初一华罗庚杯数学竞赛
第十三届华罗庚杯数学竞赛初一试题(二)
第十三届华罗庚杯数学竞赛初一试题(二)41、一根长方体木料,体积是0.078立方米。
已知这根木料长1.3米,宽为3分米,高该是多少分米?孙健同学把高错算为3分米。
这样,这根木料的体积要比0.078立方米多多少?42、有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米。
小正方形的面积是多少平方厘米?43、有9个小长方形,它们的长和宽分别相等,用这9个小长方形拼成的大长方形的面积是45平方厘米,求这个大长方形的周长。
44、77×13+255×999+51045、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
46、1995的约数共有____。
47、等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。
式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
48、如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。
已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。
图中间的“好”代表____。
49、农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个*墙的长方形鸡窝(如图2)。
为了防止鸡飞出,所建鸡窝高度不得低于2米。
要使所建的鸡窝面积最大,BC的长应是米。
50、小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。
甲数是____。
51、1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。
在小组赛中,这4支队中的每支队都要与另3支队比赛一场。
根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。
已知:(1)这4支队三场比赛的总得分为4个连续奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
华罗庚杯竞赛题初中
华罗庚杯竞赛题初中摘要:一、华罗庚杯竞赛简介1.竞赛背景2.竞赛目的3.竞赛对象二、竞赛题型与难度1.题型介绍a.选择题b.填空题c.解答题2.难度分级a.基础题b.提高题c.挑战题三、竞赛对初中生的意义1.提升数学素养2.培养逻辑思维能力3.为高中数学竞赛奠定基础四、如何准备华罗庚杯竞赛1.扎实掌握初中数学知识点2.加强数学解题技巧训练3.参加模拟考试,提高应试能力4.注重团队合作,分享学习经验正文:华罗庚杯竞赛是我国初中生的一项重要数学竞赛,旨在激发学生学习数学的兴趣,提高学生的数学素养,选拔优秀的数学人才。
该竞赛以我国著名数学家华罗庚先生的名字命名,自设立以来,已成为了全国范围内最具影响力的初中数学竞赛之一。
竞赛题型丰富多样,包括选择题、填空题和解答题,涵盖了初中数学的各个知识点。
题目按照难度分为基础题、提高题和挑战题,以适应不同层次的学生。
基础题主要考察学生对基本概念的理解和运用,提高题侧重于考察学生的数学解题技巧,挑战题则要求学生具备较强的逻辑思维能力。
参加华罗庚杯竞赛对于初中生来说具有多重意义。
首先,通过竞赛,学生可以巩固和拓展数学知识,提高自己的数学素养。
其次,竞赛中的题目往往具有较强的逻辑性和思维性,有助于培养学生的逻辑思维能力。
此外,华罗庚杯竞赛的成绩优秀者还有机会获得推荐参加高中数学竞赛的资格,为自己的数学之路奠定基础。
要想在华罗庚杯竞赛中取得好成绩,学生需要做好充分的准备。
首先要扎实掌握初中数学知识点,形成完整的知识体系。
其次,要加强数学解题技巧的训练,学会灵活运用所学知识解决实际问题。
此外,参加模拟考试,提高自己的应试能力也是十分重要的。
最后,注重团队合作,与同学分享学习经验,共同进步。
总之,华罗庚杯竞赛是初中生展示自己数学才能的重要舞台。
第21届华罗庚金杯少年数学邀请赛初一组初赛试卷带答案
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(初一组)一、选择题(每小题10 分,共60 分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.代数和-1⨯2008+2⨯2007-3⨯2006+4⨯2005+L -1003⨯1006+1004⨯1005的个位数字是()A.7B.8C.9D.0【答案】B【解析】只需考察每个组合的个位数的乘积,发现这2019 个的组合中,个位数的乘积每十个一循环,观察这个循环中的乘积和:-1⨯ 8+2 ⨯ 7 -3⨯ 6+4 ⨯ 5 -5⨯ 4 + 6 ⨯ 3 - 7 ⨯ 2 +8⨯1 - 9 ⨯ 0 + 0 ⨯ 9=0 ,因此每个循环的个位数和为0,观察最后循环外的几个数的乘积和:-1⨯8+2 ⨯ 7 -3⨯ 6+4 ⨯ 5=8 。
因此最后得到的个位数为82.已知-1<a<b<0,则下列不等式成立的是()A. a<a3 <ab2 <abB. a<ab2 <ab<a3C. a<ab<ab2 <a3D. a3<ab2<a<ab【答案】A【解析】a,a3 ,ab2 ,ab 中易知只有ab >0,故ab 最大,排除B,C;另外由于-1 <a < 0 得a2 < 1 ,即a <a3 ,排除D,所以选A3.在数轴上,点A 和点B 分别表示数a 和b ,且在原点O 的两则,若a -b =2019 ,AO =2BO ,则a +b =()A.6048B. -6048C. ±672D.0【答案】C【解析】由a -b = 2019 且A,B 在O 点两侧以及a= 2 b 知a, b的解有两种可能性:i. a >0,b<0则可解得a =2⨯ 2019 = 1344 ,b =-1⨯ 2019 =-672 ,a +b =672 3 34.如右图所示,三角形ABC 是直角三角形,∠ABC =60o ,若在直线AC 或BC 上取一点P ,使得三角形PAB 为等腰三角形,那么这样的点P 的个数为()A.4B.5C.6D.7【答案】C【解析】考察不同的等腰三角形的顶角:若P 为顶角,则P 必位于AB 的中垂线上,而AB 中垂线与直线AC,AB 的交点有两个,故这样的等腰三角形有2 个;若A 为顶角,则AB 为其中一条腰,将线段AB 绕A 点旋转,与直线AC,AB 的交点有三个,但是由于∠ABC = 60︒,此旋转后的直线与BC 延长线的交点与以P 为顶点的一个三角形重合,故这样不同的等腰三角形有2 个;若B 为顶角,同样AB 为其中一条腰,将线段AB 绕B 点旋转,与直线AC,AB 的交点同样有三个,同样与P 为顶点的一个三角形重合,故不同的三角形只有2 个;综上这样的点P 的个数为6 个。
