统计学6抽样和抽样分-课件PPT
概率论与数理统计(06)第6章 统计量及其抽样分布
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
统计学-抽样分布与抽样方法
保持不变,每一次抽样中各总体单位被抽到的机会 都相同,每次抽样结果相互独立。 ②每一总体单位都有被重复抽取的可能。
5.2 抽样调查的方法
一、两种抽样方式(续):
(2)不重复抽样 ——也称不放回抽样,指被抽到的单位不再放回总
体,每次仅在余下的总体单位中抽取下一个样本的 抽样方法。 特点: ①任一总体单位都不会被重复抽到; ②每次抽样结果都受到以前各次抽取结果的影响,因 此各次抽取结果是不独立的; ③可以一次抽取所需要的样本单位数。 ❖ 在实际应用中通常采用的都是不重复抽样方法。
总体
群1
群2
…… 群k
个体1 个体2 个体3 个体4 个体5 个体6
5.2 抽样调查的方法
3.整群抽样
❖特点:
▪ 抽样时只需群的抽样框,可简化工作量 ▪ 调查的地点相对集中,节省调查费用,方便
调查的实施 ▪ 当群中的元素差异性大时,整群抽样得到的
结果比较好。在理想状态下,每一群是整个 总体小范围内的代表。如对人口普查资料进 行复查,就采用整群抽样的方式。
5.1 抽样调查的概念、特点和作用
五、全及总体和抽样总体 ❖全及总体,简称总体,是指所要认识对象的全
体,是许多同质性单位的集合。通常用大写字 母N来表示(容量)。 ❖抽样总体,简称样本,是从全及总体中随机抽 取出来,代表全及总体部分单位的集合。通常 用小写字母n来表示(容量) 。
▪ 样本容量(Sample size):样本中所含个体的数量。分为 大样本(>30)、小样本(<30)。
▪ 样本个数:又称为样本可能数目。是指从一个总体中可以 抽取的样本个数。
5.2 抽样调查的方法
统计学第6章统计量及其抽样分布
整理ppt
16
2. T统计量
设X1,X2,…,Xn是来自正态总体N~ (μ,σ2 )
n
的一个样本,
X
1 n
n i 1
Xi
(Xi X )2 s 2 i1
n 1
则 T(X) ~t(n1)
S/ n
称为T统计量,它服从自由度为(n-1)的t分布。
整理ppt
17
F分布
定义:设随机变量Y与Z相互独立,且Y和Z分别服 从自由度为m和n的c2分布,随机变量X有如下表达式:
整理ppt
8
中心极限定理
设从均值为,方差为2的一个任意总 体中抽取容量为n的样本,当n充分大时, 样本均值的抽样分布近似服从均值为μ、 方差为σ2/n的正态分布。
当样本容量足够大时
(n≥30),样本均值的抽样
分布逐渐趋于正态分布
整理ppt
9
标准误差
标准误差:样本统计量与总体参数之间的平均差异
1. 所有可能的样本均值的标准差,测度所有样本 均值的离散程度
因此,估计这100名患者治愈成功的比 例在85%至95%的概率为90.5%
整理ppt
22
6.5 两个样本平均值之差的分布
设
X
1
是独立地抽自总体
X1 ~N(1,12)
的一个容量
为n1的样本的均值。 X 2 是独立地抽自总体
X2 ~N(2,22)的一个容量为n2的样本的均值,则有
E (X 1X 2)E (X 1) E (X 2)12
2. 样本均值的标准误差小于总体标准差
3. 计算公式为
x
n
整理ppt
10
【例】设从一个均值μ=8、标准差σ=0.7的总 体中随机抽取容量为n=49的样本。要求:
统计学之抽样与抽样分布
的抽样分布
统计推断的过程
• 总体均值
m=?
