基因组学复习资料整理
基因组学复习
联合基因:一段连续的DNA序列编码一组关联的彼此重叠的功能产物遗传图谱:利用遗传学的原理和方法,以遗传图距为单位绘制的染色体上基因与遗传标记之间相对位置物理图谱:采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置表观遗传学调控基因表达的方式包括DNA甲基化,组蛋白的共价修饰,染色体结构的重塑以及小RNA介导的基因沉默等多个方面。
研究证明表观遗传学机制在基因组防御、进化、基因调控等方面都发挥着重要作用。
大量研究表明,DNA甲基化能引起染色质结构、构象、染色体DNA稳定性及蛋白质与DNA 相互作用方式的改变,从而影响基因表达。
一般认为DNA甲基化抑制基因的表达。
印记的基因只占人类基因组中的少数,不超过5%,但在胎儿的生长和行为发育中起着至关重要的作用。
大量研究表明这些修饰与染色体构象、基因组稳定性及基因转录活性相关。
组蛋白甲基化的位点是赖氨酸和精氨酸,组蛋白H3K4的甲基化主要聚集在活跃转录的启动子区域。
组蛋白H3K9,K27的甲基化与基因的转录抑制及异染色质有关。
连锁群:在染色体中具有不同的连锁程度并按线性顺序排列的一组基因座位(存在于同一染色体上)物理连锁图:DNA分子标记在同源染色体上有具体的物理位置,因此采用DNA分子标记绘制的遗传连锁图又称物理连锁图连锁不平衡:群体遗传学中有关两个或多个不同座位的等位基因成员出现在个体中的非随机关联性序列间隙:因覆盖度的原因而留下的未能测序的序列,仍存在于克隆文库中,这类间隙称为序列间隙。
物理间隙:因克隆载体自身的限制或DNA序列特殊的组成等原因造成某些序列丢失或未能克隆,这些间隙称为物理间隙复制子是DNA的复制单位, 由复制起始点, 复制序列和复制终点组成DNA 复制的意义:1子代保留了亲代DNA的全部信息;2 DNA通过复制和基因表达决定生物特性;3体现了遗传过程的相对保守性;保守性是相对的,不能忽视其变异性DNA拓扑异构酶(DNA Topisomerase )的作用:通过切断、旋转和再连接作用,理顺DNA 链各种酶与蛋白质的作用小结解螺旋酶:解开DNA双螺旋DNA拓朴异构酶:理顺DNA链单链DNA结合蛋白:稳定维持DNA单链状态前导链的合成:在聚合酶III与滑动夹子结合下连续合成。
基因组学知识点总结
基因组学知识点总结基因组学是研究生物体的基因组结构、功能以及其与遗传性状的关系的学科。
下面将对基因组学的相关知识进行总结,包括基因组、基因、DNA测序技术等内容。
一、基因组和基因基因组指的是一个生物体所有基因和非编码DNA序列的总和。
基因是基因组中的一个特定区域,能够编码特定的功能性产物,如RNA和蛋白质。
基因组学研究着基因组中存在的各种基因的类型、数量以及它们在生物体中的分布和功能。
二、DNA测序技术DNA测序技术是基因组学中的重要工具,通过测序技术可以获取到DNA序列的信息,从而研究基因组结构和功能。
在过去的几十年里,DNA测序技术经历了多次技术革新,从传统的Sanger测序到现代的高通量测序技术,如二代测序和三代测序技术。
三、基因组测序项目基因组测序项目是基因组学研究的重要组成部分。
其中,人类基因组计划是最为著名的基因组测序项目之一,对人类基因组进行了全面的测序和分析,为后续的基因组学研究提供了重要的基础数据。
四、功能基因组学功能基因组学研究基因组中的各种功能元件,如调控区域、非编码RNA等,以及它们在基因调控网络中的作用和相互关系。
通过功能基因组学的研究,我们可以更好地理解基因组中各个功能区域的作用机制和生物学意义。
五、比较基因组学比较基因组学研究不同物种之间基因组的异同,以及这些差异对生物体特性的影响。
通过比较基因组学的研究,我们可以了解不同物种间的进化关系、基因家族的起源和演化等重要问题。
六、基因组编辑技术基因组编辑技术是基因组学中的一项重要技术,主要用于修饰和改变生物体的基因组。
目前,CRISPR-Cas9系统是最为常用的基因组编辑技术,能够实现高效、精确的基因组编辑,对基因组学研究和生物技术应用具有重要意义。
七、应用领域基因组学在许多领域都有广泛的应用,包括生物医学研究、农业与畜牧业、环境保护等。
通过基因组学的研究,我们可以揭示疾病的遗传基础、改良作物和畜牧动物的品质特性、了解生物多样性等重要问题。
基因组学复习大全
基因组学复习大全第一章基因组:生物所具有的携带遗传信息的遗传物质总和基因组学:用于概括涉及基因组作图、测序和整个基因组功能分析的遗传学学科分支一、分子基础核苷酸、2’-脱氧核糖、含氮碱基:β-N-糖基键和嘧啶环1N或嘌呤环9N、磷酸基团dNTP,前一个3’-OH和后一个5’-三磷酸缩合成磷酸脂键。
双螺旋:碱基配对、碱基堆积:与DNA双螺旋主轴垂直的相邻碱基对杂环之间的互作,科增加双螺旋稳定性。
大小沟:沿着双螺旋的走向交替分布两个凹槽,具有特征性的结构信息,在基因表达中重要作用,结合蛋白的特定功能域可伸入大小沟,通过氨基酸侧链和碱基杂环上的基团互作读取DNA所包含信息。
DNA甲基化:细菌发生在腺嘌呤6N和胞嘧啶5C,高等只发生在后者。
哺乳动物CpG变为mCpG,植物包括CpG和CpNpG。
RNA:rRNA+tRNA80%、mRNA5%,大多数还含胞质内小RNA(sc)、核仁小RNA(sno),真核还有核内小RNA(sn),小分子干扰miRNA,小干扰siRNA。
几乎所有RNA都会单链区段回折形成分子内双螺旋。
G和U也可配对,形成两对氢键。
RNA核糖2’C上连的不是H而是OH,和DNA差别:⑴非常靠近连接两个核苷酸的磷酸二酯键位置,使RNA对碱性环境非常敏感⑵活泼使RNA构型受限,双螺旋区段在数十碱基对一下⑶限制RNA长度,其易与磷酸二酯键互作断链⑷其可参与同磷酸或碱基的互作而稳定RNA折叠构型,易于形成三级结构,并获得特殊功能⑸T变为U,因此C甲基化形成的U无法区分,增加RNA突变几率。