第十三届华罗庚杯数学竞赛初一考试试题
第十三届华罗庚杯数学竞赛初一试题1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+......+9/(1×2×3× (10)的值为。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月日时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?()13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师名?14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有人?15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
第十二届全国华罗庚金杯少年数学邀请赛决赛试卷初一组答案及详细解析
第十二届全国“华罗庚金杯”少年数学邀请赛决赛试卷(初一组)一、填空(每题10分,共80分) 1、计算:=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--⨯-3553134217685.17130998-解析:3576306113999820171315130130⎛⎫⎛⎫⎛⎫-⨯--⨯-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2、“b 的相反数与a 的差的一半的平方”的代数表达式为 。
解析:2222⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--a b a b 或3、规定符号“⊕”为选择两数中较大者,规定符号“⊙”为选择两数中较小者,例如:3⊕5=5,3⊙5=3,则解析:400.726001271211211367⨯==+ 已知 5-=-n m ,1322=+n m ,那么 44n m += 97 。
解析:4、22224422222()(5)6,()(6)()()2=m n m n m n m n m n m n -=-→⨯=-⨯=-+=+-代入数据,原式975、用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如图1,从正面看这个立体,如图2,则这个立体的表面积最多是 48 。
图1(从上向下看) 图2(从正面看)解析:从两个视图可知,该立体的排布最多如图所示,则表面积最多为48 6、满足不等式|13|22|1|3+>--n n n 的整数n 的个数是 5 。
解析:n-1=0 则n=1, 3n+1=0 则n=-1/3当n-1>=0时,n>=1, 3(n-1)-2n>2(3n+1),5n<-5 ,n<-1, 则n 无解当-1/3<n<1时,3(1-n)-2n>2(3n+1),3-5n>6n+2,n<1/11 ,则-1/3<n<1/11…(1) 当n<=-1/3时,3(1-n)-2n>2(-3n-1),n>-5,则-5<n<=-1/3…(2) 由(1)、(2)得:-5<n<1/11,则整数n 的个数是: n=-4.-3.-2.-1.0共5个7、某年级原有学生280人,被分为人数相同的若干个班。
华罗庚金杯少年数学邀请赛初赛试卷初一组带答案
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(初一组)一、选择题(每小题10 分,共60 分,以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.代数和-1⨯2008+2⨯2007-3⨯2006+4⨯2005+L -1003⨯1006+1004⨯1005的个位数字是()A.7B.8C.9D.0【答案】B【解析】只需考察每个组合的个位数的乘积,发现这2015 个的组合中,个位数的乘积每十个一循环,观察这个循环中的乘积和:-1⨯ 8+2 ⨯ 7 -3⨯ 6+4 ⨯ 5 -5⨯ 4 + 6 ⨯ 3 - 7 ⨯ 2 +8⨯1 - 9 ⨯ 0 + 0 ⨯ 9=0 ,因此每个循环的个位数和为0,观察最后循环外的几个数的乘积和:-1⨯ 8+2 ⨯ 7 -3⨯ 6+4 ⨯ 5=8 。
因此最后得到的个位数为82.已知-1<a<b<0,则下列不等式成立的是()A. a<a3 <ab2 <abB. a<ab2 <ab<a3C. a<ab<ab2 <a3D. a3<ab2 <a<ab【答案】A【解析】a,a3 ,ab2 ,ab 中易知只有ab >0,故ab 最大,排除B,C;另外由于-1 <a < 0 得a2 < 1 ,即a <a3 ,排除D,所以选A3.在数轴上,点A 和点B 分别表示数a 和b ,且在原点O 的两则,若a -b =2016 ,AO =2BO ,则a +b =()A.6048B. -6048C. ±672D.0【答案】C【解析】由a -b = 2016 且A,B 在O 点两侧以及a= 2 b 知a, b的解有两种可能性:i. a >0,b<0则可解得a =2⨯ 2016 = 1344 ,b =-1⨯ 2016 =-672 ,a +b =672 3 34.如右图所示,三角形ABC 是直角三角形,∠ABC =60o ,若在直线AC 或BC 上取一点P ,使得三角形PAB 为等腰三角形,那么这样的点P 的个数为()A.4B.5C.6D.7【答案】C【解析】考察不同的等腰三角形的顶角:若P 为顶角,则P 必位于AB 的中垂线上,而AB 中垂线与直线AC,AB 的交点有两个,故这样的等腰三角形有2 个;若A 为顶角,则AB 为其中一条腰,将线段AB 绕A 点旋转,与直线AC,AB 的交点有三个,但是由于∠ABC = 60︒,此旋转后的直线与BC 延长线的交点与以P 为顶点的一个三角形重合,故这样不同的等腰三角形有2 个;若B 为顶角,同样AB 为其中一条腰,将线段AB 绕B 点旋转,与直线AC,AB 的交点同样有三个,同样与P 为顶点的一个三角形重合,故不同的三角形只有2 个;综上这样的点P 的个数为6 个。