• 从总体中抽取 • 样本容量为 n 的样本
• 用 作为m 的点估计
• 计算样本平均值
的抽样分布
的抽样分布是指所有可能的样本平均值 的概率分 布
的期望值
E( ) = = 总体平均值
的抽样分布
的标准差
•
有限总体
无限总体
• 当 n/N < .05时,可以将一个有限总体看作是无限
统计学之抽样与抽样分 布
2020年4月29日星期三
Chapter 7
抽样和抽样分布
本章主要内容
简单随机抽样 点估计 抽样分布 样本平均值 的抽样分布 样本比例 的抽样分布 抽样方法
•n = 100
•n = 30
统计推断
统计推断的目的是利用样本的信息推断总体的信息 总体是指感兴趣的所有元素的集合 样本是总体的一个子集 通过样本统计量对总体参数进行估计 只要抽样方法恰当,通过样本统计量可以对总体参数 进行很好的估计
也就是说,样本平均值在总体平均值+/-10分范围内的 概率为0.5036
•面积 = 2(.2518) = .5036
• 的抽样分布
•980 •990•1000
的抽样分布
的抽样分布是指所有可能的样本比例 的概率分布 的期望值
p = 总体比例
的抽样分布
的标准差 有限总体
无限总体
• 也称为样本比例的标准误
总体
•
称为有限总体校正因子.
• 也称为样本均值的标准误
的抽样分布
中心极限定理:只要样本容量足够大 (n > 30),不管总 体服从什么分布,样本平均值 都可以认为近似服从 正态分布。
统计学 第 6 章 抽样与参数估计
第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。
统计学抽样与抽样分布
3. 需要包含所有低阶段抽样单位的抽样框;同时由于
实行了再抽样,使调查单位在更广泛的范围内展开
4. 在大规模的抽样调查中,经常被采用的方法
概率抽样(小结)
非概率抽样
n也叫非随机抽样,是指从研究目的出发,根据调查者的 经验或判断,从总体中有意识地抽取若干单位构成样本。
n重点调查、典型调查、配额抽样(是按照一定标准或一 定条件分配样本单位数量,然后由调查者在规定的数额内 主观地抽取样本)、方便抽样(指调查者按其方便任意选 取样本。如商场柜台售货员拿着厂家的调查表对顾客的调 查)等就属于非随机抽样。
样本分量:其中每一个Xi是一个随机变量,称为样本 分量。
样本观察值:一次抽样中所观察到的样本数据x1、x2、 x3称为样本观察值。 对于某一既定的总体,由于抽样的方式方法不同,样 本容量也可大可小,因而,样本是不确定的、而是可5
一、 几个概念
(二)样本总体与样本指标
样本指标(统计量)。在抽样估计中,用来反 映样本总体数量特征的指标称为样本指标,也 称为样本统计量或估计量,是根据样本资料计 算的、用以估计或推断相应总体指标的综合指 标。
3
总体和参数(续)
通常所要估计的总体指标有
X
NX
一、 几个概念
(二)样本总体与样本指标
样本总体。简称样本(Sample),它是按照随机原则, 从总体中抽取的部分总体单位的集合体 。
样本容量:样本中所包含的个体的数量,一般用n表示。 在实际工作中,人们通常把n≥30的样本称为大样本, 而把n<30的样本称为小样本。
(二)抽样平均误差(抽样标准误)
抽样平均误差是反映抽样误差一般水平的指标(因为 抽样误差是一个随机变量,它的数值随着可能抽取的 样本不同而或大或小,为了总的衡量样本代表性的高 低,就需要计算抽样误差的一般水平)。通常用样本 估计量的标准差来反映所有可能样本估计值与其中心 值的平均离散程度。
统计学 第6章 统计量及其抽样分布
1. 样本统计量的概率分布,是一种理论分布
2. 随机变量是样本统计量
3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
6 - 8 / 55
统计学
STATISTICS (第五版)
重要统计量
1.样本均值:
n 1 若X ~ N(, 2), X X i, n i 1
1 n 1 则E X EX i ,D X 2 n i 1 n 2.样本方差:
n 1 2 S2 ( X X ) i n 1 i 1
1 1 2 2 DX i 2 n n n i 1
X ~ (n)
2
6 - 13 / 55
统计学
STATISTICS (第五版)
2分布
(图示)
n=1 n=4 n=10
n=20
6 - 14 / 55
不同容量样本的抽样分布
2
统计学
STATISTICS (第五版)
2 分布:
定理:如果随机变量 X1, X 2, , X n 相互独立,且都服从 同一正态分布
6.1.1 6.1.2 6.1.3 6.1.4
6 - 4 / 55
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设 X1,X2,…,Xn 是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造一个函 数 T(X1,X2,…,Xn) ,不依赖于任何未知参 数,则称函数 T(X1,X2,…,Xn) 是一个统计 量
6 - 2 / 55
统计学
STATISTICS (第五版)
统计学第六章 抽样法
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80
-
x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数
据
概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计
据
总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。
第六章 统计量及其抽样分布
样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下
第 一
16个样本的均值(x)
个
第二个观察值
观 察值1 2
3
4
11
1.