蛋白质结构:一级:N→C;二级:α螺旋:多肽链中一些连续氨基酸序列自发形成有规律的盘旋,螺距0.54,每圈3.6残基。
β折叠:由侧向平行的多肽链组成,羰酰O和酰胺H 形成氢键。
每条5~8残基。
转角(转环):由3~4个氨基酸残基组成的紧凑U型,两端多肽形成氢键来转折,大多位于蛋白质表面,形成回折使多肽链重新定向。
二级稳定性取决于多肽链中形成的氢键。
基因组学考点复习
基因组学考点复习第一章绪论1.基因组学的发展历史和现状(人类基因组计划HGP)答:人类基因组计划与20世纪80年代中期开始酝酿,1989年美国正式资助,2000年6月宣布完成人类基因草图。
人类基因组计划是一项世界范围的科研项目,有六个国家16个单位参加,中国是其中之一。
人类基因组测序计划原定于2003年结束,由于采取一些新的技术提前3年完成。
国际人类基因组测序联合体公布的人类基因组草图覆盖了整个基因组的86.8%,包括常染色质区域的97%。
截止2012.1.31,国际上已完成的和正在进行的基因组测序计划共12251个,包括真核生物,真细菌和古细菌。
2.基因组学的研究内容答:Genomics: The studies of the structure and function of genomes.Structure and sequence of genomes;Function of genomics;Applied genomics.3.什么是基因组Genome、转录组和蛋白质组答:Genome:The entirety of an organism's hereditary information. It is encoded either in DNA or, for many types of virus, in RNA. 转录组:RNA copies of the active protein-coding genes。
蛋白质组:The cell’s repertoire of proteins第二章遗传作图1.遗传作图的分子标记类型(RFLP、STR/VNTR/Microsatellite、SNP)、分布特征和作图方法答:RFLP:Restriction fragment length polymorphisms, 限制性片段长度多态性;VNTR:小卫星序列STR:微卫星序列SNP:单核苷酸多态性single nucleotide polymorphisms 2.卫星、小卫星、微卫星的区别答:卫星的组成单位是短碱基序列,卫星序列位于染色体的异染色质区;小卫星在染色体上分布于常染色质区;微卫星重复单位仅2-5bp,也位于常染色质区。
基因组学期末复习资料
第一章基因组概论1、基本概念隔裂基因:大多数真核生物蛋白质基因的编码顺序(Exon)都被或长或短的非编码顺序(Intron)隔开。
重叠基因/嵌套基因:指调控具有独立性但部分使用共同基因序列的基因/同一段DNA 能携带两种不同蛋白的信息.假基因:一般由先前的功能基因积累突变形成,称为假基因,用符号Ψ表示。
基因家族:真核基因组中有许多来源相同、结构相似、功能相关的基因,这组基因称为基因家族。
基因组:一个物种的一套完整遗传物质的总和,包括核基因组和细胞质基因组。
基因组学:研究生物体基因组的组成、结构与功能的学科。
结构基因组学:着重研究基因组的结构并构建高分辨的遗传图、物理图、序列图和转录图以及研究蛋白质组成与结构的学科。
功能基因组学:主要是利用结构基因组学研究所得到的各种信息在基因组水平上研究编码序列及非编码序列生物学功能的学科。
人类元基因组:指人体内共生的菌群基因组的总和,包括肠道、口腔、呼吸道、生殖道等处菌群。
Alu序列:灵长类动物细胞的主要散在的重复DNA序列。
含有限制性内切酶Alu的切点(AG↓CT)。
2、原核与真核生物基因组与顺反子的等价关系在简单基因组中基因与顺反子等价原核和低等真核细胞:基因与产物之间的关系比较简单。
通常是一基因一相应产物,而且基因往往与产物共线性。
基因和顺反子等价:基因是遗传的功能单位;也是可表达的遗传信息的单位。
在细菌中:基因是编码区(开放阅读框)。
细菌基因常常组合成一个操纵子,这样几种产物均由一条多顺反子mRNA翻译而成。
在真核细胞中:基因是转录的单位。
大多数基因以单顺反子mRNA的形式转录。
3、基因组C值与C值矛盾基因组C值是一个物种的基因组固有的DNA含量,一般是恒定的。
C值矛盾或C值悖论:C值大小与生物进化不协调的现象。
C值矛盾原因: 基因内(内含子)、基因间的间隔序列、重复序列和假基因序列4、基因组序列复杂性与基因组大小的关系①序列复杂性:不同序列的DNA总长。
基因与基因组知识点资料整理总结
第一章基因与基因组1.基因的概念:基因是指合成有功能的蛋白质多肽链或RNA所必需的全部核酸序列(通常指DNA)。
2.基因的结构:①真核生物的结构基因不是连续编码的,而是由编码序列和非编码序列两部分构成,二者相互间隔排列,因此这种基因又称作割裂基因(split gene).②人类编码基因主要由外显子、内含子和侧翼序列组成.③能转录、并存在于成熟RNA中的序列称为外显子(exon)④能转录、但不存在于成熟RNA中的序列称为内含子(intron)(注:GT-AG法则:每个内含子的5’端开始的两个核苷酸都是GT,3’端末尾的两个核苷酸都是AG。
)⑤不同数目的外显子和内含子组成的各个基因大小各不相同;无内含子的基因一般较小,有较大内含子的基因一般较大。
⑥每个结构基因的第一个外显子和最后一个外显子外侧,即基因的5′端和3′端都有一段不被转录的DNA序列,对基因的转录表达及表达水平具有重要的调控作用。
包括:启动子、增强子和终止子,属顺式调控因子,称为调控序列。
