最新初中数学圆的经典测试题含答案解析
圆测试题及答案解析
圆测试题及答案解析一、选择题1. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是什么?A. 直线与圆相离B. 直线与圆相切C. 直线与圆相交D. 直线在圆内答案:C解析:根据圆心到直线的距离小于圆的半径,可以判断直线与圆相交。
2. 圆的周长公式是什么?A. C = 2πrB. C = πr²C. C = 2rD. C = rπ答案:A解析:圆的周长公式是C = 2πr,其中C表示周长,r表示半径。
二、填空题1. 半径为7的圆的面积是 __________。
答案:153.94解析:圆的面积公式是A = πr²,将半径7代入公式得A = π ×7² ≈ 153.94。
2. 如果一个扇形的半径为10,圆心角为30°,那么它的弧长是__________。
答案:5π解析:弧长公式是L = θ × r,其中θ为圆心角(以弧度为单位),r为半径。
将圆心角30°转换为弧度是π/6,代入公式得L = π/6× 10 = 5π/3 ≈ 5。
三、简答题1. 描述圆的切线的性质。
答案:圆的切线在圆上某一点处与圆相切,且与过该点的半径垂直。
解析:圆的切线是一条直线,它恰好在一个点上与圆接触,并且这个接触点处的切线与从圆心到接触点的半径形成90°的角。
四、计算题1. 已知圆的半径为8,求圆的面积。
答案:圆的面积为200π。
解析:根据圆的面积公式A = πr²,将半径8代入公式得A = π × 8² = 64π ≈ 200π。
2. 已知圆的直径为20,求圆的周长。
答案:圆的周长为20π。
解析:圆的周长公式是C = πd,其中d为直径。
将直径20代入公式得C = π × 20 = 20π。
初中数学圆形专题训练50题含答案
初中数学圆形专题训练50题含参考答案一、单选题1.如图,A 、B 、C 是⊙O 上的三个点,若⊙C =35°,则⊙OAB 的度数是( )A .35°B .55°C .65°D .70° 2.若圆锥的侧面展开图是一个半圆,该半圆的直径是4cm ,则圆锥底面的半径是( )A .0.5cmB .1cmC .2cmD .4cm 3.如图,AB 是半圆的直径,D 是弧AC 的中点,70ABC ∠=︒,则BAD ∠的度数是( ).A .55°B .60°C .65°D .70° 4.如图,点A 、B 、C 都在⊙O 上,⊙O 的半径为2,⊙ACB =30°,则AB 的长是( )A .2πB .πC .2π3 D .1π35.如图,ABCD 为⊙O 的内接四边形,若⊙D=65°,则⊙B=( )A .65°B .115°C .125°D .135° 6.如图,AB 、AC 是O 的两条切线,切点为B 、C , ∠BAC =30°,则∠BAO 度数为( )A .60B .45C .30D .15 7.如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,OM =13,则sin⊙CBD 的值等于( )A B .13 C D .128.如图,在Rt⊙ABC 中,⊙C =90°,AC =8,BC =6,两等圆⊙A ,⊙B 外切,图中阴影部分面积为( )A .25244π-B .25248π-C .252416π-D .252432π- 9.如图,AB 为⊙O 的切线,A 为切点,OB 交⊙O 于点D ,C 为⊙O 上一点,若42ABO ∠=︒,则ACD ∠的度数为( )A .48°B .24°C .36°D .72° 10.如图,点A ,B ,C 在O 上,//BC OA ,20A ∠=︒,则B ∠的度数为( )A .10︒B .20︒C .40︒D .50︒ 11.如图,⊙O 是⊙ABC 的外接圆,已知AD 平分⊙BAC 交⊙O 于点D ,连结CD ,延长AC ,BD ,相交于点F.现给出下列结论:⊙若AD=5,BD=2,则DE=25; ⊙ACB DCF ∠=∠;⊙FDA ∆⊙FCB ∆;⊙若直径AG⊙BD 交BD 于点H ,AC=FC=4,DF=3,则cosF=4148; 则正确的结论是( )A .⊙⊙B .⊙⊙⊙C .⊙⊙D .⊙⊙⊙ 12.下列说法中,正确的是( )A .垂直于半径的直线一定是这个圆的切线B .任何三角形有且只有一个内切圆C .所有的正多边形既是轴对称图形也是中心对称图形D .三角形的内心到三角形的三个顶点的距离相等13.如图,ABC 中,30C ∠=,90B ∠=,8AC =,以点A 为圆心,半径为4的圆与BC 的位置关系是( )A .相交B .相离C .相切D .不能确定 14.如图,⊙O 的半径长6cm ,点C 在⊙O 上,弦AB 垂直平分OC 于点D ,则弦AB 的长为( )A .9 cmB .cmC .92 cmD .cm 15.如图,正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π 16.如图,两个半径都为1的圆形纸片,固定⊙O 1,使⊙O 2沿着其边缘滚动回到原来位置后运动终止,则⊙O 2上的点P 运动的路径长为( )A .2πB .4πC .6πD .无法确定 17.下列五个说法:⊙近似数3.60万精确到百分位;⊙三角形的外心一定在三角形的外部;⊙内错角相等;⊙90°的角所对的弦是直径;⊙函数y =x 的取值范围是2x ≥-且1x ≠.其中正确的个数有( )A .0个B .1个C .2个D .3个 18.下列命题正确的有( )A .在同圆或等圆中,等弦所对的弧相等B .圆的两条不是直径的相交弦,不能互相平分C .正多边形的中心是它的对称中心D .各边相等的圆外切多边形是正多边形 19.若扇形的面积是56cm 2,周长是30cm ,则它的半径是( )A .7cmB .8cmC .7cm 或8cmD .15cm 20.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32π二、填空题21.在圆O 中,弦AB 的长为6,它所对应的弦心距为4,那么半径OA =___. 22.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,如图1,点P 表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O 为圆心,5m 为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB 长为8m ,则筒车工作时,盛水桶在水面以下的最大深度为_____m .23.用一个圆心角为90°半径为32cm 的扇形作为一个圆锥的侧面(接缝处不重叠),则这个圆锥的底面圆的半径为___cm .24.如图,一块三角形透明胶片刚好在量角器上的位置,点A 、B 的读数分别是80︒、30︒,则ACB =∠________.25.如图,点I 为ABC 的三个内角的角平分线的交点,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为______.26.已知⊙O 1和⊙O 2的半径长分别为3和4,若⊙O 1和⊙O 2内切,那么圆心距O 1O 2的长等于_____.27.已知一个圆锥的底面半径为5cm ,则这个圆锥的表面积为___________28.如图,在⊙O 中,AB 为直径,CD 为弦,已知⊙BAD=60°,则⊙ACD=______度.29.正十二边形的中心角是_____度.30.如图,A 、D 是半圆O 上的两点,BC 是直径,若⊙D =35°,则⊙AOB =_____°.31.如图,四边形ABCD 内接于O ,1079,,BD CD AB AC ====,则AD 的长为 ___________.32.如图,已知⊙P的半径为1,圆心P在抛物线22=-上运动,当⊙P与x轴相切y x时,圆心P的坐标是___________________.33.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是_____34.如图,AB为⊙O的直径,弦CD⊙AB于点E,若AE=8,BE=2,则CD=_______________.35.如图,已知AB是半圆的直径,且AB=10,弦AC=6,将半圆沿过点A的直线折叠,使点C落在直径AB上的点C′,则折痕AD的长为________.36.一块矩形木板,它的右上角有一个圆洞,现设想将它改造成火锅餐桌桌面,要求木板大小不变,且使圆洞的圆心在矩形桌面的对角线交点上.木工师傅想到了一个巧妙的办法,他测量了PQ 与圆洞的切点K 到点B 的距离及相关数据(单位:cm )后,从点N 沿折线NF FM NF BC FM AB -(∥,∥)切割,如图1所示.图2中的矩形EFGH 是切割后的两块木板拼接成符合要求的矩形桌面示意图(不重叠、无缝隙、不计损耗),则CN AM ,的长分别是_______.37.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,分别以点A 、C 为圆心,OA 长为半径作OE 、OF 交AD 于点E 、BC 于点F .若6AC =,50∠=°ACB ,则阴影部分图形的面积为__________.(结果保留π)38.如图,在直角坐标系中,点A 坐标为(2,0),点B 的坐标为(6,0),以B 点为圆心,2长为半径的圆交x 轴于C 、D 两点,若P 是⊙B 上一动点,连接P A ,以P A 为一直角边作Rt ⊙P AQ ,使得1tan 2APQ ∠=,连接DQ ,则DQ 的最小值为_____39.如图,点O 为以AB 为直径的半圆的圆心,点M ,N 在直径AB 上,点P ,Q 在AB 上,四边形MNPQ 为正方形,点C 在QP 上运动(点C 与点P ,Q 不重合),连接BC 并延长交MQ 的延长P 线于点D ,连接AC 交MQ 于点E ,连接OQ ,则sin⊙AOQ =__________,若圆半径为R ,则DM ·EM =_______.40.已知Rt △ABC 中,⊙A =90°,M 是BC 的中点.如图,(1)以M 为圆心,MB 为半径,作半圆M ;(2)分别B ,C 为圆心,BA ,CA 为半径作弧,两弧交于D 点;(3)连接AM ,AD ,CD ;(4)作线段CD 的中垂线,分别交线段CD 于点F ,半圆M 于点G ,连接GC ;(5)以点..G 为圆心...,线段GC 为半径,作弧.CD .根据以上作图过程及所作图形,下列结论中:⊙点A 在半圆M 上;⊙AC =CD ;⊙弧AC =弧CD ;⊙△ABM ⊙△ACD ;⊙BC =GC ;⊙⊙BAM =⊙CGF .一定正确的是_______.三、解答题41.如图,⊙O 的半径OA 、OB 分别交弦CD 于点E 、F ,且CE =DF .求证:⊙OEF 是等腰三角形.42.如图,Rt ABC 中90BAC ∠=︒,2AE AD AC =⋅,点D 在AC 边上,以CD 为直径画O 与AB 交于点E .(1)求证:AB 是O 的切线;(2)若1==,求BE的长度.AD DO43.如图,AC是⊙O的直径,AD是⊙O的切线.点E在直径AC上,连接ED交⊙O于点B,连接AB,且AB=BD.(1)求证:AB=BE;(2)若⊙O的半径长为5,AB=6,求线段AE的长.44.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,求球的半径长.45.如图,⊙ABC内接于⊙O,AB=AC,P为⊙O上一动点(P,A分别在直线BC的两侧),连接PC.(1)求证:⊙P=2⊙ABC;(2)若⊙O的半径为2,BC=3,求四边形ABPC面积的最大值.46.如图,AB是⊙O的直径,过点A作⊙O切线AP,点C是射线AP上的动点,连接CO交⊙O于点E,过点B作BD//CO,交⊙O于点D,连接DE、OD、CD.(1)求证:CA=CD;(2)填空:⊙当⊙ACO的度数为时,四边形EOBD是菱形.⊙若BD=m,则当AC=(用含m的式子表示)时,四边形ACDO是正方形.47.如图,已知△ABC为直角三角形,⊙C=90°,边BC是⊙O的切线,切点为D,AB 经过圆心O并与圆相交于点E,连接AD.(1)求证:AD平分⊙BAC;(2)若AC=8,tan⊙DAC=34,求⊙O的半径.48.已知A,B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(⊙)如图⊙,求⊙ADC的大小;(⊙)如图⊙,经过点O作CD的平行线,与AB交于点E,与AB交于点F,连接AF,求⊙F AB的大小.49.(1)小迪同学在学习圆的内接正多边形时,发现:如图1,若P是圆内接正三角形ABC的外接圆的BC上任一点,则60APB∠=︒,在PA上截取PM PC=,连接MC,可证明MCP∆是_______(填“等腰”、“等边”或“直角”)三角形,从而得到=PC MC,再进一步证明PBC≅_______,得到=PB MA,可证得:.(2)小迪同学对以上推理进行类比研究,发现:如图2,若P是圆内接正四边形ABCD的外接圆的BC上任一点,则APB APD∠=∠=°,分别过点,B D作BM AP⊥于M、⊥DN AP于N.(3)写出,PB PD与PA之间的数量关系,并说明理由.50.某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知⊙CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm,(1)用含x的代数式表示扇形O2CD的半径;(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?参考答案:1.B【分析】根据“同一条弧所对的圆周角等于它所对的圆心角的一半”求出⊙AOB 的度数,再根据等腰三角形的性质求解即可.【详解】⊙⊙AOB 与⊙C 是同弧所对的圆心角与圆周角,⊙⊙AOB =2⊙C =2×35°=70°,⊙OA =OB ,⊙⊙OAB =⊙OBA =180AOB 2︒-∠=180702︒︒-=55°. 故选:B .【点睛】本题考查的是圆周角定理,掌握圆周角定理及等腰三角形的性质是关键. 2.B【分析】根据圆锥侧面展开图的半圆的周长等于圆锥底面的周长,从而求出底面半径; 【详解】解:由题意,底面圆的周长为:1422ππ⨯⨯=, ⊙底面圆的半径为:212ππ=(cm ), 故选:B【点睛】此题考查立体图形的侧面展开;圆锥的侧面展开图为扇形,扇形的半径为圆锥的母线,扇形的弧长为圆锥的底面周长.3.A【分析】连接BD ,由于点D 是AC 的中点,即CD AD =,根据圆周角定理得ABD CBD ∠=∠,则35ABD ∠=︒,再根据直径所对的圆周角为直角得到90ADB ∠=︒,然后利用三角形内角和定理可计算出BAD ∠的度数.【详解】解:连接BD ,如图,⊙点D 是AC 的中点,即CD AD =,⊙ABD CBD ∠=∠,而70ABC ∠=︒,⊙170352ABD ∠=⨯︒=︒, ⊙AB 是半圆的直径,⊙90ADB ∠=︒,⊙903555BAD ∠=︒-︒=︒.故选:A .【点睛】本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.4.C【详解】⊙点A 、B 、C 都在⊙O 上,⊙ACB =30°,⊙⊙AOB =60°,⊙OA =2,⊙AB =6022=1801803n r πππ⨯=︒ 故选:C .5.B【分析】根据圆内接四边形的对角互补可得答案.【详解】⊙⊙B +⊙D =180°,⊙⊙B =180°﹣65°=115°.故选B .【点睛】本题主要考查了圆内接四边形的性质,关键是掌握圆内接四边形的对角互补. 6.D【分析】根据切线长定理即可求解.【详解】⊙AB 、AC 是O 的两条切线,切点为B 、C ,⊙AO 平分⊙BAC ,⊙∠BAO =12⊙BAC=15°, 故选D.【点睛】此题主要考查圆内角度求解,解题的关键是熟知切线长定理的性质.7.B【分析】根据锐角⊙ABC 内接于⊙O ,BD ⊙AC 于点D ,OM ⊙AB 于点M ,得出sin ⊙CBD =sin ⊙OBM 即可得出答案.【详解】连接AO ,⊙OM⊙AB于点M,AO=BO,⊙⊙AOM=⊙BOM,⊙⊙AOB=2⊙C⊙⊙MOB=⊙C,⊙⊙O的半径为1,锐角⊙ABC内接于⊙O,BD⊙AC于点D,OM=13,⊙sin⊙CBD=sin⊙OBM=13113 MOOB==则sin⊙CBD的值等于13.故选B.【点睛】此题主要考查了垂径定理以及锐角三角函数值和圆周角定理等知识,根据题意得出sin⊙CBD=sin⊙OBM是解决问题的关键.8.A【分析】设等圆⊙A,⊙B外切于O点,如图,利用两圆相切的性质得到O点在AB上,再利用勾股定理计算出AB,则OA=OB=5,然后根据扇形的面积公式,利用S阴影=S△ABC一2S扇形进行计算,即可求解.【详解】解:设两等圆⊙A,⊙B外切于点O,则点O在AB上,⊙⊙C=90°,AC=8,BC=6,⊙10AB,⊙A+⊙B=90°,⊙OA =OB =5,⊙S 阴影=S △ABC -2S 扇形2190525682423604ππ⨯⨯=⨯⨯-=-. 故选:A .【点睛】本题考查了相切两圆的性质:如果两圆相切,那么连心线必经过切点.也考查了勾股定理和扇形面积的计算.9.B【分析】连结OA ,由切线定理和直角三角形性质可得⊙AOB=48°,再由圆周角定理可得⊙ACD=24°.【详解】解:如图,连结OA ,则由切线定义可得:⊙OAB=90°,⊙⊙AOB=90°-⊙ABO=90°-42° =48°,⊙根据圆周角定理可得:⊙ACD=12⊙AOB=24°, 故选B .【点睛】本题考查圆的应用,综合运用圆周角定理、切线的性质定理和直角三角形的性质求解是解题关键.10.C【分析】由//BC OA 得20C A ∠=∠=︒,由圆心角和圆周角的关系得40O ∠=︒,再利用平行线的性质可得结论.【详解】解:如图,⊙//BC OA ,20A ∠=︒⊙20C A ∠=∠=︒⊙240O C ∠=∠=︒//,BC OA⊙40B O ∠=∠=︒故选:C【点睛】此题考查了圆周角定理与平行线的性质.此题难度不大,注意掌握数形结合思想的应用.11.C【详解】试题分析:此题主要考查圆的综合问题,熟悉圆的相关性质,会证明三角形相似并解决相关问题,能灵活运用垂径定理和三角函数是解题的关键.⊙只需证明⊙BDE⊙⊙ADB ,运用对应线段成比例求解即可; ⊙连接CD ,假设⊙ACB=⊙DCF ,推出与题意不符即可判断; ⊙由公共角和同弧所对的圆周角相等即可判断; ⊙先证明⊙FCD⊙⊙FBA ,求出BD 的长度,根据垂径定理求出DH ,结合三角函数即可求解.