10级大学物理规范作业上册10解答

合集下载

大学物理标准答案第10章

大学物理标准答案第10章

第十章 静电场中的导体与电介质10-1将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A )升高 (B )降低(C )不会发生变化 (D )无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ).10-2将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A )N 上的负电荷入地 (B )N 上的正电荷入地 (C )N 上的所有电荷入地(D )N 上所有的感应电荷入地题 10-2 图分析与解导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ).10-3如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0==(B )dεqV d εq E 020π4,π4== (C )0,0==V E (D )RεqV d εq E 020π4,π4==题 10-3 图分析与解达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B )若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C )若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D )介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E )介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5对于各向同性的均匀电介质,下列概念正确的是( )(A )电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(B )电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍(C )在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍(D )电介质中的电场强度一定等于没有介质时该点电场强度的εr倍分析与解电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有()∑⎰⎰=⋅=⋅+ii S S εχq 01d d 1S E S E 即E =E 0/εr,因而正确答案为(A ).10-6不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.题 10-6 图分析与解根据导体静电平衡时电荷分布的规律,空腔内点电荷的电场线终止于空腔内表面感应电荷;导体球A 外表面的感应电荷近似均匀分布,因而近似可看作均匀带电球对点电荷q d 的作用力.()20π4rεq q q F dc bd +=点电荷q d 与导体球A 外表面感应电荷在球形空腔内激发的电场为零,点电荷q b 、q c 处于球形空腔的中心,空腔内表面感应电荷均匀分布,点电荷q b 、q c 受到的作用力为零.10-7一真空二极管,其主要构件是一个半径R 1=5.0×10-4m 的圆柱形阴极和一个套在阴极外、半径R 2=4.5×10-3m 的同轴圆筒形阳极.阳极电势比阴极电势高300 V ,阴极与阳极的长度均为L =2.5×10-2 m .假设电子从阴极射出时的速度为零.求:(1)该电子到达阳极时所具有的动能和速率;(2)电子刚从阳极射出时所受的力.题 10-7 图分析 (1)由于半径R 1<<L ,因此可将电极视作无限长圆柱面,阴极和阳极之间的电场具有轴对称性.从阴极射出的电子在电场力作用下从静止开始加速,电子所获得的动能等于电场力所作的功,也即等于电子势能的减少.由此,可求得电子到达阳极时的动能和速率. (2)计算阳极表面附近的电场强度,由F =q E 求出电子在阴极表面所受的电场力. 解 (1)电子到达阳极时,势能的减少量为J 108.4Δ17ep -⨯-=-=eV E由于电子的初始速度为零,故J 108.4ΔΔ17ep ek ek -⨯-=-==E E E因此电子到达阳极的速率为1-7ek s m 1003.122⋅⨯===meVm E v (2)两极间的电场强度为r rελe E 0π2-= 两极间的电势差1200ln π2d π2d 2121R R r r V R R R R ελελ-=-=⋅=⎰⎰r E负号表示阳极电势高于阴极电势.阴极表面电场强度r r R R R V R ελe e E 12110ln π2=-=电子在阴极表面受力r e e E F N)1037.414-⨯=-=(这个力尽管很小,但作用在质量为9.11×10-31kg 的电子上,电子获得的加速度可达重力加速度的5×1015倍.10-8一导体球半径为R 1,外罩一半径为R 2的同心薄导体球壳,外球壳所带总电荷为Q ,而内球的电势为V 0.求此系统的电势和电场的分布. 分析若200π4R εQV =,内球电势等于外球壳的电势,则外球壳内必定为等势体,电场强度处处为零,内球不带电.若200π4R εQV ≠,内球电势不等于外球壳电势,则外球壳内电场强度不为零,内球带电.一般情况下,假设内导体球带电q ,导体达到静电平衡时电荷的分布如图所示.依照电荷的这一分布,利用高斯定理可求得电场分布.并由⎰∞⋅=pp V l E d 或电势叠加求出电势的分布.最后将电场强度和电势用已知量V 0、Q 、R 1、R 2表示.题 10-8 图解根据静电平衡时电荷的分布,可知电场分布呈球对称.取同心球面为高斯面,由高斯定理()()∑⎰⋅=⋅=⋅02/π4d εq r E rr E S E ,根据不同半径的高斯面内的电荷分布,解得各区域内的电场分布为r <R 1时,()01=r E R 1<r <R 2时,()202π4rεqr E =r >R 2时,()202π4r εqQ r E +=由电场强度与电势的积分关系,可得各相应区域内的电势分布. r <R 1时,20103211π4π4d d d d 2211R Q R q V R R R R r r εε+=⋅+⋅+⋅=⋅=⎰⎰⎰⎰∞∞lE l E l E l ER 1<r <R 2时,200322π4π4d d d 22R Q r q V R R r r εε+=⋅+⋅=⋅=⎰⎰⎰∞∞lE l E l Er >R 2时,rqQ V r 03π4d ε+=⋅=⎰∞l E 3也可以从球面电势的叠加求电势的分布:在导体球内(r <R 1)20101π4π4R εQR εq V +=在导体球和球壳之间(R 1<r <R 2)2002π4π4R εQr εq V +=在球壳外(r >R 2)为rqQ V 03π4ε+=由题意102001π4π4R εQR εq V V +==得Q R R V R q 21010π4==ε 于是可求得各处的电场强度和电势的分布: r <R 1时,01=E ;01V V =R 1<r <R 2时,22012012π4r R εQR r V R E -=;rR Q R r r V R V 201012π4)(ε-+= r >R 2时,220122013π4)(r R Q R R r V R E ε-+=;rR QR R r V R V 2012013π4)(ε-+= 10-9地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解由于地球半径R 1=6.37×106m ;电离层半径R 2=1.00×105m +R 1=6.47×106m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC10-10两线输电线,其导线半径为3.26mm ,两线中心相距0.50m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容.分析 假设两根导线带等量异号电荷,电荷在导线上均匀分布,则由长直带电线的电场叠加,可以求出两根带电导线间的电场分布,-++=E E E再由电势差的定义求出两根导线之间的电势差,就可根据电容器电容的定义,求出两线输电线单位长度的电容解建立如图坐标,带等量异号电荷的两根导线在P 点激发的电场强度方向如图,由上述分析可得P 点电场强度的大小为)11(π20xd x E --=ελ 电场强度的方向沿x 轴,电线自身为等势体,依照定义两导线之间的电势差为x xd x l E U lRd Rd )11(π2d 0--=⋅=⎰⎰-ελ 上式积分得RR d ελU -=ln π0 因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据F 1052.512-⨯=C题 10-10 图10-11电容式计算机键盘的每一个键下面连接一小块金属片,金属片与底板上的另一块金属片间保持一定空气间隙,构成一小电容器(如图).当按下按键时电容发生变化,通过与之相连的电子线路向计算机发出该键相应的代码信号.假设金属片面积为50.0mm 2,两金属片之间的距离是0.600mm .如果电路能检测出的电容变化量是0.250pF ,试问按键需要按下多大的距离才能给出必要的信号?题 10-11 图分析按下按键时两金属片之间的距离变小,电容增大,由电容的变化量可以求得按键按下的最小距离:解按下按键时电容的变化量为⎥⎦⎤⎢⎣⎡-=0011Δd d S εC按键按下的最小距离为mm 152.0ΔΔΔ00200min =+=-=SC d Cd d d d ε10-12一片二氧化钛晶片,其面积为1.0cm 2,厚度为0.10mm .把平行平板电容器的两极板紧贴在晶片两侧.(1)求电容器的电容;(2)当在电容器的两极间加上12V 电压时,极板上的电荷为多少?此时自由电荷和极化电荷的面密度各为多少?(3)求电容器内的电场强度. 解 (1)查表可知二氧化钛的相对电容率εr =173,故充满此介质的平板电容器的电容F 1053.190-⨯==dSεεC r (2)电容器加上U =12V 的电压时,极板上的电荷C 1084.18-⨯==CU Q极板上自由电荷面密度为2-80m C 1084.1⋅⨯==-SQσ晶片表面极化电荷密度2-400m C 1083.111⋅⨯=⎥⎦⎤⎢⎣⎡-='-σεσr (3)晶片内的电场强度为1-5m V 102.1⋅⨯==dUE 10-13如图所示,半径R =0.10m 的导体球带有电荷Q =1.0×10-8C ,导体外有两层均匀介质,一层介质的εr =5.0,厚度d =0.10m ,另一层介质为空气,充满其余空间.求:(1)离球心为r =5cm 、15cm 、25cm 处的D 和E ;(2)离球心为r =5cm 、15cm 、25cm 处的V ;(3)极化电荷面密度σ′.题 10-13 图分析 带电球上的自由电荷均匀分布在导体球表面,电介质的极化电荷也均匀分布在介质的球形界面上,因而介质中的电场是球对称分布的.任取同心球面为高斯面,电位移矢量D 的通量与自由电荷分布有关,因此,在高斯面上D 呈均匀对称分布,由高斯定理⎰∑=⋅0d qS D 可得D (r ).再由r εε0/D E =可得E (r ).介质内电势的分布,可由电势和电场强度的积分关系⎰∞⋅=rV l E d 求得,或者由电势叠加原理求得.极化电荷分布在均匀介质的表面,其极化电荷面密度n P ='σ.