数格子和图形割补两种方法:数格子时,直接数出大正方形内部所包含的完整的小方格的个数,将不足一个方格的部分进行适当拼凑,拼出若干个完整的小方格,将它们相加即可;图形割补时,通常是将图形分割成几个格点三角形和几个网格正方形,再将所分割成的各三角形和网格正方形的面积求出来相加即可.勾股定理的定义:直角三角形两直角边的平方和等于斜边的平方.如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.例1如图①,在直角三角形外部作出3个正方形.(1)正方形A中含有________个小方格,即A的面积是________;(2)正方形B中含有________个小方格,即B的面积是________;(3)正方形C中含有________个小方格,即C的面积是________;(4)如果用S A,S B,S C分别表示正方形A,B,C的面积,那么它们之间的关系是:______________;(5)如图②中是否仍然存在着这样的关系?解析:通过观察、拼凑可以直接得出图中A,B,C三个正方形的面积及它们之间的关系,再按照同样的方法计算图②中几个正方形的面积,发现同样满足这个关系.解:(1)1616(2)99(3)2525(4)S A+S B=S C(5)图②中,S A′=1,S B′=9,S C′=10,所以仍然有S A′+S B′=S C′.知识点二勾股定理的简单应用精练版P11.已知直角三角形的两边求第三边.2.已知直角三角形的一边,确定另两边的关系.3.证明线段的平方关系.例2如图,学校有一块长方形花圃,有极少数人走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了________米的路,却踩伤了花草.解析:根据勾股定理求得AB的长,再进一步求得少走的路的米数,即(AC+BC)-AB.在Rt△ABC中,AB2=BC2+AC2,AC=3米,BC=4米,则AB=AC2+BC2=5米,所以他们仅仅少走了AC+BC-AB=4米.答案:4第2课时勾股定理的验证及其应用知识点一勾股定理的验证精练版P2勾股定理的证明方法较多,中外数学史上关于勾股定理的证明一般是用拼图法来验证的.一般步骤如下:拼出图形→找出图形面积的表达式→建立等量关系→恒等变形→推导出勾股定理.如图(1).因为S大正方形=4S三角形+S小正方形,所以(a+b)2=4×12ab+c2,所以a2+b2=c2.如图(2).因为S大正方形=4S三角形+S小正方形,所以c2=4×12ab+(b-a)2,所以c2=a2+b2.如图(3).因为S梯形=2S小三角形+S大三角形,所以12(a+b)(a+b)=2×12ab+12c2,整理,得a2+b2=c2.知识点二勾股定理的应用精练版P21.勾股定理揭示的是直角三角形三边之间的关系.如图,Rt△ABC中,∠C=90°,则斜边AB称为弦,较短直角边BC称为勾,较长直角边AC称为股,BC2+AC2=AB2.这就是勾股定理.2.应用勾股定理时要注意:(1)勾股定理成立的前提条件是“直角三角形”,在锐角三角形和钝角三角形中不存在这一结论.(2)应用勾股定理时应分清直角边与斜边.在一些Rt△ABC中,斜边未必是c.(3)应用勾股定理进行计算时,若没有明确直角边与斜边,应分类讨论.例1“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.6解析:观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.因为(a+b)2=21,所以a2+2ab+b2=21,因为大正方形的面积为13,2ab=21-13=8,所以小正方形的面积为13-8=5.故选C.答案:C易错点没有明确直角边和斜边用勾股定理时,若题目没有指明谁是斜边,应按未知边是斜边或是直角边两种情况分类讨论.例2在Rt△ABC中,AC=9,BC=12,求AB2.解:当AB 为斜边时,AB 2=AC 2+BC 2=225;当AB 为直角边时,AB 2=BC 2-AC 2=63.所以AB 2为225或63.注意:此题易错误地认为AB 2=225.原因是没有分清AB 边是直角边还是斜边,只是模糊地记住了勾股定理的原形,而没有注意到题目中并没有给出明确的条件.因此,对于此类问题我们应该分情况讨论.2 一定是直角三角形吗知识点一 勾股定理的逆定理精练版P3如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形.(此判别条件也称为勾股定理的逆定理) 利用三角形三边之间的数量关系判断一个三角形是不是直角三角形,把数与形有效地统一起来,体现了数形结合的数学思想.温馨提示:(1)在判别一个三角形是不是直角三角形时,a 2+b 2是否等于c 2需通过计算说明,不能直接写成a 2+b 2=c 2.(2)验证一个三角形是不是直角三角形的方法是:当(较小边长)2+(较大边长)2=(最大边长)2时,此三角形为直角三角形;否则,此三角形不是直角三角形.例1 判断由线段a ,b ,c 组成的三角形是否为直角三角形. (1)a =4,b =5,c =6; (2)a ∶b ∶c =3∶4∶5.解:(1)因为a 2+b 2=42+52=41,c 2=36,a 2+b 2≠c 2,所以由线段a ,b ,c 组成的三角形不是直角三角形. (2)设a =3k ,b =4k ,c =5k (k ≠0). 因为a 2+b 2=(3k )2+(4k )2=25k 2, c 2=(5k )2=25k 2, 所以a 2+b 2=c 2,所以由线段a ,b ,c 组成的三角形是直角三角形. 知识点二 勾股数精练版P3满足a 2+b 2=c 2的三个正整数,称为勾股数.常见的勾股数有:①3,4,5;②6,8,10;③8,15,17;④7,24,25;⑤5,12,13;⑥9,12,15;⑦9,40,41.勾股数有无数组.一组勾股数中,各数的相同整数倍得到一组新的勾股数,如:3,4,5是勾股数,9,12,15也是勾股数.温馨提示:勾股数必须都是正整数,如:0.3,0.4,0.5,尽管有0.32+0.42=0.52成立,但它们都是小数,因而不是勾股数.例2 判断下列各组数是不是勾股数:(1)3,4,7;(2)5,12,13;(3)13,14,15;(4)3,-4,5.解析:判断的时候,要紧扣两个条件:(1)是否符合a 2+b 2=c 2,即两个较小数的平方和是否等于最大数的平方;(2)它们是不是正整数.解:(1)因为32+42≠72,所以3,4,7不是勾股数.(2)因为52+122=132,所以5,12,13是勾股数.(3)中的各数都不是正整数,所以这组数不是勾股数.(4)虽然32+(-4)2=52,但-4不是正整数,所以这组数不是勾股数.注意:判断勾股数的方法步骤:(1)确定三个数是正整数;(2)确定出最大数;(3)计算较小两数的平方和是否等于最大数的平方.易错点运用边的关系识别直角三角形时,忽视最大边,从而造成判断错误运用直角三角形的判别条件判断一个三角形是否为直角三角形时,首先要确定最长边,不能盲目地计算或想当然地认为某一边为最长边.例3已知三角形的三边长分别是m2-1,2m,m2+1(m为大于1的自然数),试判断这个三角形的形状.解:因为(m2-1)2+(2m)2=m4-2m2+1+4m2=m4+2m2+1,(m2+1)2=m4+2m2+1,所以(m2-1)2+(2m)2=(m2+1)2,所以此三角形为直角三角形.注意:此题易认为2m为最大边,得到(m2-1)2+(m2+1)2≠(2m)2,从而得出三角形不是直角三角形的错误结论.在做此类题时,一定要找准最大边.3勾股定理的应用知识点一确定几何体上的最短路线精练版P5柱体和长方体的展开图是一个长方形.求柱体或长方体上两点之间最短距离,需要把柱体或长方体展开成平面图形,依据两点之间线段最短,以最短路线为边构造成直角三角形,再利用勾股定理求解.例1有一个圆柱形油罐,如图所示,要从A点环绕油罐建梯子,正好到A点的正上方B点,问梯子最短需要多长?(已知油罐的底面周长是12m,高AB是5m)解:将圆柱形油罐的侧面沿AB剪开展成一个平面图形,如图所示,沿AB′建梯子最节省材料(两点之间,线段最短).由已知得AB=5m,BB′=12m.在Rt△ABB′中,AB′2=AB2+BB′2=52+122=132(m2),所以AB′=13m.因此所建的梯子最短需要13m.注意:由于梯子要绕着曲面建,因此最短路线应将曲面展成平面后,再依据“两点之间,线段最短”来确定.知识点二利用勾股定理解决生活中的长度问题精练版P5由勾股定理的知识,可以解决与直角三角形相关的一些实际问题.在解决实际问题时,应具体问题具体分析,将生活中的问题转化为数学问题,利用勾股定理加以解决.勾股定理的逆定理主要用来说明一个三角形为直角三角形.在实际问题中,有些线段的求解、角的求解在很大程度上转化为在直角三角形内求解.因此,熟练地判断一个三角形是否为直角三角形是首先要解决的问题.例2小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度.解析:根据题意寻找出绳子长度与旗杆高度之间的关系,设未知数,利用勾股定理构造方程.解方程求得结论.解:设旗杆高x米,则绳长(x+1)米.依题意,得x2+52=(x+1)2,解得x=12.即旗杆的高度为12米.易错点将长方体展开时,忽视展开方式不唯一对长方体来说,由于一般情况下,长、宽、高不相等,则展开得到的距离也不相同,故对此问题应把可能出现的情况考虑全,分别计算,经过比较求出最短距离.例3有一个长方体纸盒,如图所示,小明所在数学小组研究由长方体的底面A点到长方体中与A点相对的B点的最短距离,若长方体的底面长为12,宽为9,高为5,请帮助该小组求出由A点到B点的最短距离.(参考数据:21.592≈466,19.242≈370,18.442≈340)解:将四边形ACDF与四边形DCEB展开在同一平面,如图(1)所示.在Rt△ABE中,由勾股定理,得AB2=AE2+BE2=(12+9)2+52=466;同理,由图(2),得AB2=AC2+BC2=122+(9+5)2=340;由图(3),得AB2=AD2+BD2=(12+5)2+92=370.因为340<370<466,所以最短距离为图(2)所示线段AB的长度,AB≈18.44.注意:解决长方体相对顶点表面最短距离问题,要全面考虑,先将所有路线都找出来,避免出现漏解,再通过计算找到最短路线.章末知识汇总类型一勾股定理与面积的综合应用例1已知△ABC是腰长为1的等腰直角三角形,以△ABC的斜边AC为直角边,画第二个等腰直角三角形ACD,再以△ACD的斜边AD为直角边,画第三个等腰直角三角形ADE,…,依此类推,第7个等腰直角三角形的面积是________,第n个等腰直角三角形的面积为________.解析:要求等腰直角三角形的面积,只需求腰长的平方即可.S1=12·AB·BC=12,由勾股定理得,AC2=AB2+BC2=2,AD2=AC2+DC2=2+2=4,AE2=AD2+DE2=4+4=8,所以S2=12·AC2=1,S3=12·AD2=2,S4=12·AE2=4.由此可得S7=25=32,S n=2n-2.答案:322n-2注意:等腰直角三角形的面积是腰长平方的一半,利用整体代换解决.整体代换是数学一种重要方法.类型二直角三角形判定方法的实际应用例2如图所示,点A是一个半径为400m的圆形森林公园的中心,在森林公园附近有B,C两个村庄,现要在B,C 两村庄之间修一条长为1000m的笔直公路将两村连通,经测量得AB=600m,AC=800m,问此公路是否会穿过该森林公园?请通过计算说明.解:因为AC2+AB2=8002+6002=10002=BC2,所以△ABC是直角三角形,且∠BAC=90°.过点A作AD⊥BC,垂足为D.如图所示.因为S△ABC=12×AB×AC=12×AD×BC,所以AD=AB×ACBC=600×8001000=480(m).因为480m>400m,所以此公路不会穿过该森林公园.注意:(1)根据“垂线段最短”只需计算最短距离.(2)求直角三角形斜边上的高经常用“等面积法”.类型三利用勾股定理解决实际生活中的最值问题例3如图,A,B两个小镇在河流l的同侧,到河的距离分别为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A,B两镇供水,铺设水管的费用为每千米3万元,请你在河流l上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?解:如图所示,作点A关于直线l的对称点A′,连接A′B,交CD于点M,点M即为所求.