⊙如图1,⊙AD 平分⊙BAC ,⊙⊙BAD=⊙CAD ,⊙⊙CAD=⊙CBD ,⊙⊙BAD=⊙CBD ,⊙⊙BDE=⊙BDE ,⊙⊙BDE⊙⊙ADB , ⊙BD DE AD BD=, 由AD=5,BD=2,可求DE=45, ⊙不正确;⊙如图2,连接CD ,⊙FCD+⊙ACD=180°,⊙ACD+⊙ABD=180°,⊙⊙FCD=⊙ABD ,若⊙ACB=⊙DCF ,因为⊙ACB=⊙ADB ,则有:⊙ABD=⊙ADB ,与已知不符,故⊙不正确;⊙如图3,⊙⊙F=⊙F,⊙FAD=⊙FBC,⊙⊙FDA⊙⊙FCB;故⊙正确;⊙如图4,连接CD,由⊙知:⊙FCD=⊙ABD,又⊙⊙F=⊙F,⊙⊙FCD⊙⊙FBA,⊙FC FD FB FA=,由AC=FC=4,DF=3,可求:AF=8,FB=323,⊙BD=BF-DF=233,⊙直径AG⊙BD,⊙DH=233,⊙FG=416,⊙cosF=FGAF=4148,故⊙正确.故选C.考点:圆的综合题.12.B【分析】经过半径的外端并且垂直于这条半径的直线是圆的切线,所以A不正确;三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,所以B是对的;一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,所以C不正确;三角形的内心是三个内角平分线的交点,根据角平分线上的点的特点,D是错误的.【详解】解:A.经过半径的外端并且垂直于这条半径的直线是圆的切线,故A错误;B.三角形的内切圆的圆心是三个内角平分线的交点,而交点只有一个,故B正确;C.一个图形绕中心旋转180度能与自身重合则称此图形为中心对称图形,正五边形不是,故C错误;D.三角形的内心是三个内角平分线的交点,到三边的距离相等,故D错误.故选B.【点睛】本题考查了圆的切线的判定,三角形的内心及轴对称和中心对称的概念,要求学生对这些概念熟练掌握.13.C【分析】由已知条件易求AB的长,和圆的半径4比较大小即可得知与BC的位置关系.【详解】⊙⊙C =30°,⊙B =90°,AC =8,⊙AB =12AC =4. ⊙以点A 为圆心,半径为4画圆,⊙d =r ,即以点A 为圆心,半径为4的圆与BC 的位置关系是相切.故选C .【点睛】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.14.B【分析】弦AB 垂直平分OC 于点D ,得OD=3,由勾股定理得AD ,由垂径定理得AB=2AD ,可得答案.【详解】⊙⊙O 的半径长6cm ,弦AB 垂直平分OC ,⊙OD=3,由勾股定理得:,⊙OC 过O ,OC⊙AB ,⊙AB=2AD=,故选B .【点睛】本题主要考查了垂径定理,勾股定理,利用弦AB 垂直平分OC 得OD 是解答此题的关键.15.B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.16.B【分析】由⊙O 2上的点P 运动的路径长=点O 2运动的路径长可求解.【详解】解:⊙⊙O 2沿着其边缘滚动回到原来位置后运动终止,⊙⊙O 2上的点P 运动的路径长=点O 2运动的路径长,⊙⊙O 2上的点P 运动的路径长=2π(1+1)=4π故选:B .【点睛】本题考查了轨迹问题,掌握⊙O 2上的点P 运动的路径长=点O 2运动的路径长是本题的关键.17.B【分析】根据近似数3.60万精确到百位可判断⊙,根据三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外可判断⊙,根据两直线平行,内错角相等可判断⊙; 90°的圆周角性质可判断⊙,函数y =0,可判断⊙即可得出答案.【详解】解:⊙近似数3.60万精确到百位,故⊙近似数3.60万精确到百分位错误; ⊙三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外,故⊙三角形的外心一定在三角形的外部错误;⊙两直线平行,内错角相等;故⊙内错角相等错误;⊙90°的圆周角性质是90°的圆周角所对的弦是直径,故⊙90°的角所对的弦是直径不正确;;⊙函数y = 2010x x +≥⎧⎨-≠⎩, 解得2x ≥-且1x ≠,⊙函数y =x 的取值范围是2x ≥-且1x ≠正确. 正确的个数有一个⊙.故选择:B .【点睛】本题考查基本技能,精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围,熟练掌握精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围是解题关键.18.B【分析】根据垂径定理和正多边形的相关知识判断.【详解】解:A 、错误.因为一条弦对应着两条弧;B 、正确.只有垂直于弦的直径才能平分弦;C 、错误.正多边形的中心是它的外接圆的圆心;D 、错误.各边相等的圆外切多边形不一定是正多边形,因为角不一定相等.故选:B.【点睛】本题比较复杂,涉及到垂径定理,圆心角、弧、弦的关系,正多边形和圆的关系,是中学阶段的难点.19.C【分析】设扇形的半径为Rcm ,求出扇形的弧长为(30-2R )cm ,根据扇形的面积是56cm 2得出12R (30-2R )=56,求出即可. 【详解】解:设扇形的半径为R ,⊙扇形周长是30cm ,⊙扇形的弧长为(30-2R )cm ,⊙扇形的面积是56cm 2, ⊙12R (30-2R )=56,解得:R=7或8,故答案为C .【点睛】本题考查了扇形的面积的有关应用,注意:扇形的面积等于弧和半径积的一半. 20.D【分析】连接AD ,根据等边三角形的性质得到3AD AB ==,60ADB ∠=︒,根据勾股定理得到AC =【详解】解:连接AD ,3AB BD ==,60ABC ∠=︒,ABD ∴是等边三角形,3AD AB ∴==,60ADB ∠=︒,6BC =,3CD ∴=,AD CD ∴=,C CAD ∴∠=∠,60C CAD ADB ∠+∠=∠=︒,30C ∴∠=︒,90BAC ∴∠=︒,AC ∴=∴图中阴影部分的面积2160313332360222AB AC πππ⋅⨯=⋅-=⨯⨯=, 故选:D .【点睛】本题考查了扇形面积公式,等边三角形的判定和性质,直角三角形的性质,勾股定理,推出ABD △是等边三角形是解题的关键.21.5【详解】如图,OC 是弦AB 的弦心距,⊙AC =116322AB =⨯=,⊙5OA =.22.2【分析】过O 点作半径OD⊙AB 于E ,如图,由垂径定理得到AE =BE =4,再利用勾股定理计算出OE ,然后即可计算出DE 的长.【详解】解:过O 点作半径OD⊙AB 于E ,如图,⊙AE =BE =12AB =12×8=4,在Rt⊙AEO 中,OE 3,⊙ED =OD ﹣OE =5﹣3=2(m ),答:筒车工作时,盛水桶在水面以下的最大深度为2m .故答案为:2.【点睛】本题考查了垂径定理,垂直于弦的直径平分弦,并且平分弦所对的两条弧,能熟练运用垂径定理是解题的关键.23.8【详解】试题分析:⊙扇形的圆心角为90°半径为32cm ,⊙根据扇形的弧长公式,扇形的弧长为()9032=16cm 180ππ⋅⋅. ⊙圆锥的底面周长等于它的侧面展开图的弧长,⊙根据圆的周长公式,得2r=16ππ,解得()r=8cm .24.25°【分析】首先设半圆的圆心为O ,连接OA ,OB ,由A 点的读数为80°,B 点的读数为30°,即可求得圆心角⊙AOB 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得⊙ACB 的大小.【详解】解:设半圆的圆心为O ,连接OA ,OB ,⊙A 点的读数为80°,B 点的读数为30°,⊙⊙AOB=80°-30°=50°, ⊙⊙ACB=12⊙AOB=25°.故答案为:25°.【点睛】此题考查了圆周角定理.此题难度不大,正确的作出辅助线是解题的关键.25.4【分析】连接AI,BI,由点I为⊙ABC的内心,得到AI平分⊙CAB,根据角平分线的定义得到⊙CAI=⊙BAI.根据平移的性质得到AC⊙DI,由平行线的性质和等角对等边得到AD=DI,BE=EI,根据三角形的周长公式进行计算即可得到答案.【详解】解:连接AI,BI,⊙点I为⊙ABC的内心,⊙AI平分⊙CAB,⊙⊙CAI=⊙BAI.由平移得:AC⊙DI,⊙⊙CAI=⊙AID.⊙⊙BAI=⊙AID,⊙AD=DI.同理可得:BE=EI,⊙⊙DIE的周长=DE+DI+EI=DE+AD+BE=AB,因为4AB ,即图中阴影部分的周长为4.故答案为:4.【点睛】本题考查角平分线的定义、平移的性质、等腰三角形的判定和平行线的性质,解题的关键是掌握角平分线的定义、平移的性质和平行线的性质和等角对等边.26.1【分析】根据两圆内切,圆心距等于半径之差.【详解】解:⊙⊙O1和⊙O2的半径长分别为3和4,⊙O1和⊙O2内切,⊙圆心距O1O2的长=4﹣3=1,故答案为:1.【点睛】本题考查了圆与圆的位置关系,掌握圆与圆之间的位置关系是解题的关键.27.255cmπ【分析】首先求得底面的周长、面积,利用勾股定理求得圆锥的母线长,然后利用扇形的面积公式即可求得圆锥的侧面积,加上底面面积就是表面积.【详解】解:底面周长是2×5π=10πcm,底面积是:5²π=25πcm².(cm),则圆锥的侧面积是:12×10π×6=30π(cm²),则圆锥的表面积为25π+30π=55π(cm²).故答案为:255cmπ.【点睛】本题考查了圆锥的计算,勾股定理,圆的面积公式,圆的周长公式和扇形面积公式求解.注意圆锥表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2的应用.28.30【分析】由在⊙O中,AB为直径,根据直径所对的圆周角是直角,可求得⊙ADB=90°,又由圆周角定理,可求得⊙ACD=⊙B=90°-⊙BAD,继而求得答案.【详解】⊙在⊙O中,AB为直径,⊙⊙ADB=90°,⊙⊙ACD=⊙B=90°-⊙BAD=30°,故答案为:30.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角.29.30【分析】根据正多边形的中心角公式:360n计算即可【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式30.70【分析】根据圆周角定理即可求出.【详解】⊙⊙D =35°,⊙⊙AOB =2⊙D =70°,故答案为70【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧所对的圆心角是圆周角的2倍.31【分析】过点A 作AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,根据已知易证ADB ADE ∠=∠,从而证明证明AFD AED △≌△,可得,DF DE AF AE ==,然后再证明Rt Rt BAF CAE ≌,可得BF CE =,最后进行计算即可求出DF ,从而求出,,BF AF AD ,即可解答.【详解】解:过点A 作.AF BD ⊥,垂足为F ,过点A 作AE CD ⊥,交CD 的延长线于点E ,⊙AB AC =,⊙ABC ACB ∠=,⊙四边形ABCD 是圆内接四边形,⊙180ABC ADC ∠+∠=︒,⊙180ADC ADE ∠+∠=︒,⊙ABC ADE ∠=∠,⊙ADB ACB ∠=∠,⊙ADB ADE ∠=∠,⊙90,AFD AED AD AD ∠=∠=︒=,⊙(AAS)AFD AED ≌,⊙.,DF DE AF AE ==,⊙90AFB AEC ∠=∠=︒,⊙Rt Rt (HL)BAF CAE ≌,⊙.BF CE =,⊙BD DF CD DE -=+,⊙107DF DE -=+, ⊙32DF DE ==, ⊙3171022BF BD DF =-=-=,⊙AF ===⊙AD = ⊙AD【点睛】本题考查了全等三角形的判定与性质,圆内接四边形的性质,勾股定理,圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32.或(或(1,-1)或(1,-1)-【分析】根据圆与直线的位置关系可知,当⊙P 与x 轴相切时,P 点的纵坐标为1或-1,把1或-1代入到抛物线的解析式中求出横坐标即可.【详解】⊙⊙P 的半径为1,⊙当⊙P 与x 轴相切时,P 点的纵坐标为1或-1.当1y =时,221y x =-=,解得x =,⊙此时P 的坐标为或(;当1y =-时,221y x =-=-,解得1x =± ,⊙此时P 的坐标为(1,1)-或(1,1)--;故答案为:或(或(1,-1)或(1,-1)-.【点睛】本题主要考查直线与圆的位置关系和已知函数值求自变量,根据圆与x 轴相切找到点P的纵坐标的值是解题的关键.33.(﹣2,﹣1)【分析】根据外心的定义作图即可.【详解】如图:分别作AC与AB的垂直平分线,相交于点O,则点O即是该圆弧所在圆的圆心.⊙点A的坐标为(﹣3,2),⊙点O的坐标为(﹣2,﹣1).【点睛】本题考查了三角形外心,熟练掌握外心的定义,准确求作线段的垂直平分线是解题的关键.34.8【详解】连接OC,因为AE=8,BE=2,所以AB=10,则OB=12AB=5,所以OE=OB-BE=5-2=3,在Rt⊙OEC中,由勾股定理可得:CE4=,则CD=8,故答案为:8.35.【详解】解:设圆的圆心是O,连接OD,作DE⊙AB于E,OF⊙AC于F.根据题意知,⊙OF⊙AC,⊙AF=12AC=3,⊙⊙CAD=⊙BAD,⊙CD BD=,⊙点D是弧BC的中点.⊙⊙DOB=⊙OAC=2⊙BAD,在⊙AOF和⊙OED中,⊙⊙OFA=⊙OED,⊙FAO=⊙EDO,AO=DO,⊙⊙AOF⊙⊙OED(AAS),⊙OE=AF=3,⊙DO=5,⊙DE=4,=故答案为【点睛】本题考查翻折变换(折叠问题);勾股定理.36.18cm , 31cm .【分析】如图,延长OK 交线段MF 于点1M ,延长PQ 交BC 于点G ,交FN 于点2N ,设圆孔半径为r .根据勾股定理,得222BH KH BK +=.从而得16r =.根据题意知,12111122ON KN AB OM KM r CB ===+=,.则根据图中相关线段间的和差关系求得CN =QH -QN 2=44-26=18, AM =BC -PD -KM 1=130-50-49=31 ( cm).【详解】解:作辅助线如图所示,设圆孔半径为r ,根据勾股定理,得222BH KH BK +=.⊙()()2221305044100r -++=, 16r ∴=.按题意要求,切割后,以圆O 为中心,到两对边的距离相等, 即:12111122ON KN AB OM KM r CB ===+=,. ⊙21422KN AB ==, ⊙ QN 2+r =42,即QN 2=42-16=26.⊙CN =QH -QN 2=44-26=18.又⊙112KM r CB +=,即 11161302KM +=⨯, ⊙ KM 1=49.⊙AM =BC -PD -KM 1=130-50-49=31.⊙CN =18cm ,AM =31cm .故答案为:18cm ,31cm【点睛】本题考查了矩形、直角三角形及圆等相关知识,将实际问题转化为数学问题经验,利用图形变换思想是解题的关键,体现了数学思想方法在现实问题中的应用价值. 37.52π 【分析】每个扇形的圆心角是50°,半径为3,根据扇形面积计算公式计算即可.【详解】⊙菱形ABCD,⊙AD∥BC,OA=OC=12AC=3,⊙⊙ACB=⊙EAO=50°,⊙阴影部分的面积为50952=3602ππ⨯⨯⨯,故答案为:52π.【点睛】本题考查了菱形的性质,扇形的面积公式,熟练掌握菱形的性质,灵活运用扇形面积公式是解题的关键.38.1##1-+【分析】由题意根据“瓜豆原理-主从联动”可得Q的点轨迹也是一个圆,找到此圆即可解决问题.【详解】解:如图,取点M(2,-2),连接AM,MQ、PB,⊙⊙MAB=⊙QAP=90°,⊙⊙MAQ=⊙BAP,⊙12 AM AQAB AP==,⊙⊙MAQ⊙⊙BAP,⊙MQ=12PB=1,⊙Q点在以M为圆心,以1为半径的圆上,由图象可得:DQ的最小值为:DM-MQ,AD=OD-OA=6+2-2=6,由勾股定理可得:DM =⊙DQ 的最小值等于:故答案为:.【点睛】本题考查轨迹圆问题,熟悉掌握利用相似三角形的性质解决动点的轨迹是快速解题的关键.39. 245R 【分析】利用全等三角形的性质证明OM =ON ,设OM =ON =m ,则MQ =2m ,求出OQ ,可得结论. 再证明⊙AME ⊙⊙DMB ,可得AM EM DM BM,由此构建关系式,可得结论. 【详解】解:如图,连接OP .⊙四边形MNPQ 是正方形,⊙⊙OMQ =⊙ONP =90°,MQ =PN ,⊙OQ =OP ,⊙Rt ⊙OMQ ⊙Rt ⊙ONP (HL ),⊙OM =ON , 设OM =ON =m ,则MQ =2m ,225OQOM MQ m , ⊙sin⊙AOQ =22555MQ m OQ m . ⊙AB =2R ,⊙OA =OB =OQ =R ,⊙QM =2MO , ⊙525sin ,55R R OM OQ AOQ MQ ,55555,,555RAM R R BM R⊙AB 是直径,⊙⊙ACB =⊙DCE =90°,⊙⊙CED =⊙AEM ,⊙⊙A =⊙D ,⊙⊙AME =⊙DMB =90°,⊙⊙AME ⊙⊙DMB ,⊙ AM EM DM BM, 255554.555R DM EMR R245R 【点睛】本题考查了圆周角定理,全等三角形的判定和性质,相似三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.40.⊙⊙【分析】根据圆周角定理,弧、弦、圆心角的关系定理,相似三角形的判定方法,以及其他与圆有关的性质及定理即可判断.【详解】⊙由作图可知,以M 为圆心,BC 为直径的半圆是Rt⊙ABC 的外接圆, ⊙⊙BAC=90°,⊙⊙BAC 是直径所对的圆周角,⊙点A 在半圆M 上,故⊙正确;⊙由分别以B ,C 为圆心,BA ,CA 为半径作弧,两弧交于点D 可知,CA 、CD 是以圆C 的半径,⊙AC=CD ,故⊙正确; ⊙⊙AC 在以M 为圆心、BM 为半径的圆中,CD 在以G 为圆心,以CG 为半径的圆中, ⊙AC CD ,故⊙错误;。
初中数学圆的经典测试题及解析
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
A. B. C. D.
【答案】C
【解析】
【分析】
连接 ,如图,利用切线的性质得 ,在 中利用勾股定理得 ,利用面积法求得 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.