解 (1)取半径为r 的同心球面为高斯面,由高斯定理得r <R 0π421=⋅r D01=D ;01=ER <r <R +d Q r D =⋅22π422π4r QD =;202π4r εεQ E r= r >R +d Q r D =⋅23π423π4r QD =;203π4r Q E ε= 将不同的r 值代入上述关系式,可得r =5cm 、15cm 和25cm 时的电位移和电场强度的大小,其方向均沿径向朝外.r 1=5cm ,该点在导体球内,则01=r D ;01=r Er 2=15cm ,该点在介质层内,εr=5.0,则2822m C 105.3π42--⋅⨯==r QD r 12220m V 100.8π42-⋅⨯==r εεQ E r r r 3=25cm ,该点在空气层内,空气中ε≈ε0,则2823m C 103.1π43--⋅⨯==r QD r ; 13220m V 104.1π43-⋅⨯==r Q E r ε (2)取无穷远处电势为零,由电势与电场强度的积分关系得 r 3=25cm ,V 360π4d 0r 331==⋅=⎰∞rεQV r E r 2=15cm ,()()V480π4π4π4d d 0020r3222=+++-=⋅+⋅=⎰⎰+∞+d R Qd R Q r Q V r r dR d R εεεεεrE r E r 1=5cm ,()()V540π4π4π4d d 000321=+++-=⋅+⋅=⎰⎰+∞+d R εQd R εεQ R εεQ V r r dR RdR rE r E(3)均匀介质的极化电荷分布在介质界面上,因空气的电容率ε=ε0,极化电荷可忽略.故在介质外表面;()()()20π411d R εQ εE εεP r r n r n +-=-=()()282m C 106.1π41--⋅⨯=+-==d R εQεP σr r n在介质内表面:()()20π411R εQ εE εεP r r n r n -=-=()282m C 104.6π41--⋅⨯-=-=-='R εQ εP σr r n介质球壳内、外表面的极化电荷面密度虽然不同,但是两表面极化电荷的总量还是等量异号. 10-14人体的某些细胞壁两侧带有等量的异号电荷.设某细胞壁厚为5.2×10-9m ,两表面所带面电荷密度为±5.2×10-3C /m 2,内表面为正电荷.如果细胞壁物质的相对电容率为6.0,求(1)细胞壁内的电场强度;(2)细胞壁两表面间的电势差. 解 (1)细胞壁内的电场强度V /m 108.960⨯==rεεσE ;方向指向细胞外. (2)细胞壁两表面间的电势差V 101.52-⨯==Ed U .10-15如图(a )所示,有两块相距为0.50的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K内,金属盒上、下两壁与A 、B 分别相距0.25mm ,金属板面积为30mm ×40mm .求(1)被屏蔽后电容器的电容变为原来的几倍;(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,问此时的电容又为原来的几倍?题 10-15 图分析薄金属板A 、B 与金属盒一起构成三个电容器,其等效电路图如图(b)所示,由于两导体间距离较小,电容器可视为平板电容器,通过分析等效电路图可以求得A 、B 间的电容. 解 (1)由等效电路图可知13232123C C C C C C C C ++⋅=+=由于电容器可以视作平板电容器,且32122d d d ==,故1322C C C ==,因此A 、B 间的总电容12C C =(2)若电容器的一个引脚不慎与金属屏蔽盒相碰,相当于2C (或者3C )极板短接,其电容为零,则总电容13C C =10-16在A 点和B 点之间有5个电容器,其连接如图所示.(1)求A 、B 两点之间的等效电容;(2)若A 、B 之间的电势差为12V ,求U A C 、U CD 和U D B .题 10-16 图解 (1)由电容器的串、并联,有μF 1221=+=C C C ACμF 843=+=C C C CD51111C C C C CD AC AB ++= 求得等效电容C AB =4μF .(2)由于AB DB CD AC Q Q Q Q ===,得V 4==AB ACABAC U C C U V 6==AB CDABCD U C C U V 2==AB DBABDB U C C U 10-17如图,有一个空气平板电容器,极板面积为S ,间距为d .现将该电容器接在端电压为U 的电源上充电,当(1)充足电后;(2)然后平行插入一块面积相同、厚度为δ(δ<d )、相对电容率为εr的电介质板;(3)将上述电介质换为同样大小的导体板.分别求电容器的电容C ,极板上的电荷Q 和极板间的电场强度E .题 10-17 图分析电源对电容器充电,电容器极板间的电势差等于电源端电压U .插入电介质后,由于介质界面出现极化电荷,极化电荷在介质中激发的电场与原电容器极板上自由电荷激发的电场方向相反,介质内的电场减弱.由于极板间的距离d 不变,因而与电源相接的导体极板将会从电源获得电荷,以维持电势差不变,并有()δSεεQ δd S εQU r 00+-=相类似的原因,在平板电容器极板之间,若平行地插入一块导体板,由于极板上的自由电荷和插入导体板上的感应电荷在导体板内激发的电场相互抵消,与电源相接的导体极板将会从电源获得电荷,使间隙中的电场E 增强,以维持两极板间的电势差不变,并有()δd SεQU -=0 综上所述,接上电源的平板电容器,插入介质或导体后,极板上的自由电荷 均会增加,而电势差保持不变. 解 (1)空气平板电容器的电容dSεC 00=充电后,极板上的电荷和极板间的电场强度为U dS εQ 00=d U E /0=(2)插入电介质后,电容器的电容C 1为()()δd εδS εεδS εεQ δd SεQ Q C r r r -+=⎥⎦⎤⎢⎣⎡+-=0001/ 故有()δd εδSUεεU C C r r -+==011介质内电场强度()δd εδUS εεQ E r r -+=='011 空气中电场强度()δd εδU εS εQ E r r -+==011 (3)插入导体达到静电平衡后,导体为等势体,其电容和极板上的电荷分别为δd SεC -=02 U δd S εQ -=02导体中电场强度02='E 空气中电场强度δd UE -=2无论是插入介质还是插入导体,由于电容器的导体极板与电源相连,在维持电势差不变的同时都从电源获得了电荷,自由电荷分布的变化同样使得介质内的电场强度不再等于E 0/εr.10-18为了实时检测纺织品、纸张等材料的厚度(待测材料可视作相对电容率为εr的电介质),通常在生产流水线上设置如图所示的传感装置,其中A ,B 为平板电容器的导体极板,d 0为两极板间的距离.试说明检测原理,并推出直接测量量电容C 与间接测量量厚度d 之间的函数关系.如果要检测钢板等金属材料的厚度,结果又将如何?题 10-18 图分析导体极板A 、B 和待测物体构成一有介质的平板电容器,关于电容C 与材料的厚度的关系,可参见题10-17的分析. 解由分析可知,该装置的电容为()d d d SC r r -+=00εεε则介质的厚度为()()C εSεεd εεC εS εεC d εd r r r r r r r 1110000---=--=如果待测材料是金属导体,其等效电容为dd SεC -=00导体材料的厚度CSεd d 00=-= 实时地测量A 、B 间的电容量C ,根据上述关系式就可以间接地测出材料的厚度.通常智能化的仪表可以实时地显示出待测材料的厚度.10-19有一电容为0.50μF 的平行平板电容器,两极板间被厚度为0.01mm 的聚四氟乙烯薄膜所隔开,(1)求该电容器的额定电压;(2)求电容器存贮的最大能量.分析通过查表可知聚四氟乙烯的击穿电场强度E b =1.9×107V /m ,电容器中的电场强度E ≤E b ,由此可以求得电容器的最大电势差和电容器存贮的最大能量. 解 (1)电容器两极板间的电势差V 190b max ==d E U(2)电容器存贮的最大能量J 1003.92132max e -⨯=CU W10-20半径为0.10cm 的长直导线,外面套有内半径为1.0cm 的共轴导体圆筒,导线与圆筒间为空气.略去边缘效应,求:(1)导线表面最大电荷面密度;(2)沿轴线单位长度的最大电场能量.分析如果设长直导线上单位长度所带电荷为λ,导线表面附近的电场强度0π2εσR ελE ==查表可以得知空气的击穿电场强度E b =3.0×106(V /m ),只有当空气中的电场强度E ≤E b 空气才不会被击穿,由于在导线表面附近电场强度最大,因而可以求出σ的极限值.再求得电场能量密度,并通过同轴圆柱形体元内电场能量的积分求得单位长度的最大电场强度.解 (1)导线表面最大电荷面密度250max m C 1066.2--⋅⨯==b E εσ显然导线表面最大电荷面密度与导线半径无关.(2)由上述分析得b E R ελ10max π2=,此时导线与圆筒之间各点的电场强度为()1210m π2R r R rR r E <<==ελ0=E (其他)222102m 0m 2121rE R E w b εε==沿轴线单位长度的最大电场能量r rER r r w W R Rb d 1πd π2212210m ⎰⎰⎰⎰Ω=⋅=ε14122210m m J 1076.5lnπ--⋅⨯==R R E R W b ε 10-21一空气平板电容器,空气层厚1.5cm ,两极间电压为40k V ,该电容器会被击穿吗?现将一厚度为0.30cm 的玻璃板插入此电容器,并与两极平行,若该玻璃的相对电容率为7.0,击穿电场强度为10MV· m -1.则此时电容器会被击穿吗?分析在未插入玻璃板时,不难求出空气中的电场强度小于空气的击穿电场强度,电容器不会被击穿.插入玻璃后,由习题10-17可知,若电容器与电源相连,则极板间的电势差维持不变,电容器将会从电源获取电荷.此时空气间隙中的电场强度将会增大.若它大于空气的击穿电场强度,则电容器的空气层将首先被击穿.此时40k V 电压全部加在玻璃板两侧,玻璃内的电场强度如也大于玻璃击穿电场强度的值,则玻璃也将被击穿.整个电容器被击穿. 解未插入玻璃时,电容器内的电场强度为16m V 107.2/-⋅⨯==d U E因空气的击穿电场强度16m V 100.3-⋅⨯=b E ,b E E <,故电容器不会被击穿.插入玻璃后,由习题6-26可知,空气间隙中的电场强度()16m V 102.3-⋅⨯=+-=δδd εVεE r r此时,因b E E >,空气层被击穿,击穿后40k V 电压全部加在玻璃板两侧,此时玻璃板内的电场强度17m V 103.1/-⋅⨯==δV E由于玻璃的击穿电场强度1bm MV 10-⋅='E ,b E E '>,故玻璃也将相继被击穿,电容器完全被击穿.10-22某介质的相对电容率 2.8r ε=,击穿电场强度为611810V m -⨯⋅,如果用它来作平板电容器的电介质,要制作电容为0.047 μF ,而耐压为4.0 k V 的电容器,它的极板面积至少要多大.解介质内电场强度16m V 1018-⋅⨯=≤b E E电容耐压U m =4.0k V ,因而电容器极板间最小距离m 1022.2/4-⨯==b m E U d要制作电容为0.047μF 的平板电容器,其极板面积210m 42.0==εεCdS 显然,这么大的面积平铺开来所占据的空间太大了,通常将平板电容器卷叠成筒状后再封装. 10-23一平行板空气电容器,极板面积为S ,极板间距为d ,充电至带电Q 后与电源断开,然后用外力缓缓地把两极板间距拉开到2d .求:(1)电容器能量的改变;(2)此过程中外力所作的功,并讨论此过程中的功能转换关系.分析在将电容器两极板拉开的过程中,由于导体极板上的电荷保持不变,极板间的电场强度亦不变,但电场所占有的空间增大,系统总的电场能量增加了.根据功能原理,所增加的能量应该等于拉开过程中外力克服两极板间的静电引力所作的功. 解 (1)极板间的电场为均匀场,且电场强度保持不变,因此,电场的能量密度为20220221S εQ E εw e == 在外力作用下极板间距从d 被拉开到2d ,电场占有空间的体积,也由V 增加到2V ,此时电场能量增加SεdQ V w W e e 022ΔΔ== (2)两导体极板带等量异号电荷,外力F 将其缓缓拉开时,应有F =-F e ,则外力所作的功为SεdQ QEd 02e 2ΔA ==⋅-=r F 外力克服静电引力所作的功等于静电场能量的增加.。