连接AM,则MA+MB最小.作A′E⊥BD交BD的延长线于点E.在直角三角形A′BE中,A′E=30千米,BE=BD+DE=BD+AC=40千米,由勾股定理A′B2=A′E2+BE2=302+402,所以A′B=50千米.所以MA+MB=A′M+BM=A′B=50千米,修管道的费用为50×3=150(万元).注意:(1)解决实际问题时,应将实际问题转化为数学问题,建立相应的数学模型.(2)费用最少即要求管道最短,问题便转化为“在直线CD同侧有两点A,B,试在CD上找一点M,使MA+MB最小”.探究中要把握问题的实质,注意问题的转化.第二章实数1认识无理数知识点一非有理数的存在精练版P9整数和分数统称为有理数.随着研究的深入,人们发现了不是有理数的数,比如面积为5的正方形的边长,设该正方形的边长为x,则x2=5,这里x既不是整数,也不是分数,也就是说没有一个有理数的平方是5,现实生活中存在着大量的不是有理数的数.例1以下各正方形的边长不是有理数的是()A.面积为49的正方形B.面积为916的正方形C.面积为8的正方形D.面积为1.21的正方形解析:可设边长为a(a>0),由A项得a2=49,49=72,所以a=7;由B项得a2=916,而916=⎝⎛⎭⎫342,所以a=34;由D项得a2=1.21,而1.21=1.12,所以a=1.1;由C项得a2=8,8不能写成一个整数或分数的平方.答案:C知识点二估计数值的大小精练版P9用x表示正方形的边长,若x2=2,则x既不是整数,也不是分数,我们可以用无限逼近的方法估计x的值,从而求出x的近似值.方法:因为1<2<4,所以1<x<2,即x的整数位是1.又因为1.42=1.96,1.52=2.25.而2在1.42与1.52之间,所以x的十分位上的数是4,用同样的方法可以确定其他数位上的数.例2已知直角三角形的两直角边长分别是9cm和5cm,斜边长是x cm.(1)估计x在哪两个整数之间.(2)如果把x的结果精确到十分位,估计x的值.如果精确到百分位呢?用计算器验证你的估计值.解析:此题首先根据勾股定理求出x2,再看x2的值介于哪两个完全平方数之间,其他数位依次类推.解:根据条件,得x2=92+52=106.(1)因为100<106<121,所以100<x2<121,所以10<x<11,即x在整数10和11之间.(2)因为10.292=105.8841,10.302=106.09,所以10.292<106<10.302,所以精确到十分位时,x≈10.3.又因为10.2952=105.987025,10.2962=106.007616,所以10.2952<106<10.2962,所以10.2952<x2<10.2962,所以精确到百分位时,x≈10.30.注意:本题采用了无限逼近的方法,即将x的范围逐渐缩小,使得x2越来越接近某个数,渗透了用有理数近似地表示无理数的思想.知识点三无理数的概念精练版P9无限不循环小数称为无理数.例如,圆周率π=3.14159265…是一个无限不循环小数,因此它是一个无理数.再如,0.989889888988889…(相邻两个9之间8的个数逐次加1)也是无理数.温馨提示:(1)无理数是一种与有理数不同的数,要区分“无限不循环小数”与“无限循环小数”的差别,前者不能化为分数,后者可以化为分数.事实上,有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数也都是有理数.(2)小数的分类:小数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫有限小数无限循环小数有理数无限不循环小数——无理数例3 227,0.2·03·,-π7,2.3131131113,-0.1010010001…(相邻两个1之间0的个数逐次加1)中无理数的个数是( )A .2个B .3个C .4个D .5个解析:-π7,-0.1010010001…(相邻两个1之间0的个数逐次加1)是无理数,227,0.2·03·,2.3131131113是有理数.答案:A注意:π是无限不循环小数,是无理数,-π7不是分数,是一个无理数.易错点 错把π当成有理数,把无限循环小数当成无理数 π是无理数,无理数除以非零有理数仍是无理数,无限循环小数为有理数,区别有理数与无理数时,应注意观察所给的数据. 例4 下列各数中,哪些是有理数?哪些是无理数?0.1010010001…(相邻两个1之间0的个数逐次加1),-119180,345.202·,π2.解:有理数:-119180,345.202·;无理数:0.1010010001…(相邻两个1之间0的个数逐次加1),π2.注意:学生很容易把π2看成有理数,以为它是分数,事实上,它是一个无理数.也很容易把345.202·看成无理数,错误原因是对无理数的概念认识不清,误以为无限小数都是无理数,事实上,只有无限小数中的无限不循环小数才是无理数.2 平方根知识点一 算术平方根的概念与性质精练版P11定义:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,记为a ,读作“根号a ”.温馨提示:(1)特别地,我们规定0的算术平方根是0,即0=0.(2)负数没有算术平方根,也就是说,当式子a 有意义时,a 一定表示一个非负数.(3)a (a ≥0)是一个非负数.例1 求下列各数的算术平方根:(1)400;(2)2536;(3)13.解析:因为求一个非负数的算术平方根的运算与正数的平方运算是互逆的,所以我们可以借助平方运算来求这些数的算术平方根.解:(1)因为202=400,所以400的算术平方根是20. (2)因为⎝⎛⎭⎫562=2536,所以2536的算术平方根是56. (3)13的算术平方根是13.注意:(1)在求a 的算术平方根时,若a 是有理数的平方,a 的算术平方根就不带根号;若a 不是有理数的平方,a 的算术平方根就带有根号,如13.(2)由于求一个非负数的算术平方根常借助于平方运算,所以熟记常用完全平方数对求一个数的算术平方根有着事半功倍的效果.知识点二 平方根的概念与性质精练版P111.定义:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根). 2.性质:一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根.温馨提示:一个正数a 必有两个平方根,一个是a 的算术平方根a ,另一个是-a ,它们互为相反数,这两个平方根合起来可以记作±a ,读作“正、负根号a ”.例2 判断下列各数是否有平方根.若有,求出其平方根;若没有,请说明理由. (1)169;(2)(-1)2;(3)(-1)3.解析:根据平方根的性质判断一个数是否有平方根;根据平方根的定义可直接化简求值. 解:(1)因为169>0,所以169有平方根.因为(±13)2=169,所以169的平方根是±13,即±169=±13. (2)因为(-1)2=1>0,所以(-1)2有平方根.因为(±1)2=1,所以1的平方根是±1,即±(-1)2=±1. (3)因为(-1)3=-1<0,所以(-1)3没有平方根.注意:判断一个数有没有平方根,就是确定该数的性质符号(是正数、负数或零). 知识点三 开平方精练版P11定义:求一个数a 的平方根的运算,叫做开平方,其中a 叫做被开方数.温馨提示:(1)开平方时,被开方数a 必须是非负数.(2)平方根是数,是开平方的结果;而开平方是一种运算,是求平方根的过程.(3)平方和开平方的关系是它们互为逆运算,可以用平方运算来检验开平方的结果是否正确.例3 (1)(16)2等于多少?(2)⎝⎛⎭⎫9252等于多少? (3)5.52等于多少? (4)(-2)2等于多少?解析:从算术平方根的定义出发,可直接推出结果. 解:(1)(16)2=42=16.(2)⎝⎛⎭⎫9252=⎝⎛⎭⎫352=925. (3)5.52=30.25=5.5. (4)(-2)2=4=2.P111.a 2=|a |,即当a ≥0时,a 2=a ,当a <0时,a 2=-a . 2.(a )2=a (a ≥0).温馨提示:(1)a 的取值范围不同,公式(1)中a 的取值可以是正数,可以是负数,也可以是0,而公式(2)中a 的取值是非负数.(2)运算顺序不同,公式(1)中a 先平方再开平方,而公式(2)中a 先开平方再平方. 例4 求下列各式的值:(1)(7)2;(2)(-7)2;(3)(2-x )2(x >2). 解析:对于a 2与(a )2(a ≥0)这两种形式要注意区分. 解:(1)(7)2=7.(2)(-7)2=|-7|=7.(3)因为x >2,所以 2-x <0,所以(2-x )2=|2-x |=-(2-x )=x -2. 注意:运用a 2=|a |化简时,一定要先判断出a 的符号,然后才能化简.易错点 不完全理解题意而出错若“算术平方根”和“平方根”两个概念出现在一个题中,或在同一题中两次出现同一概念,应注意进行两步运算.如:求16的平方根时,先要计算16=4,再求4的平方根.例536的算术平方根是________.解析:36=6,6的算术平方根是6,所以36的算术平方根是6. 答案:6注意:本题易将36的算术平方根误认为是36的算术平方根,而得到错误答案6.本题实际上是求6的算术平方根.3 立方根知识点一 立方根的概念与性质精练版P131.立方根的概念:一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根或三次方根,例如:53=125,则5是125的立方根.2.表示方法:数a的立方根用符号3a表示,读作“三次根号a”,其中a叫做被开方数,3是根指数.注意根指数“3”不能省略.3.立方根的性质:正数有一个正的立方根;负数有一个负的立方根;0的立方根是0.例1下列说法正确的是()A.64的立方根是2B.125216的立方根是±56C.(-1)2的立方根是-1D.-3是27的立方根解析:因为64=8,所以64的立方根是2,故A选项正确.任何数只有一个立方根,排除B选项.正数的立方根为正数,故排除C,D选项.答案:A知识点二开立方精练版P131.定义:求一个数a的立方根的运算叫做开立方,a叫做被开方数.开立方与立方互为逆运算.2.重要公式:①(3a)3=3a3=a;②3-a=-3a.运用这两个公式求负数的立方根时,可先求出这个负数的绝对值的立方根,然后再取它的相反数即可,即三次根号内的负号可以移到根号外面.例如:3-125=-3125=-5.例2求下列各数的立方根:(1)30.064;(2)3-27.解:(1)30.064=30.43=0.4.(2)3-27=3(-3)3=-3.知识点三立方根与平方根的区别与联系精练版P131.区别:(1)平方根的根指数是2,能省略,立方根的根指数是3,不能省略.(2)平方根只有对非负数才有意义,而立方根对任何数都有意义,且每个数都只有一个立方根.(3)正数的平方根有两个,而正数的立方根只有一个.2.联系:(1)都与相应的乘方运算互为逆运算.(2)都可归结为非负数的非负方根来研究,平方根主要通过算术平方根来研究,而负数的立方根也可转化为正数的立方根来研究,即3-a=-3a.例3一个数的平方等于64,则这个数的立方根是________.解析:因为(±8)2=64,所以这个数为±8,3±8=±2.答案:±2易错点错把3a的立方根当成a的立方根做开方运算时要认准被开方数,如求81的立方根,被开方数是81,而不是81.例4364的立方根是________.解析:因为364=4,所以364的立方根是34.答案:34注意:本题容易把364的立方根误以为是64的立方根,从而得错解为4,解题时应先求出364=4,再求4的立方根.4估算知识点一估算法确定无理数的大小精练版P171.估算是现实生活中一种常用的解决问题的方法.很多情况下需要去估算无理数的近似值,估算无理数经常用到“夹逼法”,即通过平方运算或立方运算,通过两边无限逼近,逐渐夹逼,确定其所在范围.2.“精确到”与“误差小于”的意义的区别:如精确到1m,是指四舍五入到个位,答案唯一;误差小于1m,答案在其值左右1m都符合题意,答案不唯一.一般情况下,误差小于1m就是估算到个位,误差小于10m就是估算到十位.例1870≈40正确吗?说明你的理由.解:因为402=1600>870,所以40>870,且差别太大,所以870≈40不正确.知识点二比较两个无理数的大小的方法精练版P171.估算法:用估算法比较两个数的大小,一般至少有一个是无理数,在比较大小时,一般先采用分析的方法,估算出无理数的大致范围,再作具体比较.例2比较10-34与14的大小.