【详解】
解:连接 ,作 于 ,如图,
圆锥的母线 与 相切于点 ,
,
在 中, , ,
,
,
,
圆锥形纸帽的底面圆的半径为 ,母线长为12,
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
A. B. C. D.
【答案】A
初三数学圆测试题及答案
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 已知圆的半径为2,圆心在原点,下列哪个点在圆上?A. (3, 0)B. (2, 2)C. (2, 0)D. (0, 2)2. 圆的标准方程是 (x-a)^2 + (y-b)^2 = r^2,其中a和b是圆心的坐标,r是半径。
如果圆心在(1, 1),半径为3,那么圆的方程是什么?A. (x-1)^2 + (y-1)^2 = 9B. (x+1)^2 + (y+1)^2 = 9C. (x-1)^2 + (y+1)^2 = 9D. (x+1)^2 + (y-1)^2 = 93. 已知圆的直径为6,那么圆的半径是多少?A. 3B. 6C. 9D. 124. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 圆的切线垂直于经过切点的半径,那么切线与半径的夹角是多少?A. 0°B. 90°C. 180°D. 360°6. 如果两个圆的半径分别为3和5,且它们外切,那么两圆心之间的距离是多少?A. 2B. 8C. 10D. 127. 圆的周长公式是C = 2πr,如果一个圆的周长为12π,那么它的半径是多少?A. 3B. 4C. 6D. 128. 已知圆的半径为4,圆心在点(2, 3),那么圆上一点(5, 7)到圆心的距离是多少?A. 3B. 4C. 5D. 69. 圆的面积公式是A = πr^2,如果一个圆的面积为16π,那么它的半径是多少?A. 2B. 3C. 4D. 510. 如果一个圆的半径为2,那么它的直径是多少?A. 4B. 6C. 8D. 10二、填空题(每题4分,共20分)1. 已知圆的半径为r,那么它的直径是________。
2. 圆的周长公式为C = 2πr,如果一个圆的半径为4,那么它的周长是________。
3. 圆的面积公式为A = πr^2,如果一个圆的半径为5,那么它的面积是________。
初中数学圆形专题训练50题含(参考答案)
初中数学圆形专题训练50题含参考答案一、单选题1.如图,A ,B ,C 是⊙O 上的三点,且⊙ACB =35°,则⊙AOB 的度数是( )A .35°B .65°C .70°D .90°【答案】C 【分析】根据圆周角定理即可得.【详解】解:由圆周角定理得:223570AOB ACB ∠=∠=⨯︒=︒,故选:C .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.2.如图,在半径为R 的圆内作一个内接正方形,⊙然后作这个正方形的内切圆,又在这个内切圆中作内接正方形,依此作到第n 个内切圆,它的半径是( )A .RB .(12)RC .(12)n -1RD .n R3.如图,在ABC中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是()A.AD BD AB+<B.AD一定经过ABC的重心C.BAD CAD∠=∠D.AD一定经过ABC的外心【答案】C【分析】根据题意易得AD平分⊙BAC,然后根据三角形的重心、外心及三边关系可排除选项.【详解】解:⊙AD平分⊙BAC,⊙BAD CAD∠=∠,故C正确;在⊙ABD中,由三角形三边关系可得AD BD AB+>,故A错误;由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过ABC的重心,故B选项错误;由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过ABC的外心,故D选项错误;故选C.【点睛】本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.4.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若⊙D=40°,则⊙A的度数为()A.20°B.25°C.30°D.40°【点睛】此题主要考查了切线的性质,正确得出⊙DOC =50°是解题关键.5.如图,点A ,B ,C 在圆O 上,65∠=︒ABO ,则ACB ∠的度数是( )A .50︒B .25︒C .35︒D .20︒6.如图4,在Rt ABC △中,90C =∠,3AC =.将其绕B 点顺时针旋转一周,则分别以BA ,BC 为半径的圆形成一圆环.该圆环的面积为( )AB .3πC .3πD .3π 【答案】C 【分析】根据勾股定理,得两圆的半径的平方差即是AC 的平方.再根据圆环的面积计算方法:大圆的面积减去小圆的面积,即9π.【详解】解:圆环的面积为πAB 2-πBC 2,=π(AB 2-BC 2),=πAC 2,=32π,=9π.故选C.7.已知水平放置半径为6cm的球形容器中装有溶液,容器内液面的面积为27πcm2,如图,是该球体的一个最大纵截面,则该截面O中阴影部分的弧长为()A.2πcm B.4πcm C.6πcm D.8πcm意,灵活运用所学知识解决问题,属于中考常考题型.8.如图,点A,B,C都在圆O上,若⊙C=34°,则⊙AOB为()A.34⊙B.56⊙C.60⊙D.68⊙【答案】D【分析】由题意直接根据圆周角定理中同圆同弧所对的圆周角等于这条弧所对的圆心角的一半进行分析即可求解.【详解】解:⊙⊙C=34°,⊙⊙AOB=2⊙C=68°.故选:D.【点睛】本题考查圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.9.下列命题中,真命题的个数是()⊙同位角相等⊙经过一点有且只有一条直线与这条直线平行⊙长度相等的弧是等弧⊙顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【答案】A【详解】解:两直线平行,同位角相等,⊙错误;经过直线外一点有且只有一条直线与这条直线平行,⊙错误;在同圆或等圆中,长度相等的弧是等弧,⊙错误;顺次连接菱形各边中点得到的四边形是矩形,⊙正确.故选A.【点睛】本题考查命题与定理.10.AB是⊙O的直径,PB、PC分别切⊙O于点B、C,弦CD AB∥,若PB=AB=10,则CD的长为()A .6B C .D .3 OCF CPE ,四边形12BE OF OF ==,【详解】解:过点⊙OCF CPE , OF OC CE PC =, PB 、PC 分别切⊙O PB PC =,10PB AB ==,11.如图,AB 是O 的直径,ACD 是O 的内接三角形,若6AB =,105ADC ∠=︒,则BC 的长为( )A .8πB .4πC .2πD .π【答案】C【分析】连接OC 、BC ,根据四边形ABCD 是圆的内接四边形和⊙D 的度数,即可求出303602π=,【点睛】本题考查了圆内接四边形的性质、圆周角定理以及弧长公式等知识,根据圆12.将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A .6B .C .3D .【答案】D13.如图,正五边形ABCDE,则⊙DAC的度数为()A.30°B.36°C.60°D.72°【答案】B【分析】根据正五边形和等腰三角形的性质即可得到结论.【详解】⊙在正五边形ABCDE中,AE=DE=AB=BC,⊙E=⊙B=⊙EAB=108°,⊙⊙EAD=⊙BAC=36°,⊙⊙DAC=108°﹣36°﹣36°=36°,故选:B.【点睛】此题考查正多边形和圆,等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.14.菱形对角线的交点为O,以O为圆心,以O到菱形一边的距离为半径的圆与其他几边的关系为()A.相交B.相切C.相离D.不能确定【答案】B【分析】首先根据菱形的性质可知:菱形的对角线将菱形分成四个全等的直角三角形,故四个三角形面积相等且斜边相等,然后根据等面积法得出斜边的高相等,这样问题就容易解决了.【详解】如图:⊙菱形对角线互相垂直平分,⊙AO=CO,BO=DO,AB=BC=CD=DA.⊙⊙ABO⊙⊙BCO⊙⊙CDO⊙⊙DAO.⊙⊙ABO、△BCO、△CDO、△DAO的面积相等.又⊙AB=BC=CD=DA,⊙⊙ABO、△BCO、△CDO、△DAO斜边上的高相等.即O到AB、BC、CD、DA的距离相等.⊙O到菱形一边的距离为半径的圆与另三边的位置关系是相切.故选B..【点睛】本题考查了直线与圆的位置关系,解题的关键是画出图形进行分析.15.如图,已知AB是⊙O的直径,弦CD⊙AB于点E,G是弧AB的中点,连接AD,AG ,CD ,则下列结论不一定成立的是( )A .CE =DEB .⊙ADG =⊙GABC .⊙AGD =⊙ADC D .⊙GDC =⊙BAD 【答案】D 【详解】⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙CE =DE ,A 成立;⊙G 是AB 的中点,⊙AG BG =,⊙⊙ADG =⊙GAB ,B 成立;⊙AB 是⊙O 的直径,弦CD ⊙AB ,⊙AC AD =,⊙⊙AGD =⊙ADC ,C 成立;⊙GDC =⊙BAD 不成立,D 不成立,故选D .16.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =, 1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π【答案】D 【分析】根据S 阴影=S 扇形AOD -S 扇形BOC 求解即可.17.下列命题为真命题的是( )A .同旁内角互补B .三角形的外心是三条内角平分线的交点C .平行于同一条直线的两条直线平行D .若甲、乙两组数据中,20.8S =甲,2 1.4S =乙,则乙组数据较稳定【答案】C【分析】根据平行线的性质和判定,三角形的外心性质,方差一一判断即可.【详解】解:A 、两平行线被第三直线所截,同旁内角互补,原命题是假命题,不符合题意;B 、三角形的外心是三条边垂直平分线的交点,原命题是假命题,不符合题意;C 、平行于同一条直线的两条直线平行,是真命题,符合题意;D 、若甲、乙两组数据的平均数都是3,S 甲2=0.8,S 乙2=1.4,则甲组数据较稳定,原命题是假命题,不符合题意;故选:C .【点睛】考查了命题与定理的知识,解题的关键是根据平行线的性质和判定,三角形的外心性质,方差解答.18.如图,C 为⊙O 直径AB 上一动点,过点C 的直线交⊙O 于D ,E 两点,且⊙ACD=45°,DF⊙AB 于点F ,EG⊙AB 于点G ,当点C 在AB 上运动时,设AF=x ,DE=y ,下列中图象中,能表示y 与x 的函数关系式的图象大致是( )A.B.C.D.19.如图,AB为⊙O的直径,AB=AC,AC交⊙O于点E,BC交⊙O于点D,F为CE 的中点,连接DF.给出以下四个结论:⊙BD=DC;⊙AD=2DF;⊙BD DE;⊙DF是⊙O的切线.其中正确结论的个数是:()A.4B.3C.2D.1【答案】B【详解】连接AD,OD,⊙AB是直径,⊙⊙ADB=⊙AEB=90°,又⊙AB=AC,⊙BD=DC,故⊙正确;⊙F是CE中点,BD=CD,⊙BE//DF,BE=2DF,但没有办法证明AD与BE相等,故⊙错误;⊙AB=AC,BD=CD,⊙⊙BAD=⊙CAD,⊙BD=DE,⊙BD=DE,故⊙正确;⊙⊙AEB=90°,⊙⊙BEC=180°-⊙AEB=90°,⊙BE//DF,⊙⊙DFC=⊙BEC=90°,⊙O为AB的中点,D为BC的中点,⊙OD//AC,⊙⊙ODF=⊙DFC=90°,⊙OD是半径,⊙DF是⊙O的切线,故⊙正确,所以正确的结论有3个,故选B.【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质、三角形的中位线等,能根据具体的图形选择和灵活运用相关性质解题是关键.二、填空题20.如图,若正五边形和正六边形有一边重合,则⊙BAC=_____.【答案】132°##132度【详解】解:⊙正五边形的内角=180°-360°÷5=108°,正六边形的内角=180°-360°÷6=120°,⊙⊙BAC=360°-108°-120°=132°.故答案为132°.21.已知直角⊙ABC中,⊙C=90°,BC=3,AC=4,那么它的内切圆半径为_______.【答案】1【分析】O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF,由切线的性质可得:⊙ODC=⊙OEC=90°,设OD=OE=r根据正方形的判定即可证出四边形OECD是正方形,从而得出:EC=CD=OD=OE=r,再根据切线长定理可得:BF=BD =3-r,AF=AE =4-r,再根据勾股定理求出AB,利用AB的长列方程即可.【详解】解:如图所示,O分别与BC、AC、AB切于点D、E、F,连接OD、OE、OF⊙⊙ODC=⊙OEC=90°22.如图,AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,则BC =_______.【答案】10【分析】从圆外一点可以引圆的两条切线,它们的切线长相等,据此分析解答.【详解】⊙AB ,BC ,CD 分别与⊙O 相切于E ,F ,G ,BE =4,CG =6,⊙BF =BE =4,CF =CG =6,⊙BC =BF +FC =10,故填:10.【点睛】此题主要是综合运用了切线长定理和切线的性质定理.23.若一个扇形的圆心角为60︒,面积为26cm π,则这个扇形的弧长为__________ cm(结果保留π)24.如图,在O 中,弦AC =B 是圆上一点,且=45ABC ∠︒,则O 的半径R =_____.25.如图,⊙O 的内接四边形ABCD 中,⊙A =45°,则⊙C 的度数 _____________ .【答案】135°【分析】根据圆内接四边形的对角互补可得结论.【详解】∵⊙O的内接四边形ABCD中,⊙A=45°,⊙⊙C=135°.故答案为135°.【点睛】本题考查了圆内接四边形,关键是掌握圆内接四边形的性质:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).26.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若⊙BAD=105°,则⊙DCE的度数是________°.【答案】105【详解】⊙四边形ABCD是圆内接四边形,⊙⊙DAB+⊙DCB=180°,⊙⊙BAD=105°,⊙⊙DCB=180°﹣⊙DAB=180°﹣105°=75°,⊙⊙DCB+⊙DCE=180°,⊙⊙DCE=⊙DAB=105°.故答案为10527.如图,圆O的半径OA=5cm,弦AB=8cm,点P为弦AB上一动点,则点P到圆心O的最短距离是____cm.【答案】3【分析】由当OP⊙AB时,OP最短,根据垂径定理,可求得AP的长,然后由勾股定28.如图,在矩形ABCD 中,AB a ,BC b =,点P 是BC 上的一个动点,连接AP ,把PAB 沿着AP 翻折到⊙PB C '(点B '在矩形的内部),连接B C ',B D '.点P 在整个运动过程中,若存在唯一的位置使得⊙B CD 为直角三角形,则a ,b 之间的数量关系是 __.为直径作O ,当点为直角三角形且唯一,在Rt ADO 中,根据22OD OA ,可得,计算可得答案. 为直径作O ,当点到O 的最小距离等于得B CD '为直角三角形且唯一,Rt ADO 中,2AD OD +22211())22b a a +=+,整理得22b =,a>,∴=2b29.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣:⊙将半径2的⊙O六等分,依次得到A,B,C,D,E,F六个分点;⊙分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;⊙连结OG.问:OG的长是多少?大臣给出的正确答案是_________2222OA,(23)222.【点睛】本题考查了圆周角定理,等腰三角形三线合一的性质以及勾股定理解直角三30.半径为O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若⊙OBD是直角三角形,则弦BC的长为_______________.31.如图,P A,PB是⊙O的切线,A,B是切点,点C是⊙O上异于A、B的一点,若⊙P=40°,则⊙ACB的度数为_________________.【答案】110°【分析】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示,由PA与PB都为圆O的切线,利用切线的性质得到OA与AP垂直,OB与BP垂直,在四边形APBO中,根据四边形的内角和求出⊙AOB的度数,再利用同弧所对的圆周角等于所对圆心角的一半求出⊙ADB的度数,再根据圆内接四边形的对角互补即可求出⊙ACB的度数.【详解】连接OA,OB,在优弧AB上任取一点D(不与A、B重合),连接BD,AD,如图所示:⊙PA、PB是⊙O的切线,⊙OA⊙AP,OB⊙BP,⊙⊙OAP=⊙OBP=90°,又⊙⊙P=40°,⊙⊙AOB=360°-(⊙OAP+⊙OBP+⊙P)=140°,32.如图,矩形ABCD 中,6AB =,9BC =.将矩形沿EF 折叠,使点A 落在CD 边中点M 处,点B 落在N 处.连接EM ,以矩形对称中心O 为圆心的圆与EM 相切于点P ,则圆的半径为________.33.如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,若⊙O的面积为2π,MN=1,则AMN周长的最小值为________.34.如图所示,在⊙O 中,AB 是⊙O 的直径,⊙ACB 的角平分线CD 交⊙O 于D ,则⊙ABD=_________ 度.【答案】45.【详解】试题解析:⊙CD 平分⊙ACB⊙⊙ACD=⊙BCD=45°⊙⊙ABD=⊙ACD=45°.考点:圆周角定理.35.如图,在平面直接坐标系xOy 中,()40A ,,()03B ,,()43C ,,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90°后,I 的对应点'I 的坐标为________.【答案】(-2,3)【分析】直接利用直角三角形的性质得出其内切圆半径,进而得出I点坐标,再利用旋转的性质得出对应点坐标.【详解】解:过点作IF⊙AC于点F,IE⊙OA于点E,⊙A(4,0),B(0,3),C(4,3),⊙BC=4,AC=3,则AB=5,⊙I是⊙ABC的内心,⊙I到⊙ABC各边距离相等,等于其内切圆的半径,⊙IF=1,故I到BC的距离也为1,则AE=1,故IE=3-1=2,OE=4-1=3,则I(3,2),⊙⊙ABC绕原点逆时针旋转90°,⊙I的对应点I'的坐标为:(-2,3).故答案为:(-2,3).【点睛】此题主要考查了旋转的性质以及直角三角形的性质,得出其内切圆半径是解题关键.36.一个半径为4cm的圆内接正六边形的面积等于_______cm2.S=ABC⊙内接正六边形的面积是故答案是:37.圆心角为40°,半径为2的扇形面积为________.38.如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为_____【答案】【详解】连接OC,过O点作BC垂线,设垂足为F,根据垂径定理、勾股定理可以得到OC=5,CF=4,OF=3,在等腰三角形CDE中,高=OF=3,底边长DE=10-8=2,根据勾股定理即可求出CE.解:连接OC,过O点作OF⊙BC,垂足为F,交半圆与点H,⊙OC=5,BC=8,⊙根据垂径定理CF=4,点H为弧BC的中点,且为半圆AE的中点,⊙由勾股定理得OF=3,且弧AB=弧CE⊙AB=CE,又⊙ABCD为平行四边形,⊙AB=CD,⊙CE=CD,⊙⊙CDE为等腰三角形,在等腰三角形CDE中,DE边上的高CM=OF=3,⊙DE=10-8=2,⊙由勾股定理得,CE2=OF2+(DE)2,⊙CE=,故答案为.本题考查了勾股定理和垂径定理以及平行四边形的性质,是基础知识要熟练掌握.39.如图,⊙O是⊙ABC的外接圆,连接OB、OC,若OB=BC,则⊙BAC的度数是_____.三、解答题40.如图,AB是⊙O的直径,C是半圆上的一点,CD是⊙O的切线,AD⊙CD于点D,交⊙O于点E.(1)求证:AC平分⊙DAB;(2)若点E为弧AC的中点,⊙O的半径为1,求图中阴影部分的面积.41.如图,AB是⊙O的直径,点C、E位于⊙O上AB两侧.在BA的延长线上取点D,使⊙ACD=⊙B.(1)求证:DC是⊙O的切线;(2)当BC=EC时,求证:AC2=AE•AD;(3)在(2)的条件下,若BC=AD:AE=5:9,求⊙O的半径.【点睛】本题考查了切线的判定,圆周角定理,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.42.如图,已知、是⊙的切线,、为切点.直径的延长线与的延长线交于点.(1)求证:;(2)若,.求图中阴影部分的面积(结果保留根号与).【答案】(1)证明见解析;(2).【详解】试题分析:(1)连接,根据是⊙的切线,由切线长定理得到AP=BP,OP平分⊙APB,根据等腰三角形的性质三线合一得到OP⊙AB,再根据AC是⊙O的直径,得到⊙ABC=90°,即AB⊙BC,BC⊙OB,得到内错角相等,由等量代换得到结果.(2)根据切线长定理和三角形全等,S△OPA=S△OPB,通过解直角三角形得到OB,PB,再根据三角形的面积和扇形的面积推出结论.