20.
52. 0.
5
21
2.
25.
03. 5.
0
23
2.
30.
53. 0.
5
24
3.
35.
04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)
统计学第六章抽样和抽样分布
2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布
统计学之抽样与抽样估计概述
重复抽样:
(1)总体是正态分布,样本必然是正态分布
(2)样本平均数的平均数等于总体平均数
(3)样本平均数的方差等于总体方差除以样本
容量n
2 x
2
n
(4)n越大,样本平均数越趋近于正态分布
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为X1=1、X2=2、X3=3 、X4=4 。 总体的均值、方差及分布如下
.2
.1 0
1
234
= 2.5
σ2 =1.25
.3 P ( X ) 抽样分布
.2
.1
0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
X 2.5
2 X
1.25 2
0.625
不重复抽样:
(1)总体是正态分布,样本必然是正态分布
(2)样本平均数的平均数等于总体平均数
(3)样本平均数的方差等于总体方差除以样本
对于给定置信度,有
P(1 P)
P { p z / 2
n
P p z / 2
x
z / 2 p
z / 2
P(1 P) n
P(1 P) } 1
n
总体比例的置信区间为
P(1 P)
P(1 P)
( p z / 2
n
, p z / 2
) n
小样本条件下,不作介绍。
【例】某城市想 要估计下岗职工 中女性所占的比 例,随机抽取了 100 个 下 岗 职 工 , 其 中 65 人 为 女 性职工。试以 95% 的 置 信 水 平 估计该城市下岗 职工中女性比例 的置信区间
p
P(1 P) n
0.95 0.05 100
统计学6
6 - 33
经济、管理类 基础课程
统计学
三、样本方差的分布
6 - 34
经济、管理类 基础课程
统计学
(一)样本方差的分布
设总体服从正态分布N 设总体服从正态分布N ~ (µ,σ2 ), X1,X2,… ,Xn为来自该正态总体的样本,则样本方差 为来自该正态总体的样本, s2 的分布为
(n −1)s
2
2. 3.
,则
Z=
X −µ
令 Y = Z 2 ,则 Y 服从自由度为1的χ2分布,即 服从自由度为1 分布,
σ
~ N(0,1)
Y ~ χ (1)
2
4.