大学物理课后习题答案(上册)

大学物理课后习题答案(上册)
解:假设墙壁对小球的压力为N1,木板对小球的压力为N2。
由受力分析图可知:
所以当所以 增大,小球对木板的压力为N2将减小;
同时:
所以 增大,小球对墙壁的压力 也减小。
2-2. 质量分别为m1和m2的两滑块A和B通过一轻弹簧水平连结后置于水平桌面上,滑块与桌面间的摩擦系数均为μ,系统在水平拉力F作用下匀速运动,如图所示.如突然撤消拉力,则刚撤消后瞬间,二者的加速度aA和aB分别为多少?
解:(1)轨道方程为
这是一条空间螺旋线。
在O 平面上的投影为圆心在原点,半径为R的圆,螺距为h
(2)
(3)
思考题1
1-1. 质点作曲线运动,其瞬时速度为 ,瞬时速率为 ,平均速度为 ,平均速率为 ,则它们之间的下列四种关系中哪一种是正确的?
(1) ;(2) ;(3) ;(4)
答: (3)
1-2. 质点的 关系如图,图中 , , 三条线表示三个速度不同的运动.问它们属于什么类型的运动?哪一个速度大?哪一个速度小?
解:在绳子中距离转轴为r处取一小段绳子,假设其质量为dm,可知: ,分析这dm的绳子的受力情况,因为它做的是圆周运动,所以我们可列出: 。
距转轴为r处绳中的张力T(r)将提供的是r以外的绳子转动的向心力,所以两边积分:
2-3. 已知一质量为 的质点在 轴上运动,质点只受到指向原点的引力作用,引力大小与质点离原点的距离 的平方成反比,即 , 是比例常数.设质点在 时的速度为零,求质点在 处的速度的大小。
解:由题意和牛顿第二定律可得:
再采取分离变量法可得: ,
两边同时取积分,则:
所以:
2-4. 一质量为 的质点,在 平面上运动,受到外力 (SI)的作用, 时,它的初速度为 (SI),求 时质点的速度及受到的法向力 .