试题解析:(1)证明:连接. 1分⊙是⊙的切线,⊙平分. 2分.⊙是⊙的直径,⊙, 即:. 3分⊙.⊙. 4分,⊙. 5分(2) 连接.⊙,⊙⊙、是⊙的切线,⊙,,又⊙⊙⊙⊙.⊙. 6分在中,,. 7分在中,,⊙. 8分⊙.⊙,.⊙. 9分⊙所求的阴影面积:. 10分考点:1.切线的性质;2.扇形面积的计算.43.数学课上,王老师画好图后并出示如下内容:“已知AB为O的直径,O过AC 的中点D.DE为O的切线.(1)求证:DE BC ⊥(2)王老师说:如果添加条件“1DE =,1tan 2C =”,则能求出O 的直径.请你写出求解过程.DE 为O 的切线,OD DE ∴⊥,即∠AB 为O 的直径,OA OB ∴=,即点点D 为AC 的中点,OD BC ∴∥,CED ODE ∴∠=∠=BC .DE BC ⊥1tan DE CE ∴=O∴的直径为【点睛】本题考查了圆的切线的性质、圆周角定理、三角形中位线定理、解直角三角形等知识点,熟练掌握圆的切线的性质和圆周角定理是解题关键.44.如图,点A、B、C分别是⊙O上的点,⊙B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.45.如图,在O 中,弦AB 与CD 相交于点E ,AB CD =,连接AD BC ,,25ADC ∠=︒.(1)求证:AD BC =;(2)求证:AE CE =;(3)若弦BD 经过点O ,求BEC ∠的度数. 【答案】(1)见解析(2)见解析(3)65︒【分析】(1)由AB CD =,推出AB CD =,推出BC AD =;(2)证明AED CEB ≌可得结论;(3)先求出90BCD ︒∠=,再求出25CBE,即可得答案. 【详解】(1)解:AB CD =,C ABD ∴=, AB AC CD AC ∴-=-,BC AD ∴=;(2)BC AD ,BC AD ∴=,ADE ∠和CBE ∠都是AC 的圆周角,ADE CBE ∴∠=∠,AED CEB ,AED CEB ∴≌,AE CE ∴=;(3)25ADC ,25CBE ,弦BD 经过点O ,BD ∴是O 的直径,90BCD ︒∴∠=,⊙在CEB 中,18065BEC BCD CBE .【点睛】本题考查了圆心角、弧、弦之间的关系,全等三角形的判定和性质,直径所对的圆周角是90︒,三角形的内角和,解题的关键是正确寻找全等三角形解决问题. 46.如图,在ABC 中,90ABC ∠=,O 是AB 上一点,以O 为圆心OB 为半径的圆与AB 交于点E ,与AC 交于点D ,连接DE 、DE 、OC ,且//DE OC .()1求证:AC 是O 的切线;()2若8DE OC ⋅=,求O 的半径.【答案】(1)证明见解析;(2)2. 【分析】(1)先由OD=OE ,利用等边对等角可得⊙2=⊙3,再利用DE⊙OC ;进而利用平行线的性质,可得⊙3=⊙4,⊙1=⊙2,等量代换可得⊙1=⊙4;再结合OB=OD ,OC=OC ,利用SAS 可证△DOC⊙⊙BOC ,那么⊙CDO=⊙CBO ,而⊙ABC=90°,于是⊙CDO=90°,即CD 是 O 的切线;(2)由(1)可知⊙2=⊙4,而⊙CDO=⊙BDE=90°,易证△CDO⊙⊙BDE ,可得比例线段,OD :DE=OC :BE ,又BE=2OD ,可求OD .【详解】()1证明:连接OD ,⊙OE OD =,⊙23∠=∠,又⊙//DE OC ,⊙12∠=∠,34∠=∠,⊙14∠=∠;在DOC 和BOC 中,OD OB =,14∠=∠,OC OC =,⊙DOC BOC ≅,⊙CDO CBO ∠=∠;⊙90ABC ∠=,⊙90CDO ∠=,⊙CD 是O 的切线;()2⊙BE 是直径,⊙90BDE ∠=,在COD 和BED 中,24∠=∠,90EDB ODC ∠=∠=,⊙COD BED ∽,⊙::OD DE OC BE =;又⊙2BE OD =,⊙22OD DE OC =⋅,⊙2OD =.【点睛】考查了等边对等角,平行线的性质,全等三角形的判定与性质,切线的判定,直径所对的圆周角是直角,相似三角形的判定与性质.综合性比较强,难度较大. 47.已知:对于平面直角坐标系xOy 中的点P 和O ,O 的半径为4,交x 轴于点A ,B ,对于点P 给出如下定义:过点C 的直线与O 交于点M ,N ,点P 为线段MN 的中点,我们把这样的点P 叫做关于MN 的“折弦点”.(1)若()2,0C -⊙点()10,0P ,()21,1P -,()32,2P中是关于MN 的“折弦点”的是______;⊙若直线y kx =0k ≠)上只存在一个关于MN 的“折弦点”,求k 的值;(2)点C 在线段AB 上,直线y x b =+上存在关于MN 的“折弦点”,直接写出b 的取值范围.与D相交或相切,分两种情况利用勾股定理求出【详解】(1))与D相切,与D相交或相切,=+垂直直线y xy轴交于点重合时,b有最大值,此时48.如图1,AB 为O 的直径,C 为O 上一点,连接CB ,过C 作CD AB ⊥于点D ,过点C 作BCE ∠,使BCE BCD ∠=∠,其中CE 交AB 的延长线于点E .(1)求证:CE 是O 的切线.(2)如图2,点F 在O 上,且满足2FCE ABC ∠=∠,连接AF 并延长交EC 的延长线于点G .若4CD =,3BD =,求线段FG 的长.CD OB ⊥DCB ∴∠+∠BCE ∠=∠OC OB=OCB∴∠=OCB∴∠+即:OC⊥CE∴是O的切线.(2)过点O作OHFCE∠=FCE∴∠=FCE∠=FCO∴∠OC CE⊥DCO∴∠+DCO∴∠=DCO∴∠=CDO∠=OCH∴∆≅CH CD∴=8CF∴=设OB OC=2OC OD=2(x x∴=解得:256 x.256OB OC∴==.CDB中,OC CG ⊥GCF ∴∠GCF ∴∠AFCB 是圆的内接四边形,GFC ∴∠GFC∴∆∽∴GF CF BC OC=GF =49.问题探究:(1)如图⊙,已知在⊙ABC 中,BC =4,⊙BAC =45°,则AB 的最大值是 . (2)如图⊙,已知在Rt ⊙ABC 中,⊙ABC =90°,AB =BC ,D 为⊙ABC 内一点,且AD=BD =2.,CD =6,请求出⊙ADB 的度数.问题解决:(3)如图⊙,某户外拓展基地计划在一处空地上修建一个新的拓展游戏区⊙ABC ,且AB =A C .⊙BAC =120°,点A 、B 、C 分别是三个任务点,点P 是⊙ABC 内一个打卡点.按照设计要求,CP =30米,打卡点P 对任务点A 、B 的张角为120°,即⊙APB =120°.为保证游戏效果,需要A 、P 的距离与B 、P 的距离和尽可能大,试求出AP +BP 的最大值.的外接圆O,连接)如图⊙,作⊙的外接圆O,连接BAC=90°,OB是等腰直角三角形的外接圆O,连接AKC=⊙APB 是等边三角形。
(专题精选)初中数学圆的经典测试题及答案解析
(专题精选)初中数学圆的经典测试题及答案解析一、选择题1.如图,点,,A B S 在圆上,若弦AB 的长度等于圆半径的2倍,则ASB ∠的度数是( ).A .22.5°B .30°C .45°D .60°【答案】C【解析】【分析】 设圆心为O ,连接OA OB 、,如图,先证明OAB V 为等腰直角三角形得到90AOB ∠=︒,然后根据圆周角定理确定ASB ∠的度数.【详解】解:设圆心为O ,连接OA OB 、,如图,∵弦AB 的长度等于圆半径的2倍,即2AB OA =,∴222OA OB AB +=,∴OAB V 为等腰直角三角形,90AOB ∠=︒ ,∴1452ASB AOB ∠=∠=°. 故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A.3B.36ππC.312πD.48336ππ【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可.【详解】连接OE,OF.∵BD=12,AD :AB=1:2,∴AD=43 ,AB=83,∠ABD=30°,∴S △ABD =×43×12=243,S 扇形=603616,633933602OEB S ππ⨯==⨯⨯=V ∵两个阴影的面积相等,∴阴影面积=()224369330312ππ⨯--=- .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积.4.如图,正方形ABCD 内接于⊙O ,AB=22,则»AB 的长是( )A .πB .32πC .2πD .12π 【答案】A【解析】 【分析】连接OA 、OB ,求出∠AOB=90°,根据勾股定理求出AO ,根据弧长公式求出即可.【详解】连接OA 、OB ,∵正方形ABCD 内接于⊙O ,∴AB=BC=DC=AD ,∴»»»»AB BCCD DA ===, ∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(22)2,解得:AO=2,∴»AB的长为902 180π´=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.5.如图,在扇形OAB中,120AOB∠=︒,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD=,则扇形AOB的面积为()A.12πB.2πC.4πD.24π【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63∵OH⊥AB,∴BH=AH=33∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AH AO,∴AO=336sin3AHAOH==∠,∴扇形AOB的面积为:2120612360ππ=g g,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.6.如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD等于()A.20°B.25°C.30°D.32.5°【答案】A【解析】【分析】连接OD,根据三角形内角和定理和等边对等角求出∠DOB=40°,再根据圆周角定理即可求出∠BAD的度数.【详解】解:连接OD,∵OC⊥AB,∴∠COB=90°,∵∠AEC=65°,∴∠OCE=180°﹣90°﹣65°=25°,∵OD=OC,∴∠ODC=∠OCD=25°,∴∠DOC=180°﹣25°﹣25°=130°,∴∠DOB=∠DOC﹣∠BOC=130°﹣90°=40°,∴由圆周角定理得:∠BAD=12∠DOB=20°,故选:A.【点睛】本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键.7.如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4 B.22C.3D.23【答案】B【解析】【分析】根据垂径定理得到CH=BH,»»AC BC=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.【详解】如图BC与OA相交于H∵OA⊥BC,∴CH=BH,»»AC AB=,∴∠AOB=2∠CDA=60°,∴BH=OB⋅sin∠3,∴BC=2BH=23,故选D.【点睛】本题考查的是垂径定理、圆周角定理,熟练掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.8.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】【分析】先利用三视图得到底面圆的半径为5cm,圆锥的高为12cm,再根据勾股定理计算出母线长为13cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.【详解】根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长=225+12=13,所以这个圆锥的侧面积=12×2π×5×13=65π(cm2).故选B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.9.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A .3B .23C .32D .233【答案】A【解析】连接OC ,∵OA=OC ,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC 是⊙O 切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC •tan30°=3,故选A10.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.11.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD ,∠C=40°.则∠ABD 的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】 试题分析:∵AC 为切线 ∴∠OAC=90° ∵∠C=40° ∴∠AOC=50°∵OB=OD ∴∠ABD=∠ODB ∵∠ABD+∠ODB=∠AOC=50° ∴∠ABD=∠ODB=25°. 考点:圆的基本性质.12.如图,在矩形ABCD 中,6AB =,对角线10AC =,O e 内切于ABC ∆,则图中阴影部分的面积是( )A .24π-B .242π-C .243π-D .244π-【答案】D【解析】【分析】 先根据勾股定理求出BC ,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,利用面积法求出r=2,再利用三角形ABC 的面积减去圆O 的面积得到阴影的面积.【详解】∵四边形ABCD 是矩形,∴∠B=90°,∵6AB =,10AC =,∴BC=8,连接OA 、OB 、OC 、过点O 作OH ⊥AB ,OE ⊥BC ,OF ⊥AC ,设O e 的半径为r ,∵O e 内切于ABC ∆,∴OH=OE=OF=r , ∵11()22ABC S AB BC AB AC BC r =⋅=++⋅V , ∴1168(6108)22r ⨯⨯=++⋅, 解得r=2,∴O e 的半径为2,∴2168-2224-4ABC O S S S ππ=-=⨯⨯⨯=V e 阴影, 故选:D .【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的关键.13.如图,点I 是Rt △ABC 的内心,∠C =90°,AC =3,BC =4,将∠ACB 平移使其顶点C 与I 重合,两边分别交AB 于D 、E ,则△IDE 的周长为( )A .3B .4C .5D .7【答案】C【解析】【分析】 连接AI 、BI ,根据三角形的内心的性质可得∠CAI =∠BAI ,再根据平移的性质得到∠CAI =∠AID,AD=DI,同理得到BE=EI,即可解答.【详解】连接AI、BI,∵∠C=90°,AC=3,BC=4,∴AB=22AC BC+=5∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=5故选C.【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线14.如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.8833π-B.16833π-C.16433π-D.8433π-【答案】B【解析】【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S扇形AOC-S菱形ABCO可得答案.【详解】连接OB和AC交于点D,如图所示:∵圆的半径为4,OB=OA=OC=4,又四边形OABC是菱形,∴OB⊥AC,OD=12OB=2,在Rt△COD中利用勾股定理可知:CD=224223,243AC CD-===,∵sin∠COD=3, CDOC=∴∠COD=60°,∠AOC=2∠COD=120°,∴S菱形ABCO=1144383 22OB AC⨯=⨯⨯=,∴S扇形=2 1204163603ππ⨯⨯=,则图中阴影部分面积为S扇形AOC-S菱形ABCO=1683 3π-.故选B.【点睛】考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b(a、b是两条对角线的长度);扇形的面积=2 360 n r π.15.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.7【答案】D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10.∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.16.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B3C2D.1 2【答案】B【解析】【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.【详解】连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.17.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB22AC BC+10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:OB= 22+=BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.19.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.91cm B.8cm C.6cm D.4cm【答案】B【解析】【分析】由于⊙O的直径CD=10cm,则⊙O的半径为5cm,又已知OM:OC=3:5,则可以求出OM=3,OC=5,连接OA,根据勾股定理和垂径定理可求得AB.【详解】解:如图所示,连接OA.⊙O的直径CD=10cm,则⊙O的半径为5cm,即OA=OC=5,又∵OM:OC=3:5,所以OM=3,∵AB⊥CD,垂足为M,OC过圆心∴AM=BM,在Rt△AOM中,22AM=5-3=4,∴AB=2AM=2×4=8.故选:B.【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.20.如图,7×5的网格中的小正方形的边长都为1,小正方形的顶点叫格点,△ABC的三个顶点都在格点上,过点C作△ABC外接圆的切线,则该切线经过的格点个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】作△ABC的外接圆,作出过点C的切线,两条图象法即可解决问题.【详解】如图⊙O即为所求,观察图象可知,过点C作△ABC外接圆的切线,则该切线经过的格点个数是3个,选:C.【点睛】考查三角形的外接圆与外心,切线的判定和性质等知识,解题的关键是理解题意.。
数学初三圆的试题及答案
数学初三圆的试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的标准方程?A. (x-a)²+(y-b)²=r²B. x²+y²=rC. x²+y²=r²D. (x-a)²+(y-b)²=r答案:A2. 圆心为(2,3),半径为5的圆的方程是什么?A. (x-2)²+(y-3)²=25B. (x-2)²+(y-3)²=5C. x²+y²=25D. x²+y²=5答案:A3. 已知圆C的圆心为(1,1),半径为2,点P(4,3)在圆C上,那么点P 到圆心的距离是多少?A. 2B. 3C. 4D. 5答案:B4. 圆的直径是10,那么它的半径是多少?A. 5B. 10C. 20D. 15答案:A5. 圆心在原点,半径为3的圆的方程是?A. x²+y²=9B. (x-0)²+(y-0)²=3C. x²+y²=3D. (x-3)²+(y-3)²=9答案:A6. 圆的周长公式是?A. C=2πrB. C=πrC. C=2rD. C=r答案:A7. 圆的面积公式是?A. A=πr²B. A=2πrC. A=r²D. A=2r答案:A8. 圆的切线与半径垂直,那么切线与圆心的距离是多少?A. rB. 2rC. πrD. 0答案:A9. 圆的弧长公式是?A. L=rθB. L=2πrC. L=rθ/180D. L=2πrθ/360答案:D10. 圆的扇形面积公式是?A. S=1/2r²θB. S=1/2r²C. S=rθD. S=2πrθ/360答案:D二、填空题(每题4分,共20分)1. 圆心在(-2,4),半径为3的圆的方程是:(x+2)²+(y-4)²=________。
圆的测试题及答案初中
圆的测试题及答案初中一、选择题(每题3分,共30分)1. 圆的周长公式为:A. C=2πrB. C=πr^2C. C=πdD. C=2πd答案:A2. 圆的面积公式为:A. S=πr^2B. S=2πrC. S=πd^2D. S=2πd答案:A3. 圆的直径是半径的:A. 2倍B. π倍C. 1/2倍D. 1/π倍答案:A4. 圆的半径扩大到原来的2倍,其面积扩大到原来的:A. 2倍B. 4倍C. π倍D. 2π倍答案:B5. 圆的周长与直径的比值称为:A. 半径B. 直径C. 周长D. 圆周率答案:D6. 圆心到圆上任意一点的距离称为:A. 直径B. 半径C. 周长D. 面积答案:B7. 圆的切线垂直于:A. 半径B. 直径C. 周长D. 面积答案:A8. 圆内接四边形的对角线:A. 相等B. 互补C. 垂直D. 平行答案:B9. 圆的内切圆半径与外接圆半径的关系是:A. 相等B. 互补C. 垂直D. 互为倒数答案:A10. 圆的内角和为:A. 180°B. 360°C. 720°D. 1440°答案:B二、填空题(每题3分,共30分)1. 半径为3cm的圆的周长是_______。