第九届全国“华罗庚金杯”少年数学邀请赛决赛试题及参考答案(初一组)
第九届全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案 (初一组)第九届全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案(初一组)一、 填空题(每题10分,如果一道题中有两个答案,则每个5分)二、 解答下列各题,要求写出简要过程(每题10分)7、解答:.13922=+n m①解方程⎩⎨⎧-=+-=+965543y x y x 得到x=-3,y=1;②代入原方程中后两个方程,得到⎩⎨⎧=+=-3568n m n m 再解上面关于m和n的方程,得到.,136139-==n m ③计算.13916911722==+n m8、解答:李家养牛300头,王家养牛221头。
算术方法:(见小学解答) 代数解法:① 李家的牛群中有67%是母牛,67是质数,可以设李家养牛头数为100x ,王家的牛群中仅有131是母牛,13是质数,可以设王家养牛数是13y ,列出方程100x+13y=521。
…………………………(*)② x 和y 是整数,分别取x=1,2,3,4,5。
可以得到x=3,y=13。
或者解同余方程(*)。
(*)式两边除13,)13(14Mod x ≡-…………………………(**)x=3是(**)式的解,得到y=17。
9、解答:71=∆∆的面积的面积ABC G H I ① 如图(A),连接BG ,用S记△ABC 的面积,X 和Y 分别记第九届全国“华罗庚金杯”少年数学邀请赛决赛试题参考答案 (初一组)△DCG 和△BGF 的面积。
② 由已知条件:,331S Y X =+ (1) S Y X 3232=+ 解方程组(1),得到.,214211S Y S X ==同样方法可以得到△EAH 的面积=△FBI 的面积=.211S③ 从△ADC 的面积=△BEA =,31S ,得到, 四边形GCEH 的面积=四边形HAFI 的面积=(.)521S S =-所以,我们得到 △GHI 的面积=,)(71211211032S S =-- 即71=∆∆的面积的面积ABC GHI10、解答:12⨯[34⨯5-6÷(7-8)-9]=12⨯167=2004和12⨯[34×5-6⨯(7-8)-9]=12⨯167=200411、解答:42圈。
第十三届华罗庚杯数学竞赛初一试题.doc
第十三届华罗庚杯数学竞赛初一试题1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+......+9/(1×2×3× (10)的值为。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月日时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?()13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师名?14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有人?15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
华罗庚杯初中数学竞赛试卷
一、选择题(每题5分,共25分)1. 下列数中,哪个数是整数?A. 3.14B. -2.5C. 2.01D. 02. 如果一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是多少?A. 18cmB. 22cmC. 24cmD. 26cm3. 一个长方体的长、宽、高分别为3cm、4cm、5cm,那么它的体积是多少?A. 60cm³B. 48cm³C. 50cm³D. 52cm³4. 下列哪个图形是轴对称图形?A. 长方形B. 正方形C. 等腰三角形D. 以上都是5. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -2二、填空题(每题5分,共25分)6. 如果a+b=10,a-b=2,那么a的值是______。
7. 一个等边三角形的边长是______,它的面积是______。
8. 0.25的小数点向右移动两位后变成______。
9. 下列数中,哪个数是负数?______。
10. 一个数的立方根是-3,那么这个数是______。
三、解答题(每题15分,共30分)11. (解答题)已知一个梯形的上底长为4cm,下底长为10cm,高为6cm,求这个梯形的面积。
12. (解答题)小明有一块正方形的土地,面积是64平方米,他打算将土地分成若干个长方形,使得每个长方形的面积都是整数。
请问,小明最多可以分成几个长方形?四、附加题(20分)13. (附加题)一个圆的半径增加了20%,那么它的面积增加了多少百分比?解答过程:(1)设原圆的半径为r,则增加后的半径为1.2r。
(2)原圆的面积为πr²,增加后的面积为π(1.2r)²。
(3)面积增加的百分比为[(π(1.2r)² - πr²) / πr²] × 100%。
(4)计算得出增加的百分比。
---注意:本试卷仅供参考,具体题目难度及分值可根据实际情况进行调整。
第十五届“华杯赛”初一组初赛试题答案
a b 9 , b c 20 , c a 11.
进而
a 2 b 2 c 2 ab bc ca
1 = [( a b) 2 (b c) 2 (c a) 2 ] 2 1 = (81 400 121) 301. 2
6. 乘积为 240 的不同的五个整数的平均值最大是 ( (A) 【答案】D. 【解答】假设 240 a b c d e , a b c d e .
{3, 4, 1, 1, 20}小. 故最多有一个负数, 设为 a .
这个负数 a 一定是 1 . 否则, 用 a 乘以最大的整数, 满足五个数都不相同. 现在根据 240 分解的特点, 证明 240 (1) 1 2 3 40 为和最大的分解.
设 a 1, b 1 , 则 240 c d e , c, d , e 1 . 我 们 用 一 个 性 质 : 如 果
7 千米, 到达对岸 AD 最少要用 13
小时.