10级大学物理规范作业上册07解答

10级大学物理规范作业上册07解答
2 解: T
由旋转矢量法
x 0.02 cos(t
(1)

2

2
o 2
x
)
2 3
2 (2) 3
2 x 0.02 cos(t ) 3
o
x
5
2.如图所示为一质点的x-t图,则该质点振动的初相 -/3 ,振动周期T=_______s 位=_______ 4.8 。 解:由图知,在 t=0 时质点位于 x=A/2 处且沿 x 轴 正向运动,利用旋转矢量法 x
2
A x 0.04 cos t m 2
合振动运动到正方向最远处时,转过的角度为: 3 3 t 1.5 s 2 2
9
dx 解:(1) v 3 sin( 5 t ) dt 2 v0 3 sin( ) 3m / s 2
(2)
k m
k m 2
F kx m 2 x 5 x
x=A/2=0.3m 时
F 1.5 N
8
负号说明力的方向沿x轴负向。
1 1 2 2 A ( kx )dx kxb kxa xa 2 2
xb
振子运动半个周期: | xa || xb |
A0
3
3.已知一简谐振动x1=4cos(4t+2π/5)(cm),另有一个 同方向简谐振动x2=6cos(4t+φ)(cm);若令两振动合成 的振幅最小,则φ的取值应为: 【 C】
2 3
分析:利用旋转矢量法
4 2 2 3 3 3
2 t T s 2 3
o
4 3
x
2
2.弹簧振子在光滑水平面上作简谐振动,弹性力在 半个周期内所作的功为: 【 】 D

大学物理第十章课后答案

大学物理第十章课后答案

题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。

分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。

解:(1)设B 、C 板上的电荷分别为B q 、C q 。

因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。

导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。

作如图中虚线所示的圆柱形高斯面。

因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。

大学物理学上册习题解答完整版

大学物理学上册习题解答完整版

大学物理学上册习题解答HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别在什么情况下二者的量值相等在什么情况下二者的量值不相等(2) 平均速度和平均速率有何区别在什么情况下二者的量值相等(3) 瞬时速度和平均速度的关系和区别是什么瞬时速率和平均速率的关系和区别又是什么(4)质点的位矢方向不变,它是否一定做直线运动质点做直线运动,其位矢的方向是否一定保持不变(5) (6)r ∆和r ∆有区别吗?v ∆和v ∆有区别吗?0dv dt =和0d v dt=各代表什么运动? (7)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt= 及 22d r a dt =而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v = 及 a = 你认为两种方法哪一种正确两者区别何在(7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)(9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中如果石子抛出后,火车以恒定加速度前进,结果又如何1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。

大学物理教程第10章习题答案

大学物理教程第10章习题答案

思 考 题10.1 人体也向外发出热辐射,为什么在黑暗中还是看不见人呢? 答:人体的辐射频率太低, 远离可见光波段,在远红外波段, 由于为非可见光, 所以是看不到人体辐射的,在黑暗中也是如此。

10.1刚粉刷完的房间从房外远处看,即使在白天,它的开着的窗口也是黑的。

为什么? 答:光线从窗户进去后经过多次反射,反射光的强度越来越弱,能再从窗户射出的光线非常少,窗户外的人看到的光线非常弱,因此觉得窗口很暗。

10.3 在光电效应实验中,如果(1)入射光强度增加一倍;(2)入射光频率增加一倍,各对实验结果有什么影响?答:(1)在光电效应中每秒从光阴极发射的光电子数与入射光强成正比。

入射光强度增加一倍时,饱和电流增加一倍。

(2)当入射光的频率增大时,光电子的最大初动能增大,遏止电压也增大,但入射光的频率和遏止电压两者不是简单的正比关系。

10.4 若一个电子和一个质子具有同样的动能,哪个粒子的德布罗意波长较大? 答:电子的德布罗意波长较大。

10.5 n=3的壳层内有几个次壳层,各次壳层都可容纳多少个电子?答:n=3的壳层内有3个次壳层,各次壳层可容纳的电子数分别为2、6、10。

10.6 完成下列核衰变方程。

(1)?234238+−→−Th U(2)?9090+−→−Y Sr (3)?2929+−→−Ni Cu (4)Zn Cu 2929?−→−+ 答:(1)e H Th U 422349023892+−→−(2)e Y Sr 0190399038-+−→−(3)e Ni Cu 0129282929++−→−(4)Zn e Cu 2930012929−→−++习 题10.1 夜间地面降温主要是由于地面的热辐射。

如果晴天夜里地面温度为-50C ,按黑体辐射计算,每平方米地面失去热量的速率多大?解:依题意,可知地面每平方米失去的热量即为地面的辐射出射度2484/2922681067.5m W T M =⨯⨯==-σ10.2 宇宙大爆炸遗留在空间均匀、各向同性的背景热辐射相当于3K 的黑体辐射。

大学物理规范作业解答(全)

大学物理规范作业解答(全)

2.一子弹水平地射穿两个前后并排放在光滑水平桌面上 的木块。木块质量分别为m1和m2,测得子弹穿过两木块 的时间分别为Δ t1和Δ t2,已知子弹在木块中受的阻力 为恒力F。求子弹穿过后两木块各以多大的速度运动。 解:两个木块受到子弹给它们的力均为F 穿过木块1 Ft1 ( m1 m2 )v1 0
骑车人速度为u(车对地),人看到雨的速度为v’ (雨对车) 、雨对地的速度v如右图: v u v ' 加速后骑车人速度为u1,人看到 u1 u 雨的速度为v’1 。可得: 60 30 v' v ° v = u1 + v1 ' v '1 u 由图中的关系得: v = = 36km / h cos 60° 方向与竖直方向成30度角偏向西方。
2.一小环可在半径为R的大圆环上无摩擦地滑动,而 大圆环能以其竖直直径为轴转动,如图所示。当圆 环以恒定角速度ω 转动,小环偏离圆环转轴而且相 对圆环静止时,小环所在处圆环半径偏离竖直方向 的角度θ B ( 为 ) (A) θ =π /2 (B)θ =arccos(g/Rω 2) (C)θ =arccos(Rω 2 / g)(D)须由小珠质量决定 解:环受力N的方向指向圆心,mg向下, 法向加速度在水平面内 N sin θ = ma n = ml ω2 N N cos θ = mg 由于 l=Rsinθ
v 抛出后竖直方向的速度为: y v sin gt
x
落地前经过的时间为 t 2v sin g 水平方向做匀速直线运动,抛出的距离为 2v 2 sin cos x v cost v 2 sin 2 / g g x v2 / g 易见:θ=45° 时抛得最远,距离为
I mv mv0 1 1 3 m v0 i m( v 0 i v0 j ) 2 2 2 3 mv0 j 2