答案:18.84cm2. 半径为4cm的圆的面积是_______。
答案:50.24cm²3. 直径为5cm的圆的半径是_______。
答案:2.5cm4. 圆的周长是其直径的_______倍。
答案:π5. 圆的面积是其半径的平方乘以_______。
答案:π6. 圆的切线与半径_______。
答案:垂直7. 圆内接四边形的对角线互相_______。
答案:平分8. 圆的内切圆半径与外接圆半径相等,说明该四边形是_______。
答案:正方形9. 圆的内角和为_______度。
答案:36010. 圆的外接圆半径是内切圆半径的_______倍。
答案:2三、解答题(每题20分,共40分)1. 已知一个圆的半径为6cm,求该圆的周长和面积。
初中有关圆的试题及答案
初中有关圆的试题及答案一、选择题1. 下列哪个选项不是圆的对称轴?A. 直径所在的直线B. 半径所在的直线C. 过圆心的任意直线D. 垂直于圆心的直线答案:D2. 圆的周长与直径的比值是:A. 圆周率πB. 2πC. 3πD. 4π答案:B3. 如果一个圆的半径是3厘米,那么它的直径是:A. 6厘米B. 9厘米C. 12厘米D. 15厘米答案:A二、填空题4. 圆的面积公式是 ________。
答案:πr²5. 一个圆的半径是5厘米,那么它的周长是 ________厘米。
答案:10π6. 如果一个圆的直径增加10%,那么它的面积将增加 ________%。
答案:21三、解答题7. 已知一个圆的周长是25.12厘米,求这个圆的半径。
解:设圆的半径为r厘米,根据圆的周长公式C=2πr,我们可以得到:25.12 = 2πrr = 25.12 ÷ (2π)r ≈ 4厘米答案:这个圆的半径是4厘米。
8. 一个圆的半径是4厘米,求这个圆的面积。
解:根据圆的面积公式A=πr²,我们可以得到:A = π × 4²A = 16πA ≈ 50.24平方厘米答案:这个圆的面积是50.24平方厘米。
9. 一个圆内接一个正方形,求正方形的对角线长度。
解:设圆的半径为r,正方形的对角线长度为d。
由于正方形内接于圆中,所以正方形的对角线等于圆的直径,即d = 2r。
答案:正方形的对角线长度是圆的直径。
圆测试题及答案解析
圆测试题及答案解析一、选择题1. 已知圆的半径为r,直径为d,周长为C,面积为S,下列关系式正确的是()。
A. C = 2πrB. S = πr^2C. d = 2rD. 以上都是答案:D解析:根据圆的基本性质,周长C等于2πr,面积S等于πr^2,直径d等于2r,因此选项D正确。
2. 一个圆的半径扩大为原来的2倍,其面积扩大为原来的()倍。
A. 2B. 4C. 8D. 16答案:C解析:设原圆的半径为r,则扩大后的半径为2r。
原圆的面积为πr^2,扩大后的面积为π(2r)^2 = 4πr^2,即扩大为原来的4倍。
3. 圆的切线垂直于经过切点的()。
A. 半径B. 直径C. 弦D. 切线答案:A解析:圆的切线垂直于经过切点的半径,这是圆的切线性质。
二、填空题4. 圆的周长公式为C = ________。
答案:2πr解析:圆的周长公式为C = 2πr,其中r为圆的半径。
5. 圆的面积公式为S = ________。
答案:πr^2解析:圆的面积公式为S = πr^2,其中r为圆的半径。
6. 半径为5cm的圆的直径为 ________ cm。
答案:10解析:直径d等于半径r的两倍,即d = 2r。
所以,半径为5cm 的圆的直径为10cm。
三、解答题7. 已知一个圆的周长为31.4cm,求该圆的半径。
答案:解:设圆的半径为r,则周长C = 2πr。
根据题意,C = 31.4cm,代入公式得:31.4 = 2πr解得:r = 31.4 ÷ (2π) ≈ 5cm答:该圆的半径为5cm。
8. 一个圆的半径为6cm,求该圆的面积。
答案:解:设圆的半径为r,则面积S = πr^2。
根据题意,r = 6cm,代入公式得:S = π × 6^2 = 36π ≈ 113.1cm^2答:该圆的面积为113.1cm^2。
9. 已知一个圆的直径为12cm,求该圆的周长和面积。
答案:解:设圆的半径为r,则直径d = 2r。
初中数学圆的经典测试题含答案解析
初中数学圆的经典测试题含答案解析一、选择题1.如图,AB是⊙O的直径,AC是⊙O的切线,OC交⊙O于点D,若∠ABD=24°,则∠C 的度数是()A.48°B.42°C.34°D.24°【答案】B【解析】【分析】根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【详解】解:∵∠ABD=24°,∴∠AOC=48°,∵AC是⊙O的切线,∴∠OAC=90°,∴∠AOC+∠C=90°,∴∠C=90°﹣48°=42°,故选:B.【点睛】考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC的度数,题目比较好,难度适中.2.如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,正方形ABCD内接于⊙O,AB=22,则»AB的长是()A.πB.32πC.2πD.12π【答案】A【解析】【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.【详解】连接OA、OB,∵正方形ABCD内接于⊙O,∴AB=BC=DC=AD,∴»»»»AB BC CD DA===,∴∠AOB=14×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴»AB的长为902 180´=π,故选A.【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键.4.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4 B.83C.6 D.43【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB3∴光盘的直径为3故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.5.已知下列命题:①若a>b,则ac>bc;②若a=1a;③内错角相等;④90°的圆周角所对的弦是直径.其中原命题与逆命题均为真命题的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可.【详解】解:①若a>b,则ac>bc是假命题,逆命题是假命题;②若a=1,则a=a是真命题,逆命题是假命题;③内错角相等是假命题,逆命题是假命题;④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.6.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD 是⊙O 的直径,可得∠CAD=90°,∵∠B 和∠D 所对的弧都为弧AC ,∴∠B=∠D ,即sinB=sinD=25, ∵半径AO=5,∴CD=10, ∴2sin 105AC AC D CD ===, ∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.7.如图,AC BC ⊥,8AC BC ==,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作»AB ,过点O 作AC 的平行线交两弧于点D 、E ,则图中阴影部分的面积是( )A .20833π- B .20833π+C .20833π D .20433π 【答案】A【解析】【分析】 如图,连接CE .图中S 阴影=S 扇形BCE −S 扇形BOD −S △OCE .根据已知条件易求得OB =OC =OD =4,BC =CE =8,∠ECB =60°,OE =3,所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:如图,连接CE .∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=4,BC=CE=8.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在Rt△OEC中,OC=4,CE=8,∴∠CEO=30°,∠ECB=60°,OE=43,∴S阴影=S扇形BCE−S扇形BOD−S△OCE=2260811-4-443 36042ππ⨯⨯⨯⨯=20-83 3π故选:A.【点睛】本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.8.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A.54°B.27°C.36°D.46°【答案】C【解析】【分析】先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后利用圆周角解答即可.【详解】解:∵OA=OB,∴∠OBA=∠OAB=54°,∴∠AOB=180°﹣54°﹣54°=72°,∴∠ACB=12∠AOB=36°.故答案为C.【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.9.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.10.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.11.如图,O e 中,若66OA BC AOB ⊥∠=o 、,则ADC ∠的度数为( )A .33°B .56°C .57°D .66°【答案】A【解析】【分析】 根据垂径定理可得»»ACAB =,根据圆周角定理即可得答案. 【详解】∵OA ⊥BC ,∴»»ACAB =, ∵∠AOB=66°,∠AOB 和∠ADC 分别是»AB和»AC 所对的圆心角和圆周角, ∴∠ADC=12∠AOB=33°, 故选:A .【点睛】 本题考查垂径定理及圆周角定理,垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握相关定理是解题关键.12.如图,ABC V 是O e 的内接三角形,且AB AC =,56ABC ∠=︒,O e 的直径CD 交AB 于点E ,则AED ∠的度数为( )A .99︒B .100︒C .101°D .102︒【答案】D【解析】【分析】 连接OB ,根据等腰三角形的性质得到∠A ,从而根据圆周角定理得出∠BOC ,再根据OB=OC 得出∠OBC ,即可得到∠OBE ,再结合外角性质和对顶角即可得到∠AED 的度数.【详解】解:连接OB,∵AB=AC,∴∠ABC=∠ACB=56°,∴∠A=180°-56°-56°=68°=12∠BOC,∴∠BOC=68°×2=136°,∵OB=OC,∴∠OBC=∠OCB=(180°-136°)÷2=22°,∴∠OBE=∠EBC-∠OBC=56°-22°=34°,∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.13.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是( )A.22°B.26°C.32°D.68°【答案】A【解析】试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC可得:∠OBC=∠OCB=22°.考点:圆周角的计算14.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=383= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2120(43)84332316ππ⨯⨯=. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.15.下列命题中正确的个数是( )①过三点可以确定一个圆②直角三角形的两条直角边长分别是5和12,那么它的外接圆半径为6.5③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米④三角形的重心到三角形三边的距离相等.A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据圆的作法即可判断;②先利用勾股定理求出斜边的长度,然后根据外接圆半径等于斜边的一半即可判断;③根据圆与圆的位置关系即可得出答案;④根据重心的概念即可得出答案.【详解】①过不在同一条直线上的三点可以确定一个圆,故错误;②∵直角三角形的两条直角边长分别是5和12, ∴斜边为2251213+= ,∴它的外接圆半径为.113652⨯=,故正确; ③如果两个半径为2厘米和3厘米的圆相切,那么圆心距为5厘米或1厘米,故错误; ④三角形的内心到三角形三边的距离相等,故错误;所以正确的只有1个,故选:A .【点睛】本题主要考查直角三角形外接圆半径,圆与圆的位置关系,三角形内心,重心的概念,掌握直角三角形外接圆半径的求法,圆与圆的位置关系,三角形内心,重心的概念是解题的关键.16.若正六边形的半径长为4,则它的边长等于( )A .4B .2C .23D .43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A . 考点:正多边形和圆.17.如图,四边形ABCD 是⊙O 的内接四边形,若∠BOD=86°,则∠BCD 的度数是( )A .86°B .94°C .107°D .137° 【答案】D【解析】【分析】【详解】解:∵∠BOD=86°,∴∠BAD=86°÷2=43°,∵∠BAD+∠BCD=180°,∴∠BCD=180°-43°=137°,即∠BCD的度数是137°.故选D.【点睛】本题考查圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).18.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.19.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .13B .12C .34D .1【答案】B【解析】 【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长. 【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12. 故选B .【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.20.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2 【答案】D【解析】【分析】先根据题意,画出图形,令直线3x+ 23x 轴交于点C ,与y 轴交于点D ,作OH ⊥CD 于H ,作OH ⊥CD 于H ;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C 、D 两点的坐标值; 再在Rt △POC 中,利用勾股定理可计算出CD 的长,并利用面积法可计算出OH 的值; 最后连接OA ,利用切线的性质得OA ⊥PA ,在Rt △POH 中,利用勾股定理,得到21PA OP =-PA 的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴OH=233 4⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.。
初中数学圆形专题训练50题含参考答案
初中数学圆形专题训练50题含参考答案一、单选题1.下列说法错误的是()A.等弧所对的圆心角相等B.弧的度数等于该弧所对的圆心角的度数C.经过三点可以作一个圆D.三角形的外心到三角形各顶点距离相等【答案】C【分析】根据三角形的外心的性质,确定圆的条件,圆心角、弧、弦的关系判定即可.【详解】解:A等弧所对的圆心角相等,故不符合题意;B、弧的度数等于该弧所对的圆心角的度数,故不符合题意;C、经过不在同一条直线上的三点可以作一个圆,故符合题意;D、三角形的外心到三角形各顶点距离相等,故不符合题意;故选:C.【点睛】本题考查了三角形的外接圆与外心,确定圆的条件,圆心角、弧、弦的关系,正确的理解题意是解题的关键.2.已知O的半径是5cm,线段OP的长为4cm,则点P()A.在O外B.在O上C.在O内D.不能确定【答案】C【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.OP=<【详解】解:45∴点P在O内,故选:C.【点睛】本题考查了点和圆的位置关系,熟悉点和圆的位置关系的判断是关键.3.用直角钢尺检查某一工件是否恰好是半圆环形,根据图所表示的情形,四个工件哪一个肯定是半圆环形?()A.B.C .D . 【答案】B【详解】试题分析:根据直径所对的圆周角为直角可得:B 为正确答案.4.已知⊙O 的半径是一元二次方程2340x x --=的一个根,点A 与圆心O 的距离为6,则下列说法正确在是( )A .点A 在⊙O 外B .点A 在⊙O 上C .点A 在⊙O 内D .无法判断 【答案】A【分析】先求方程的根,可得r 的值,由点与圆的位置关系的判断方法可求解.【详解】解:⊙2340x x --=,⊙1x =﹣1,2x =4,⊙⊙O 的半径为一元二次方程2340x x --=的根,⊙r =4,⊙6>4,⊙点A 在⊙O 外,故选:A .【点睛】本题考查了解一元二次方程,点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d 与圆半径大小关系完成判定.5.如图,AB 是半圆O 的直径,28BAC ∠=︒,则D ∠的度数是( )A .62︒B .118︒C .152︒D .138︒【答案】B 【分析】连接BC ,则直径所对的圆周角是直角可求得B ∠的度数,再由圆内接四边形的性质即可求得结果的度数.【详解】连接BC ,如图所示,AB 是直径,90ACB ∴∠=︒, 90902862B BAC ∴∠=︒-∠=︒-︒=︒,180********D B ∴∠=︒-∠=︒-︒=︒;故选:B .【点睛】本题考查了直径所对的圆周角是直角,圆内接四边形的性质等知识,掌握这两条性质是关键.6.如图,AB 是O 的直径,CD 是O 的弦.若=21BAD ∠︒,则ACD ∠的大小为( )A .21°B .59°C .69°D .79°【答案】C 【分析】先求出ABD ∠的度数,然后再根据圆周角定理的推论解答即可.【详解】解:⊙AB 是O 的直径⊙=90BDA ∠︒,⊙=21BAD ∠︒,⊙=1809021=69ABD ∠--︒︒︒︒,又⊙=AD AD ,⊙==69ACD ABD ∠∠︒,故答案为:C .【点睛】本题主要考查了圆周角定理的推论,解题的关键是熟练掌握在同圆或等圆中同弧或等弧所对圆周角相等;直径所对圆周角等于90°.7.如图,圆与圆的位置关系没有( )A .相交B .相切C .内含D .外离 【答案】A 【分析】根据圆与圆的位置关系,寻找交点个数即可解题.【详解】解:圆与圆相交有两个交点,但是图像中没有两个交点的情况,所以圆与圆的位置关系没有相交,故选A.【点睛】本题考查了圆与圆的位置关系,属于简单题,熟悉位置关系的辨析方法是解题关键.8.已知在Rt ABC 中, 9034ACB AC BC ∠=︒==,,, 则Rt ABC 的外接圆的半径为( ) A .4B .2.4C .5D .2.5 Rt ABC 中,根据勾股定理得,223BC =直角三角形的外心为斜边中点,Rt ABC 的外接圆的半径为故选:D .【点睛】本题考查了直角三角形的外心的性质,勾股定理的运用,关键是明确直角三角形的斜边为三角形外接圆的直径.9.如图,12∠=∠,则AB CD =的是( ).A .B .C .D .【答案】C【分析】根据圆周角与弧的关系即可求解.【详解】解:根据同圆或等圆,相等的弧所对的圆周角相等,只有C 选项符合题意;⊙12∠=∠,⊙AB CD =.故选:C .【点睛】本题考查了圆周角与弧的关系,掌握同圆或等圆中,相等的圆周角所对的弧相等是解题的关键.10.ABC ∆中,10AB AC cm ==,12BC cm =,若要剪一张圆形纸片盖住这个三角形,则圆形纸片的最小半径为( )cm .A .5B .6C .152D .254 AB AC =BD DC ∴=连接OB ,在Rt⊙ABD 设圆形纸片的半径为【点睛】本题考查的是三角形的外接圆与外心、等腰三角形的性质,掌握等腰三角形的三线合一、三角形外接圆的性质及勾股定理是解题的关键. 11.如图所示,MN 是半圆O 的直径,MP 与半圆0相切于点M ,R 是半圆上一动点,RE MP ⊥于E ,连接MR .设MR x =,MR RE y -=,则下列函数图象能反映y 与x 之间关系的是( )A .B .C .D .,可得~EMR RNM ,设半圆2)r ,根据函数的解析式即可判断函数图象⊙~EMR RNM , ER MR MR MN=, 设半圆O 的半径为值2(02x y x x r=-+<<可得到y 是x 的二次函数,开口方向向下,对称轴12.