(启动子 (Promoter),通常位于基因转录起点上游的100bp范围内,是RNA聚合酶的结合部位,促进转录过程,包括TATA框、Hogness框(TATA box, Hogness box)、CAAT框(CAAT box)和GC框(GC box)。
终止子 (Terminator),一段回文序列以及特定的序列,例如:5’-AATAAA-3’是RNA停止工作的信号。
增强子(Enhancer),启动子上游或下游的一段DNA序列,无明显方向性,但具有组织特异性,可增强启动子转录的效率)3.基因家族、基因簇和假基因①基因家族 (gene family):基因组中来源相同、结构相似、功能相关且常成簇存在的一组基因。
②基因簇:家族成员成簇排列在同一条染色体上,形成一个基因簇;不同成员成簇地分布在几条不同的染色体上,形成几个基因簇。
基因簇成员可能同时表达,也可能在不同发育阶段或不同部位表达。
基因组学重点整理
生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物具有催化活性的RNA分子称为核酶〔ribozyme〕核酶催化的生化反响有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成新基因的产生:基因与基因组加倍1〕整个基因组加倍;2〕单条或局部染色体加倍;3〕单个或成群基因加倍。
DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。
动物中由于种间隔离不易进展种间杂交,但其主要来源于真核细胞与原核细胞的内共生。
动物种间基因转移主要集中在逆转录病毒及其转座成分。
外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌基因冗余:一条染色体上出现一个基因的很多复份(复本〕当人们别离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。
许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。
这意味着,基因组中有冗余基因存在。
看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。
与个体发育调控相关的基因表达为转录因子,具有多功能域的构造。
这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。
非编码序列扩张方式:滑序复制、转座因子模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。
模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。
进化程度越高, G+C 含量和CpG 岛的比例就比拟低如果基因之间不存在重叠顺序,也无基因内基因〔gene-within-gene〕,那么ORF阅读出现过失的可能只会发生在非编码区。
细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。
细菌基因组的ORF阅读相比照拟简单,错误的机率较少。
基因组学复习资料
基因组学复习资料基因组学复习资料名词解释1.蛋白质基序:由2或3个二级结构如α-螺旋,β-折叠和转环构成的组合,它们有特征性的序列,具有特定的功能,称为基序或模体。
2.C 值(C value):是指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。
3. C值悖理(paradox) 生物的复杂性与基因组的大小并不完全成比例增加的现象.4.遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA顺序标定在染色体上构建连锁图。
这一方法包括杂交实验和家系分析。
基因或DNA标志在染色体上的相对位置与遗传距离。
遗传距离用重组率来衡量。
即通过计算两个连锁的遗传标记在每次减数分裂中的重组概率,确定两者的相对距离遗传图距单位为 cM,每单位厘摩定义为1%交换值5.物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组实际位置。
物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对。
6.重组热点(recombination hot spot):染色体的某些位点之间比其他位点之间有更高的交换频率,被称为重组热点。
7.基因组测序覆盖面(coverage):随机测序获得的序列总长与单倍体基因组序列总长之比,覆盖面越大,遗漏的序列越少。
8.密码子偏爱(codon bias):生物有时更加偏爱地使用一个或者一组密码子的现象。
这是在进化过程中基因复制的差异所产生的结果。
(仅供参考)9.开放读框(open reading frame ORF)它们由一系列指令氨基酸的密码子组成,有一个起始点和一个终止点。
10.功能域或外显子洗牌(domain shuffling or exon shuffling)由不同基因中编码不同结构域的片段彼此连接形成的全新编码序列称为功能域或外显子洗牌。
基因组学复习资料整理(word文档良心出品)
基因组学1. 简述基因组的概念和其对生命科学的影响。
基因组:指一个物种的全套染色体和基因。
广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。
基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。
②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。
Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。