大物书后习题答案整理(杨晓峰版)-习题10

大物书后习题答案整理(杨晓峰版)-习题10

( R1 < r < R2 )
E2
=
λ2 2πε 0 r
( R2 < r < R3 )
∫ ⋅ ∫ 则 BA 两圆筒的电势差为
R1
U BA = E
R2
d r = R1 −λ1 d r = λ1 ln R2 R2 2πε0r 2πε 0 R1
∫ ⋅ ∫ BC 两圆筒的电势差为
R3
UBC = ER2源自drR3习题 10-4 解答:
答案:C 基本思路:金属球上任一点的电势V 等于点电荷 q 和金属球表面感应电荷 q '
在球心激发的电势之和。在球面上任意选取一电荷元 dq ',电荷元可以看作点电
∫ 荷,金属球表面的感应电荷在点 O 激发的电势为 V ' = dq ' ,故 O 点总电势 S 4πε0 R
为 V0
=
q 4πε 0 d
+V
' ,而接地金属球的电势 V0
=
0 ,由此可解出感应电荷 q '。
计算过程:
金属球接地,其球心电势
∫ V0
=
q 4πε 0 d
+
dq ' = 0 S 4πε 0R
感应电荷总量
q
'
=

dq
'
=

Rq d
=

q 2
习题 10-5 解答:
答案:D 分析: 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面内自
Q + q ,电荷分布呈球对称,对应电场分布也球对称,可用高斯定理计算空间电 场分布。再根据电场强度与电势的关系或者电势叠加原理可得出相应区域内的电 势分布。

大学物理(上)课后习题答案解析

大学物理(上)课后习题答案解析

第1章质点运动学 P211.8一质点在xOy 平面上运动,运动方程为:x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计。

⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶计算t=0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;<5>计算t =0s 到t =4s 内质点的平均加速度;<6>求出质点加速度矢量的表示式,计算t =4s 时质点的加速度<请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式>。

解:〔1j t t i t r)4321()53(2-+++=m⑵1=t s,2=t s 时,j i r5.081-=m ;2114r i j =+m∴213 4.5r r r i j ∆=-=+m⑶0t =s 时,054r i j =-;4t =s 时,41716r i j =+∴140122035m s 404r r r i j i j t --∆+====+⋅∆-v ⑷1d 3(3)m s d ri t j t-==++⋅v ,则:437i j =+v 1s m -⋅ <5> 0t =s 时,033i j =+v ;4t =s 时,437i j =+v<6> 2d 1 m s d a j t-==⋅v这说明该点只有y 方向的加速度,且为恒量。

1.9质点沿x 轴运动,其加速度和位置的关系为226a x =+,a 的单位为m/s 2,x 的单位为m 。

质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。

解:由d d d d d d d d x a t x t x===v v v v得:2d d (26)d a x x x ==+v v 两边积分210d (26)d xx x =+⎰⎰vv v 得:2322250x x =++v∴ 31225 m s x x -=++⋅v1.11一质点沿半径为1 m 的圆周运动,运动方程为θ=2+33t ,式中θ以弧度计,t 以秒计,求:⑴t =2 s 时,质点的切向和法向加速度;⑵当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω ⑴s 2=t 时,2s m 362181-⋅=⨯⨯==βτR a⑵当加速度方向与半径成ο45角时,有:tan 451n a a τ︒== 即:βωR R =2,亦即t t 18)9(22=,解得:923=t 则角位移为:322323 2.67rad 9t θ=+=+⨯= 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为α=0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。