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y=k x经过正方形AOBC 对角线的交点,半径为4-⊙ABC ,则k 的值为( ).A B .2 C .4 D .=4,⊙DN×NO=4,即:xy=k=4.故选C .考点:反比例函数图象上点的坐标特征;正方形的性质;三角形的内切圆与内心. 13.若5cm AB =,作半径为4cm 的圆,使它经过A 、B 两点,这样的圆能作( ) A .0个B .1个C .2个D .无数个【答案】C【分析】先作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆即可;【详解】解:这样的圆能画2个.如图:作AB 的垂直平分线l ,再以点A 为圆心,4cm 为半径作圆交l 于O 1和O 2,然后分别以O 1和O 2为圆心,以4cm 为半径作圆,则⊙O 1和⊙O 2为所求【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r . 14.如图,在ABC 中,3AB =,6BC =,60ABC ∠=︒,以点B 为圆心,AB 长为半径画弧,交BC 于点D ,则图中阴影部分的面积是( )A .3πB 2π-C πD 32πAB BD =ABD ∴是等边三角形,AD AB ∴=6BC =,3CD ∴=,AD CD ∴=C CAD ∴∠=∠C CAD ∠+∠30C ∴∠=BAC ∴∠=AC ∴=∴图中阴影部分的面积15.如图,已知AB 是O 的直径,弦CD AB ⊥,垂足为E ,且30BCD ∠=︒,CD = )A .24π-B .83π-C .43π-D .348π-故选:B .【点睛】本题考查了扇形的面积计算,勾股定理,含30︒角的直角三角形的性质,等边三角形的性质和判定等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键.16.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ).A .3πB .4πC .5πD .6π17.如图,四边形ABCD 内接于O ,:2:1,2ABC ADC AB ∠∠== ,点C 为BD 的中点,延长AB 、DC 交于点E ,且60E ∠=,则O 的面积是( )A .πB .2πC .3πD .4π 【答案】D 【分析】连接BD ,根据圆内接四边形的外角等于其内对角可得∠D =∠CBE =60°,根据等边对等角以及三角形内角和定理求出∠BCE =60°,可得∠A =60°,点C 为BD 的中点,可得出∠BDC =∠CBD =30°,进而得出⊙ABD =90°,AD 为直径,可得出AD =2AB =4,再根据面积公式计算得出结论;【详解】解:连接BD ,∵ABCD 是⊙O 的内接四边形,∴∠CBE =∠ADC ,∠BCE =∠A⊙:2:1ABC ADC ∠∠=∴:2:1ABC CBE ∠∠=∴∠CBE =∠ADC=60°,∠CBA =120°⊙60E ∠=⊙⊙CBE 为等边三角形⊙∠BCE =∠A=60°,⊙点C 为BD 的中点,⊙∠CDB =∠DBC=30°⊙⊙ABD =90°,⊙ADB =30°⊙AD 为直径⊙AB =2⊙AD =2AB =4 ⊙O 的面积是=224ππ⨯=故答案选:D【点睛】本题考查了圆内接四边形的性质,圆周角定理,等边三角形的判定与性质,三角形内角和定理,掌握相关性质及公式是解题的关键.18.一个圆锥的侧面展开图是半径为8,圆心角为120°的扇形,则这个圆锥的高为( )A cmB .163 cmC cmD .83cm19.⊙O 的半径为10cm, A 是⊙O 上一点, B 是OA 中点, C 点和B 点的距离等于5cm, 则C 点和⊙O 的位置关系是 ( )A .C 在⊙O 内B .C 在⊙O 上 C .C 在⊙O 外D .C 在⊙O 上或C 在⊙O 内【答案】D【详解】试题解析:因为⊙O 的半径是10cm ,A 是圆上一点,所以OA=10cm , 又B 是OA 的中点,所以BA=5cm .而BC=5cm ,所以点C 应在以B 为圆心,5cm 为半径的⊙B 上.⊙B 上的点除点A 在⊙O 上外,其它的点都在⊙O 内.故选D .20.如图,在ABC 中,90ACB ∠=︒.AC BC =,4cm AB =.CD 是中线,点E 、F 同时从点D 出发,以相同的速度分别沿DC 、DB 方向移动,当点E 到达点C时,运动停止,直线AE 分别与CF 、BC 相交于G 、H ,则在点E 、F 移动过程中,点G 移动路线的长度为( ).A .2B .πC .2πD .π2【答案】D 【详解】试题解析:如图,,90CA CB ACB AD DB =∠==,,⊙CD ⊙AB ,⊙⊙ADE =⊙CDF =90,CD =AD =DB ,在⊙ADE 和⊙CDF 中,AD CD ADE CDF DE DF ,=⎧⎪∠=∠⎨⎪=⎩⊙⊙ADE ⊙⊙CDF (SAS),⊙⊙DAE =⊙DCF ,⊙⊙AED =⊙CEG ,90,四点共圆,的运动轨迹为弧CD90,的运动轨迹的长为二、填空题21.如图,点C为半圆的中点,AB是直径,点D是半圆上一点,AC、BD交于点BD=,则AC=________.E,若1AD=,722.如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .23.如图,ABC ∆中,90,6,4,ACB BC AC D ∠=︒==是AC 边上的一个动点,过点C 作,CE BD ⊥垂足为,E 则AE 长的最小值为_______________________.【答案】2【分析】取BC 中点F ,连接AE 、EF .易得点E 在以BC 长为直径的圆周上上运动,24.如图,⊙O内接正五边形ABCDE与等边三角形AFG,则⊙FBC=__________.【分析】连接OA,OB,OF,OC,分别求出正五边形ABCDE和正三角形AFG的中心角,结合图形计算即可.【详解】解:连接OA,OB,OF,OC.25.如图,点A、B在半径为3的⊙O上,劣弧AB长为π2,则⊙AOB=____.26.如图,Rt⊙ABC中,⊙ACB=90°,⊙A=30°,BC=6,D,E分别是AB,AC边的中点,将⊙ABC绕点B顺时针旋转60°到⊙A′BC′的位置,则整个旋转过程中线段DE所扫过部分的面积(即图中阴影部分面积)为_____.【详解】27.四边形ABCD 是O 的内接四边形,2C A ∠=∠,则C ∠的度数为___.【答案】120°##120度【分析】根据圆内接四边形对角互补,再结合已知条件求解即可.【详解】解:四边形ABCD 是O 的内接四边形,180C A∴∠+∠=︒2C A∠=∠,120C∴∠=︒.故答案为:120︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形对角互补是解答本题的关键.28.如图,在Rt⊙ABC中,⊙C=90°,AB=13,AC=5,以点C为圆心r为半径作圆,如果⊙C与AB相切,则半径r的值是_______.【答案】6013##8413来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了勾股定理.29.如图,在⊙O中,点C在优弧ACB上,将弧沿BC折叠后刚好经过AB的中点D,若⊙O AB=4,则BC的长是_____.30.如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为,2D AB BC ==,则AOB ∠=_________.31.如图,在正方形网格中建立平面直角坐标系,一条圆弧经过点()()()0,4,4,4,6,2A B C --.(1)若该圆弧所在圆的圆心为D ,则AD 的长为__________.(2)该圆弧的长为___________.90255180π=【详解】解:(1)如图,易知点2425+=即D 的半径为AD CD ==2AD DC +ACD ∆为直角三角形,根据题意得90255180π=即该圆弧的长为5π.【点睛】本题主要考查圆,扇形等知识的综合应用,掌握确定圆心的方法,即确定出的坐标是解题的关键.OD BC,OD与32.如图,已知AB是半圆O的直径,C、D是半圆O上的两点,且//∠=______.AC交于点E,若E是OD中点,,则CAD【答案】30°【分析】先判定AC垂直平分OD,进而可判定⊙OAD是等边三角形,再由三线合一即可求出⊙CAD的度数.【详解】⊙AB是半圆O的直径,⊙⊙ACB=90°.OD BC,⊙//⊙⊙AED=90°.⊙E是OD中点,⊙AC垂直平分OD,⊙AD=OA,⊙OA=OD,⊙⊙OAD是等边三角形,⊙⊙OAD=60°,⊙⊙CAD=30°.故答案为:30°.【点睛】本题考查了圆周角定理,平行线的性质,线段垂直平分线的判定与性质,以及等边三角形的判定与性质,熟练掌握圆周角定理、线段垂直平分线的判定与性质是解答本题的关键.33.如图,在半径为2cm的扇形纸片AOB中,⊙AOB=90°,将其折叠使点B落在点O 处,折痕为DE,则图中阴影部分的面积为________cm2334.若点O 是等腰ABC 的外心,且60,BOC ∠=︒底边4,BC =则ABC 的边BC 上的高为 ____________________.E,如果点F是弧EC的中点,联结FB,那么tan⊙FBC的值为.关系;解直角三角形.【答案】【详解】试题分析:连接CE交BF于H,连接BE,根据矩形的性质求出AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,根据勾股定理求出AE=4,求出DE=1,根据勾股定理求出CE,求出CH,解直角三角形求出即可.解:连接CE交BF于H,连接BE,⊙四边形ABCD是矩形,AB=3,BC=5,⊙AB=CD=3,AD=BC=5=BE,⊙A=⊙D=90°,由勾股定理得:AE==4,DE=5﹣4=1,由勾股定理得:CE==,由垂径定理得:CH=EH=CE=,在Rt⊙BFC中,由勾股定理得:BH==,所以tan⊙FBC===.故答案为.36.O是ABC的外心,且140∠=________;若I是ABC的内心,∠=,则ABOC且140∠=________.BIC∠=,则A70100是ABC的外心,且140,如图所示:是ABC的内心,且140,如图所示:⊙I 是⊙ABC 的内心,⊙⊙A=180°-(⊙ABC+⊙ACB)= 180°-2(⊙IBC+⊙ICB)=180°-2(180°-140°)=100°. 故答案为70°;100°.【点睛】本题考查了三角形内外心的性质,熟知三角形内外心的性质是解题的关键. 37.冬天的雪是我们的乐园,一次下雪后,小伙伴们堆了一大雪人,准备给雪人制作一个底面半径为9cm ,母线长为30cm 的圆锥形礼帽,则这个圆锥形礼帽的侧面积为____________cm 2 .(结果保留π)【答案】270π.【详解】试题分析:S=πrl=9×30π=270π(2cm ).考点:圆锥的侧面积计算.38.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .39.如图,I 是直角ABC 的内切圆,切点为D 、E 、F ,若10AF ,3BE =,则ABC 的面积为_____.的值,再利用三角形的面积公式求得ABC 的面积即可.【详解】解:I 是直角ABC 的内切圆,且10AF ,BE =3,10AF AD ==,CE 13=,x ,则3BC x ,AC 中,222AC BC AB +=,即)22313x +=,(不符题意,舍去)ABC ∴的面积为故答案为:【点睛】本题考查了切线长定理、勾股定理、一元二次方程的应用,熟记切线长定理是解题的关键.40.如图,正六边形ABCDEF内接于半径为1cm的⊙O,则图中阴影部分的面积为_____cm2(结果保留π).三、解答题41.如图,在边长为4的正方形ABCD中,以AD为直径作⊙O,以C为圆心,CD长为半径作⊙C,两圆交于正方形内一点E,连CE并延长交AB于F.(1)求证:CF 与⊙O 相切;(2)求△BCF 和直角梯形ADCF 的周长之比. 【答案】(1)证明见详解;(2)6:7.【分析】(1)连接OE 、DE ,根据等腰三角形性质推出⊙ODE =⊙OED ,⊙CDE =⊙CED ,推出⊙OED +⊙CED =90°,根据切线的判定推出即可;(2)过F 作FM⊙DC 于M ,得出四边形ADMF 是矩形,推出AD =FM =4,AF =DM ,求出AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得出方程()()222444x x +-=+,求出x 的值,即可求出△BCF 的周长和直角梯形ADCF 的周长.【详解】(1)证明:连接OE ,DE ,⊙OD =OE ,CE =CD ,⊙⊙ODE =⊙OED ,⊙CDE =⊙CED ,⊙四边形ABCD 是正方形,⊙⊙ADC =90°,⊙⊙ADC =⊙ODE +⊙CDE =90°,⊙⊙OED +⊙CED =90°,即OE⊙CF ,⊙OE 为半径,⊙CF 与⊙O 相切.(2)解:如图:过F 作FM⊙DC 于M ,⊙四边形ABCD 是正方形,⊙AD =DC =BC =AB =CE =4,⊙FAD =⊙ADM =⊙FMD =⊙FMC =90°,⊙四边形ADMF 是矩形,⊙AD =FM =4,AF =DM⊙⊙OAF =90°,OA 为半径,⊙AF 切⊙O 于A ,CF 切⊙O 于E ,⊙AF =EF ,设AF =EF =x ,DM =x ,在Rt △FMC 中,由勾股定理得:222FM MC CF +=,()()222444x x +-=+, 解得:x =1,⊙AF =EF =DM =1,⊙CF =4+1=5,⊙⊙BCF 的周长是BC +CF +BF =4+5+4−1=12,直角梯形ADCF 的周长是AD +DC +CF +AF =4+4+5+1=14,⊙⊙BCF 和直角梯形ADCF 的周长之比是12:14=6:7.【点睛】本题考查了正方形性质,切线的性质和判定,矩形的性质和判定,勾股定理的应用,主要考查学生综合运用定理进行推理的能力.42.已知ABC 内接于O ,BAC ∠的平分线交O 于点D ,连接DB ,DC . (1)如图⊙,当120BAC ∠=时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图⊙,当90BAC ∠=时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图⊙,若BC=5,BD=4,求AD AB AC+ 的值.43.如图,在Rt⊙ABC中,⊙C=90°,BE平分⊙ABC交AC于点E,点D在AB边上且DE⊙BE.(1)判断直线AC与⊙DBE外接圆的位置关系,并说明理由;(2)若AD=6,BC的长.【答案】(1)直线AC与⊙DBE外接圆相切.(2)BC=4.【分析】(1)取BD的中点O,连接OE,证明⊙OEB=⊙CBE后可得OE⊙AC;(2)设OD=OE=OB=x,利用勾股定理求出x的值,再证明△AOE⊙⊙ABC,利用线段比求解.【详解】(1)直线AC与⊙DBE外接圆相切.理由:⊙DE⊙BE⊙BD为⊙DBE外接圆的直径取BD的中点O(即⊙DBE外接圆的圆心),连接OE⊙OE=OB⊙⊙OEB=⊙OBE⊙BE平分⊙ABC⊙⊙OBE=⊙CBE⊙⊙OEB=⊙CBE⊙⊙CBE+⊙CEB=90°⊙⊙OEB+⊙CEB=90°,即OE⊙AC44.如图,已知AB是⊙O的直径,⊙O交⊙ABE边AE于点D,点P在BA的延长线上,PD交BE于点C.现有3个选项:⊙AB=BE,⊙PC⊙BE,⊙PD是⊙O的切线.(1)请从3个选项中选择两个作为条件,余下一个作为结论,得到一个真命题,并证明;你选择的两个条件是,结论是(只要填写序号);(2)在(1)的条件下,连接OC,如果P A=2,sin⊙ABC=45,求OC的长.=AB BE∴∠=BAE∴∥OD BE∴∠=ODP∴PD是⊙4CP =2,PA OD∴=OD OA45.如图,BD是⊙O的直径,过点D的切线交⊙O的弦BC的延长线于点E,弦AC⊙DE交BD于点G(1)求证:BD平分弦AC;(2)若弦AD=5㎝,AC=8㎝,求⊙O的半径.46.如图,⊙ABC 为⊙O 的内接三角形,其中AB 为⊙O 的直径,过点A 作⊙O 的切线P A .(1)求证:⊙P AC =⊙ABC ;(2)若⊙P AC =30°,AC =3,求劣弧AC 的长.603180π=π.【点睛】本题考查了切线的性质,圆周角定理的推论,弧长公式,熟练掌握相关知识是解题的关键.47.如图,在⊙ABC中,AB=AC,以AB为直径的半圆分别交AC,BC边于点D,E,连结BD,(1)求证:DE BE=;(2)当AB=10,BD=8,求CD和BE的长.48.在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:⊙画线段AB;⊙分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;⊙在直线MN上取一点C(不与点O重合),连接AC、BC;⊙过点A作平行于BC的直线AD,交直线MN于点D,连接B D.(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=⊙BAD=30°,求图中阴影部分的面积.1149.如图,AB是⊙O的直径,CD与⊙O相切于点C,且与AB的延长线交于点D,连接AC.作CE⊙AB于点E.(1)求证:⊙BCE=⊙BCD;(2)若AD=8,12BCAC=,求CD的长.【答案】(1)见解析;(2)CD=4【分析】(1)连接OC,如图,利用圆周角定理得到⊙ACB=90°,利用切线的性质得到⊙DCO=90°,则根据等角的余角相等得到⊙ACO=⊙BCD,同样方法证明⊙A=⊙BCE,从而得到⊙BCE=⊙BCD;(2)证明⊙ACD⊙⊙CBD,然后利用相似比求CD的长.【详解】(1)证明:连接OC,如图,⊙AB是⊙O的直径,⊙⊙ACB=90°,即⊙ACO+⊙OCB=90°,⊙CD与⊙O的相切于点C,⊙⊙DCO=90°,即⊙BCD+⊙OCB=90°,⊙⊙ACO=⊙BCD,⊙OC=OA,⊙⊙A=⊙ACO,50.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,2AB =,点P 从点A 出发,以每秒12个单位长度的速度沿AB 向点B 运动,到点B 停止.同时点Q 从点A 出发,沿AC CB -的线路向点B 运动,在边AC BC 上的速度为每秒2个单位长度,到B 停止,以PQ 为边向右或右下方构造等边PQR ,设P 的运动时间为t 秒,解答下列问题:(1)填空:BC =__________,AC =__________.(2)当Q 在AC 上,R 落在BC 边上时,求t 的值.(3)连结BR .⊙当Q 在边AC 上,BR 与ABC 的一边垂直时,求PQR 的边长.⊙当Q 在边BC 上且R 不与点B 重合时,判断BR 的方向是否变化,若不变化,说明理由.理由见解析⊙ABC中,90,30∠,ABA=,3作QD⊙AB59⊙⊙QPR是等边三角形,⊙⊙QRP=60°,⊙⊙ABC=90°-⊙A=60°,⊙⊙QBP=⊙QRP=60°,⊙Q、P、B、R四点共圆,⊙⊙QBR=⊙QPR=60°,⊙BR的方向不变.【点睛】本题主要考查了等边三角形的性质,含30度角的直角三角形的性质,四点共圆等等,解题的关键在于能够熟练掌握相关知识进行求解.。
初中数学圆试题及答案
初中数学圆试题及答案一、选择题1. 圆的直径是半径的几倍?A. 2倍B. 3倍C. 4倍D. 5倍答案:A2. 一个圆的周长是它的直径的多少倍?A. π倍B. 2π倍C. 3π倍D. 4π倍答案:B3. 圆的面积公式是?A. πr²B. 2πrC. r²D. 2r²答案:A二、填空题4. 半径为3cm的圆的直径是_______cm。
答案:65. 圆的周长公式是C=______。
答案:2πr6. 如果一个圆的面积是28.26平方厘米,那么它的半径是______厘米。
答案:3三、解答题7. 已知一个圆的半径是5cm,求它的周长和面积。
答案:周长为3.14×2×5=31.4cm,面积为3.14×5²=78.5平方厘米。
8. 一个圆的直径是10cm,求它的周长和面积。
答案:周长为3.14×10=31.4cm,面积为3.14×(10/2)²=78.5平方厘米。
9. 圆的面积是50.24平方厘米,求它的半径。
答案:半径为√(50.24/3.14)=4厘米。
四、应用题10. 一个圆形花坛的直径是20米,求它的周长和面积。
答案:周长为3.14×20=62.8米,面积为3.14×(20/2)²=314平方米。
11. 一个圆形水池的半径是7米,如果每平方米的水深是2米,求这个水池的容积。
答案:容积为3.14×7²×2=307.84立方米。
12. 一个圆的周长是62.8米,求它的直径和面积。
答案:直径为62.8/3.14=20米,面积为3.14×(20/2)²=314平方米。
初三数学圆测试题及答案
初三数学圆测试题及答案一、选择题(每题3分,共30分)1. 下列说法中,正确的是()A. 圆的半径是直径的一半B. 直径是半径的2倍C. 圆的周长与半径成正比例D. 圆的面积与半径的平方成正比例答案:D2. 已知圆的直径为10cm,那么这个圆的周长是()A. 31.4cmB. 62.8cmC. 314cmD. 628cm答案:B3. 一个圆的半径扩大到原来的2倍,那么它的面积就扩大到原来的()A. 2倍B. 4倍C. 6倍D. 8倍答案:B4. 一个圆的周长是18.84cm,那么这个圆的半径是()A. 3cmB. 6cmC. 9cmD. 12cm答案:A5. 一个圆的半径是2cm,那么这个圆的直径是()A. 4cmB. 6cmC. 8cmD. 10cm答案:A6. 一个圆的半径是3cm,那么这个圆的面积是()A. 28.26cm²B. 9cm²C. 28.26dm²D. 9dm²答案:A7. 一个圆的直径是6cm,那么这个圆的周长是()A. 18.84cmC. 9.42cmD. 37.68cm答案:A8. 一个圆的半径是5cm,那么这个圆的周长是()A. 31.4cmB. 62.8cmC. 314cmD. 628cm答案:B9. 一个圆的周长是25.12cm,那么这个圆的半径是()A. 4cmB. 8cmC. 16cm答案:A10. 一个圆的半径是4cm,那么这个圆的面积是()A. 50.24cm²B. 100.48cm²C. 200.96cm²D. 502.4cm²答案:A二、填空题(每题3分,共30分)11. 圆的周长公式是:C=_________。