解:因为3<10<4,所以0<10-3<1,所以0<10-34<14.2.求差法:若a-b>0,则a>b;若a-b<0,则a<b.对于上例:因为10-34-14=10-44<0(因为3<10<4),所以10-34<14.3.平方法(或立方法):当比较两个带根号的无理数的大小时可用如下结论:若a>b≥0,则a>b;若a>b,则3a>3b.例3比较26和33的大小.解:因为(26)2=24,(33)2=27,所以26<33.易错点比较两个含根号的无理数的大小时,误认为只比较被开方数的大小比较两个含根号的无理数的大小,可以先确定它们的整数部分,进行比较,若无法比较,则再估计十分位后比较,直到得出结论为止.也可将两数同时平方,比较平方后的数的大小即可得出结果.例4 比较大小:27与72.解:因为2<7<3,所以4<27<6.因为72>7,所以27<72. [或(27)2=28,(72)2=98,28<98,即27<72]注意:解本题时易认为被开方数7大于2,而得到错误的答案27>72,因为2<7<3,1<2<2,所以27<6,72>7,即27<72.因此比较两个无理数的大小时要比较它们结果的大小,不能仅比较被开方数的大小.另外本题中2与7,7与2之间是乘积的关系.5 用计算器开方知识点一 利用计算器开方精练版P18 利用计算器开方按键顺序:用计算器开方⎩⎪⎪⎨⎪⎪⎧开平方⎩⎪⎨⎪⎧先按“□”键 再输入被开方数再按“=”键最后按“S ⇔D ”键开立方⎩⎨⎧先按“SHIFT ”键再按“□”键再输入被开方数最后按“=”键例1 用计算器求下列各式的值(结果精确到千分位).(1)3.1;(2)35. 解:(1)按键顺序:□3·1=S ⇔D ,显示1.760681…因为结果精确到千分位,所以答案为1.761. (2)按键顺序:SHIFT □5=,显示1.709976…因为结果精确到千分位,所以答案为1.710. 知识点二 利用计算器进行较复杂的计算精练版P18此类问题要注意根号下相乘除(或相加减)的按键顺序,切记“π”值的按键顺序. 例2 求5×6-π的值.解:按照教材中型号的计算器的按键顺序为□5×6⊳-SHIFT ×10x =,则5×6-π的值显示的结果为2.335632921.注意:使用计算器进行混合运算时,在运算过程中,要按照算式的书写顺序从左到右按键输入算式,不同的计算器按键顺序有所不同,如有的计算器按照□(5×6)-SHIFT EXP =的按键顺序显示2.335632921,按此方法按键要注意该加括号时加括号.易错点 在求和、差、积、商的算术平方根或立方根时易出错在用计算器求和、差、积、商的算术平方根或立方根时,要注意按键顺序,在不同型号的计算器中按键顺序有所不同,有的要注意括号的作用,按键时要加括号.例3 用计算器求7+1的值.(精确到千分位) 解:按键:□(7+1)=S ⇔D ,显示2.828427125,精确到千分位是2.828.注意:在求“和、差、积、商”的算术平方根、立方根时,特别容易出现错误,不同型号的计算器使用时按键顺序不同,有的容易漏掉括号等导致答案错误.6 实 数知识点一 实数的概念及分类精练版P19 1.实数的概念:有理数和无理数统称为实数.2.实数的分类⎩⎪⎪⎪⎨⎪⎪⎪⎧按定义分⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数有限小数和无限循环小数无理数→无限不循环小数按大小分⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数正无理数零负实数⎩⎪⎨⎪⎧负有理数⎩⎪⎨⎪⎧负整数负分数负无理数例1 有一个数值转换器,原理如图,当输入的x 为64时,输出的y 是( )A .8B .8C .64D .3解析:输入64,则输出64=8,8是有理数,第二次输入8.输出8,8是无理数.故选B .。
1.3.1 勾股定理的应用 北师大版八年级数学上册培优练(含答案)
专题1.3勾股定理的应用姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•达川区校级月考)如图,原来从A村到B村,需要沿路A→C→B(∠C=90°)绕过村庄间的一座大山.打通A,B间的隧道后,就可直接从A村到B村.已知,AC=12km,BC=16km,那么,打通隧道后从A村到B村比原来减少的路程为( )A.5km B.8km C.10km D.20km【分析】直接利用勾股定理得出AB的长,进而得出答案.【解析】由题意可得:AB²=AC2+BC2=122+162=400(km),AB=20km,则打通隧道后从A村到B村比原来减少的路程为:12+16﹣20=8(km).故选:B.2.(2020春•文水县期末)疫情期间,小颖宅家学习.一天,她在课间休息时,从窗户向外望,看到一人为快速从A处到达居住楼B处,直接从边长为24米的正方形草地中穿过.为保护草地,小颖计划在A处立一个标牌:“少走?米,踏之何忍”,已知B、C两处的距离为7米,那么标牌上?处的数字是( )A.3B.4C.5D.6【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解析】由题意可知AB²=AC2+BC2=24²+7²=625m,故居民直接到B时要走AB=25m,若居民不践踏草地应走AC+BC=24+7=31mAC+BC﹣AB=31﹣25=6m故在?的地方应该填写的数字为6,故选:D.3.(2021春•长沙期中)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于( )A.1.2米B.1.5米C.2.0米D.2.5米【分析】过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【解析】如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD²=AE2+DE2=0.9²+1.2²=6.25,,故选:B.4.(2020春•西城区校级期中)为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)( )A.0.7米B.0.8米C.0.9米D.1.0米【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解析】梯脚与墙角距离的平方:2.52―2.42=0.49,∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.5.(2020•巴中)《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?( )A.4尺B.4.55尺C.5尺D.5.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.故选:B.6.(2020秋•未央区期中)如图,在灯塔O的东北方向8海里处有一轮船A,在灯塔的东南方向6海里处有一渔船B,则AB间的距离为( )A.9海里B.10海里C.11海里D.12海里【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【解析】已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=8海里,OB=6海里,∴AB²=OA2+OB2=8²+6²=100AB=10(海里).故选:B.7.(2020秋•罗湖区期中)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是( )A.10米B.15米C.16米D.17米【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长,即攀岩墙的高.【解析】如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故选:B.8.(2020秋•龙泉驿区期中)如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为( )A.13cm B.8cm C.7cm D.15cm【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解析】由题意可得:杯子内的筷子长度为:52+122=13,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm).故选:C.9.(2020秋•历城区期中)古代数学的“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,AB+AC=25尺,BC=5尺,则AC等于( )尺.A.5B.10C.12D.13【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(25﹣x)尺,利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(25﹣x)尺,根据勾股定理得:x2+52=(25﹣x)2.解得:x=12,答:折断处离地面的高度为12尺.故选:C.10.(2020春•南岗区校级期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是( )A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm【分析】当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解析】如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16(cm);当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=AD2+BD2=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•盐池县期末)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯 17 米.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此利用勾股定理求出水平距离即可.【解析】根据勾股定理,楼梯水平长度为132―52=12米,则红地毯至少要12+5=17米长,故答案为:17.12.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A 到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为 24 秒.【分析】设卡车开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由卡车的速度可得出所需时间.【解析】设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB=1002―802=60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.13.(2020秋•南宫市月考)小明从A处出发沿北偏东40°的方向走了30米到达B处;小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α= 50 .【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解析】∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.14.(2020秋•成华区校级月考)将一根24cm的筷子,置于底面直径为5cm、高为12cm的圆柱体中,如图,设筷子露出在杯子外面长为hcm,则h的最小值 11cm ,h的最大值 12cm .【分析】当筷子与杯底垂直时h 最大,当筷子与杯底及杯高构成直角三角形时h 最小,据此可以得到h 的取值范围.【解析】当筷子与杯底垂直时h 最大,h 最大=24﹣12=12(cm ).当筷子与杯底及杯高构成直角三角形时h 最小,此时,在杯子内部分=122+52=13(cm ),故h =24﹣13=11(cm ).故h 的取值范围是11≤h ≤12.故答案为:11cm ;12cm .15.(2020秋•太原期中)《九章算术)“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何.”