图 A-8
【答案】0.4 小时. 【解答】 连接 AC, 见图 A-9. 由勾股定理容易求得 AC=5 千米. 又因为 52 +122 132 , 所以三角形 ACD 是直角 三角形, ACD 90 . 要乘游艇由点 C 出发, 行进速度为每 小时 11
个. 【答案】3. 【解答】若数 a 是奇数, 则
a 1 a 1 a . 2 2
如果 a 是 4 的倍数, 则
a a a 1 1 . 4 4
2 2
2
2
一个偶数如果能表示成两个平方数的差, 则这两个数一定同时为奇数或者偶数. 而两个奇数(偶数)的平方差一定是 4 的倍数, 因为 2002, 2006, 2010 不是 4 的 倍数, 故不能表示成两个平方数的差. 10. 如图 A-8, 某风景区的沿湖公路 AB=3 千米, BC=4 千米, CD=12 千米, AD=13 千米, 其中 AB BC , 图中阴影是草地, 其余是水面. 那么乘游艇由点 C 出发, 行进速度为每小时 11
第二十一届华罗庚金杯少年数学邀请赛初赛试卷(初一组)
第二十一屆華羅庚金杯少年數學邀請賽 初賽試卷(初一組) (時間: 2015年12月12日10:00—11:00) 一、選擇題 (每小題10分, 共60分. 以下每題的四個選項中, 僅有一個是正確的, 請將表示正確答案的英文字母寫在每題的圓括號內.) 1. 代數和 100510041006100320054200632007220081⨯+⨯-+⨯+⨯-⨯+⨯- 的個位數字是( ). (A )7 (B )8 (C )9 (D )0 2. 已知01<<<-b a , 則下列不等式成立的是( ). (A )ab ab a a <<<23 (B )32a ab ab a <<< (C )32a ab ab a <<< (D )ab a ab a <<<23 3. 在數軸上, 點A 和點B 分別表示數a 和b , 且在原點O 的兩側.若2016||=-b a , BO AO 2=, 則=+b a ( ). (A )6048 (B )6048- (C )672± (D )0 4. 如右圖所示, 三角形ABC 是直角三角形, ︒=∠60ABC .若在直線AC 或BC 上取一點P , 使得三角形PAB 為等腰三角形, 那麼這樣的點P 的個數為( ). (A )4 (B )5 (C )6 (D )7裝訂線總分5. 如右圖, 乙是主河流甲的支流, 水流流向如箭頭所示.主流和支流的水流速度相等, 船在主流和支流中的靜水速度也相等. 已知CD AC =, 船從A 處經C 開往B處需用6小時, 從B 經C 到D 需用8小時, 從D 經C到B 需用5小時. 則船從B 經C 到A , 再從A 經C 到D 需用( )小時.(A )3113 (B )3112 (C )3111 (D )3110 6. 甲、乙、丙、丁四種商品的單價分別為2元, 3元, 5元和7元. 現從中選購了6件共花費了36元. 如果至少選購了3種商品, 則買了( )件丁商品.(A )1 (B )2 (C )3 (D )4二、填空題 (每小題 10 分, 共40分)7. 如右圖, 在平行四邊形ABCD 中, AD AB 2=.點O 為平行四邊形內一點, 它到直線AB , BC , CD的距離分別為a , b , c , 且它到AD 和CD 的距離相等,則=+-c b a 2 .8. 如右圖所示, 韓梅家的左右兩側各擺了3盆花. 韓梅每次按照以下規則往家中搬一盆花: 先選擇左側還是右側, 然後搬該側離家最近的. 要把所有的花搬到家裡, 共有 種不同的搬花順序.9. 如右圖, 在等腰梯形ABCD 中, CD AB //,6=AB , 14=CD , ︒=∠90AEC , CE CB =, 則=2AE .10. 已知四位數x 是完全平方數, 將其4個數字各加1後得到的四位數仍然是完全平方數, 則 =x .。
初一华罗庚杯试题及答案
初一华罗庚杯试题及答案1. 题目:计算下列表达式的值:\[ (3x - 5) + (2x + 1) \]答案:首先合并同类项,得到 \(5x - 4\)。
2. 题目:解方程 \( 2x - 3 = 7 \)。
答案:将方程两边同时加3,得到 \(2x = 10\),然后两边同时除以2,得到 \(x = 5\)。
3. 题目:一个数的3倍加上4等于20,求这个数。
答案:设这个数为 \(x\),则有 \(3x + 4 = 20\)。
解这个方程,首先将4移到等式右边,得到 \(3x = 16\),然后除以3,得到 \(x = \frac{16}{3}\)。
4. 题目:一个两位数,十位数字是 \(a\),个位数字是 \(b\),这个数可以表示为 \(10a + b\)。
如果这个数是 \(ab\) 的两倍,求 \(a\) 和 \(b\) 的值。
答案:设这个数为 \(N\),则有 \(N = 10a + b\)。
根据题意,\(N = 2ab\)。
将 \(N\) 的表达式代入,得到 \(10a + b = 2ab\)。
解这个方程,我们可以得到 \(a = 2\),\(b = 1\)。
5. 题目:一个等腰三角形的底边长为 \(6\) 厘米,两腰长为 \(x\)厘米,求这个三角形的周长。
答案:等腰三角形的周长等于底边长加上两倍的腰长,即 \(6 +2x\)。
因此,周长为 \(6 + 2x\) 厘米。
6. 题目:计算 \( (2^3)^2 \) 的值。
答案:根据幂的乘法法则,\( (2^3)^2 = 2^{3 \times 2} = 2^6= 64 \)。
7. 题目:一个正整数,它的平方减去它的一半等于 \(35\),求这个数。
答案:设这个数为 \(n\),则有 \(n^2 - \frac{1}{2}n = 35\)。
解这个方程,我们可以得到 \(n = 10\)。
8. 题目:一个数的 \(\frac{1}{3}\) 加上 \(\frac{1}{4}\) 等于\(\frac{1}{2}\),求这个数。
华罗庚数学竞赛题
华罗庚数学竞赛题一、数论部分1. 求满足方程x^2+y^2=z^2,x,y,z∈ N且x + y+ z = 1000的所有正整数解。
- 解析:- 已知x^2+y^2=z^2,x + y+ z = 1000,由x^2+y^2=z^2可联想到勾股数的关系。
- 设x = k(m^2-n^2),y = 2kmn,z = k(m^2+n^2)(m,n,k∈ N,m > n,m,n互质且m - n为奇数)。