答案:2πr12. 圆的面积公式是:S=_________。
答案:πr²13. 圆的直径是半径的_________倍。
答案:214. 半径为r的圆的周长是2πr,那么半径为2r的圆的周长是_________。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 若圆的半径为r,则圆的周长为:A. 2πrB. πrC. 2rD. πr²答案:A2. 圆的直径是半径的:A. 2倍B. 4倍C. 3倍D. 1/2倍答案:A3. 圆的面积公式为:A. πr²B. 2πrC. r²D. 2r答案:A4. 圆心角为90°的扇形面积是圆面积的:A. 1/4B. 1/2C. 3/4D. 1/3答案:A5. 圆内接四边形的对角互补,那么该四边形是:A. 矩形B. 菱形C. 平行四边形D. 梯形答案:C6. 圆的切线与半径垂直相交于:A. 圆心B. 圆周C. 切点D. 直径答案:C7. 圆的弦长公式为:A. 2r * sin(θ/2)B. 2r * cos(θ/2)C. r * sin(θ)D. r * cos(θ)答案:A8. 圆的弧长公式为:A. r * θB. r * θ/180C. r * θ * πD. r * θ/π答案:B9. 圆周角定理指出,圆周上任意两点与圆心连线所成的角是:A. 直角B. 锐角C. 钝角D. 任意角答案:A10. 圆的切线与圆心的距离等于:A. 半径B. 直径C. 弦长D. 弧长答案:A二、填空题(每题3分,共30分)1. 半径为5cm的圆的周长是______。
答案:10π cm2. 圆的直径是半径的______倍。
答案:23. 半径为4cm的圆的面积是______。
答案:16π cm²4. 圆心角为120°的扇形面积是圆面积的______。
答案:1/35. 圆内接四边形的对角互补,那么该四边形是______。
答案:平行四边形6. 圆的切线与半径垂直相交于______。
答案:切点7. 半径为3cm的圆的弦长为4cm,那么弦所对的圆心角是______。
答案:60°8. 半径为6cm的圆的弧长为2πcm,那么弧所对的圆心角是______。
初三圆的测试题及答案
初三圆的测试题及答案一、选择题(每题3分,共30分)1. 圆的半径为r,直径为d,则d与r的关系是()A. d=2rB. d=rC. d=r/2D. d=r^22. 圆的周长公式是()A. C=πdB. C=2πrC. C=πr^2D. C=2r3. 已知圆的半径为5cm,那么这个圆的面积是多少平方厘米?()A. 25πB. 50πC. 75πD. 100π4. 圆心到圆上任意一点的距离叫做()A. 半径B. 直径C. 周长D. 面积5. 圆的面积公式是()B. A=πr^2C. A=2πrD. A=r^26. 一个圆的直径增加一倍,那么它的面积增加()A. 一倍B. 两倍C. 四倍D. 八倍7. 圆的半径扩大到原来的2倍,周长扩大到原来的()A. 2倍B. 3倍C. 4倍D. 5倍8. 圆的周长和它的直径的比值叫做()A. 半径B. 直径C. 周长D. 圆周率9. 已知一个圆的周长是12.56cm,那么这个圆的半径是多少厘米?()A. 2B. 3C. 4D. 510. 圆的直径是半径的()B. 1/2倍C. 1/4倍D. 4倍二、填空题(每题2分,共20分)1. 圆的周长公式为C=2πr,其中π是一个常数,约等于______。
2. 圆的面积公式为A=πr^2,其中r表示圆的______。
3. 一个圆的半径为4cm,那么它的直径是_______cm。
4. 一个圆的直径为10cm,那么它的半径是_______cm。
5. 圆的周长和它的直径的比值是一个固定的数,这个数叫做______。
6. 如果一个圆的半径扩大到原来的3倍,那么它的面积扩大到原来的______倍。
7. 一个圆的周长是6.28cm,那么它的半径是_______cm。
8. 圆的直径是半径的______倍。
9. 圆的周长是它直径的______倍。
10. 一个圆的半径为6cm,那么它的面积是______平方厘米。
三、解答题(每题10分,共50分)1. 已知一个圆的半径为8cm,求这个圆的周长和面积。
(易错题精选)初中数学圆的经典测试题附解析
(易错题精选)初中数学圆的经典测试题附解析一、选择题1.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.2.如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC=3,AC=4,则sin ∠ABD 的值是( )A.43B.34C.35D.45【答案】D【解析】【分析】由垂径定理和圆周角定理可证∠ABD=∠ABC,再根据勾股定理求得AB=5,即可求sin∠ABD 的值.【详解】∵AB是⊙O的直径,CD⊥AB,∴弧AC=弧AD,∴∠ABD=∠ABC.根据勾股定理求得AB=5,∴sin∠ABD=sin∠ABC=45.故选D.【点睛】此题综合考查了垂径定理以及圆周角定理的推论,熟悉锐角三角函数的概念.3.如图,已知AB是⊙O是直径,弦CD⊥AB,AC=22,BD=1,则sin∠ABD的值是()A.2B.13C.23D.3【答案】C【解析】【分析】先根据垂径定理,可得BC的长,再利用直径对应圆周角为90°得到△ABC是直角三角形,利用勾股定理求得AB的长,得到sin∠ABC的大小,最终得到sin∠ABD【详解】解:∵弦CD ⊥AB ,AB 过O ,∴AB 平分CD ,∴BC =BD ,∴∠ABC =∠ABD ,∵BD =1,∴BC =1,∵AB 为⊙O 的直径,∴∠ACB =90°,由勾股定理得:AB 3==,∴sin ∠ABD =sin ∠ABC =3AC AB = 故选:C .【点睛】本题考查了垂径定理、直径对应圆周角为90°、勾股定理和三角函数,解题关键是找出图形中的直角三角形,然后按照三角函数的定义求解4.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.5.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.6.如图,△ABC的外接圆是⊙O,半径AO=5,sinB=25,则线段AC的长为()A.1 B.2 C.4 D.5【答案】C【解析】【分析】首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB=25,即可求得答案.【详解】解:连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,∵∠B和∠D所对的弧都为弧AC,∴∠B=∠D,即sinB=sinD=25,∵半径AO=5,∴CD=10,∴2 sin105AC ACDCD===,∴AC=4,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.7.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60oC.半径为R2RD.只有正方形的外角和等于360︒【答案】D【解析】【分析】根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.【详解】A 、三角形两边的和大于第三边,A 是真命题,不符合题意;B 、正六边形6条边对应6个中心角,每个中心角都等于360606︒︒=,B 是真命题,不符合题意;C 、半径为R 的圆内接正方形中,对角线长为圆的直径2R ,设边长等于x ,则:222(2)x x R +=,解得边长为2x R :=,C 是真命题,不符合题意;D 、任何凸3n n ≥()边形的外角和都为360︒,D 是假命题,符合题意, 故选D.【点睛】本题考查了真假命题,熟练掌握正多边形与圆、中心角、多边形的外角和等知识是解本题的关键.8.如图,AB 是⊙O 的直径,点C 是⊙O 上一点,点D 在BA 的延长线上,CD 与⊙O 交于另一点E ,DE=OB=2,∠D=20°,则弧BC 的长度为( )A .23πB .13πC .43πD .49π 【答案】A【解析】【分析】连接OE 、OC ,如图,根据等腰三角形的性质得到∠D=∠EOD=20°,根据外角的性质得到∠CEO=∠D+∠EOD=40°,根据等腰三角形的性质得到∠C=∠CEO=40°,根据外角的性质得到∠BOC=∠C+∠D=60°,根据求弧长的公式得到结论.【详解】解:连接OE 、OC ,如图,∵DE=OB=OE,∴∠D=∠EOD=20°,∴∠CEO=∠D+∠EOD=40°,∵OE=OC,∴∠C=∠CEO=40°,∴∠BOC=∠C+∠D=60°,∴»BC的长度=260?2360π⨯=23π,故选A.【点睛】本题考查了弧长公式:l=••180n Rπ(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键.9.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出∠B以及∠ODC度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D.点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC度数是解题关键.10.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对【答案】D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=() 603616103603π⨯-=π.故选D.【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形.11.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.12.如图,将边长为2cm的正方形ABCD沿直线l向右翻动(不滑动),当正方形连续翻动8次后,正方形的中心O经过的路线长是()cm.A.2B.8 C.3πD.4π【答案】D【解析】【分析】由题意可得翻转一次中心O经过的路线长就是1个半径为1,圆心角是90°的弧长,然后进行计算即可解答.【详解】解:∵正方形ABCD2cm,∴对角线的一半=1cm,则连续翻动8次后,正方形的中心O经过的路线长=8×901180π⨯=4π.故选:D.【点睛】本题考查了弧长的计算,审清题意、确定点O的路线和长度是解答本题的关键.13.如图,抛物线y=ax2﹣6ax+5a(a>0)与x轴交于A、B两点,顶点为C点.以C点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.14.如图,3个正方形在⊙O 直径的同侧,顶点B 、C 、G 、H 都在⊙O 的直径上,正方形ABCD 的顶点A 在⊙O 上,顶点D 在PC 上,正方形EFGH 的顶点E 在⊙O 上、顶点F 在QG 上,正方形PCGQ 的顶点P 也在⊙O 上.若BC =1,GH =2,则CG 的长为( )A.125B.6C.21+D.22【答案】B【解析】【分析】【详解】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:22222222211{22r xr x x yr y=++=++=++()①()②()③,②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x).∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6.∵x+y>0,∴x+y=6,∴CG=x+y=6.故选B.点睛:本题考查了正方形的性质、圆、勾股定理等知识,解题的关键是设未知数列方程组解决问题,难点是解方程组,利用因式分解法巧妙求出x的值,学会把问题转化为方程组,用方程组的思想去思考问题.15.如图,在边长为8的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.183π-B.183πC.32316πD.1839π-【答案】C【解析】【分析】由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=3843⨯=, ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2120(43)84332316ππ⨯⨯-=-. 故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.16.如图,AB 是⊙O 的直径,弦CD ⊥AB 于E 点,若AD =CD = 23.则»BC的长为( )A .3πB .23πC .33πD .33π 【答案】B【解析】【分析】根据垂径定理得到3CE DE ==»»BCBD = ,∠A=30°,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD ,∵AB 是⊙O 的直径,弦CD ⊥AB 于E 点,AD =CD = 23∴3CE DE ==,»»BC BD = ,∠A=30°, ∴∠DOE=60°,∴OD=2sin 60DE =o, ∴»BC的长=»BD 的长=60221803ππ⨯=, 故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.17.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm ,则这个圆锥的侧面积为( )A .50cm 2B .50πcm 2C .52D .5cm 2【答案】D【解析】【分析】 根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.【详解】解:如图所示,∵等腰三角形的底边和高线长均为10cm ,22105+=55,圆锥底面圆半径为5,∴这个圆锥的底面圆周长=2×π×5=10π,即为侧面展开扇形的弧长,圆锥的侧面积=1255cm 2, 故选:D .【点睛】本题考查了圆锥的计算,解题的关键是弄清楚圆锥的侧面积的计算方法,特别是圆锥的轴截面是等腰三角形,勾股定理的应用,以及圆锥的底面周长等于圆锥的侧面扇形的弧长.18.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.6C.8 D.8【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.如图,在扇形AOB中,∠AOB=90°,OA=4,以OB为直径作半圆,圆心为点C,过点C 作OA的平行线分别交两弧点D、E,则阴影部分的面积为()A.53π﹣3B.533C.3πD353π【答案】A【解析】【分析】连接OE.可得S阴影=S扇形BOE-S扇形BCD-S△OCE.根据已知条件易求得BC=OC=CD=2,BO=OE=4.∠BOE=60o,CE=23所以由扇形面积公式、三角形面积公式进行解答即可.【详解】解:连接OE,可得S阴影=S扇形BOE-S扇形BCD-S△OCE,由已知条件可得,BC=OC=CD=2,又,BO=OE=4,∴∠BOE=o60,可得CE=23S扇形BOE=2604360π⋅⋅8=3π,S扇形BCD2902==360ππ⋅⋅,S△OCE=1=223=23 2⨯⨯∴S阴影=S扇形BOE-S扇形BCD-S△OCE=8--233ππ=533π故选A.【点睛】本题主要考查扇形面积公式、三角形面积公式,牢记公式并灵活运用可求得答案.20.如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为( )A.532π-B.532π+C.23π-D.432π-【答案】A【解析】【分析】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,利用∠A的正切值求出∠A=30°,继而可求得OH、AH长,根据圆周角定理可求得∠BOC =60°,然后根据S阴影=S△ABC-S△AOD-S扇形BOD进行计算即可.【详解】连接OD,过点O作OH⊥AC,垂足为 H,则有AD=2AH,∠AHO=90°,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,tan∠A=323BCAB==,∴∠A=30°,∴OH=12OA=32,AH=AO•cos∠A=3332⨯=,∠BOC=2∠A=60°,∴AD=2AH=3,∴S阴影=S△ABC-S△AOD-S扇形BOD=()26031132323222360π⨯⨯⨯-⨯⨯-=532π-,故选A.【点睛】本题考查了垂径定理,圆周角定理,扇形面积,解直角三角形等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.。
初中数学圆形专题训练50题-含参考答案
初中数学圆形专题训练50题含参考答案一、单选题1.如图,四边形ABCD 内接于O ,若:5:7A C ∠∠=,则C ∠=( )A .210︒B .150︒C .105︒D .75︒2.如图,P 是∠O 外一点,P A 是∠O 的切线,A 为切点,PO 与∠O 相交于B 点,已知∠BCA =34°,C 为∠O 上一点,连接CA ,CB ,则∠P 的度数为( )A .34°B .56°C .22°D .28° 【答案】C 【分析】根据切线的性质可得:90,OAP ∠=︒ 利用圆周角定理可得:2,O ACB ∠=∠ 从而可求出结果.【详解】解:∠P A 是∠O 的切线,A 为切点,∠∠OAP =90°,又∠∠BCA =34°,∠∠O =2∠ACB =68°,∠∠P =90°﹣∠AOB =90°﹣68°=22°.故选:C.【点睛】本题考查的是切线的性质定理,圆周角定理,掌握利用圆周角定理与切线的性质定理求解角的大小是解题的关键.3.如图,AB为∠O直径,CD为弦,AB∠CD于E,连接CO,AD,∠BAD=25°,下列结论中正确的有()∠CE=OE;∠∠C=40°;∠ACD=ADC;∠AD=2OEA.∠∠B.∠∠C.∠∠∠D.∠∠∠∠【答案】B【分析】根据圆周角定理,垂径定理,圆心角、弧、弦的关系以及直角三角形边的关系进行判断即可.【详解】解:∠AB为∠O直径,CD为弦,AB∠CD于E,∠CE=DE,BC BD=,ACB ADB=,∠∠BOC=2∠A=40°,ACB BC ADB BC+=+,即ADC ADC=,故∠正确;∠∠OEC=90°,∠BOC=40°,∠∠C=50°,故∠正确;∠∠C≠∠BOC,∠CE≠OE,故∠错误;作OP∠CD,交AD于P,∠AB∠CD,∠AE<AD,∠AOP=90°,∠OA<PA,OE<PD,∠PA+PD>OA+OE∠OE<OA,∠AD>2OE,故∠错误;故选:B.【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握性质定理是解题的关键.4.下列命题正确的是()A.相等的圆心角所对的弧是等弧B.等圆周角对等弧C.任何一个三角形只有一个外接圆D.过任意三点可以确定一个圆【答案】C【分析】根据圆周角与弧的关系可判断出各选项,注意在等圆中这个条件.【详解】A、缺少条件,必须是在同圆或等圆中,相等的圆心角所对的弧才相等;故本选项错误;B、缺少条件,必须是在同圆或等圆中,相等的圆周角所对的弧才相等;故本选项错误;C、任何一个三角形只有一个外接圆,故本选项正确;D、缺少条件,过任意不共线的三点才可以确定一个圆,故本选项错误.故选:C.【点睛】本题考查命题与定理的知识,属于基础题,掌握相关的性质定理是解题的关键.5.如图,四边形ABCD为∠O的内接四边形,已知∠BOD=110°,则∠BCD的度数为()A.55°B.70°C.110°D.125°∠四边形ABCD为∠O的内接四边形,∠∠BCD=180°−∠A=125°,故选D【点睛】此题考查圆周角定理及其推论,解题关键在于掌握圆内接四边形的性质. 6.如图,点A,B,C均在圆O上,当∠BOC=120°时,∠BAC的度数是()A.65°B.60°C.55°D.50°7.如图,在O中,AB所对的圆周角∠ACB=50°,D为AB上的点.若∠AOD=35°,则∠BOD的大小为()A.35°B.50°C.55°D.65°【答案】D【分析】在同圆中,由同弧所对的圆周角等于其圆心角的一半解答.【详解】解:∠ACB=50°,AOB∴∠=⨯︒=︒250100BOD AOB AOD∴∠=∠-∠=︒-︒=︒1003565故选:D.【点睛】本题考查圆周角与圆心角的性质,是基础考点,掌握相关知识是解题关键.8.如图,四边形ABCD内接于∠O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°【答案】D【分析】连接OD、OB,根据圆内接四边形的性质求出∠DCB,根据圆周角定理求出∠BOD,求出∠BPD的范围,即可解答.【详解】连接OD、OB,∠四边形ABCD内接于∠O,∠∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∠40°≤∠BPD≤80°,∠∠BPD不可能为90°,故选D.