其大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?若设门的宽为x 尺,根据题意列出的方程 x 2+(x +6.8)2=102 .(注:1丈=10尺,1尺=10寸)【分析】设长方形门的宽x 尺,则高是(x +6.8)尺,根据勾股定理即可列方程求解.【解析】设长方形门的宽x 尺,则高是(x +6.8)尺,根据题意得x 2+(x +6.8)2=102,解得:x =2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺,宽是2.8尺.故答案为:x 2+(x +6.8)2=102.16.(2020秋•溧水区期中)木工师傅为了让尺子经久耐用,常常在尺子的直角顶点A 处与斜边BC 之间加一根小木条AD .已知∠BAC =90°,AB =5dm ,AC =12dm ,则小木条AD 的最短长度为 6013 dm .【分析】首先利用勾股定理求出BC 的长,再利用三角形面积求出即可.【解析】∵∠BAC =90°,AB =5dm ,AC =12dm ,∴BC =AB 2+AC 2=52+122=13(dm ),当AD ⊥BC 时,AD 最短,则12AD ×BC =12AB ×AC ,则AD =AB ×AC BC =5×1213=6013(dm ).故答案是:6013.17.(2020秋•广陵区校级期中)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B ′(示意图如图,则水深为 12 尺.【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则B 'C =5尺,设出AB =AB '=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解析】依题意画出图形,设芦苇长AB =AB ′=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.18.(2020秋•泰州期中)如图所示是一个圆柱形饮料罐,底面半径为5cm,高为12cm,上底面中心有一个小圆孔,将一根长24cm的直吸管从小圆孔插入,直到接触到饮料罐的底部,直吸管在罐外的长度hcm (罐的厚度和小圆孔的大小忽略不计),则h的取值范围是 11≤h≤12 .【分析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高;当吸管底部在A点时吸管在罐内部分最长,此时可以利用勾股定理在Rt△ABO中求出,然后可得罐外部分a长度范围.【解析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高,罐外部分a=24﹣12=12(cm);当吸管底部在A点时吸管在罐内部分最长,即线段AB的长,在Rt△ABO中,AB=AO2+BO2=122+52=13(cm),罐外部分a=24﹣13=11(cm),所以11≤h≤12.故答案是:11≤h≤12.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•荥阳市期中)郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【解析】(1)因为△ABC是直角三角形,所以由勾股定理,得AC2=BC2+AB2.因为AC=50米,BC=30米,所以AB2=502﹣302=1600.因为AB>0,所以AB=40米.即A,B两点间的距离是40米.(2)过点B作BD⊥AC于点D.因为S△ABC=12AB•BC=12AC•BD,所以AB•BC=AC•BD.所以BD=AB⋅BCAC=30×4050=24(米),即点B到直线AC的距离是24米.20.(2020秋•太原期中)如图是一块四边形木板,其中AB=16cm,BC=24cm,CD=9cm,AD=25cm,∠B=∠C=90°.李师傅找到BC边的中点P,连接AP,DP,发现△APD是直角三角形,请你通过计算说明理由.【分析】根据勾股定理解答即可.【解析】∵点P为BC中点,∴BP=CP=12BC=12(cm),∵∠B=90°,在Rt△ABP中,根据勾股定理可得:AB2+BP2=AP2,162+122=AP2,解得:AP=20(cm),同理可得:DP=15(cm),∵152+202=252,∴AP2+DP2=AD2,∴△APD是直角三角形,∠APD=90°.21.(2020秋•碑林区校级月考)我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?【分析】利用勾股定理求出AC,利用勾股定理的逆定理证明∠ADC=90°即可解决问题.【解析】连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC=AB2+BC2=202+152=25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.22.(2020秋•青羊区校级月考)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?【分析】过点A作AC⊥ON于点C,求出AC的长,第一台到B点时开始对学校有噪音影响,第二台到B 点时第一台已经影响小学50米,直到第二台到D点噪音才消失.【解析】如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=12OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=AB2―AC2=1002―802=60(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t=1205=24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【分析】设AB=x,则AC=x+1,依据勾股定理即可得到方程x2+52=(x+1)2,进而得出风筝距离地面的高度AB.【解析】设AB=x,则AC=x+1,由图可得,∠ABC=90°,BC=5,∴Rt△ABC中,AB2+BC2=AC2,即x2+52=(x+1)2,解得x=12,答:风筝距离地面的高度AB为12米.24.(2020春•武汉期中)如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.【解析】设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.。
2019年北师大版八年级上册数学第1章《勾股定理》培优专题训练含答案
2019年北师大版八年级上册第1章《勾股定理》培优专题训练一.选择题1.在Rt△AOB中,∠AOB=90°,若AB=10,AO=6,则OB长为()A.5 B.6 C.8 D.102.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2的值为()A.6 B.9 C.18 D.363.满足下列条件的△ABC,不是直角三角形的是()A.∠A:∠B:∠C=3:4:5 B.a:b:c=6:8:10C.∠C=∠A﹣∠B D.b2=a2﹣c24.一只蚂蚁从圆柱体的下底面A点沿着侧面爬到上底面B点,已知圆柱的底面半径为2cm,高为8cm(π取3),则蚂蚁所走过的最短路径是()c m.A.8 B.9 C.10 D.125.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB于D,CD=2,则AB长为()A.6 B.C. +2 D. +26.如图,分别以直角三角形的三边为边长向外作等边三角形,面积分别记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S12+S22=S32B.S1+S2>S3C.S1+S2<S3D.S1+S2=S37.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定8.如图,在4×4的正方形网格中,△ABC的顶点都在格点上,下列结论错误的是()A.AB=5 B.∠C=90°C.AC=2D.∠A=30°9.如图,在△ABC中,点M是AC边上一个动点.若AB=AC=10,BC=12,则BM的最小值为()A.8 B. 9.6 C.10 D.4 510.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是()A.12 B.15 C.20 D.30二.填空题11.如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.12.禅城区某一中学现有一块空地ABCD如图所示,现计划在空地上种草皮,经测量∠B=90°,AB=3m,BC=4m,CD=13m,AD=12m,若每种植1平方米草皮需要300元,总共需投入元.13.如图,一个无盖的正方体,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点B,经过计算发现,它的最短路径是20cm,则这个正方体的棱长为cm.14.如图,在6×6正方形网格(每个小正方形的边长为1cm)中,网格线的交点称为格点,△ABC的顶点都在格点处,则AC边上的高的长度为cm.15.在△ABC中,如果AB=5cm,AC=4cm,BC边上的高线AD=3cm,那么BC的长为cm.16.如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=5cm,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,则△ABD的面积为.17.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形B、C、D的面积依次为4、3、9,则正方形A的面积为.18.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.三.解答题19.如图,在△ABC中,D是BC边上的一点,已知AB=13,AD=12,AC=15,BD=5.(1)求证:AD⊥BC;(2)求CD的长.20.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?21.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A、B、D三点在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8.(1)试求点F到AD的距离.(2)试求BD的长.22.如图,甲、乙两船从港口A同时出发,甲船以每小时30海里的速度向北偏东35°方向航行,乙船以每小时40海里的速度向另一方向航行,1小时后,甲船到达C岛,乙船达到B岛,若C、B两岛相距50海里,请你求出乙船的航行方向.23.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B 出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?25.[问题情境]勾股定理是一条古老的数学定理,它有很多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.[定理表述]请你根据图1中的直角三角形,写出勾股定理内容;[尝试证明]以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理.参考答案一.选择题1.解:∵在Rt △AOB 中,∠AOB =90°,AB =10,AO =6,∴OB =,故选:C .2.解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE =∠ACB ,∠ACF =∠ACD ,即∠ECF =(∠ACB +∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB =∠MEC =∠ECM ,∠DCF =∠CFM =∠MCF , ∴CM =EM =MF =3,EF =6,由勾股定理可知CE 2+CF 2=EF 2=36, 故选:D .3.