当总体 X ~ N(µ,σ 2 ) ,从中抽取容量为n的样本,则 从中抽取容量为n的样本,
样 本 6 - 10
经济、管理类 基础课程
(三)抽样分布
(sampling distribution) distribution)
统计学
1. 样本统计量的概率分布 2. 是一种理论概率分布 3. 随机变量是 样本统计量
样本均值, 样本均值, 样本比例,样本方差等
4. 结果来自容量相同的所有可能样本 结果来自容量相同的所有可能样本 5. 提供了样本统计量长远我们稳定的信息,是进 行推断的理论基础,也是抽样推断科学性的重 要依据
总体分布、样本分布、抽样分布
三、渐进分布和近似分布
6-3
经济、管理类 基础课程
统计学
一、统计量
(一)统计量的概念 • 是样本的特征值 • 设X1 , X2 ,…, Xn是从总体中抽取的容量 为n的一个样本,如果由此样本构造一 个函数T 个函数T( X1 , X2 ,…, Xn ),不依赖于 任何未知参数,则称函数T 任何未知参数,则称函数T( X1 , X2 ,…, Xn )是一个统计量。
统计学课件第六章抽样调查PPT课件
特点
每个样本被选中的机会都 相等,样本的代表性相对 较好。
分层抽样
定义
先将总体按一定标准分成 若干层次或群,然后从各 层或群中按随机原则抽取 样本。
方法
分类抽样、比例抽样、类 型抽样。
特点
能够提高样本的代表性, 降低误差,减少资源浪费。
系统抽样
定义
先将总体中的所有个体按某种顺序排列,然后按 照固定的间隔或系统选取样本。
改进抽样方法
采用更科学的抽样方法和技术,如分层抽样、系统抽样等,以提 高样本的代表性。
提高样本代表性
在抽样过程中尽量减少非随机误差,如无回答、不完整数据等, 以提高样本对总体的代表性。
05 抽样调查的组织与实施
抽样调查的设计
确定调查目的
明确调查的目标和意图,为后 续的抽样设计提供指导。
确定调查对象
合理安排问题的顺序、布局和格式,以提高 问卷的易用性和回答率。
确定调查方式
选择合适的调查方式,如自填式、面访式等, 并确定数据收集的途径。
测试与修正
对问卷进行测试和修正,确保问卷的准确性 和可靠性。
调查的实施与质量控制
培训调查员
对调查员进行培训,确保他们了解调 查目的、问卷内容、调查方法等。
现场实施
将总体分成若干个群集或组,然后从每个 群集或组中抽取一定数量的样本,也称为 簇抽样或组抽样。
抽样调查的应用场景
01
02
03
04
市场调查
通过对目标市场的部分消费者 进行调查,了解市场需求、消 费者行为和产品反馈等信息。
社会调查
通过对一定范围内的社会成员 进行调查,了解社会现象、人 口状况和社会问题等信息。
统计学课件第六章抽样调查ppt课 件
西南财经大学向蓉美、王青华《统计学》第三版——第6章:抽样及抽样分布
§6.1 总体与样本的统计分布
§6.1.1 统计推断中 的总体及总体分布
研究的标志
组成元素 具体对象
组成元素
变量的具体 取值
§3.1 总体与样本
实物总体
数字总体
例:班级同学的成绩
班级同学的集合 (全体同学)
同学成绩的集合
组成元素:每位同学
组成元素:成绩分数
在统计推断中,我们感兴趣的是总体单位的某个或某些数 量特征。例如研究某种型号灯泡的寿命这一数量特征。总体的 含义是所感兴趣变量的所有取值。
T (x1, x2 ,..., xn ) 统计值
统计量既然是随机变量的函数,那么它也应该
是随机变量,并有其概率分布,统计量的分布也 称为抽样分布。抽样分布和统计推断有着密切的
联系。统计量提出以后,必须要知道其分布才能在 统计推断中使用,因为只有知道了统计量的分布, 才能利用概率论对总体的特征进行推断,并得到相 应的推断的置信度。所以在统计推断中,一项重要 的工作就是寻找统计量和导出统计量的分布。
不是 T6
1
2
( X12
X 22
.
X
2 3
)
【例6-1】总体X服从两点分布,概率分布律如下:
P(X 1) p P(X 0) 1 p
从总体中抽取容量为n的样本,求统计量T
n
Xi
的分布。
i 1
解:其取值是0到n之间的所有整数,其分布是二项分布:
P(T k) Cnk pk (1 p)nk k 0,1, 2,..., n
这样得到的X1, X2,…, Xn 称为来自总体X的一个 简单随机样本,n为这个样本的容量。
n次观察一经完成,我们就得到一组实数x1,
第六章 抽样分布及总体平均数的估计
• 对总体参数的一种看法 总体参数包括总体均值、比例、方差等 分析之前必需陈述
三 假设检验的基本原理
2、什么是假设检验?