④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。
2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。
该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。
Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。
不同的Ds因子的长度差异由Ac因子发生不同缺失所致。
Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。
当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。
Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。
2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。
3)Ac对Ds的控制具有负剂量效应。
4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。
5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。
基因组学-Genomics-知识考点汇总
基因组学-Genomics-知识考点汇总•基因组(Genome:Gene+chromosome)细胞或生物体中一套完整的单倍体遗传物质•基因组学(Genomics)最早Thomas Roderick在1986年提出,包括基因组作图、测序和分析。
可分为结构基因组学和功能基因组学。
一、结构基因组学1.遗传图(Genetic Mapping Genomes) : Based on the calculation of recombination frequencyby linkage analysis .通过亲本的杂交,分析后代的基因间重组率,并用重组率来表示两个基因之间距离的线形连锁图谱每条染色体组成一个连锁群,所有染色体的连锁群组成的图谱即构成基因组遗传图。
重组率代表基因位点之间的相对距离。
在遗传作图中,人们把一个作图单位定义为1厘摩(cM),1cM等于1%的重组率。
提高遗传作图的分辨率:选用不同的杂交群体;增加杂交群体的数目;增加分子标记的数目;扩大分子标记的来源分子标记:绘制基因组遗传图需要的坐标点。
分子标记的主要来源是染色体上存在的大量等位基因。
在DNA水平上,两个基因间一个碱基的差异就足以形成等位基因。
2.物理图(physical map):指DNA序列上两点的实际距离,它是以DNA的限制酶片段或克隆的大片段的基因组DNA分子为基本单位,以连续的重叠群为基本框架,通过遗传标记将重叠群或基因组DNA分子有序排列于染色体上。
物理图的绘制: Based on molecular hybridization analysis and PCR techniques杂交法;指纹法;荧光原位杂交技术。
3.基因组序列测定: Sequencing methods: the chain termination procedure;Map-based clone by clone strategy;Whole genome shotgun (WGS) strategy;Sequence assembly;•传统基因组测序的方法:克隆步移法(BAC-by-BAC Strategy)和全基因组鸟抢法(Whole Genome Shotgun Strategy)。
基因组学复习资料
为什么说基因组学是生命科学的前沿学科?基因组学已成为生命科学的前沿学科,已渗透到各个科学领域,出现了结构基因组学,功能基因组学,蛋白组学,功能蛋白组学,功能酶学,生物信息学,生物计算机,药物基因组学,疾病基因组学等基因研究方向。
1、启动子:细菌中RNA聚合酶结合并启动转录的DNA序列。
2、转录因子:是转录起始过程中RNA聚合酶所需的辅助因子。
3、RNA聚合酶:是能够特异性地与启动子结合并启动转录的蛋白质。
4、转录因子(transcription factor,TF):是转录起始过程中RNA聚合酶所需的辅助因子。
按功能可分为两类: 1.普遍性转录因子(general transcription factor)是转录起始复合物的组成成员,将RNA聚合酶定位在核心启动子上。
2.激活转录因子:对转录起始复合物的组装及转录速率施加影响,决定某一基因是否表达。
5、RNA编辑(RNA editing):改变原有mRNA碱基序列组成的修饰。
有两种方式:①将mRNA分子中某些碱基进行代换,使原有mRNA密码子的含义发生改变②在mRNA分子内部插入某些核苷酸,使mRNA原有的读码框发生大范围的改变6、转录物组(transcriptome):基因组在整个生命过程中所表达的全部转录物的总和。
7、翻译(translation):按照mRNA密码子的排列顺序在核糖体上依次连接对应氨基酸合成多肽链的过程。
8、密码子摆动性(wobble):密码子的第3个碱基选择不同碱基配对的现象。
出现的原因:反密码子位于环化的tRNA序列内,是反密码子的第一个核苷酸与密码子第三个核苷酸不能形成标准的碱基配对。
9、密码子(codon):mRNA分子中每相邻的三个核苷酸编成一组,在蛋白质合成时,代表一种氨基酸。
61个氨基酸密码子,3个终止密码子。
10、移码(frame shift):如果翻译时出现反密码子与正密码子的配对间断或重叠,将改变后续的编码信息,这一现象称为移码。
福建农林大学基因组学复习材料
第一章1.什么是基因组?基因组是一种生物所拥有的整套遗传物质,它包含该生物的全部遗传信息。