解:A 、∵∠A :∠B :∠C =3:4:5,∴∠C =,所以不是直角三角形,正确;B 、∵(6x )2+(8x )2=(10x )2,∴是直角三角形,错误;C 、∵∠C =∠A ﹣∠B , ∴∠C +∠B =∠A ,∴∠A =90°,是直角三角形,故本选项错误; D 、∵b 2=a 2﹣c 2,∴是直角三角形,错误; 故选:A .4.解:把圆柱侧面展开,展开图如右图所示,点A 、B 的最短距离为线段AB 的长. 在RT △ABC 中,∠ACB =90°,BC =8cm ,AC 为底面半圆弧长,AC =2π=6cm ,所以AB ==10cm .故选:C .5.解:在Rt △ACD 中,∠A =45°,CD =2, 则AD =CD =2,在Rt △CDB 中,∠B =30°,CD =2,则BD =2,故AB =AD +BD =2+2. 故选:D .6.解:设直角三角形的三边从小到大是a ,b ,c .则S 1=b 2,S 2=a 2,S 3=c 2.又a 2+b 2=c 2, 则S 1+S 2=S 3. 故选:D .7.解:∵AB =1.5,BC =0.9,AC =1.2,∴AB 2=1.52=2.25,BC 2+AC 2=0.92+1.22=2.25, ∴AB 2=BC 2+AC 2, ∴∠ACB =90°,∵CD 是AB 边上的高,∴S △ABC =,1.5CD =1.2×0.9, CD =0.72, 故选:A .8.解:A 、由勾股定理得:AB ==5,故此选项正确;B 、∵AC 2=22+42=20,BC 2=12+22=5,AB 2=52=25, ∴AB 2=BC 2+AC 2, ∴∠C =90°,故此选项正确;C 、AC ==2,故此选项正确;D 、∵BC =,AB =5, ∴∠A ≠30°, 故此选项不正确; 本题选择错误的结论, 故选:D .9.解:作AD ⊥BC 于D ,如图所示:则∠ADB =90°, ∵AB =AC ,∴BD =BC =6,由勾股定理得:AD ==8,当BM ⊥AC 时,BM 最小, 此时,∠BMC =90°,∵△ABC 的面积=AC •BM =BC •AD ,即×10×BM =×12×8,解得:BM =9.6, 故选:B .10.解:设每个小直角三角形的面积为m ,则S 1=4m +S 2,S 3=S 2﹣4m , 因为S 1+S 2+S 3=60,所以4m +S 2+S 2+S 2﹣4m =60, 即3S 2=60, 解得S 2=20. 故选:C .二.填空题(共8小题)11.解:∵DE 是AB 的中垂线,∴DA =DB ,设AD =x ,则DB =x ,CD =BC ﹣BD =8﹣x , 在Rt △ACD 中,∵AC 2+CD 2=AD 2, ∴62+(8﹣x )2=x 2,解得x =,∴CD =8﹣x =,故答案为:.12.解:在Rt △ABC 中,∵AC 2=AB 2+BC 2=32+42=52, ∴AC =5.在△DAC 中,CD 2=132,AD 2=122, 而122+52=132, 即AC 2+AD 2=CD 2, ∴∠DAC =90°,S 四边形ABCD =S △BAC +S △DAC =•BC •AB +DC •AC ,=×4×3+×12×5=36.所以需费用:36×300=10800(元). 故答案为:10800.13.解:如图,将正方体展开, 则线段AB 即为最短的路线, 设这个正方体的棱长为xcm ,∴AB ==x =20,∴x =4,∴这个正方体的棱长为4cm ,故答案为:4.14.解:如图,在Rt △ABC 中,AB =4cm ,BC =4cm ,由勾股定理知,AC ===4.设AC 边上的高的长度为hcm ,则AB •BC =AC •h ,∴h ===2(cm ).故答案是:2.15.解:(1)如图1,当点D 落在BC 上时,∵AB =5,AD =3,AC =4,∴BD ===4,CD ===,则BC =BD +CD =4+;(2)如图2,当点D 落在BC 延长线上时,∵AB =5,AD =3, AC =4,∴BD ===4,CD ===,则BC =BD ﹣CD =4﹣;综上,BC 的长的为(4+)或(4﹣)cm .16.解:作DE ⊥AB 于E ,∠C =90°,AC =12,BC =5,∴AB ==13,由基本作图可知,AD 是∠CAB 的平分线, 在△ACD 和△AED 中,,∴△ACD ≌△AED (AAS ),∴AE =AC =12,DE =DC ,∴BE =AB ﹣AE =1,BD =5﹣CD =5﹣DE ,在Rt △DEB 中,DE 2+BE 2=BD 2,即DE 2+12=(5﹣DE )2,解得,DE =,∴△ABD 的面积=×AB ×DE =,故答案为:.17.解:由题意:S 正方形A +S 正方形B =S 正方形E , S 正方形D ﹣S 正方形C =S 正方形E ,∴S 正方形A +S 正方形B =S 正方形D ﹣S 正方形C∵正方形B ,C ,D 的面积依次为4,3,9∴S 正方形A +4=9﹣3,∴S 正方形A =2故答案为2.18.解:连接AC .根据勾股定理可以得到:AB 2=12+32=10,AC 2=BC 2=12+22=5,∵5+5=10,即AC 2+BC 2=AB 2,∴△ABC 是等腰直角三角形,∴∠ABC =45°.故答案为:10,45.三.解答题(共7小题)19.解:(1)在△ABD 中,∵AD 2+BD 2=122+52=169,AB 2=132=169,∴AD 2+BD 2=AB 2,∴△ABD 是直角三角形,其中∠ADB =90°,∴AD ⊥BC ;(2)∵AD⊥BC,∴∠AD C=90°,在Rt△ACD中,AD2+CD2=AC2,即122+CD2=152,解得:CD=9或CD=﹣9(舍).20.解:(1)∵AB=25米,BE=7米,梯子距离地面的高度AE==24米.答:此时梯子顶端离地面24米;(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,∴BD+BE=DE===15,∴DE=15﹣7=8(米),即下端滑行了8米.答:梯子底端将向左滑动了8米.21.解:(1)如图,过点F作FM⊥AD于点M,在△EDF中,∠EDF=90°,∠E=60°,DE=8,则∠DFE=30°,故EF=2DE=16,DF===8,∵AB∥EF,∴∠FDM=∠DFE=30°,在Rt△FMD中,MF=DF=8×=4,即点F与AD之间的距离为:4;(2)在Rt△FMD中,DM===12,∵∠C=45°,∠CAB=90°,∴∠CBA=45°,又∵∠FMB=90°,△FMB是等腰直角三角形,∴MB=FM=4,∴BD=MD﹣FM=12﹣4.22.解:根据题意得;AC =30海里,AB =40海里,BC =50海里;∵302+402=502,∴△ABC 是直角三角形,∠BAC =90°,∴180°﹣90°﹣35°=55°,∴乙船的航行方向为南偏东55°.23.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC =CA .设AC 为x ,则OC =9﹣x ,由勾股定理得:OB 2+OC 2=BC 2,又∵OA =9,OB =3,∴32+(9﹣x )2=x 2,解方程得出x =5.∴机器人行走的路程BC 是5cm .24.解:设运动x 秒时,它们相距15cm ,则CP =xcm ,CQ =(21﹣x )cm ,依题意有x 2+(21﹣x )2=152,解得x 1=9,x 2=12.故运动9秒或12秒时,它们相距15cm .25.定理表述:直角三角形中,两直角边的平方和等于斜边的平方.证明:∵S 四边形ABCD =S △ABE +S △AED +S △CDE ,=×2+,又∵S 四边形ABCD ==,∴=×2+, ∴(a +b )2=2ab +c 2,∴a 2+2ab +b 2=2ab +c 2,∴a 2+b 2=c 2.。
北师大版八年级上册 第一单元 勾股定理单元培优卷(解析版)
第一单元 勾股定理单元培优卷(北师大版)姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(20120·河南省初二期中)适合下列条件的△ABC 中, 直角三角形的个数为( ) ①111345a b c ,,;=== ②6a =,∠A =45°; ③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,, ⑥::3:4:5a b c = ⑦::12:13:15A B C ∠∠∠= ⑧5,12,13a b c ===A .2个B .3个C .4个D .5个【答案】C 【解析】根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:222111+345≠()()(),故①不能构成直角三角形;当a=6,∠A=45°时,②不足以判定该三角形是直角三角形; 根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;由三角形的三边关系,2+2=4可知⑤不能构成三角形;令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;根据三角形的内角和可知⑦不等构成直角三角形;由a 2=25,b 2=144,c 2=169,可知a 2+b 2=c 2,故⑧能够成直角三角形.故选:C.【点睛】此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.2.(2019·河南省郑州外国语中学初二月考)如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32πC .2πD .12【答案】A【分析】分别求出以AB 、AC 、BC 为直径的半圆及△ABC 的面积,再由S 阴影=S1+S2+S △ABC-S3得出结论.【解析】解:如图所示:∵∠BAC=90°,AB=4cm ,AC=3cm ,BC=5cm ,∴以AB 为直径的半圆的面积S 1=2π(cm 2); 以AC 为直径的半圆的面积S 2=98π(cm 2);以BC 为直径的半圆的面积S 3=258π(cm 2); S △ABC=6(cm2);∴S 阴影=S 1+S 2+S △ABC-S 3=6(cm2);故选:A .【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.(2020·山东省初二期末)如图,正方形小方格的边长为1,则网格中的ABC 是( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对【答案】A 【分析】根据勾股定理求得△ABC 各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解析】∵正方形小方格边长为1∴2222313AC =+=,2226452AB =+=,2228165BC =+=,∵在△ABC 中AB 2+AC 2=52+13=65,BC 2=65∴AB2+AC2=BC2 ∴网格中的△ABC 是直角三角形.故选A .【点睛】解答此题要用到勾股定理的逆定理:已知三角形ABC 的三边满足a 2+b 2=c 2,则三角形ABC 是直角三角形.4.(2020·右玉县二中初二期中)如图,测得楼梯的长为5米,高为3米,计划在楼梯表面铺地毯,地毯的长度至少是( )A .4米B .5米C .7米D .10米【答案】C【分析】利用勾股定理求解出水平的那条直角边为4米,地毯所用的长度平移到两直角边上刚好是两直角边的长度,所以直接把两直角边的长度加起来就是地毯的长度.【解析】楼梯长为5米,高为3米,由勾股定理可知,其水平宽为4米.因为地毯铺满楼梯应该是楼梯的水平宽度与垂直高度的和,所以地毯的长度至少是3+4=7(米).故选:C .【点睛】本题主要考查的是对图像的观察以及勾股定理,如果我们直接求解地毯的长度难度比较大,所以需要把地毯长度平移到两直角边上即可求解.5.(2019·山西晋中初三月考)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲的速度为7,乙的速度为3,乙一直向东走,甲先向南走10步,后又向东北方向走了一段后与乙相遇,那么相遇时所用时间为多少?若设甲与乙相遇时间为x ,则可列方程为( ) A .222(3)(7)10x x +=B .22210(710)(310)x x +-=-C .222(3)10(710)x x +=-D .222(310)(7)10x x -+=【答案】C【分析】利用勾股定理列出方程即可.