1)概念 事先对总体参数或分布形式作出某种假设, 然后利用样本 信息来判断原假设是否成立。 2) 类型 参数假设检验 非参数假设检验 3)特点 采用逻辑上的反证法 依据统计上的小概率原理
二 总体平均数的估计
(3)区间估计(interval estimation)
根据估计量以一定可靠程度推断总体参数所在的区间 范围,用数轴上一段距离表示未知参数可能落入的范围, 虽不具体指出总体参数等于什么,但能指出未知总体参数 落入某一区间的概率有多大。
(4)置信区间(confidence interval)
一 抽样分布与平均数抽样分布
3、样本平均数与总体平均数离差的形态
(2)总体方差未知 总体正态,样本平均数与总体平均数的离差统 计量呈 t 分布; 总体非正态,但满足n>30这一条件,样本平均 数与总体平均数的离差统计量 近似t 分布。
t分布
t 分布(t-distribution)是统计分析中应用较多 的一种随机变量函数的分布,是统计学者高赛特 1908年以笔名“Student”发表的论文中推导出来 的一种分布,又叫学生氏分布。这种分布是一种 左右对称,峰态比较高狭,分布形状随样本容量 n-1的变化而变化的一组分布。
二 总体平均数的估计
4 总体方差σ2未知时,总体平均数μ的估计 用样本的无偏方差作为总体方差的估计值,样本 平均数的分布为t分布,应查t值表,包括以下两 种情况:
(1)总体的分布为正态时,可不管n值大小。 (2)总体分布为非正态,只有n>30,才能用概率对其样本 分布进行解释。
统计学第六章抽样调查
标 差 总 标 差 、 本 准 s 准 : 体 准 σ 样 标 差
总体参数和样本统计量符号
总体指标符号 总体容量: N 总体平均数: µ 总体成数: P 总体方差: σ2 总体标准差: σ 样本指标符号 样本容量: n 样本平均数: x 样本成数: p 样本方差: S2 样本标准差: S
抽样组织形式
抽样估计效果好坏,关键是抽样平均误差的 抽样估计效果好坏,关键是抽样平均误差的 抽样平均误差 控制。抽样平均误差小, 控制。抽样平均误差小,抽样效果从整体上 看就是好的;否则,抽样效果就不理想。 看就是好的;否则,抽样效果就不理想。 抽样平均误差受以下几方面的因素影响: 抽样平均误差受以下几方面的因素影响:
抽样调查的基本概念 抽样调查的基本概念 重复抽样和不重复抽样
重复抽样:又称有放回的抽样 有放回的抽样,从总体中 重复抽样 有放回的抽样 抽取样本时,每次被抽中的单位都再被 放回总体中参与下一次抽样。 不重复抽样:又称无放回的抽样 无放回的抽样,总体中 不重复抽样 无放回的抽样 随机抽选的单位经观察后不放回到总体 中,即不再参加下次抽样。
µ ( p) =
P (1 − P ) n
不重复抽样条件下: 不重复抽样条件下: 条件下
µ ( p) =
P (1 − P ) n (1 − ) n N
抽样极限误差
样本平均数的抽样极限误差: 样本平均数的抽样极限误差:以绝对值形式 表示的样本平均数的抽样误差的可能范围, 表示的样本平均数的抽样误差的可能范围, 用符号表示为: 用符号表示为:
样本成数
从成数总体中抽取样本容量为n的样本 从成数总体中抽取样本容量为 的样本 样本中具有此种特征的单位占全部样本单位 数的比例称为样本成数,记作p 数的比例称为样本成数,记作p p=n1/n
应用统计学第6章 抽样分布与参数估计
μx
6. 3抽样分布
多大是足够的大?
6. 3抽样分布
例子
假设总体的平均数μ = 8 且标准差σ = 3. 假 设选中容量n = 36随机样本。
样本平均数介于7.8和8.2之间的概率是多少?