2.基因组学研究内容、分支、特点基因组学研究内容:疾病基因组学研究、药物基因组学、环境基因组学、蛋白质组学、模式生物和病原生物基因组学、基因开发研究分支:结构基因组学,比较基因组学,功能基因组学基因组研究的特点:基因组学是一门关于基因组图、测序和基因组分析的学科。
与传统的遗传学比较,基因组学具有全局性、高效性、综合性和先进性的特点。
1 全局性(Overall, genome-wide):以整个基因组为研究对象,而非具体到单个特定的基因。
2 高效性(High-throughput):研究方法是平行的、高通量的,一次试验可产生大量的数据。
1 综合性:需要多学科的合作,包括生物学、化学、统计学、机械技术、电子技术、信息技术等。
2 先进性:将现有各种最先进的技术应用到极至,同时也推动了各种技术的高速发展。
3.人类基因组计划诺贝尔奖获得者Dulbecco:“人类DNA序列是人类的真谛,这个世界发生的一切,均与DNA序列息息相关”(1986);90年启动的国际性研究计划;利用大规模测序技术,完成全部人类数万个基因,30亿对碱基的序列分析4. 人类基因组进化的意义人类基因组计划对生命科学的研究和生物产业的发展具有非常重要的意义,它为人类社会带来的巨大影响是不可估量的。
首先,获得人类全部基因序列将有助于人类认识许多遗传疾病以及癌症等疾病的致病机理,为分子诊断、基因治疗等新方法提供理论依据。
第二,破译生命密码的人类基因组计划有助于人们对基因的表达调控有更深入的了解。
最后,人类基因组图谱对揭示人类发展、进化的历史具有重要意义。
第二章1.遗传作图、物理作图概念、意义遗传作图(genetic mapping):采用遗传学分析方法将基因或其他DNA 分子标记标定在染色体相对位置上构建连锁图。
物理作图(physical mapping):采用分子生物学技术直接将DNA分子标记、基因或克隆标定在基因组的实际位置所构建的位置图。
基因组学复习资料
基因组学复习资料基因组学复习资料为什么说基因组学是生命科学的前沿学科?基因组学已成为生命科学的前沿学科,已渗透到各个科学领域,出现了结构基因组学,功能基因组学,蛋白组学,功能蛋白组学,功能酶学,生物信息学,生物计算机,药物基因组学,疾病基因组学等基因研究方向。
基因组学形成和发展的科学技术基础?基因组学有哪些特点?1).可能性;2)整体性;3)大科学性(复杂性);4)原创性;5)前沿性;6)竞争性;7)自动化,程序化(标准化),规模化,快速化,产业化。
为什么基因组DNA测序能发现许多新基因?基因组研究已取得那些重要进展?基因组:所有生命都具有指令其生长与发育,维持其结构与功能所必需的遗传信息,生物所具有的携带遗传信息的遗传物质总和称为基因组。
基因组学:是研究生命体全部遗传信息的一门学科。
模式生物:反向遗传学:为什么要在基因组水平上研究生命现象/为什么线粒体基因组大小在不同生物中变化大,而叶绿体基因组大小相对稳定?有什么证据支持细胞器起源的的内共生假说?人类基因组顺序已经完成,但编码蛋白质基因的准确数仍存在不同的看法,为什么?染色体组:不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。
C值:指一个单倍体基因组中DNA的总量,一个特定的种属具有特征的C值。
CpG岛:基因组中富含GC(60%—70%)的DNA区段,一般长度为1—2kb。
支架附着区(SAR):从致密的蛋白质骨架向外伸展的DNA环与染色体骨架附着区结合的DNA顺序成为SAR。
基质附着区(MAR):从致密的蛋白质骨架向外伸展的DNA环与核基质结合的DNA顺序称为MAR。
核型:将中期染色体按照大小与着丝粒的位置依次排列,可组成每种生物特有的染色体组图像,称为核型。
转座子:转座子是基因组中一段可移动的DNA顺序,可以通过切割、重新整合等一系列过程从基因组的一个位置“跳跃”到另一个位置。
人类基因组计划中为什么要构建遗传图?人类基因组中有30亿个碱基对,含有大量重复序列,要在这样大的序列中确定某一基因的位置,如同大海捞针。
基因组学知识点
基因组学知识点基因组学是研究生物个体遗传物质的组成、结构、功能和变异等的一门科学。
下面将介绍基因组学的几个重要知识点。
一、基因组的概念和组成基因组指一个个体或者一个物种所拥有的所有基因的集合。
基因组由DNA分子构成,DNA是生物体内存储遗传信息的分子。
人类的基因组由大约30亿个碱基对组成,这些碱基对编码着我们的遗传信息。
基因组还包括非编码DNA序列,这些序列虽然不直接编码蛋白质,但在基因调控和遗传变异中起着重要作用。
二、基因组测序技术基因组测序是基因组学研究的重要手段。
体外测序技术的出现使我们能够更加高效、准确地测定基因组的序列。
目前常用的基因组测序技术有Sanger测序、Illumina测序和第三代测序技术等。
这些技术的不断发展使得我们能够深入研究基因组中基因的分布、变异以及功能。
三、基因组水平的生物信息学分析基因组水平的生物信息学分析能够帮助我们理解基因组的结构和功能。
其中基因预测是基因组水平的重要任务之一,通过计算机算法,预测基因组DNA序列中的基因位置、结构和功能。
基因注释是对已预测的基因信息进行进一步分析和解释,包括基因的功能、进化关系和调控信息等。
四、基因组变异和人类疾病基因组变异是指个体之间基因组DNA序列的差异。
人类基因组的变异包括单核苷酸多态性(SNP)、插入缺失变异和结构变异等。
这些变异在人类的个体差异、种群进化以及人类疾病的发生和发展中起着重要作用。
基因组学的研究使我们能够深入了解基因组变异与疾病之间的关联。
五、基因组学在个性化医学中的应用基因组学的发展对个性化医学产生了重大影响。
通过对个体基因组的分析,医生可以更好地为病患提供个体化的诊断和治疗方案。
例如,基因组学研究对癌症靶向治疗的发展做出了重要贡献。