- 代入x + y+ z = 1000得k(m^2-n^2+2mn + m^2+n^2)=1000,即2k(m^2+mn)=1000,k(m^2+mn) = 500。
- 通过试值法,当k = 1,m = 20,n = 5时,x=375,y = 200,z = 425等多组解。
2. 证明:对于任意正整数n,n^5-n能被30整除。
- 解析:- n^5-n=n(n^4 - 1)=n(n^2+1)(n^2-1)=n(n - 1)(n + 1)(n^2+1)。
- 因为n(n - 1)(n+1)是三个连续整数的乘积,所以一定能被6整除。
- 当n = 5k时,n^5-n能被5整除;当n=5k±1时,n^2+1=(5k±1)^2+1 = 25k^2±10k + 2能被5整除;当n = 5k±2时,n^2+1=(5k±2)^2+1=25k^2±20k + 5能被5整除。
所以n^5-n能被5整除。
- 因为n^5-n既能被6整除又能被5整除,所以能被30整除。
二、代数部分3. 已知a,b,c是实数,且a + b + c=0,abc = 1,求证:a,b,c中至少有一个大于(3)/(2)。
- 解析:- 不妨设a是a,b,c中的最大者,由a + b + c = 0得b + c=-a,bc=(1)/(a)。
- 则b,c是方程x^2+ax+(1)/(a)=0的两个根。
初中华罗庚竞赛数学试卷
一、选择题(每题5分,共20分)1. 下列各数中,是质数的是()A. 14B. 17C. 20D. 252. 下列各式中,正确的是()A. 2a + 3b = 5a + 5bB. 3x - 2y = 2x + 2yC. 4m + 5n = 2m + 2nD. 5p - 6q = 3p + 3q3. 若一个数的平方根是2,则这个数是()A. 4B. 8C. 16D. 324. 下列各数中,能被3整除的是()A. 123B. 456C. 789D. 12345. 下列各式中,错误的是()A. 2(x + y) = 2x + 2yB. 3(a - b) = 3a - 3bC. 4(m + n) = 4m + 4nD. 5(p - q) = 5p - 5q二、填空题(每题5分,共20分)6. 若a = 2,b = 3,则a + b的值是______。
7. 若x² = 25,则x的值是______。
8. 若一个数的倒数是3,则这个数是______。
9. 若一个数的平方是49,则这个数是______。
10. 若一个数的立方是27,则这个数是______。
三、解答题(每题10分,共30分)11. 已知:a + b = 7,ab = 12,求a² + b²的值。
12. 已知:x² - 5x + 6 = 0,求x的值。
13. 已知:3x - 2y = 8,2x + 3y = 12,求x和y的值。
四、附加题(每题10分,共20分)14. 若a、b、c是等差数列,且a + b + c = 12,b = 4,求a和c的值。
15. 已知:x² - 4x + 4 = 0,求x的值。
答案:一、选择题:1. B2. C3. A4. A5. B二、填空题:6. 97. 58. 1/39. 7 10. 3三、解答题:11. 3712. x₁ = 2,x₂ = 313. x = 4,y = 2四、附加题:14. a = 1,c = 715. x₁ = 2,x₂ = 2。
华罗庚金杯数学邀请赛决赛初一组练习题含答案
第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组) 总分第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组·练习用)一、填空题(每小题10 分, 共 80 分)1. 点O为线段AB 上一点, AOC 10 , COD 50 ,A O B则 BOD 或.2018 12k2.已知m>0 ,且对任意整数k,均为整数,则m 的最大值为.3m3. [x]表示不超过x 的最大整数,如[ 1.3] 2 ,[1.3] 1.1 2 9[a ] [a ] K [a ] =4已知,则a 的取值范围是.10 10 104. 使 2n 1和 11n 121 都是平方数的最小正整数n 为.5. 在3 3 的“九宫格”中填数,使每行每列及每条对角线上的三数之和都相等.如图,有 3 个方格已经填的数分别为 3,10,2018,则“九宫格”中其余 6 个方格所填数之和等于.6. 已知某三角形的三条高线长a,b,c 为互不相等的整数,则a b c 的最小值为.7. 16 张卡片上分别写着 1~16 这 16 个自然数,把这 16 张卡片分成 4 组,使得每组卡片张数一样,每组卡片上所写数的和相等,且每组有两张卡片上的数的和为 17,共有种分法.(说明:不考虑组的顺序,也不考虑组内数字的顺序.例如将 1~16 分为四组后,保持各组内数字不变,只改变组的顺序或组内数字的顺序,视为相同的分法.)abc8. a ,b ,c 是三个不同的非零整数,则的最小值为.4ab 2bc 3ca第二十三届华罗庚金杯少年数学邀请赛决赛试题(初中一年级组)二、解答下列各题(每题 10 分, 共 40 分, 要求写出简要过程)9. 现有两种理财方式供王老师选择.方案一:购买一款分红产品,前三年每年年初交 10 万元,第 6 年年初返 6 万元,以后每年处返 1.5 万元;方案二:购买一款年利率5%,满一年计息的储蓄产品,第一年初存款10 万元,接下来两年每年年初追加本金 10 万元,并将之前的本息全部续存.请问哪个选择更划算?请说明理由.(参考数据:1.054 1.053 1.052 =3.47563125)10. 如图,考古发现一块正多边形的瓷砖残片(如图),瓷砖上已不能找到完整的一个“角”,考古专家判定D ,E 两点是该正多边形相邻的两个顶点,C ,D 两个顶点之间隔有一个顶点.经过测量 CDE 135 ,DE 13厘米.原正多边形的周长是多少厘米?11. 一筐苹果,若分给全班同学每人 3 个,则还剩下 25 个;若全班同学一起吃,其中 5 个同学每人每天吃 1 个,其他同学每人每天吃 2 个,则恰好用若干天吃完.问筐里最多共有多少个苹果?12. 给定一个 5×5 方格网,规定如下操作:每次可以把某行(或列)中的连续 3 个小方格改变颜色(把白格变黑格,把黑格变白格).如果开始时所有25 个小方格均为白色,请问:能否经过8 次这样的操作,使得5×5 方格网恰好变为黑白相间(如图所示),且任何一个小方格在前 4 次操作中至多变色 1 次?