第6章 6. 3抽样分布
例子
(续)
结论:
即使总体非正态分布, 中心极限定理可以应用 (n > 30)
6.2 抽样误差
样本统计量和对应的总体参数之间的差异,称之为抽 样误差。
抽样误差的产生是由于抽样的非全面性和随机性所引 起的,是偶然性误差。
非抽样误差
抽样框误差 系统性误差 测量误差 登记误差
6. 3抽样分布
6. 3抽样分布
6.3.1 样本均值的抽样分布
6. 3抽样分布
1.样本均值的均值
样)
6. 3抽样分布
p的抽样分布
近乎正态分布分布,如果:
n 5
P( ps)
抽样分布
.3
且
.2
.1
n(1 ) 5
0 0 . 2 .4 .6
p
81
μ 其中 p
π
且
π(1 π)
σp
n
(其中 π = 总体比例)
6. 3抽样分布
比例的Z值
使用公式将p标准化为Z值:
p
Z
σp
p (1 )
n
在判断样本中,我们得到预先选好的专家就主题 发表的意见。
6.1 抽样理由和抽样方法
样本类型:概率样本
在概率样本中, 样本中条目的选择基于已知的概率。
概率样本
简单 随机样本
系统样本
分层样本 群样本
6.1 抽样理由和抽样方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
又称放回抽样、抽样安排—— 对每次被抽到的单位经登记后再放回总体, 重新参与下一次抽选的抽样方法。
在每次的抽取中样本单位被抽中的概率 都等于1/N。统计中称这样的抽样为相互 独立的实验。
第六章 抽样和抽样分布
从总体N个单位,抽取样本容量为n 个单位的重置试验,可能抽取的样本个数称
为可重置的排列A N数n ,被抽中样本的概率为
系统抽样 也称机械抽样,它是将总
体中的单位按某种顺序排列,在规定的范围内 随机抽取起始单位,然后按一套规则确定其他 样本单元的一种抽样方法。
等距抽样 是先将总体各单位按某一
标志顺序排列,然后按照固定的顺序和相同的 间隔来抽取样本单位的抽样组织方式。
抽样在每一层中独立进行,总的样本
由各层的样本组成,所得的样本称为分层样本。
如果每层中的抽样都是按简单随机抽
样进行,那么这种抽样就称为分层随机抽样, 所得的样本称为分层随机样本。
第六章 抽样和抽样分布
分层随机抽样的特点:p118
(1)各层样本不仅可用于总体参数的估计外, 还可用来对层的参数进行估计
(2)抽得的样本很分散,难以找到每个样本 单元并实施调查。
(3)当总体单位间所研究的数量特征值的差 异较大时,抽样效果不理想。
第六章 抽样和抽样分布
(二)分层随机抽样p118
也称类型抽 样
如果总体可以分为互不重叠且穷尽的 若干个子总体,即每个单元必须属于且仅属于 一个子总体,则称这样的子总体为层。
总体参数符号
总体容量 N 总体平均数
总体成数 P
总体标准差
总体方差 2
样本统计量符号
样本容量 n
样本平均数 x
样本成数 p 样本标准差 S 样本方差 S2
第六章 抽样和抽样分布
二、抽样组织形式 基本的抽样组织方式有以下几种: 简单随机抽样
类型抽样 等距抽样 整群抽样 多阶段抽样
第六章 抽样和抽样分布
第六章 抽样和抽样分布
注意: 整群抽样和分层抽样的区别:
分层抽样
划组作用
缩小总体
抽取的基本单位 总体单位
整群抽样 扩大单位
群
整群抽样的缺点:
在相同的条件下,抽样误差较大,代表性较低。
(影响全及总体中各单位分配的均匀性)
第六章 抽样和抽样分最简布单的系统抽
样,包括无关标
(四)等距抽样
志排序抽样和有 关标志排序抽样
第六章 抽样和抽样分布
全及总体
例,某养猪场共有存栏肉猪10000头,现欲
了解这批肉猪平均每头的毛重,从中抽
样 取100头称其重量,计算这100头的平均