此外,基因组学的研究还有助于预测个体对药物的反应和药物剂量的调整,提高了药物治疗的效果和安全性。
六、基因组学在植物和动物研究中的应用基因组学的研究不仅局限于人类,还广泛应用于植物和动物研究中。
基因组学考试重点
第一章大规模基因组测序的原理及方法1、基因组学是要提醒下述四种整合体系的相互关系:〔1〕基因组作为信息载体〔碱基对、重复序列的整体守恒及局部不平衡的关系〕〔2〕基因组作为遗传物质的整合体(基因作为功能和构造单位及遗传学机制的关系)〔3〕基因组作为生物化学分子的整合体(基因产物作为功能分子及分子、细胞机制的关系〕〔4〕物种进化的整合体(物种在地理及大气环境中的自然选择〕2、为什么说基因组学是一门大科学?〔1〕“界门纲目科属种〞,地球上现存物种近亿,所有生生灭灭的生物,无一例外,都有个基因组。
〔2〕基因组作为信息载体,它所储存的信息是最根本的生物学信息之一;既是生命本质研究的出发点之一,又是生物信息的归宿。
〔3〕基因组学研究包括对基因产物〔转录子组和蛋白质组〕的系统生物学研究。
〔4〕基因多态性的规模化研究就是基因组多态性的研究。
〔5〕基因组学的研究必然要上升到细胞机制、分子机制和系统生物学的水平。
〔6〕基因组的起源及进化和物种的起源及进化一样是一个新的科学领域。
〔7〕基因组信息正在以天文数字计算,规模化地积累,它的深入研究必将形成一个崭新的学科。
〔8〕基因组的信息是用来发现和解释具有普遍意义的生命现象和它们的变化、内在规律、和相互关系。
〔9〕基因组的信息含量高。
基因组学的研究又在于基因组间的比较。
〔10〕基因组学的复杂性必然导致多学科的引进和介入〔各生物学科、医学、药学、计算机科学、化学、数学、物理学、电子工程学、考古学等〕。
〔11〕基因组学研究的手段和技术已经走在生命科学研究的最前沿。
〔12〕基因组信息来自于高效率和规模化所产生的实验数据。
〔13〕人类基因组方案证明了基因组研究的迫切性和可行性。
3、大规模基因组测序的几个支撑技术是什么?〔1〕Sanger双脱氧末端终止法双脱氧终止法,即sanger测序法,是根据DNA在某一固定的点开场,随机在某一个特定的碱基处终止,并且在每个碱基后面进展荧光标记,产生以A、T、C、G完毕的四组不同长度的一系列DNA片段,然后在尿素变性的PAGE胶上电泳进展检测,从而获得可见的DNA碱基序列。
基因组学考试资料 整理版
第一章一、基因组1、基因组(genome):生物所具有的携带遗传信息的遗传物质的总和,是指生物细胞中所有的DNA,包括所有的基因和基因间区域。
2、基因组学:指以分子生物学技术、计算机技术和信息网络技术为研究手段,以生物体内全部基因为研究对象,在全基因背景下和整体水平上探索生命活动的内在规律及其内外环境影响机制的科学。
基因组学包括3个不同的亚领域结构基因组学(structural genomics) :以全基因组测序为目标功能基因组学(functional genomics):以基因功能鉴定为目标比较基因组学(comparative genomics)二、基因组序列复杂性1、C值是指一个单倍体基因组中DNA的总量,以基因组的碱基对来表示。
每个细胞中以皮克(pg,10-12g)水平表示。
C 值悖理(矛盾)(C-value paradox):在结构、功能很相似的同一类生物中,甚至在亲缘关系十分接近的物种之间,它们的C值可以相差数10倍乃至上百倍。
C值反映了总体趋势上,随着生物结构和功能的复杂性的增加,各分类单元中最小基因组的大小随分类地位的提高而递增。
2、序列复杂性单一顺序:基因组中单拷贝的DNA序列重复顺序:基因组中多拷贝的基因序列真核生物基因组DNA组分为非均一性,可分为3种类型:快速复性组分、居间复性组分、缓慢复兴组分三、基因与基因家族1、基因家族:是真核基因组的共同特征,他们来自一个共同的祖先,因基因加倍和趋异,产生了许多在DNA序列上基本一致而略有不同的成员。
包括编码RNA的基因和编码蛋白质的基因2、隔裂基因(split gene):指基因内部被一个或更多不翻译的编码顺序即内含子所隔裂。
3、异常结构基因分类重叠基因:编码序列彼此重叠的基因,含有不同蛋白质的编码序列。
基因内基因:一个基因的内含子中包含其他基因。
反义基因: 与已知基因编码序列互补的的负链编码基因,参与基因的表达调控,可以干扰靶基因mRNA转录与翻译。
高中生物基因组学知识点总结
高中生物基因组学知识点总结在生物学领域中,基因组学是研究生物体基因组的科学。
基因组是一个生物体内的所有DNA分子的集合,它承载着生物体所有的遗传信息。
基因组学的研究可以帮助我们更好地理解生物的遗传特征以及遗传疾病的发生机制。
本文将对高中生物基因组学的关键知识点进行总结。
一、DNA的结构和功能DNA是生物遗传信息的携带者,其结构和功能对于理解基因组学至关重要。
1. DNA的结构DNA是由磷酸、脱氧核糖和四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)组成的双链螺旋结构。
两条链通过氢键相互连接,形成了DNA的双螺旋结构。
2. DNA的功能DNA通过编码蛋白质的遗传信息,控制生物体的发育和功能。
同时,DNA还能进行DNA复制、转录和翻译等过程,以完成基因的表达和遗传信息的传递。
二、基因组的组成与特点1. 基因基因是指能够编码蛋白质或功能RNA的DNA序列。
基因组中的基因数量和组织方式因物种而异,不同基因在基因组中的排列方式也不同。
2. 基因组的组成基因组由染色体组成,染色体是一条线型的DNA分子。
人类基因组中有23对染色体,其中一对性染色体决定了个体的性别。
3. 基因组的特点基因组具有巨大的信息量和高度的可变性。
基因组中的基因序列可以通过突变和重组等变化,导致物种的进化和遗传多样性。
三、基因组学的研究方法1. 基因组测序基因组测序是研究基因组的重要方法。