如果能,请给出一种操作方案(直接画出第 4,5,6,7 次操作后的方格网颜色);如果不能,请给出证明.三、解答下列各题(每小题15 分, 共 30 分, 要求写出详细过程)13. 求证:不存在 3 个有理数的平方和等于 15.14. 如图,一个由 41 个小方格组成的棋盘.先将其中的任意 8 个方格染黑,然后按照以下规则继续染色:如果某个方格至少与 2 个黑格都有恰好 1 个公共顶点,那么就将这个方格染黑.这样操作下去能否将整个棋盘都染成黑色?第二十三届华罗庚金杯少年数学邀请赛决赛试题·练习用参考答案(初中一年级组)一、填空题(每小题10 分, 共 80 分)题号 1 2 3 4 5 6 7 80.5≤a< 0.41202答案或或者264 11040 9 10531400.4≤a<0.5二、解答下列各题(每小题10 分, 共 40 分, 要求写出简要过程)9. 【答案】:方案二更划算.解:方案二,第 4,5 年年初将之前的本息全部续存,到第 6 年年初时,共有本息10 (1 5%)5 10 (1 5%)4 10 (1 5%)3 ≈10.5 3.4756≈36.5(万元),提取 6 万元后仍有约36.5 6 30.5(万元)可不断续存,以后每年可提取利息约30.5 5% 1.525 (万元).在前期投入及回报一致的情况下,显然比方案一以后每年返1.5万元划算.而且方案二还可以随时提取或部分提取30.5万元储蓄用于应急或者选择其它更理想的理财方式,而方案一无此选择权.综上所述,方案二更划算.10. 【答案】156 厘米【解答】如图,设原图是正n 边形,其中C ,D 间的顶点为 F ,连接CF ,DF ,则(n 2 )CFD FDE 180 ,n因为 C F F D,1 8 0 C F D 1 8所以 C D F F C D ,2 n- 1 -n 3C D E F D E F D C 1 80 1 3,所以n解得n 12 .所以原本多边形是正 12 边形,周长为13 12=156(厘米).11. 【答案】130.【解答】解答1:设全班同学有n 人,根据题意,3n 25是2n 5的倍数,则30n2n5数.为整n n30 1 2 5 65 1 65又 1∵,2 5 2 2 5 2 2 5n n n65∴是奇数,2n 5∴ 2n 5最大为 65,n 最大为 35,∴筐里最多共有3 35 25 130个苹果.解答2:设全班同学有n 人,根据题意,3n 25是2n 5的倍数,则30n2n5数.为整记n 302n 5k ,k 为正整数,则n 30 k(2n 5) ,两边同乘2,得到2n 60 2k(2n 5) ,2n 60 2n 5 65, 2n 5 65 2k(2n 5) ,(2k 1)(2n 5) 65 5 13.2k 1 1时,2n 5 65,n 35,2k 1 5时,2n 5 13,n 9 ,2k 1 13时,2n 5 5,n 5,2k 1 65时,2n 5 1,n 3,n 为 35 时,苹果数最多,此时筐里的苹果数为35 3 25 130.12. 【答案】可以【解答】操作如下:(1)经过 4 次操作可染成如下:- 2 -第二十三届华罗庚金杯少年数学邀请赛决赛试题参考答案(初中一年级组),(2)继续操作第 5次 第 6次 第 7次 第 8次三、解答下列各题(每题 15 分, 共 30 分, 要求写出详细过程)13. 证明:注意到( x )2 x 2 ,只需考虑非负有理数的平方和.假设存在 3 个有理数n m , q p , t k ,其中 m ,n ,p ,q ,k ,t 是自然数, 且(m ,n ) 1,( p ,q ) 1,(k ,t ) 1,使得15 ( n )2 ( q )2 ( t )2,m p k那么15m 2n 2 p 2 (npk )2 (mqk )2 (mpt )2 ,即15d 2 a 2 b 2 c 2 ,其中 a ,b ,c ,d 是自然数.(1)如果 d 为偶数,那么经过有限次如下步骤,可使得 d 为奇数.假设 d 2d ,若 a ,b ,c 两奇一偶,则 a 2 b 2 c 2 被 4 除余 2,而15d 2 被 41整除,矛盾!所以 a ,b ,c 都是偶数,故令 a 2a ,b 2b ,c 2c (11 1 a ,b ,c1 1 1 都是自然数),所以15d2 a 2 b 2 c 2(其中 1 1 1 1a b c ab c ).如果 d 还 1 1 1 1是偶数,类似上述讨论,经过有限次后可得到奇数.(2)如果 d 为奇数,即 d 2r 1( r 是自然数),那么15d 2 15(2r 1)215 4r (r 1) 1 ,即15d 2 被 8 除余 7. 另一方面,若 a ,b ,c 为三个奇数,那么 a 2 b 2 c 2 被 8 除余 3;若a ,b ,c 为两偶一奇,那么 a 2 b 2 c 2 被 8 除余 1 或 5;- 3 -。
历届华罗庚杯初一试题及答案
历届华罗庚杯初一试题及答案一、选择题1. 下列哪个数是质数?A. 4B. 8C. 11D. 15答案:C2. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A二、填空题1. 计算 \((a+b)^2\) 的结果是 \(a^2\) 加上 \(2ab\) 再加上\(b^2\)。
答案:正确2. 一个数的平方根是它自身的数是 \_\_\_\_\_\_\_\_\_。
答案:0 或 1三、解答题1. 证明:对于任意正整数 \(n\),\(1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}\)。
答案:证明过程略。
(注:此处应提供详细的证明过程,但因篇幅限制,此处省略。
)2. 一个长方体的长、宽、高分别是 \(a\)、\(b\) 和 \(c\),求其体积。
答案:体积 \(V = abc\)。
四、综合题1. 某校举办了一次数学竞赛,共有100名学生参加。
其中,获得一等奖的有10人,二等奖的有20人,三等奖的有70人。
假设获奖学生的成绩呈正态分布,求平均成绩和标准差。
答案:平均成绩 \(\mu\) 略。
(注:此处应提供详细的计算过程,但因篇幅限制,此处省略。
)标准差 \(\sigma\) 略。
结束语华罗庚杯数学竞赛不仅能够锻炼学生的数学思维,还能培养他们解决问题的能力。
希望以上的试题及答案能够帮助同学们更好地准备竞赛,也祝愿所有参赛者能够取得优异的成绩。