【解析】如图:设甲与乙相遇时间为x ,这时乙共行3AB x =,甲共行7AC BC x +=,∵10AC =,∴710BC x =-,又∵∠90A =°,∴222 AB AC BC +=,∴()()222310710x x +=- 故选:C . 【点睛】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,画出图形,做到数形结合.6.(2020·西安交大阳光中学初二月考)如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点且PC=23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是()A.(4+6π)cm B.5cm C.213cm D.7cm【答案】B【分析】首先画出圆柱的侧面展开图,根据高BC=6cm,PC=23BC,求出PC=23×6=4cm,在Rt△ACP中,根据勾股定理求出AP的长.【解析】侧面展开图如图所示,∵圆柱的底面周长为6cm,∴AC=3cm,∵PC=23BC∴PC=23×6=4cm,在Rt△ACP中,AP2=AC2+CP2,∴AP=2234+=5.故选:B.【点睛】此题主要考查了平面展开图,以及勾股定理的应用,做题的关键是画出圆柱的侧面展开图.7.(2020·辽宁省初二期中)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长.【解析】根据题意可得图形:AB=12cm ,BC=9cm ,在Rt △ABC 中:AC=2222=129AB BC ++=15(cm ), 则这只铅笔的长度大于15cm .故选D . 【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键. 8.(2020·涡阳县王元中学初二月考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6【答案】C 【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知2()a b + =21,大正方形的面积为13,可以得以直角三角形的面积,进而求出答案。
北师大版八上数学专题一勾股定理(内含答案详解)
北师大版八上数学专题一勾股定理(内含答案详解)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八上数学专题一勾股定理(内含答案详解))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八上数学专题一勾股定理(内含答案详解)的全部内容。
BS 八上数学专题一勾股定理一.选择题(共14小题)1.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.182.在△ACB中,若AB=AC=5,BC=6,则△ABC的面积为()A.6B.8C.12D.243.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或24.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.645.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.26.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.127.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为()A.3B.5C.6D.68.如图,线段AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4B.4.5C.4.8D.59.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为()A.18B.12C.9D.310.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,711.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm12.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m13.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm14.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm二.填空题(共6小题)15.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.16.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.17.如图,AC⊥BC,AC=6,BC=8,AB=10,则点C到线段AB的距离是.18.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形19.小东拿着一根长竹竿进一个宽为4米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高0。
八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版
1. [2024襄阳襄州区阶段练习]我国古代数学家赵爽为了证明
勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦
图”.如图是由弦图变化得到的,它是由八个全等的直角三
角形拼接而成的,记图中正方形 ABCD ,正方形 EFGH ,
正方形 MNKT 的面积分别为 S1, S2, S3, 若EF =6,则 S1+ S2+ S3的值是( D )
123
因为在△ ABC 中,∠ BAC =90°, AB =6, BC =10, 所以 AC =8, CQ = AB = AD =6. 所以 PB = AC = AI =8. 所以 IP =8+6+8=22, DQ =6+8+6=20. 所以长方形 KLMJ 的面积=22×20=440.
123
3. 【问题探究】(1)如图①,在锐角三角形 ABC 中,分别以 AB , AC 为边向外作等腰直角三角形 ABE 和等腰直角三 角形 ACD ,使 AE = AB , AD = AC ,∠ BAE =∠ CAD =90°,连接 BD , CE ,请判断 BD 与 CE 的数量关系,并说明理由;
( B) A.拨:如图,延长 AB 交 KL 于 P ,延长 AC 交 LM 于 Q , 由题意得,∠ BAC =∠ BPF =∠ FBC =90°, BC =BF , 所以∠ ABC +∠ ACB =90°=∠ PBF +∠ ABC . 所以∠ ACB =∠ PBF . 所以△ ABC ≌△ PFB (AAS).所以 PB = AC . 同理可得△ ABC ≌△ QCG . 所以 CQ = AB .
123
解: BD = CE . 理由如下: 因为∠ CAD =∠ BAE =90°, 所以∠ BAD =∠ EAC =90°+∠ BAC . 因为 AB = AE , AD = AC , 所以△ ABD ≌△ AEC (SAS). 所以 BD = CE .
北师大版八年级上第一章勾股定理(附习题和答案)
第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用: (1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBAC A B ED 练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ). A 、钝角三角形 B 、锐角三角形 C 、直角三角形 D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c ---=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cm练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只CABDS 3S 2S 1C B A 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62+,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
北师版八年级上册数学第1章 勾股定理 验证并应用勾股定理
感悟新知
知2-练
1.勾股定理的应用范围:勾股定理是直角三角形的一个重要性质,它把 直角三角形有一个直角的“形”的特点转化为三边“数”的关系. 利 用勾股定理,可以解决与直角三角形有关的计算和证明问题,还可 以解决生活、生产中的一些实际问题.
2.勾股定理应用的常见类型: (1)已知直角三角形的任意两边求第三边; (2)已知直角三角形的任意一边确定另两边的关系; (3)证明包含平方关系的几何问题; (4)求解几何体表面上的最短路程问题; (5)构造方程(或方程组)计算有关线段长度,解决生产、生活中的
实际问题.
感悟新知
特别提醒 运用勾股定理解决实际问题的一般步骤: 1.从实际问题中抽象出几何图形; 2. 确定要求的线段所在的直角三角形; 3. 找准直角边和斜边,根据勾股定理建立等量关系; 4. 求得结果.
知2-练
感悟新知
〈例实3际应用题〉两棵树之间的距离为8m,两棵树 的高度分别是8m,2m,一只小鸟从一棵树的树 顶飞到另一棵树的树顶,这只小鸟至少要飞多少 米?
2
感悟新知
总结
知1-讲
勾股定理的验证主要是通过拼图法利用面积的关 系完成的,拼图又常以补拼法和叠合法两种方式拼图, 补拼是要无重叠,叠合是要无空隙;而用面积法验证 的关键是要找到一些特殊图形(如直角三角形、正方形、 梯形)的面积之和等于整个图形的面积,从而达到验证 的目的.
感悟新知
知识点 2 勾股定理的应用
复习提问 引出问题
感悟新知
知识点 1 勾股定理的验证
做做
知1-讲
为了计算图1中大正方形的面积,小明对这个大正方形
适当割补后得到图2、图3.
图1
图2
图3
感悟新知
知1-讲
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
(三)学生小组讨论
1.教师给出具体的合作任务,如共同探究勾股定理的证明方法,分享解题心得等。
2.学生分组进行讨论,相互交流,共同解决问题。
3.教师巡回指导,关注学生的个体差异,给予有针对性的帮助。
(四)总结归纳
1.教师引导学生对所学内容进行总结,如勾股定理的定义、证明方法及其应用等。
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用优秀教学案例
一、案例背景
北师大版数学八年级上册第一章勾股定理第3节勾股定理的应用,旨在让学生通过探究、实践,掌握勾股定理在实际问题中的应用。本节内容与日常生活紧密相连,旨在培养学生运用数学知识解决实际问题的能力。
本节课的内容包括:理解勾股定理的应用场景,如直角三角形、矩形、正方形等;学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度、判断一个四边形是否为矩形等;培养学生的合作交流能力,通过小组讨论、分享解题方法,提高学生对勾股定理应用的掌握程度。
三、教学策略
(一)情景创设
1.生活情境:以实际生活中的实例引入,如测量房屋面积、计算登机桥的长度等,让学生感受到勾股定理的实际应用。
2.媒体素材:运用多媒体课件、视频等素材,展示勾股定理的历史背景、发现过程,让学生深入了解勾股定理的来历。
3.问题情境:设计一些具有启发性的问题,如“为什么勾股定理适用于所有直角三角形?”“如何判断一个四边形是否为矩形?”等,激发学生的思考兴趣。
4.教师在小组合作过程中进行巡视指导,关注学生的个体差异,给予有针对性的帮助。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,如“在学习勾股定理的过程中,你遇到了哪些困难?是如何克服的?”“你在解决问题时采用了哪些方法?效果如何?”等。
第一章 勾股定理 思维图解+综合实践(课件)北师大版数学八年级上册
课标领航·核心素养学段目标
探索勾股定理及其逆定理,并能运用它们解决一些简单
的实际问题.