通过测序技术,可以确定一个生物体整个基因组的序列,从而对基因组的结构和功能进行更深入的研究。
2. 基因表达分析基因表达分析可以帮助我们了解基因在不同组织、不同发育阶段以及不同环境条件下的表达情况。
这对于揭示基因功能以及研究疾病发生机制具有重要意义。
3. 基因组编辑技术CRISPR-Cas9是一种常用的基因组编辑技术。
通过设计特定的引导RNA,可以利用Cas9蛋白切割基因组中的特定片段,实现基因的添加、删除或修改,从而改变生物体的遗传特征。
四、基因组学的应用1. 遗传疾病的研究和诊断基因组学可以帮助人们了解遗传疾病的发生机制,并且提供基因诊断的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因组学1. 简述基因组的概念和其对生命科学的影响。
基因组:指一个物种的全套染色体和基因。
广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。
基因组计划对生命科学的影响:①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。
②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生物学生理学表观遗传学等③物种的起源与进化:Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。
Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。
④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。
2. Ac/Ds转座因子Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。
该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。
Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。
不同的Ds因子的长度差异由Ac因子发生不同缺失所致。
Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。
当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。
Ac/Ds两因子系统遗传特点:1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。
2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。
3)Ac对Ds的控制具有负剂量效应。
4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。
5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。
(分子生物学79-81)3. 正向遗传与反向遗传正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。
反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。
4. 分子标记,构建遗传图谱,原理,步骤遗传作图的遗传学原理:主要依据经典孟德尔遗传学的连锁和交换定律。
减数分裂时,同源染色体彼此靠拢,同源区段并排形成双联体。
在双联体中,并列的染色体臂在等价的位置发生DNA交换的频率与在染色体上所间隔的距离成正比,重组率则可成为衡量基因之间相对距离的尺度。
通过重组率可判断基因在染色体上的相对位置,从而绘制遗传图。
步骤:选择适合作图的DNA标记根据遗传材料之间的DNA多态性,选择用于建立作图群体的亲本组合建立分离群体测定群体中不同个体的标记基因型对标记基因型数据进行连锁分析,构建标记连锁图显性标记:仅能检测显性等位基因,不能够区分纯合和杂合基因型的遗传标记。
共显性标记:同时能检测出显性和隐性等位基因,能够区分纯合和杂合基因型的遗传标记。
5. 平衡化cDNA文库,原因及原理原因相关:为了将低丰度表达的基因识别和克隆出来,常采用均一化方法构建cDNA文库,其主要目的是减少测序量,尽量获得更多基因尤其是低转录基因的信息。
基因组中绝大多数基因属于中等或低表达丰度保留了表达丰度低的基因信息原理相关:1)基于复性动力学原理:高丰度的cDNA在退火条件下复性速度快,而低丰度的cDNA复性需要较长时间,通过控制复性时间来降低丰度。
2)基因组DNA饱和杂交:基于基因组DNA在拷贝数上具有相对均一化的性质,通过cDNA与基因组DNA饱和杂交而降低在文库中高拷贝存在的cDNA的丰度。
6. 非编码RNA, miRNA, siRNAmiRNA产生机制:动物细胞中,miRNA首先在细胞核内转录出较长的初级miRNA(pri-miRNA),然后在核内由Drosha加工成60~70个核苷酸的发夹状RNA,即前体miRNA (pre-miRNA),在Exprotin-5复合物的帮助下被转运出胞核,在胞浆中由Dicer剪切成为成熟miRNA,随即被整合进RNA沉默复合物(RISC)中,基于与mRNA完全或不完全配对来调节基因表达。
siRNA产生机制:由于RNA 病毒入侵、转座子转录、基因组中反向重复序列转录等原因,细胞中出现了dsRNA,Rde-1(RNAi缺陷基因-1)编码的蛋白质识别外源dsRNA,当dsRNA达到一定量的时候,Rde-1引导dsRNA与Rde-1编码的Dicer结合,形成酶-dsRNA复合体。