华杯赛初一试题及答案
华杯赛初一试题及答案华罗庚金杯少年数学邀请赛(简称“华杯赛”)是一项面向中学生的数学竞赛,旨在激发学生对数学的兴趣,提高他们的数学素养。
以下是一份为初一学生设计的华杯赛试题及答案。
# 华杯赛初一试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?- A. 0- B. 1- C. 2- D. 3答案:B2. 如果一个数除以3的余数是2,那么这个数加1后除以3的余数是多少?- A. 0- B. 1- C. 2- D. 3答案:B3. 哪个数学公式可以用来计算一个长方形的面积?- A. 周长- B. 长 + 宽- C. 长× 宽- D. 长× 长答案:C4. 下列哪个选项不是质数?- A. 2- B. 3- C. 4- D. 5答案:C5. 一个数的60%加上它的40%等于这个数的多少?- A. 100%- B. 80%- C. 120%- D. 160%答案:A6. 一个长方体的长、宽、高分别是8cm、6cm和5cm,它的体积是多少立方厘米?- A. 240- B. 180- C. 120- D. 100答案:A7. 一个数的1/4加上它的1/2等于这个数的多少?- A. 3/4- B. 5/6- C. 9/12- D. 1答案:D8. 下列哪个选项是2的倍数?- A. 17- B. 23- C. 38- D. 47答案:C9. 一个数的3/4比它的1/2多1,这个数是多少?- A. 4- B. 8- C. 12- D. 16答案:A10. 一个班级有40名学生,其中1/5是女生,那么这个班级有多少名女生?- A. 8- B. 10- C. 15- D. 20答案:A二、填空题(每题4分,共20分)11. 一个数的75%是150,那么这个数是______。
答案:20012. 一本书的价格是35元,打8折后的价格是______元。
13. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是______厘米。
第十三届华罗庚杯数学竞赛初一试题
第十三届华罗庚杯数学竞赛初一试题1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+......+9/(1×2×3× (10)的值为。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月日时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?()13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师名?14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有人?15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
第22届华罗庚金杯少年数学邀请赛初赛试卷及详细解答(初一年级)
第22届华罗庚金杯少年数学邀请赛初赛试卷(初一年级)详细解答第1题:解:由(X-121×3.125)÷121=-3.38可得:X=121×3.125-121×3.38=121×(-0.255)=-30.855≈-31故选择B。
第2题:解:由已知条件可知:2m3+6m+3=11,∴2m3+6m=8,m3+3m=4,即m(m2+3)=4∵m2+3≥3 ∴0<m≦4/3 容易看出m=1就是这个方程的解。
当x=1/m时,x=1, 4x3-3x2-1=4-3-1=0故选择C。
第3题:解法1:过点B作CD的平行线,过点A做BC的平行线,交CD的延长线于E,交CD的平行线于G,连接AC,如图所示。
∵∠ADC=150º,AD=DC=1 ∴∠DCA=∠DAC=(180º-150º)=15º∵AE∥BC ∴∠AED=90º, ∠ADE=180º-150º=30 º在直角三角形AED中,AD=1,∴AE=1/2,∵AE∥BC,GB∥EC,∴四边形EGBC为长方形∴GE=BC=1,EC=GB, AG=EG-AE=1/2=AE ∠AEC=∠AGB=90º∴⊿AEC≌⊿AGB ∠ABG=∠ECA=∠DCA=15º, 故∠ABC=90º-∠ABG=90º-15º=75º故选择A。
解法2:连接DB,如图所示。
∵⊿DCB为等腰直角三角形,∴∠CDB=∠CBD=45º,∴∠ADB=150º-45º=105 º, ∴∠DAB+∠DBA=75º设AD=DC=CB=k,则DB=2k。
∴DB/AD =2k/k=2若∠ABC=75º,则∠ABD=30º,∠A=75º-30º=45º, Sin∠A/ Sin∠ABD= Sin45º/Sin30º=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2015-2016学年度学校12月月考卷
试卷副标题
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明
一、选择题(题型注释)
1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺
水速度之比为( )。
(A)
14
7 (B) 14
9 (C) 92 (D) 94 。
【答案】D
【解析】分析:设出顺水速度和逆水速度,那么可让总路程÷总时间求得平均速度,相比即可.
解答:解:设船在江中顺水速度为7x ,则逆水速度为2x ,一次的航程为1. ∴平均速度=
2117x 2x
+=
289
x , ∴它在两港间往返一次的平均速度与顺水速度之比为
289
x :7x=94.
故选D .
2. 如右图所示,三角形ABC 的面积为1cm 2。
AP 垂直∠B 的平分线BP 于P 。
则与三角形PBC 的面积相等的长方形是( )。
【答案】B
【解析】分析:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面
0.5cm
0.5cm
0.9cm
1.0cm
1.1cm
1.2cm
(A) (B) (C) (D)
B
试卷第2页,总5页
订
…
…
…
…
○
…
…
…
…
线
…
…
…
…
○
内
※
※
答
※
※
题
※
※
订
…
…
…
…
○
…
…
…
…
线
…
…
…
…
○
积相等,即可证明三角形PBC的面积.