本 每头毛重,以达到我们期望的目的。
容
量
可能的样本数量:C11000000
种
(不考虑顺序的不重置抽样)
第六章 抽样和抽样分布
(二)总体参数和样本统计量
抽样:从总体中按一定的抽样技术抽取若 干个个体的过程。
样本:所抽取的部分个体 样本量:所抽取的个体的个数
如:某个城市居民家庭收入情况,抽取 1000户进行调查,1000户为一个样本, 样本量为1000
第六章 抽样和抽样分布
第一节 抽样及抽样组织形式
一、抽样的几个基本概念
(一)全及总体和样本总体
全及总体
总体容量
全及总体的单位总数用N表示,称 作总体容量,当确定了研究目标时,它具有 唯一性。
第六章 抽样和抽样分布
样本总体 样本单位(单元):从全及总体中抽出
的部分单位,每个单位称作样本单位。 样本容量:样本总体的单位总数。
样本总体不具有唯一性, 它的可能个数与N、n 及抽样方法有关。通常
n<30称为小样本, n≥30称为大样本
ANn Nn
例1:考虑从包含有1-6的点数的总体中抽取 n=2的样本(掷2个骰子具有相同点数)的概 率
第六章 抽样和抽样分布
2、不重置(复)抽样
又称为不放回抽样、抽样安排— —对每次抽到的单位登记后不再放回总体, 不参加下一次抽选,下一次继续从总体中余 下的单位抽取样本单位,这样连续进行n次 试验的抽样方法。
(一)简单随机抽样 1、简单随机抽样的概念
总体中每个单位 被抽取的机会是
均等的
简单随机抽样也称单纯随机抽样, 它是指从总体的所有单位中按照随机原则抽 取样本单位的方式。(分为重置抽样和不重 置抽样)
例:掷骰子
第六章
从总体中随机抽
抽样和抽样分布 取一个单位并把 结果记录下来称
为一次试验
1、重置(复)抽样
(2)分层抽样实施灵活方便,便于组织
(3)与简单随机样本比较,分层样本在总体 中的分布更均匀
(4)分层抽样能较大的提高调查精度 (仅取
决于各层内的方差,与层与层之间的差异无
关) 抽样和抽样分布
(三)整群抽样
整群抽样又称为分群抽样或集团抽样。 将总体划分为若干个群,然后以群为单位从中 间按简单随机抽样的方式或等距抽样的方式抽取 部分群,对中选群中的所有单位一一进行调查的 抽样组织方式。
第六章 抽样和抽样分布
第一节 抽样及抽样组织形式 第二节 常见的概率分布 第三节 抽样分布
几个概念
总体:将要调查或研究的事物或现象的全体。 个体:组成总体的每个元素。 容量:总体中所含个体的个数。
例如:某个城市居民家庭收入情况:
总体
这个城市所有家庭的收入
个体
这个城市每个家庭的收入
容量
这个城市所有家庭户数
总体参数 根据全及总体各单位变量值计算的反映全
及总体某数量特征的综合指标,由于全及总体唯一 确定,所以称为总体参数。
样本统计量 根据样本总体各单位变量值计算的反映样
本总体某数量特征的综合指标,由于样本不具唯一 性,故称为样本统计量,它是一个随机变量。
第六章 抽样和抽样分布
表:总体参数和样本统计量符号
第六章 抽样和抽样分布
2、简单随机抽样的实施 简单随机抽样的抽取样本的方法多
种多样,首先必须先把总体各单位全部编号, 然后利用摇号、掷骰子或随机数表的方法抽 取样本。
例5.3 使用随机数表 p116 【随数表的使用】
第六章 抽样和抽样分布
简单随机抽样的局限性:p117
(1)必须有包含所有单元的一个完整抽样框, 而当N很大时很难有完整的抽样框。
第六章 抽样和抽样分布
从总体N个单位,抽取样本容量为n个单位
的试验,可能抽取的样本点个数称为不重置
的组合数
C
n N
举例:C N nN (N 1 )•• n • !(N n 1 )(N N n !)! n !
例2:考虑从包含有1-6的点数的总体中抽取 n=2的样本(掷2个骰子具有相同点数)的概 率