在Dicer 酶的作用下,细胞中的单链靶mRNA(与dsRNA具有同源序列)与dsRNA的正义链互换,原来dsRNA中的正义链被mRNA代替而从酶-dsRNA复合物中释放出来,然后,在ATP的参与下,细胞中存在的一种RNA诱导的沉默复合体(RISC)利用结合在其上的核酸内切酶的活性来切割dsRNA上处于原来正义链位置的靶mRNA分子中与dsRNA反义链互补的区域,形成21-23nt的dsRNA小片段,这些小片段即为siRNA。
两者异:1)miRNA是内源的,siRNA主要为外源导入;2)miRNA不仅能介导靶RNA的降解,还可与靶RNA通过不完全互补方式阻抑蛋白质的翻译。
两者同:形成都需要Dicer,形成的复合体中具有相同的蛋白组成,人工的siRNA在体内能产生类似miRNA的功能,内源的miRNA在与靶RNA完全互补的前提下,也能表现剪切靶RNA的干涉效应,两者可能具有基本相同的作用途径。
(分子生物257)7. 全基因组测序的原理和步骤。
全基因组鸟枪法测序的主要步骤:第一,建立高度随机、插入片段大小为2kb左右的基因组文库。
克隆数要达到一定数量,即经末端测序的克隆片段的碱基总数应达到基因组5倍以上。
第二,高效、大规模的末端测序。
对文库中每一个克隆,进行两端测序,TIGR在完成流感嗜血杆菌的基因组时,使用了14台测序仪,用三个月时间完成了必需的28,463个测序反应,测序总长度达6倍基因组。
第三,序列集合。
TIGR发展了新的软件,修改了序列集合规则以最大限度地排除错误的连锁匹配。
第四,填补缺口。
对某基因组文库全部克隆片段进行末端序列测定中未测到的碱基数,即缺(gap)。
有两种待填补的缺口,一是没有相应模板DNA的物理缺口,二是有模板DNA 但未测序的序列缺口。
他们建立了插入片段为15-20kb的λ文库以备缺口填补。
鸟枪法测序的缺点:随着所测基因组总量增大,所需测序的片段大量增加,各个片段重叠或一个连续体的概率是2n2-2n。
高等真核生物(如人类)基因组中有大量重复序列,导致判断失误。
对鸟枪法的改进:(1) Clone contig法。
首先用稀有内切酶把待测基因组降解为数百kb以上的片段,再分别测序。
(2) 靶标鸟枪法(direted shotgun)。
首先根据染色体上已知基因和标记的位置来确定部分DNA片段的相对位置,再逐步缩小各片段之间的缺口。
8. 全长cDNA文库的构建的三种方法。
(1)SMART技术:在合成cDNA的反应中事先加入的3’末端带Oligo(dG)的SMART引物,由于逆转录酶以mRNA为模板合成cDNA ,在到达mRNA的5’末端时碰到真核mRNA特有的帽子结构,即甲基化的G时会连续在合成的cDNA末端加上几个(dC),SMART引物的Oligo (dG)与合成cDNA末端突出的几个C配对后形成cDNA的延伸模板,逆转录酶会自动转换模板,以SMART引物作为延伸模板继续延伸cDNA单链直到引物的末端,这样得到的所有cDNA单链的一段含有Oligo(dT)的起始引物序列,另一端有已知的SMART引物序列,合成第二链后可利用通用引物进行扩增。
由于有5’帽子结构的mRNA才能利用这个反应得到扩增的cDNA,因此扩增得到的cDNA就是全长cDNA。
(2)Cap-trapper法:首先向反应体系中加入了海藻糖、山梨糖醇。
第二,全长cDNA的获得。
利用高碘酸钠的氧化特性,在低温、避光条件下特异氧化cDNA∕mRNA复合体中mRNA 5’和3’端末位核糖上的两个相邻的羟基。
第三,为防止揭短cDNA的掺入,采用RNaseⅠ对双链复合体进行酶切,RNaseⅠ可以消化以单链状态存在的mRNA,而且没有碱基特异性。
第四,第二链cDNA的合成。
第二链引物结合位点的引入可采用两种方法:一种是通过末端转移酶在单链cDNA的3’端加上一段poly(G),另一种是在利用DNA连接酶在cDNA的3’加上一段寡核苷酸。
(3)Oligo-capping法:首先,以mRNA 为起始材料,利用细菌碱性磷酸酶(BAP)水解5’端不完整mRNA 上的5’磷酸基团,防止截短的mRNA 与寡聚核苷酸链连接;再用烟草酸焦磷酸酶(TAP)除去mRNA5’端的帽子结构,在原mRNA 的5’端帽子处只留下一个磷酸基团;通过用T4RNA 连接酶在mRNA 的5’端连上一个寡聚核糖核酸,作为引发二链合成的引物,再经过反转录,PCR 扩增,这样只有完整的mRNA 才能够被合成cDNA,即全长cDNA。
9. 简述三种分子标记的原理与优缺点。
1)RFLP(限制性片段长度多态性):这种多态性是由于限制性内切酶酶切位点或位点间DNA区段发生突变引起的。
RFLP标记的特点:Ⅰ探针的制备:单拷贝DNA克隆或cDNA。
Ⅱ应具有探针/酶组合。
Ⅲ具有共显性、信息完整、重复性和稳定性好等优点。
Ⅳ过程较复杂,同位素操作。
ⅤRFLP标记两端测序,可转化为STS标记。
2)SSLP(简单序列长度多态性):SSLP是一系列不同长度的重复序列,不同的等位基因含有不同数目的重复单位。
有两种类型:小卫星(minisatellite)也称为可变数目的串联重复(variable number of tandem repeat, VNTR)。
重复单位长度为几十个核苷酸;微卫星或简单序列重复(simple sequence repeat, SSR)它的重复单位较短,通常为二、三或四核苷酸单位,重复次数一般为10-50。
Ⅰ.可变数目的串联重复多态性VNTR:利用PCR扩增,所得PCR产物通过电泳可比较其长度的变异许多小卫星序列太长,PCR无法扩增需要利用DNA southern杂交和放射性标记探针检测动物基因组中存在大量的小卫星序列植物基因组中的小卫星带谱很多,分析复杂谱带较困难,不太适合作图研究Ⅱ.SSR标记的特点:关键在于SSR引物的开发:SSR克隆的侧翼序列;检索数据库标记的多态性依赖于基本单元重复次数的变异设计引物和PCR反应,开发成本较低操作简便,稳定可靠3)单核苷酸多态性SNP。