大学物理课后习题答案(第十章) 北京邮电大学出版社

大学物理课后习题答案(第十章) 北京邮电大学出版社

习题十10-1 一半径r =10cm 的圆形回路放在B =0.8T 的均匀磁场中.回路平面与B垂直.当回路半径以恒定速率t rd d =80cm ·s -1收缩时,求回路中感应电动势的大小.解: 回路磁通 2πr B BS m ==Φ感应电动势大小40.0d d π2)π(d d d d 2====trr B r B t t m ΦεV 10-2 一对互相垂直的相等的半圆形导线构成回路,半径R =5cm ,如题10-2图所示.均匀磁场B =80×10-3T ,B 的方向与两半圆的公共直径(在Oz 轴上)垂直,且与两个半圆构成相等的角α当磁场在5ms 内均匀降为零时,求回路中的感应电动势的大小及方向.解: 取半圆形cba 法向为i, 题10-2图则αΦcos 2π21B R m=同理,半圆形adc 法向为j,则αΦcos 2π22B R m=∵ B 与i 夹角和B 与j夹角相等,∴ ︒=45α则αΦcos π2R B m = 221089.8d d cos πd d -⨯-=-=Φ-=tBR t m αεV 方向与cbadc 相反,即顺时针方向.题10-3图*10-3 如题10-3图所示,一根导线弯成抛物线形状y =2ax ,放在均匀磁场中.B 与xOy 平面垂直,细杆CD 平行于x 轴并以加速度a 从抛物线的底部向开口处作平动.求CD 距O 点为y 处时回路中产生的感应电动势.解: 计算抛物线与CD 组成的面积内的磁通量⎰⎰=-==aym y B x x y B S B 0232322d )(2d 2ααΦ∴ vy B t y y B t m 21212d d d d ααε-=-=Φ-=∵ ay v 22= ∴ 212y a v =则ααεaByy a yBi 8222121-=-=i ε实际方向沿ODC .题10-4图10-4 如题10-4图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度v 平行导线平移.求半圆环内感应电动势的大小和方向及MN 两端的电压N M U U -.解: 作辅助线MN ,则在MeNM 回路中,沿v 方向运动时0d =m Φ ∴ 0=MeNMε 即MN MeN εε=又∵ ⎰+-<+-==ba b a MN b a ba Iv l vB 0ln 2dcos 0πμπε所以MeN ε沿NeM 方向,大小为 b a ba Iv -+ln20πμ M 点电势高于N 点电势,即b a ba Iv U U N M -+=-ln 20πμ题10-5图10-5如题10-5所示,在两平行载流的无限长直导线的平面内有一矩形线圈.两导线中的电流方向相反、大小相等,且电流以t Id d 的变化率增大,求:(1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势. 解: 以向外磁通为正则(1)]ln [lnπ2d π2d π2000d ad b a b Ilr l rIr l rIab bad dm +-+=-=⎰⎰++μμμΦ(2)t I b a b d a d l t d d ]ln [ln π2d d 0+-+=-=μΦε 10-6 如题10-6图所示,用一根硬导线弯成半径为r 的一个半圆.令这半圆形导线在磁场中以频率f 绕图中半圆的直径旋转.整个电路的电阻为R .求:感应电流的最大值.题10-6图解: )cos(2π02ϕωΦ+=⋅=t r B S B m∴ Bfr f r B r B t r B t m m i 222202ππ22π2π)sin(2πd d ===+=-=ωεϕωωΦε ∴ R Bf r R I m 22π==ε10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s-1垂直于直线平移远离.求:d =0.05m时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势.DA 产生电动势⎰==⋅⨯=ADI vbvBb l B v d 2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεεV 方向沿顺时针.10-8 长度为l 的金属杆ab 以速率v 在导电轨道abcd 上平行移动.已知导轨处于均匀磁场B中,B 的方向与回路的法线成60°角(如题10-8图所示),B的大小为B =kt (k 为正常).设t =0时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向.解: ⎰==︒=⋅=22212160cos d klvt lv kt Blvt S B m Φ∴klvt t m-=-=d d Φε即沿abcd 方向顺时针方向.题10-8图10-9 一矩形导线框以恒定的加速度向右穿过一均匀磁场区,B的方向如题10-9图所示.取逆时针方向为电流正方向,画出线框中电流与时间的关系(设导线框刚进入磁场区时t =0).解: 如图逆时针为矩形导线框正向,则进入时0d d <Φt ,0>ε;题10-9图(a)题10-9图(b)在磁场中时0d d =t Φ,0=ε; 出场时0d d >t Φ,0<ε,故t I -曲线如题10-9图(b)所示.题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段 则⎰==320292d l Ob l B r rB ωωε同理 ⎰==302181d l Oa l B r rB ωωε ∴2261)92181(l B l B ObaO ab ωωεεε=+-=+=(2)∵0>ab ε即0<-b a U U∴b 点电势高.题10-11图10-11 如题10-11图所示,长度为b 2的金属杆位于两无限长直导线所在平面的正中间,并以速度v 平行于两直导线运动.两直导线通以大小相等、方向相反的电流I ,两导线相距2a .试求:金属杆两端的电势差及其方向. 解:在金属杆上取r d 距左边直导线为r ,则b a b a Iv r r a r Iv l B v ba ba BAAB -+-=-+-=⋅⨯=⎰⎰+-ln d )211(2d )(00πμπμε∵ 0<AB ε∴实际上感应电动势方向从A B →,即从图中从右向左, ∴b a ba Iv U AB -+=ln 0πμ题10-12图10-12 磁感应强度为B的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在题10-12图中位置,杆长为2R ,其中一半位于磁场内、另一半在磁场外.当t Bd d >0时,求:杆两端的感应电动势的大小和方向.解: ∵bc ab ac εεε+=t BR B R t t ab d d 43]43[d d d d 21=--=-=Φε =-=t ab d d 2Φεt BR B R t d d 12π]12π[d d 22=--∴t B R R acd d ]12π43[22+=ε∵ 0d d >t B∴ 0>acε即ε从c a → 10-13 半径为R 的直螺线管中,有dt dB>0的磁场,一任意闭合导线abca ,一部分在螺线管内绷直成ab 弦,a ,b 两点与螺线管绝缘,如题10-13图所示.设ab =R ,试求:闭合导线中的感应电动势.解:如图,闭合导线abca 内磁通量)436π(22R R B S B m -=⋅= Φ∴t B R R i d d )436π(22--=ε ∵ 0d d >t B∴0<i ε,即感应电动势沿acba ,逆时针方向.题10-13图题10-14图10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示方向.试求: (1)ab 两端的电势差; (2)cd 两点电势高低的情况.解: 由⎰⎰⋅-=⋅l S t B l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向.(1)∵ab 是直径,在ab 上处处旋E与ab 垂直∴ ⎰=⋅ll 0d 旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴0<-c d U U 即d c U U >题10-15图10-15 一无限长的直导线和一正方形的线圈如题10-15图所示放置(导线与线圈接触处绝缘).求:线圈与导线间的互感系数.解: 设长直电流为I ,其磁场通过正方形线圈的互感磁通为⎰==32300122ln π2d π2a a Iar rIaμμΦ∴2ln π2012aIM μΦ==10-16 一矩形线圈长为a =20cm ,宽为b =10cm ,由100匝表面绝缘的导线绕成,放在一无限长导线的旁边且与线圈共面.求:题10-16图中(a)和(b)两种情况下,线圈与长直导线间的互感.解:(a)见题10-16图(a),设长直电流为I ,它产生的磁场通过矩形线圈的磁通为2ln π2d 2πd 020)(12Iar r Ia S B b b S μμΦ⎰⎰==⋅= ∴6012108.22ln π2-⨯===aN IN M μΦH(b)∵长直电流磁场通过矩形线圈的磁通012=Φ,见题10-16图(b) ∴ 0=M题10-16图题10-17图10-17 两根平行长直导线,横截面的半径都是a ,中心相距为d ,两导线属于同一回路.设两导线内部的磁通可忽略不计,证明:这样一对导线长度为l 的一段自感为πμl L 0=In aad -.解: 如图10-17图所示,取r l S d d = 则⎰⎰-----=--=-+=ad aad aa d da a d Il r r r Ilr l r Ir πI)ln (ln 2πd )d 11(π2d ))d (π22(0000μμμμΦa ad Il-=lnπ0μ∴ a a d l I L -==lnπ0μΦ 10-18 两线圈顺串联后总自感为1.0H ,在它们的形状和位置都不变的情况下,反串联后总自感为0.4H .试求:它们之间的互感. 解: ∵顺串时 M L L L 221++=反串联时M L L L 221-+='∴ M L L 4='-15.04='-=L L M H10-19图10-19 一矩形截面的螺绕环如题10-19图所示,共有N 匝.试求: (1)此螺线环的自感系数;(2)若导线内通有电流I ,环内磁能为多少? 解:如题10-19图示 (1)通过横截面的磁通为⎰==ba a bNIhr h r NIlnπ2d π200μμΦ磁链a bIh N N lnπ220μΦψ== ∴a bhN IL lnπ220μψ==(2)∵221LI W m =∴a b hI N W m lnπ4220μ=10-20 一无限长圆柱形直导线,其截面各处的电流密度相等,总电流为I .求:导线内部单位长度上所储存的磁能.解:在R r <时 20π2R I B rμ=∴4222002π82R r I B w m μμ== 取 r r V d π2d =(∵导线长1=l )则 ⎰⎰===R Rm I R rr I r r w W 0204320π16π4d d 2μμπ。

《大学物理》第10单元课后答案 高等教育出版社

《大学物理》第10单元课后答案 高等教育出版社
I a r
解:选取如图所示的坐标,无限长的金属薄片上线
案 网
p
无限长载流金属薄片在 P 点产生磁感应强度大小:
0
21. 在真空中,电流由长直导线 1 沿底边 ac 方向经 a 经流入一电阻均匀分布的正三角形线框,再由 b 点沿平行底边 ac 方向从三角形框流出,经长直导线 2 返回电源(如图), 已知直导线的电流强度为 I, 三
方向垂直纸面向里。
杭州电子科技大学
Page61
w.
R1 n1 n2
2rdr , 1 2n1 , dI 2n1 rdr 2 1 0 dI
2r
, dB
co
0
2r 2n1 rdr
《大学物理习题集》 (上册)
m
( CB ) 段:B4
3 0 I' I 1 (cos 1 cos 2 ) , 1 , 2 , x l , I ' I ,B4 0 , 4x 6 6 6 3 2l
( ab ) 边产生的磁感应强度: B1 ( bc ) 边产生的磁感应强度: B2
同的电流,其流向各与y轴和z轴的正方向成右手螺旋关系,则由此形成的磁场在O点的方向为在OYZ
题 11.图 题 12.图 12. 在真空中,电流 I 由长直导线 1 沿半径方向经 a 点流入一电阻均匀分布的圆环,再由 b 点沿切向 从圆环流出,经长直导线 2 返回电源(如图) 。已知直导线上的电流强度为 I,圆环的半径为 R,且
(A)竖直向上 (C)水平向右
杭州电子科技大学
Page57
co
0
【 D 】
《大学物理习题集》 (上册)
m
【 B 】
2. 电流由长直导线流入一电阻均匀分布的金属矩形框架,再从长直导线流出,设图中 01 , 0 2 , 0 3 处的