第一章 勾股定理
本章内容要点
1 个关键概念:勾股数
2 个重要定理:勾股定理,勾股定理的逆定理
1 个重要证明:勾股定理的证明
2 种重要应用:求几何体表面上的最短路线长,判定直
角三角形
4 个核心素养:抽象能力,运算能力,推理能力,模型
观念
第一章 勾股定理
单
元
思
维
图
解
直角三角形两直角边的平方和
等于斜边的平方.如果用 a,b
和c 分别表示直角三角形的两
直角边和斜边,那么 a2+b2=c2
勾
股
定
理
勾
股
定
理
已知两边求第三边
基本
应用 已知一边和另两边的关系,求第三边
已知一边和一特殊角,求第三边
第一章 勾股定理
单
元
思
维
图
解
方位角问题
勾
股
定
理
实
际
应
用
最短路线问题
折叠问题
其他问题
第一章 勾股定理
单
元
思
维
图
解
勾
股
定
理
勾
股
定
理
的
逆
定
理
a,b,c满足
内容 如果三角形的三边长
a2+b2=c2,那么这个三角形是直角三角形
实质
勾股数
应用
由“数”到“形”
满足 a2+b2=c2 的三个正整数称为
勾股数,每组勾股数的正整数倍
八年级数学上册第1章《勾股定理的应用》例题与讲解(北师大版)
3 勾股定理的应用1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点 长方体表面上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】 如图①是一个棱长为3 cm 的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s 的蚂蚁,从下底面的A 点沿着正方体的表面爬行到右侧表面上的B 点,小明把蚂蚁爬行的时间记录了下来,是2.5 s .经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:如图②,在Rt △ABD 中,AD =4 cm ,BD =3 cm.由勾股定理,AB 2=BD 2+AD 2=32+42=25,AB =5 cm ,∴蚂蚁的爬行距离为5 cm.又知道蚂蚁的爬行速度为2 cm/s ,∴它从点A 沿着正方体的表面爬行到点B 处,需要时间为52=2.5 s.小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.【例1-2】如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?解:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式,分别展成平面图形如下:如图①,在Rt△ABC1中,AC21=AB2+BC21=42+32=52=25.故AC1=5.如图②,在Rt△ACC1中,AC21=AC2+CC21=62+12=37.如图③,在Rt△AB1C1中,AC21=AB21+B1C21=52+22=29.∵25<29<37,∴沿图①的方式爬行路线最短,最短的路线是5.点技巧巧展长方体求解此类问题时只需对长方体进行部分展开,画出局部的展开图,若将长方体全部展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部分是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30π cm的圆柱下底的点A处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开铺平如图②,则对角线AB即为蚂蚁爬行的最短路线.在Rt△ACB中,AC=40π cm,BC=30π cm.由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π cm.∴蚂蚁至少爬行50π cm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离本题文字叙述较多,要求在阅读的基础上提炼有用的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm 和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C =90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定理解决生活中的问题利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻理解题意,并画出符合条件的图形.解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:(1)把立体图形展成平面图形;(2)确定点的位置;(3)确定直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】如图①,圆柱形玻璃容器的高为18 cm,底面周长为60 cm,在外侧距下底1 cm的点S处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm的点F处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CD ∥AB ,且AD =BC =12底面周长,BS =DF =1 cm.则蜘蛛所走的最短路线的长度即为线段SF 的长度.过S 点作SM ⊥CD ,垂足为M ,由条件知,SM =AD =12×60=30 cm ,MC=SB =DF =1 cm ,所以MF =18-1-1=16 cm ,在Rt △MFS 中,由勾股定理得SF 2=162+302=342,所以SF =34 cm.故蜘蛛需要爬行的最短距离是34 cm.答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】 如图,有一张直角三角形状纸片ABC ,两直角边AC =6 cm ,BC =8 cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?解:设CD =x cm ,由题意知DE =x cm ,BD =(8-x ) cm ,AE =AC =6 cm ,在Rt △ABC 中,由勾股定理得AB =AC 2+BC 2=10 cm.于是BE =10-6=4 cm.在Rt △BDE 中,由勾股定理得42+x 2=(8-x )2,解得x =3.故CD 的长为3 cm.。
第1章勾股定理 同步训练(附答案) 2021-2022学年北师大版八年级数学上册
2021-2022学年北师大版八年级数学上册《第1章勾股定理》同步培优提升训练(附答案)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.3,4,5B.4,5,6C.5,12,13D.9,12,152.下列各组数中,是勾股数的是()A.0.3,0.4,0.5B.10,15,18C.,,D.6,8,103.如图,由两个直角三角形和三个正方形组成的图形,大直角三角形的斜边和直角边长分别是13,12.则图中阴影部分的面积是()A.16B.25C.144D.1694.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定5.如图,在△ABC中,AB⊥BC,其中AC=2.5,AB=1,P是BC上任意一点,那么线段AP的长度可能为()A.0.5B.0.7C.2.3D.2.86.下列说法中正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c27.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5和7D.25或78.如图是一株美丽的勾股树,其中所有四边形都是正方形,所有的三角形都是直角三角形若正方形A、B、C、D的面积分别为3、5、2、3,则最大正方形E的面积是()A.47B.13C.11D.89.一直角三角形的斜边长比其中一直角边长大3,另一直角边长为9,则斜边长为()A.15B.12C.10D.910.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5B.2C.2.25D.2.511.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC =3,AB=5,则DE等于()A.2B.C.D.12.勾股定理是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中不能证明勾股定理的是()A.B.C.D.13.在△ABC中,∠C=90°,若a=5,b=12,则c=.14.已知三角形三边长分别是6,8,10,则此三角形的面积为.15.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.16.在△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为.17.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要m.18.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为cm.19.如图,台阶阶梯每一层高20cm,宽40cm,长50cm.一只蚂蚁从A点爬到B点,最短路程是.20.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,S2=2π,则S3是.21.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.22.如图每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.23.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.24.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.25.如图是美国总统Garfield于1896年给出的一种验证勾股定理的办法,你能利用它证明勾股定理吗?请写出你的证明过程.(提示:如图三个三角形均是直角三角形)26.如图1,一架云梯斜靠在一竖直的墙上,云梯的顶端距地面15米,梯子的长度比梯子底端离墙的距离大5米.(1)这个云梯的底端离墙多远?(2)如图2,如果梯子的顶端下滑了8m,那么梯子的底部在水平方向滑动了多少米?27.八年级(2)班的小明和小亮同学学了“勾股定理”之后,为了测得图中风筝的高度CE,他们进行了如下操作:①测得BD的长为15米(注:BD⊥CE);②根据手中剩余线的长度计算出风筝线BC的长为25米;③牵线放风筝的小明身高1.6米.(1)求风筝的高度CE.(2)过点D作DH⊥BC,垂足为H,求BH、DH.28.某地区为了开发农业,决定在公路上相距25km的A、B两站之间E点修建一个土特产加工基地,使E点到C、D两村的距离相等,如图,DA⊥AB于点A,CB⊥AB于点B,DA=15km,CB=10km,求土特产加工基地E应建在距离A站多少km的地方?29.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB由A行驶向B,已知点C为一海港,且点C与直线AB上的两点A,B的距离分别为AC=300km,BC=400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E处时,海港C刚好受到影响,当台风运动到点F时,海港C刚好不受影响,即CE=CF=250km,则台风影响该海港持续的时间有多长?30.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.31.如图,Rt△ABC中,∠ACB=90°,D为AC上一动点(不与点A、C重合),过D作DE⊥AB于E.(1)当BD平分∠ABC时①若AC=8,BC=6,求线段AE的长度;②在①的条件下,求△ADB的面积;(2)延长BC、ED相交于点F,若CD=CB,∠CDF=60°,求∠DBE的度数.32.如图,已知四边形ABCD中,AB∥CD,BC=AD=4,AB=CD=10,∠DCB=90°,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE,设点P运动的时间为t秒.(1)求BE的长;(2)若△BPE为直角三角形,求t的值.参考答案1.解:A.32+42=52,则能构成直角三角形,故此选项不合题意;B.42+52≠62,则不能构成直角三角形,故此选项符合题意;C.52+122=132,则能构成直角三角形,故此选项不合题意;D.92+122=152,则能构成直角三角形,故此选项不合题意;故选:B.2.解:A、0.3,0.4,0.5不是正整数,不是勾股数,故此选项不合题意;B、102+152≠182,不是勾股数,故此选项不合题意;C、,,不是正整数,不是勾股数,故此选项不合题意;D、62+82=102,且都是正整数,是勾股数,故此选项符合题意;故选:D.3.解:根据勾股定理得出:AB=5,∴EF=AB=5,∴阴影部分面积是EP2+PF2=25,故选:B.4.