解答:解:过P点作PE⊥BP,垂足为P,交BC于E,
∵AP垂直∠B的平分线BP于P,
∠ABP=∠EBP,
又知BP=BP,∠APB=∠BPE=90°,
∴△ABP≌△BEP,
∴AP=PE,
∵△APC和△CPE等底同高,
∴S△APC=S△PCE,
∴三角形PBC的面积=1
2
三角形ABC的面积=
1
2
cm2,
选项中只有B的长方形面积为1
2
cm2,
故选B.
3.设a,B的解集为x x的不等式bx-a>0的解集是( )。
(A) x x<x> x。
【答案】C
【解析】分析:这是一个含有字母系数的不等式,仔细观察,通过移项、系数化为1求得解集,由不等式解集是x
式的性质3,运用性质3的前提是两边都乘以(•或除以)同一个负数,从而求出a<0,b>0.再通过移项、系数化为1求得关于x的不等式bx-a>0解集.
x<-a
b
,x
所以a
b
a<0,b>0,
所以不等式bx-a>0的解集为
bx>a
x>
a
x>
故选C.
4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。
如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。
…○…………____
…○…………
(A) 1 (B) 2 (C) 3 (D) 4 。
【答案】A
【解析】分析:用木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,可用三角形的稳定性解释. 解答:解:如图:
A 点加上螺栓后,
根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边. 故选A .
5.对四堆石子进行如下“操作”:每次允许从每堆中各拿掉相同个数的石子,或从任一堆中取出
一些石子放入另一堆中。
若四堆石子的个数分别为2011,2010,2009,2008,则按上述方式
进行若干次“操作”后,四堆石子的个数可能是( )。
(A) 0, 0, 0, 1 (B) 0, 0, 0, 2 (C) 0, 0, 0, 3 (D) 0, 0, 0, 4 。
【答案】B
【解析】分析:先观察四个数,可得最小的为2008,根据题意可得出都拿走2008后四堆所剩的石子个数为:3,2,1,0,此时可将前三堆中的一个石子放到第四堆,然后再在每堆拿走1个石子,可得出四堆只剩下2个石子,继而结合选项可得出答案. 解答:解:①分别从四堆中拿走2008个石子,四堆所剩的石子个数为:3,2,1,0, ②将第一堆的一个石子放入第四堆,然后再分别从这四堆石子中各拿走1个石子,此时四堆石子的个数为:1,1,0,0,共剩余两个石子, 结合选项可得,只有B 选项剩余2个石子. 故选B .
试卷第4页,总5页
第II 卷(非选择题)
请点击修改第II 卷的文字说明 二、填空题(题型注释)
6.对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的
数字a 变为10 a 。
如果一个数按照上面的方法加密后为473392,则该数为 。
【答案】891134
【解析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数 解:对于任意一个数位数字(0-9),经加密后对应的数字是唯一的. 规律如下:
例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2;
同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0;
∴如果加密后的数为473392,那么原数是891134, 故答案为891134
7.老师问A 、B 、C 、D 、E 五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A :
没有人;B :一个人;C :二个人;D ;三个人;E :四个人。
老师知道:他们之中有人玩过
游戏,也有人没有玩过游戏。
若没有玩过游戏的人说的是真话,那么他们5个人中有个
人玩过游戏。
【答案】4
【解析】本题先根据题意没有玩过游戏的人说的是真话,由此可以推断出这5种说法中一定只有一种是正确的,从而得出只有一个人没有玩过游戏,由此可得出结论. 解:∵这5个人中没有玩游戏的说的是真话,而他们一共有5种说法 ∴他们中只有一个人的说法是对的, ∵没有玩过游戏的人说的是真话, ∴只有一个人没有玩过游戏,
∴他们5个人中有4个人玩过游戏. 故答案为:4
8.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管
显示,如下图所示:
由于坏了一支荧光管,某公交线路号变成“351”。
若该线路号恰好等于两个不同的两位质数
的积,则正确的线路是 路。
【答案】391
【解析】先确定可能是哪些路线,然后再根据条件:该线路号恰好等于两个不同的两位质数的积,找到符合要求的数即可
:解:∵该路线有可能为:951或361或391或357, 又∵该线路号恰好等于两个不同的两位质数的积, ∴此路线是:391=17×23.
故答案为:391
9.在下面的加法竖式中,如果不同的汉字代表不同的数字。
使得算式成立,那么四位数
“华杯初赛”的最小值是 。
【答案】1026
【解析】要使四位数“华杯初赛”取得最小值,先确定“华”的值,进一步确定“杯”和“十”值,在确定“初”的值,经过试算“可推出“兔”“六”的值,再由剩下的数
字得出“年”“届”“赛”三个数字,由此解决问题. 解:因为四位数“华杯初赛”取得最小值,“华”只能为1,“杯”可以为0,那么“十”只能是9,“初”可以是2,那么“兔”“六”“初”三个数字和只能向前一位今1,可推出“兔”“六”可以为3、4,3、5,3、6,再由剩下7、8数字和为15,说明“年”“届”“赛”三个数字和得向前一位进2,由此推出“兔”“六”为3、4,“年”“届”“赛”三个数字为6、7、8,所以赛最小为6,四位数“华杯初赛”的最小值是 1026. 故答案为1026 三、计算题(题型注释)
四、解答题(题型注释)
五、判断题(题型注释)
兔 年
十 六 届 华 杯 初 赛
2
1
1。