10级大学物理规范作业上册10解答

10级大学物理规范作业上册10解答
06级大学物理规范作业上册
总(10) 双缝 薄膜 劈尖干涉
1
一、选择题 1.在相同的时间内,一束波长为λ 的单色光在空气中 和在玻璃中 【 C 】 (A) 传播的路程相等,走过的光程相等。 (B) 传播的路程相等,走过的光程不相等。 (C) 传播的路程不相等,走过的光程相等。 (D) 传播的路程不相等,走过的光程不相等。 分析:由于光在空气与玻璃中传播的速度不一样,所 以,走过的路程不相等。 设光在玻璃中走的路程为r1=vt,在空气中走的 路程为r2=ct。 根据光程的定义,光在玻璃中的光程1=nr1= nvt=ct,光在空气中的光程2=r2=ct,所以相同 时间内,光走过的光程相等。
673 . 08 nm
8
2. 用两片平板玻璃夹住一金属细丝形成空气劈尖,如 图。若用波长为600nm的单色平行光垂直入射,图中K 处恰为第6条暗纹,求该金属丝的直径。若将整个实验 装置放在水中(n水=4/3),求在图中O至K之间可观察 到的明条纹的数目。 解: 2 ne

2 2 k 1
x 1 . 2 562 . 5 10 0 . 45 10
3 9
1 . 5 mm
D 2d , k 4 代入得
( 2 )暗纹位置 x ( 2 k 1)
OP x ( 2 4 1)
1 . 2 562 . 5 10 9 2 0 . 45 10 3
S 1 M MP
k

2
S1P S 2 P S1P

2
x D d

2
满足暗纹条件。 2 k 1
2
条纹间距:
4
2. 杨氏双缝干涉实验中,所用平行单色光波长为 λ =562.5nm,双缝与观察屏的距离D=1.2m,双缝的间 1.5mm 距d=0.45mm,则屏上相邻明条纹间距为_________; 若已知屏上P点为第4级暗条纹中心所在处,则 OP 5.25mm _______________。若用一折射率n=1.5的透明薄膜遮 掩S1缝后,发现P点变为0级明纹,则该透明薄膜的厚 3937.5nm 度e=_______________。 解: 条纹间距 x D d

大学物理规范作业上册答案全

大学物理规范作业上册答案全

R1
r3
R 3R
(G
Mm r2
)dr
3R
Em A
R2 R1
G
Mm r3
r
dr
(G Mm )dr
3R
r2
GMm
3R
21
2.一链条长度为L,质量为m , 链条的一端放在桌面上, 并桌用面手上拉要住做,功另A=一端有1/14悬m。在gL桌边,将链条全部拉到
32 解法1:将链条全部拉到桌面上做功的效果 就是使悬在桌边链条的重力势能增加,
比, dv kv 2 ,式中k为正常数,求快艇在关闭发动机
dt
后行驶速度与行驶距离的关系。
解: 作一个变量代换
a kv 2 dv dv dx v dv dt dx dt dx
得到: kv dv kdx dv
dx
v
积分得到: k x ln v v0
v0为初始速度
8
大学物理规范作业上册
02
17
24
2.质量为m的物体放在光滑的水平面上,物体的两边 分别与劲度系数k1和k2的弹簧相连。若在右边弹簧的
末端施以拉力F,问(1)该拉力F非常缓慢地拉过距离l,F
做功多少?(2)瞬间拉到l便停止不动,F做的功又为 多少?
解:(1)拉力作功只增加二弹 簧的弹性势能。
k2l2 l1
k1l1 l2 l
当t=1秒时,其切向加速度的大小at = 4
;法
向解加:ar速度d2的vt 2大i4小i
an= 2
costj
2 cos tj
v
。 dr
dt
4ti sin tj
dt
根据曲线运动的加速度为
at
dv dt

大学物理课后习题答案整理(杨晓峰版)-习题10-9答案

大学物理课后习题答案整理(杨晓峰版)-习题10-9答案

心导体球壳内表面电荷为 −q ,外表面电荷为 Q + q ,此时各间各部分的电场强度 分别为
r < R1 , E1 = 0
R1 < r < R2 ,
E2
=
q 4πε0r 2
R2 < r < R3 , E3 = 0
r > R3 ,
E4
=
Q+q 4πε0r 2
用球面电势的叠加求空间电势分布。
导体球内电势相等,即 r
习题 10-9 解答:
解:基本思路:
若 V1
=
Q 4πε0 R3
,即内球电势等于由外球所带电量
Q
在外球壳产生的电势,
则外球壳内必定为等势体,电场强度处处为零,内球不带电。
若 V1

Q 4πε 0 R3
,即内球电势不等于由外球所带电量
Q
在外球壳产生的电
势,则外球壳内电场强度不为零,内球带电。
假定内导体球带电 q ,静电平衡后导体球壳内表面带电 −q ,外表面带电
=
Q+q 4πε 0R3
球壳外,即
r
>
R3
, V4
=
Q+q 4πε 0 r
由题意知内球电势为 V1,外球所带总电量为 Q,可解得内球带电为:
q
=
4πε 0V1

Q R3
1 R1

1 R2
+
1 R3
代入电场和电势的分布得:
r < R1 , E1 = 0 V = V1
R1 < r < R2 ,
<
R1 , V1
=
q 4πε 0 R1

大学物理上册课后练习答案解析

大学物理上册课后练习答案解析

初速度大小为dt1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。

现测得其加速度 a = A-B V ,式中A 、1-1 已知质点的运动方程为:x 10t30t 2 ,y 15t 20t 2。

式中x 、y 的单位为m , t 的单位为s 。

试求: (1)初速度的大小和方向;(2)加速度的大小和方向。

分析由运动方程的分量式可分别求出速度、 加速度 分析本题亦属于运动学第二类问题,与上题不同之 处在于加速度是速度 V 的函数,因此 需将式d V = a (V )d t 分离变量为-d ^ dt 后再两边积分.a(v)的分量 再由运动合成算出速度和加速度的大小和方向. 解选取石子下落方向为y 轴正向,下落起点为坐标原点.vdv dv v 0A Bv(3)船在行驶距离 x 时的速率为v=v 0e kx 。

一 dv[证明](1)分离变数得 — kdt ,v第一章质点的运动B 为正恒量,求石子下落的速度和运动方程。

解(1)速度的分量式为Vv y当 t = 0 时,V o x = -10 m sdx10 60tdt dy15 40t dt-1, V o y = 15 m-1(1)由题dvadt 用分离变量法把式 A Bv(1)改写为dvA Bv将式(2)两边积分并考虑初始条件,有(1)dt ⑵V 0 V 0x V 0y 18.0m得石子速度 V -(1 e Bt)B 设V o 与x 轴的夹角为a 则tanV 0y V ox由此可知当,t is 时,v A为一常量,通常称为极限速度Ba= 123 °1(2)加速度的分量式为a x dV x dt 60a ydV y dt40或收尾速度.(2)再由v—y —(1 e 氏)并考虑初始条件有dt BytABtdy -(1 e )dt 0 0 BA A得石子运动方程y t 2 (e Bt 1)B B 2则加速度的大小为 a .. a x 2a y 272.1 ms 2a y2 设a 与x 轴的夹角为B,则tan B -a x3B= -33 °1 '(或326 °9 )1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于 阻力得到一个与速度反向、 大小与船速平方成正比例的加 速度,即a = - kv 2, k 为常数。

大学物理练习题上册答案

大学物理练习题上册答案

第一章1、D2、D3、B4、8m ,10m5、23m/s6、4.8m/s 2,3.15rad 7、r,r ∆8、解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=9、解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+ 消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

10、解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)有速率:12222[(2)2]21v t t =+=+∴t dv a dt =221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+。