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.5.解:∵P是BC上任意一点,∴AB≤AP≤AC,即1≤AP≤2.5,故选:C.6.解:在直角三角形中只有斜边的平方等于其他两边的平方的和,且斜边对角为直角.A、不确定c是斜边,故本命题错误,即A选项错误;B、不确定第三边是否是斜边,故本命题错误,即B选项错误;C、∠C=90°,所以其对边为斜边,故本命题正确,即C选项正确;D、∠B=90°,所以斜边为b,所以a2+c2=b2,故本命题错误,即D选项错误;故选:C.7.解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D.8.解:设中间两个正方形的边长分别为x、y,最大正方形E的边长为z,由勾股定理得:x2=3+5=8;y2=2+3=5;z2=x2+y2=13.故最大正方形E的面积是z2=13.故选:B.9.解:设斜边长为x,则一直角边长为x﹣3,根据勾股定理得92+(x﹣3)2=x2,解得x=15.故选:A.10.解:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9﹣x)2+(9﹣3)2,解得x=2,即AM=2,故选:B.11.解:在Rt△ACB中,由勾股定理得:BC=4,连接AE,从作法可知:DE是AB的垂直平分线,根据性质得出AE=BE,在Rt△ACE中,由勾股定理得:AC2+CE2=AE2,即32+(4﹣AE)2=AE2,解得:AE=,在Rt△ADE中,AD=AB=,由勾股定理得:DE2+()2=()2,解得:DE=.故选:C.12.解:在A选项中,由图可知三个三角形的面积的和等于梯形的面积,∴,整理可得a2+b2=c2,∴A选项可以证明勾股定理,在B选项中,大正方形的面积等于四个三角形的面积加小正方形的面积,∴,整理得a2+b2=c2,∴B选项可以证明勾股定理,在C选项中,大正方形的面积等于四个三角形的面积加小正方形的面积,∴,整理得a2+b2=c2,∴C选项可以说明勾股定理,在D选项中,大正方形的面积等于四个矩形的面积的和,∴(a+b)2=a2+2ab+b2,以上公式为完全平方公式,∴D选项不能说明勾股定理,故选:D.13.解:在△ABC中,∠C=90°,a=5,b=12,∴c=13故答案为:13.14.解:∵62+82=102,∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.15.解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.16.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32故答案是:42或32.17.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(米).故答案为:17.18.解:如图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,在直角△A′DB中,由勾股定理得A′B=20(cm).故答案为:20.19.解:如图所示,∵它的每一级的长宽高为20cm,宽40cm,长50cm,∴AB=130(cm).答:蚂蚁沿着台阶面爬行到点B的最短路程是130cm.故答案为:130cm.20.解:在直角三角形中,利用勾股定理得:a2+b2=c2,∴a2+b2=c2,变形为:()2π+()2π=()2π,即S2+S3=S1,又S1=,S2=2π,则S3=S1﹣S2=﹣2π=.故答案为:21.解:∵AC=150﹣60=90mm,BC=180﹣60=120mm,∴AB=150mm.22.解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.23.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.24.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC=5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.25.证明:∵,∴(a+b)(a+b)=2ab+c2,∴a2+2ab+b2=2ab+c2,∴a2+b2=c2.26.解:(1)根据题意可得OA=15米,AB﹣OB=5米,由勾股定理OA2+OB2=AB2,可得:152+OB2=(5+OB)2解得:OB=20,答:这个云梯的底端离墙20米远;(2)由(1)可得:AB=20+5=25米,根据题意可得:CO=7米,CD=AB=25米,由勾股定理OC2+OD2=CD2,可得:OD=2∴BD=24﹣20=4米,答:梯子的底部在水平方向滑动了4米.27.解:(1)在Rt△CDB中,由勾股定理,得CD=20(米).所以CE=CD+DE=20+1.6=21.6(米);(2)由得,在Rt△BHD中,BH=928.解:设AE=x千米,则BE=(25﹣x)千米,在Rt△DAE中,DA2+AE2=DE2,在Rt△EBC中,BE2+BC2=CE2,∵CE=DE,∴DA2+AE2=BE2+BC2,∴152+x2=102+(25﹣x)2,解得,x=10千米.答:基地应建在离A站10千米的地方.29.解:(1)∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受台风影响;(3)当EC=250km,FC=250km时,正好影响C港口,∵ED=70(km),∴EF=140km,∵台风的速度为20千米/小时,∴140÷20=7(小时).答:台风影响该海港持续的时间为7小时.30.解:(1)设存在点P,使得P A=PB,此时P A=PB=2t,PC=4﹣2t,在Rt△PCB中,PC2+CB2=PB2,即:(4﹣2t)2+32=(2t)2,解得:t=,∴当t=时,P A=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,AP=2t,此时BP=7﹣2t,PE=PC=2t﹣4,BE=5﹣4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t﹣4)2+12=(7﹣2t)2,解得:t=,∴当t=时,P在△ABC的角平分线上,当点P运动到点A时,也符合题意,此时t=6,综上所述,满足条件的t的值为或6.31.解:(1)①在Rt△ABC中,AB=10,∵BD平分∠ABC,∴BE=BC=6,CD=ED,∴AE=10﹣6=4;②在Rt△ADE中,(8﹣DE)2=DE2+AE2,即(8﹣DE)2=DE2+42,解得DE=3,则△ADB的面积为10×3÷2=15;(2)∵∠CDF=60°,∴∠F=90°﹣60°=30°,∴∠ABC=90°﹣30°=60°,∵CD=CB,∠ACB=90°,∴∠DBC=45°,∴∠DBE=60°﹣45°=15°.32.解:(1)∵CD=10,DE=7,∴CE=10﹣7=3,在Rt△CBE中,BE=5;(2)当∠BPE=90°时,AP=10﹣3=7,则t=7÷1=7(秒),当∠BEP=90°时,BE2+PE2=BP2,即52+42+(7﹣t)2=(10﹣t)2,解得,t=,∴当t=7或时,△BPE为直角三角形。
八年级数学上册第1章勾股定理1探索勾股定理第2课时勾股定理的验证及简单应用新版北师大版
1
2
3
4
5
6
7
8
9
所以 S四边形 ABDE = S△ ABC + S△ CDE + S△ ACE =
2
c
.
易得四边形 ABDE 为梯形,
( a + b )2
所以 S梯形 ABDE =
所以
ab + ab + c2
.
( a + b )2
=
-14) m, BQ = BC - QC =(24-3 t ) m.
由勾股定理得, OQ2= OC2- QC2, OQ2= OB2- BQ2,
即62-(24-3 t )2=82-(3 t -14)2,解得 t =6.8,所以当 t =
6.8时,△ OBQ 是以 Q 点为直角顶点的直角三角形.
1
2
3
4
因为 BC = a ,所以 BD = CD - BC = b - a .
根据题意,得∠ EAF =∠ CAB , EF = BC = a ,
AF = AB = c , S△ ABC = S△ AEF ,
所以∠ EAF +∠ BAE =∠ CAB +∠ BAE =∠ CAE =90°,
即∠ BAF =90°, DF = EF + DE = a + b .
所以 a2+ b2= c2.
1
2
3
4
5
6
789ຫໍສະໝຸດ .ab +
ab +
知识点2 勾股定理的简单应用
2. [2024西安高新一中期中]有一个醉汉拿着竹竿进屋,横拿
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【参考答案】
➢知识点睛
1.全等变换,对应边、
对应角,等腰三角
形,等线段共端点
2.7 8
3.(1)最短距离,垂
线段
(2)>,≤
精讲精练
【参考答案】 例题1、60° 例题2、8
例题3
AE 翻折至△AFE ,延长EF 交边BC 于点G ,则
BG
CG
=______. G
F
E D C
B
A
类型二 勾股定理在影响范围问题中的运用
【例题4】如图1,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,点A 处有一所中学,AP =160m 。
假设拖拉机行驶时,周围100m 以内会受到影响,那么拖拉机在公路MN 沿PN 方向行驶时,学校是否会受到噪声的影响?请说明理由。
如果受影响,那么学校受影响的时间为多少长?(已知拖拉机的速度为18km/h )。
【例题5】如图,某船向正东方向航行,在A 处望见某岛C 在北偏东60︒方向。
前进12海里到B 点,测得该岛在北偏东30︒方向。
已知该岛周围12海里内有暗礁,
变式练习:1
若你是该船船长,你会命令船继续向东航行吗?请说明理由。
【例题6】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力。
如图,据气象观测,距沿海某城市A 的正南方向220千米B 处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时速度沿北偏东30 方向往C 移动,且台风中心风力不变。
若城市所受风力达到或超过四级,则称受台风影响。
(1) 该城市是否会受到这次台风的影响?请说明理由。
(2)
(3) 该城市受到台风影响的最大风力为几级?
【变式】如图,某货船以20海里/时的速度将一批重要物资由A 处运往正西方向的B 处,经16小时的航行到达,到达后必须立即卸货。
此时,接到气象部门通知,
C 图5
一台风中心正以40海里/时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)均会受到影响。
(1)问:B处是否会受到台风的影响?请说明理由。
(2)为避免受到台风的影响,该船应在多少小时内卸完货?
1.如图,将长方形纸片ABCD对折,得折痕MN,展开后再沿过点B的直线折叠,
使点A落在MN上的A′处,得折痕BE,连接EA′并延长交BC于点F.若AB=2,随堂测试
随堂测试 【参考答案】
1.
2. 36秒
G
F E
D
B
C
A
第1题图
2. 已知一个长方形纸片OABC ,OA =6,点P 为AB 边上一点,AP =2,将△OAP 沿OP 折叠,点A 落在点A ′处,延长P A ′交边OC 于点D ,经过点P 再次折叠纸片,点B 恰好与点D 重合,则AB 的长为____________. A'
Q P D C O B
A
第2题图
3. 如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直
线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.有下列结论:①CM =DM ;②∠ABN =30°;③223CM AB ;④△PMN 是等边三角形.其中正确结论的序号是__________.
N
P
F
C M
D
E B
A
第3题图
4. 如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km
的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.
(1).A 城是否受到这次台风的影响?为什么?
(2).若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?
【参考答案】
1.
2. 12
3. ②③④
5. 一艘轮船以20海里/小时的速度由西向东航行,途中接到台风警报,台风中心
正以40海里/小时的速度由南向北移动,距台风中心
括边界)都属于台风区,当轮船到A 时,测得台风中心移到位于点A 正南方向处,且AB=100海里。
(1)若这艘轮船自A 处按原速度继续航行,在途中会不会遇到台风?若会,
E A
B
试求台风最初遇到台风的时间;若不会,请说明理由。
(2)现船自A处立即提高船速,向位于北偏东60度的方向、与A相距60海里的D港驶去,为在台风到来之前到达D港,问船速应至少提高多少?(结果取整数,13=3.6)。