11、解: 由于是一维运动,所以,由题意:kv dtdv-=, 分离变量并积分有:001vt v dv kdt v =-⎰⎰ ,得:tk e v v -=0 又∵tk e v dtdx -=0, 积分有:dt e v dx t k t x -⎰⎰=000 ∴ )1(0tk e kv x --=第二章1、D2、B3、l/cos 2θ4、解:(1) 子弹进入沙土后受力为-Kv ,由牛顿定律tmK d d vv =- ∴ ⎰⎰=-=-v v v v vv 0d d ,d d 0t t m K t m K∴ m Kt /0e -=v v(2) 求最大深度 解法一:txd d =vt x m Kt d e d /0-=vt x m Kt txd e d /000-⎰⎰=v∴ )e 1()/(/0m Kt K m x --=vK m x /0max v = 解法二: xm t x x m t m K d d )d d )(d d (d d vv v v v ===-∴ v d Kmdx -=v v d d 000m a x ⎰⎰-=K mx x∴ K m x /0max v =5、解:根据牛顿第二定律x m t x x m t m xk f d d d d d d d d 2vv v v =⋅==-= ∴ ⎰⎰-=-=4/202d d ,d d A A x mxkmx x k v v v v v k mAA A m k 3)14(212=-=v ∴ )/(6mA k =v 6、解:由于是在平面运动,所以考虑矢量。

大学物理教程-(上)课后习题-标准答案

大学物理教程-(上)课后习题-标准答案

大学物理教程-(上)课后习题-标准答案大学物理教程-(上)课后习题-答案————————————————————————————————作者:————————————————————————————————日期:物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1)质点的运动轨迹;(2)从1t s =到2t s =质点的位移的大小;(3) 2t s =时,质点的速度和加速度。

解:(1)由运动方程消去时间t 可得轨迹方程,将t x =代入,有2(1)y x =-或 1y x =-(2)将1t s =和2t s =代入,有11r i =u r r , 241r i j =+u r r r213r r r i j =-=-r u r u r r r V位移的大小223110r m =+=r V (3) 2x dxv t dt== 2(1)y dyv t dt ==- 22(1)v ti t j =+-r r r2xx dv a dt==, 2y y dv a dt == 22a i j =+r r r当2t s =时,速度和加速度分别为42/v i j m s =+r r r22a i j =+r r rm/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+r r r,式中的R 、ω均为常量。

求(1)质点的速度;(2)速率的变化率。

解(1)质点的速度为sin cos d r v R ti R t j dtωωωω==-+r r r r(2)质点的速率为22x y v v v R ω=+=速率的变化率为0dvdt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。

求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
06级大学物理规范作业上册
总(10) 双缝 薄膜 劈尖干涉
1
一、选择题
1.在相同的时间内,一束波长为λ的单色光在空气中
和在玻璃中
【 C】
(A) 传播的路程相等,走过的光程相等。
(B) 传播的路程相等,走过的光程不相等。
(C) 传播的路程不相等,走过的光程相等。
(D) 传播的路程不相等,走过的光程不相等。
解: 条纹间距 xD d
( 2 ) x暗 1.20 纹 .5 4x6 5 .1 5 2(位 01 2 3k 0 91 )置 1 D . 5m ,km 4代入得
2 d
O x P (2 4 1 ) 1 .2 5.5 6 1 2 90 5 .2m 5m
2 0 .4 1 5 3 0
5
图。若用波长为600nm的单色平行光垂直入射,图中K
处恰为第6条暗纹,求该金属丝的直径。若将整个实验
装置放在水中(n水=4/3),求在图中O至K之间可观察 到的明条纹的数目。
解:2n e2k 1 , k0 ,1 ,2 ,
22ຫໍສະໝຸດ 棱边处 e=0 , 对应于 k=0 , 为暗纹,
所以k处的暗纹对应于 k=5 ,有:
分析:由于光在空气与玻璃中传播的速度不一样,所 以,走过的路程不相等。
设光在玻璃中走的路程为r1=vt,在空气中走的 路程为r2=ct。
根据光程的定义,光在玻璃中的光程1=nr1= nvt=ct,光在空气中的光程2=r2=ct,所以相同 时间内,光走过的光程相等。
2
2.在真空中波长为λ的单色光,在折射率为n的透明
2ne(2k1)
2
2 n e [2 (k 1 ) 1 ] 2 1(2 k 1 ) 2 2 (15n 0,m 0 27n 0)m 0
e 21 7 0 50 00 6.0 7n8 3m
2 n 2 (21 ) 2 1 .3 (7 0 50 )00
8
2. 用两片平板玻璃夹住一金属细丝形成空气劈尖,如
用一透明薄膜遮掩S1缝后,P 点变为0级明纹,有:
S 2 P n ( S e 1 P e ) 0
又 S 2P S 1 P (2 k 1 ) 2, k4
7(n1)e,
2
e 7
2(n 1)
756.521 09
39.35n7m
2(1.51)
6
3.用白光垂直照射在置于空气中的均匀肥皂膜的一个 面上(肥皂膜折射率n=4/3),沿法线方向观察到肥皂膜 的正面呈绿色(绿光波长λ=500nm),则此肥皂膜的最小
厚度为_____9_3_._7__5_____nm。
解:反射光线在上表面有发生半波损失而下表面没有 发生半波损失。故要考虑半波损失现象。
两束光线的光程差满足: 2nek
2
e (2k1) 当k=1时,厚度最小
4n
e m in 4 n 50 4 0 3 4 9.7 3 (n 5)m
本题亦可用透射绿光满足干涉相消条件来求解。
7
三、计算题
1. 一平面单色光垂直照射在厚度均匀的簿油膜上,油 膜覆盖在玻璃板上。空气的折射率n1=1、油的折射率 n2=1.3、玻璃的折射率n3=1.5。若单色光的波长可由 光源连续调节,只观察到500 nm与700 nm这两个波长 的单色光在反射光中消失,试求油膜层的厚度。
解:因为n1<n2<n3,该入射光反射时无需考虑半波损 失 ,反射光干涉相消的条件为:
2ne 11
22
金属丝e 的 5 直 56径 01 0为 5n0m 0
2n 2
9
若将整个实验装置放在水中,有:
2n水 e 2= k,(k1,2)
k(24 156 00 )0 /600 7.0 2
3
2
取整,k=7,可看到7条明条纹。
10
介质中从A沿某路径传播到B,,若A、B两点位相差为
3π,则此路径AB的光程为:
【 A】
(A)1.5λ。 (B) 1.5nλ。(C) 3λ。 (D)1.5λ/n。
分析: Δ 2
2 321.5
3
二、填空题
1.在双缝干涉实验中,屏幕上的P点处是明条纹。若把S2 盖则住此,时并:在P点S1处S2连为线__的_暗_垂_条_直_纹_平__分__面__上_ 放(填一不反能射确镜定(如或图明), 条纹、暗条纹)。 条纹间距____不__变_________ (填不 能确定或变大、变小、不变)。
解: P点为明条纹,
光程差为:S2PS1Pk
放入反射镜后,存在半波损失,光程差变为:
S 1 M M 2 P S 1 P S 2 P S 1 P 2
k2k1满足暗纹条件。
2
2
条纹间距:
x D
d4
2. 杨氏双缝干涉实验中,所用平行单色光波长为 λ=562.5nm,双缝与观察屏的距离D=1.2m,双缝的间 距d=0.45mm,则屏上相邻明条纹间距为___1_._5_m_m__; 若已知屏上P点为第4级暗条纹中心所在处,则 OP ____5_._2_5_m_m______。若用一折射率n=1.5的透明薄膜遮 掩度Se=1缝__后_3_,9_3_发7_._现5_n_Pm_点__变__为。0级明纹,则该透明薄膜的厚
相关文档
最新文档