【点睛】本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.9.如图,已知四边形ABCD 内接于∠O,AB是∠O的直径,EC与∠O 相切于点C,∠ECB=35°,则∠D 的度数是()A.145°B.125°C.90°D.80°【答案】BOC【详解】解:连接.∠EC 与O 相切,35ECB ∠=,55OCB ∴∠=,,OB OC =55OBC OCB ∴∠=∠=,180********.D OBC ∴∠=-∠=-=故选:B.10.如图,AC 是汽车挡风玻璃前的刮雨刷.如果65AO cm =,15CO cm =,当刮雨刷AC 绕点O 旋转90时,则刮雨刷AC 扫过的面积为( )A .225cm πB .21000cm πC .225cmD .21000cm11.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( )A.0.5B.1C.2D.412.如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为()A.πB.πC.D.【答案】B【详解】试题分析:根据圆锥侧面展开扇形的弧长等于底面圆的周长,可以求出底面圆的半径,从而求得圆锥的底面周长.解:设底面圆的半径为r,则:2πr==π.∠r=, ∠圆锥的底面周长为, 故选B .考点:圆锥的计算.13.如图,AB 为半圆O 的直径,C 为半圆上一点,且弧AC 为半圆的,设扇形AOC ,∠COB ,弓形BmC 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 1<S 2<S 3【答案】B 【详解】试题分析:首先根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1.再根据题意,知S 1占半圆面积的.所以S 3大于半圆面积的.解:根据∠AOC 的面积=∠BOC 的面积,得S 2<S 1,再根据题意,知S 1占半圆面积的,所以S 3大于半圆面积的.因此S 2<S 1<S 3.故选B .考点:扇形面积的计算.14.如图,在矩形ABCD 中,2AB =,BC =B 为圆心,BA 长为半径画弧,交CD 于点E ,连接BE ,则扇形BAE 的面积为( )A .3πB .35πC .23πD .34π 【答案】C【分析】解直角三角形求出30CBE ∠=︒,推出60ABE ∠=︒,再利用扇形的面积公式【详解】解:四边形=BA BE∴∠cos CBE∴∠=CBE∴∠ABE∴S15.下列事件中,是随机事件的是()A.∠O的半径为5,OP=3,点P在∠O外B.相似三角形的对应角相等C.任意画两个直角三角形,这两个三角形相似D.直径所对的圆周角为直角【答案】C【分析】根据随机事件的定义进行分析解答即可.【详解】解:(1)点P一定在∠O内,A是不可能事件,故错误.(2) 相似三角形的对应角一定相等,是必然事件,B错误.(3) 任意画两个直角三角形,这两个三角形不一定相似,C正确.(4) 直径所对的圆周角一定为直角,D为为为为为为为错误.综上选C.【点睛】本题考查随机事件的定义,熟悉掌握是解题关键.16.如图,AC是∠O的直径,弦BD∠AO于E,连接BC,过点O作OF∠BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B cm C.2.5cm D cm17.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆形滚木的截面图.有如下四个结论:∠勒洛三角形是中心对称图形;∠在图1中,等边三角形的边长为2,则勒洛三角形的周长为2π;∠在图2中,勒洛三角形的周长与圆的周长相等;∠使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动;上述结论中,所有正确结论的序号是()A.∠∠B.∠∠C.∠∠D.∠∠∠18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D.连接BD,BE,CE,若∠CBD=33°,则∠BEC=()A.66°B.114°C.123°D.132°【答案】C【分析】根据圆周角定理可求∠CAD=33°,再根据三角形内心的定义可求∠BAC,再根据三角形内角和定理和三角形内心的定义可求∠EBC+∠ECB,再根据三角形内角和定理可求∠BEC的度数.【详解】在∠O中,∠∠CBD=33°,∠∠CAD=33°,∠点E是△ABC的内心,∠∠BAC=66°,∠∠EBC+∠ECB=(180°﹣66°)÷2=57°,∠∠BEC=180°﹣57°=123°.故选C.【点睛】考查了三角形的内切圆与内心,圆周角定理,三角形内角和定理,关键是得到∠EBC+∠ECB的度数.19.如图,四边形ABCD为正方形,O为AC、BD的交点,∠DCE为Rt∠,∠CED=90°,OE=CE DE=5,则正方形的面积为()A.5B.6C.7D.8∠CE DE=5故选:B【点睛】本题考查了四点共圆的判定及圆周角定理,同弧或等弧所对的圆周角相等,正方形的判定及性质定理,全等三角形的判定及性质.20.如图,AB 是∠O 的直径,弦CD∠AB 于点G ,点F 是CD 上一点,且满足13CF FD ,连接AF 并延长交∠O 于点E ,连接AD 、DE ,若CF =2,AF =3.给出下列结论:∠∠ADF∠∠AED ;∠FG =2;∠tan∠E ;∠S △DEF =结论的个数是( )A .1B .2C .3D .4AFD ADE S S =ADE S =△DEF =AFD ,∠所以正确的结论是∠∠∠.二、填空题21.如图,有4个圆|A ,B ,C ,D ,且圆A 与圆B 的半径之和等于圆C 的半径,圆B 与圆C 的半径之和等于圆D 的半径,现将圆A ,B ,C 摆放如图甲,圆B ,C ,D 摆放如图乙.若图甲和图乙的阴影部分面积分别为4π和12π.则圆D 面积为__________.【答案】28π【分析】根据题意得到圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图得到方程求出b 的关系,再根据圆D 的面积与b 的关系即可求解.【详解】∠图甲阴影部分面积分别为4π,即圆A 的面积为4π,∠圆A 的半径为2,设圆B 的半径为b ,则圆C 的半径为b+2,故圆D 的半径为2b+2,根据乙图可得222(22)12(2)b b b ππππ+=+++化简得226b b +=,∠圆D 的面积为2(22)b π+=4π()22b b ++4π=28π,故填:28π.【点睛】此题主要考查圆的面积求解,解题的关键是根据图形找到等量关系进行列方程求解.22.圆的有关概念:(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做__.线段OA 叫做__.(b )圆是所有点到定点O 的距离__定长r 的点的集合.(2)弦:连接圆上任意两点的__叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦); (3)弧:圆上任意两点间的部分叫__(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够__的弧叫等弧.(5)等圆:能够__的两个圆叫等圆,半径__的两个圆也叫等圆.【答案】 圆心 半径 等于 线段 弧 完全重合 完全重合 相等【分析】根据圆、弦、弧、等弧、等圆的定义即可作答.【详解】(1)圆两种定义方式:(a )在一个平面内线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心.线段OA 叫做半径.(b )圆是所有点到定点O 的距离等于定长r 的点的集合.(2)弦:连接圆上任意两点的线段叫做弦.(弦不一定是直径,直径一定是弦,直径是圆中最长的弦);(3)弧:圆上任意两点间的部分叫弧(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)等弧:在同圆与等圆中,能够完全重合的弧叫等弧.(5)等圆:能够完全重合 的两个圆叫等圆,半径相等的两个圆也叫等圆.故答案为:圆心,半径;等于;线段;弧;完全重合;完全重合;相等.【点睛】本题主要考查了圆、弦、弧的定义,牢记相关定义是解答本题的关键. 23.如图,在矩形ABCD 中,8AB =,6AD =,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,则r 的取值范围是 _____.90,Rt ABD 中,由勾股定理得:2AD AB +A 、B 、C 中至少有一个点在圆内,且至少有一个点不在圆内,且CD BD <<10r <<,24.如图ABC 内接于O ,半径为6,2sin 3A =∠,则BC 的长为___________.【详解】解:作O的直径,∠90D=sin D CD.25.如图,PA、PB分别切∠O于A、B,并与∠O的另一条切线分别相交于D、C两点,已知PA=6,则∠PCD的周长=_______.【答案】12【详解】试题分析:切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线,平分两条切线的夹角.设DC与∠O的切点为E∠PA、PB分别是∠O的切线,且切点为A、B∠PA=PB=6同理可得DE=DA,CE=CB则∠PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=12.考点:切线长定理26.如图,若BC是∠O的弦,OD∠BC于D,且∠BOD=50 o,点A在∠O上(不与B、C重合),则∠BAC=________.27.若圆锥的底面积为16π cm2,母线长为12 cm,则它的侧面展开图的圆心角为__________.【答案】120°【分析】根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】由题意得,圆锥的底面积为16πcm²,28.如图,在等腰直角三角形ABC 中,4AB BC ==,点M 是AB 的中点,将ABC 绕点M 旋转至A B C '''的位置,使AB A C ''⊥,其中点C 的运动路径为弧CC ',连接CM ,则图中阴影部分的面积为_______.29.如图,ABC内接于O,若OAB30∠=,则C∠=______.【详解】OA OB=30OAB=∠=,1803030120=--=,由圆周角定理得,1602C AOB∠=∠=,故答案为60.【点睛】本题考查的是三角形的外接圆与外心,等腰三角形的性质,掌握圆周角定理是解题的关键.30.如图,BC为∠O的直径,弦AD∠BC于点E,直线l切∠O于点C,延长OD交l 于点F,若AE=2,为ABC=22.5°,则CF的长度为31.用一张圆形的纸剪一个边长为4 cm的正六边形,则这个圆形纸片的半径最小应为_______cm.【答案】4【分析】要剪一张圆形纸片完全盖住这个正六边形,这个圆形纸片的边缘即为其外接圆,根据正六边形的边长与外接圆半径的关系即可求出.【详解】∠正六边形的边长是4cm,∠正六边形的半径是4cm,∠这个圆形纸片的最小半径是4cm,故答案为4cm.【点睛】此题主要考查了正多边形与圆的知识,注意正六边形的外接圆半径与边长相等,这是一个需要谨记的内容.32.如图,AB与∠O相切于点A,BO与∠O相交于点C,点D是∠O上一点,∠B=38°.则∠D的度数是_____.33.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD =12cm,则球的半径为______cm.【答案】7.5【分析】首先找到EF的中点M,作MN∠AD于点M,取MN上的球心O,连接OF,设OF=x,则OM是(12﹣x) cm,MF=6 cm,然后在直角三角形MOF中利用勾股定理求得OF的长即可.【详解】解:EF 的中点M ,作MN∠AD 于点M ,取MN 上的球心O ,连接OF ,∠四边形ABCD 是矩形,∠∠C =∠D =90°,∠四边形CDMN 是矩形,∠MN =CD =12 cm设OF =x cm ,则ON =OF ,∠OM =MN ﹣ON = (12﹣x) cm ,MF =6 cm ,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(12﹣x )2+62=x 2,解得:x =7.5,故答案为:7.5.【点睛】本题考查了垂径定理及勾股定理的知识,解题的关键是正确的作出辅助线构造直角三角形.34.已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.与O 的位置关系是相切.2268=+与O 的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.35.如图,一次函数y=x轴、y轴交于A、B两点,P为一次函数=的图像上一点,以P为圆心能够画出圆与直线AB和y轴同时相切,则y x∠BPO=_________.∠∠OBP=15°又∠BOP=45°∠∠BPO=180°-45°-15°=120°相交时,点P即为圆心.(2)当∠ABO的外角平分线与y x如图,同理可求∠OBP=30°+75°=105°∠∠BPO=180°-45°-105°=30°故答案为:30°或120°【点睛】本题主要考查了切线的判定和性质,角平分线的性质及三角形的内角和的应用,正确的对点P的位置进行分类是解题的关键.36.如图,四边形ABCD内接于∠O,点E在AB的延长线上,BF∠AC,AB=BC,∠ADC=130°,则∠FBE=_______°.【答案】65【详解】连接BD,如图所示:∠∠ADB和∠ACB是弧AB所对的圆周角,∠BDC和∠BAC是弧BC所对的圆周角,∠∠ADB=∠ACB,∠BDC=∠BAC,又∠∠BDC+∠ADB=∠ADC,∠ADC=130°,∠∠BAC+∠ACB=130°,又∠AB=BC,∠∠BAC=∠ACB=65°,又∠BF∠AC,∠∠FBE=∠BAC=65°;故答案是:65.37.如图,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧AB,使点B在O右下方,且4tan3AOB∠=.在优弧AB上任取一点P,且能过P作直线l OB∥交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧AB上一段AP的长为13π,则AOP∠的度数为__________,x的值为__________;(2)x的最小值为__________,此时直线l与弧AB所在圆的位置关系为__________26nπ⨯38.如图,在Rt ABC △中,903cm 4cm C AC BC ∠=︒==,,, 以BC 边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是___;此圆锥展开的侧面扇形的圆心角为____.边所在的直线为轴,将ABC 旋转一周得到的圆锥侧面积是此圆锥展开的侧面扇形的扇形弧长是底面圆周长,此圆锥展开的侧面扇形的圆心角度数为【点睛】本题考查了勾股定理,圆锥的计算;得到几何体的组成是解决本题的突破39.如图,在平面直角坐标系xOy 中,一次函数y +4的图象与x 轴、y 轴交于A 、B 点,点C 在线段OA 上,点D 在直线AB 上,且CD =2,∠DEC 是直角三角形(∠EDC =90°),DE ,连接AE ,则AE 的最大值为_________.∠+∠=______度,阴影四边形的面积为______.【答案】 105︒##105度 1##1-+∠90ABD ,AB BD =90ABC BAC ∠+∠=︒=BAC DBE ∠=∠,(AAS BAC DBE ≌△△AC BE =,BC DE =三、解答题41.如图,在∠O 中,直径AB 与弦CD 相交于点E ,连接AC 、BD .(1)求证:AEC DEB △∽△;(2)连接AD ,若3AD =,30C ∠=︒,求∠O 的半径.【答案】(1)证明见解析(2)∠O 的半径为3Rt ADB 中,26AD ==,132AB ==的半径为【点睛】本题考查圆的基本知识,相似三角形的判定,以及含42.如图,在O 中,AB 为直径,AC 为弦.过BC 延长线上一点G ,作GD AO ⊥于点D ,交AC 于点E ,交O 于点F ,M 是GE 的中点,连接CF ,CM .(1)判断CM 与O 的位置关系,并说明理由;(2)若ECF 2A ∠∠=,CM 6=,CF 4=,求MF 的长.与O 相切;理由见解析;3343.已知:如图,线段BC 与经过点C 的直线l .求作:在直线l 上求作点D ,使150CDB ∠=︒.作法:∠分别以点B ,C 为圆心,BC 长为半径画弧,两弧交于BC 上方的点A ,连接AB ,AC ;∠以点A 为圆心,以AB 长为半径画圆交直线l 于点D (不同于点C ),连接BD .则点D 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠60BAC ∠=︒.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠30CEB ∠=︒.(_________________________)(填推理依据)∠点B ,D ,C ,E 在A 上.∠180CDB CEB ∠+∠=︒.(_________________________)(填推理依据)即150CDB ∠=︒. 【答案】(1)见解析(2)圆周角定理;圆内接四边形对角互补【分析】(1)根据题意作出图形即可求解;(2)根据圆周角定理,以及圆内接四边形对角互补,即可求解.【详解】(1)解;如图所示,(2)证明:∠分别以点B ,C 为圆心,BC 长为半烃画弧,两弧交于BC 上方的点A . ∠AB BC CA ==∠ABC 为等边三角形.∠=60?BAC ∠.在A 中,在优弧BC 上任取点E ,连接BE ,CE .∠=30?CEB ∠(圆周角定理)∠点B ,D ,C ,E 在A 上.∠+=180CDB CEB ∠∠︒.(圆内接四边形对角互补)即150CDB ∠=︒.故答案为:圆周角定理;圆内接四边形对角互补.【点睛】本题考查了等边三角形的判定和性质,圆周角定理,圆内接四边形的性质,掌握圆周角定理是解题的关键.44.某市政府计划修建一处公共服务设施,使它到三所公寓A 、B 、C 的距离相等. (1)若三所公寓A 、B 、C 的位置如图所示,请你在图中确定这处公共服务设施(用点P 表示)的位置(尺规作图,保留作图痕迹,不写作法);(2)若∠BAC =56°,则∠BPC =【答案】(1)见解析;(2)112°【分析】(1)连接AB 、BC 、AC ,作线段AB 和AC 的垂直平分线,交点P 即为所求; (2)利用三角形外心的性质结合圆周角定理得出答案.【详解】解:(1)如图所示:P 点即为所求;(2)连接PB 、PC ,∠点P 是三角形ABC 的外心,∠∠BPC =2∠BAC =112°.【点睛】此题主要考查了应用设计与作图,掌握线段垂直平分线的性质,得出P 点是三角形ABC 的外心是解题关键.45.如图ABC 内接于O ,60B ∠=,CD 是O 的直径,点P 是CD 延长线上一点,且AP AC =.()1求证:P A 是O 的切线;()2若PD =O 的直径.)O 的直径为30,继而根据等腰三角形的性质可得出30,继而由P ,可得出30的直角三角形的性质求出PD OD =,可得出O 的直径.连接OA ,如图,B 60∠=,AOC 2B 120∠∠∴=,又OA OC =,OAC 30∠∠∴=,又AP AC =P ACP 30∠∠=,90,是O的切线.Rt OAP中,P30∠=,=+,2OA OD PD=,又OA OD=,PD OA=,PD5∴=2OA2PD∴的直径为O【点睛】本题考查了切线的判定、圆周角定理、含掌握切线的判定定理、圆周角定理及含46.如图,已知等边∠ABC,AB=2,以AB为直径的半圆与BC边交于点D,过点D 作DF∠AC,垂足为F,过点F作FG∠AB,垂足为G,连结GD.(1)求证:DF是∠O的切线;(2)求FG的长.22447.九年级学生小刚是一个喜欢看书的好学生,他在学习完第二十四章圆后,在家里突然看到爸爸的初中数学书上居然还有一个相交弦定理(圆内的两条相交弦,被交点分成的两条线段长的积相等),非常好奇,仔细阅读原来就是:PA•PB=PC•PD,小刚很想知道是如何证明的,可异证明部分污损看不清了,只看到辅助线的做法,分别连结AC、BD.聪明的你一定能帮他证出,请在图1中做出辅助线,并写出详细的证明过程.小刚又看到一道课后习题,如图2,AB是∠O弦,P是AB上一点,AB=10cm,PA=4cm,OP=5cm,求∠O的半径,愁坏了小刚,乐于助人的你肯定会帮助他,请写出详细的证明过程.【答案】(1)见解析;(2)∠O的半径R为7.【分析】(1)连结AC,BD,根据圆周角定理得到∠C=∠B,∠A=∠D,再根据三角形相似的判定定理得到△APC∠∠DPB,利用相似三角形的性质得AP:DP=CP:BP,变形有AP•BP=CP•DP;由此得到相交弦定理;(2)由AB=10,PA=4,OP=5,易得PB=10-4=6,PC=OC-OP=R-5,PD=OD+OP=R+5,根据相交弦定理得到PA•PB=PC•PD,即4×6=(R-5)×(R+5),解方程即可得到R的值.【详解】(1)圆的两条弦相交,这两条弦被交点分成的两条线段的积相等.已知,如图1,∠O的两弦AB、CD相交于E,求证:AP•BP=CP•DP.证明如下:连结AC,BD,如图1,∠∠C=∠B,∠A=∠D,∠∠APC∠∠DPB,∠AP:DP=CP:BP,∠AP•BP=CP•DP;所以两条弦相交,被交点分成的两条线段的积相等.(2)过P作直径CD,如图2,∠AB=10,PA=4,OP=5,∠PB=10﹣4=6,PC=OC﹣OP=R﹣5,PD=OD+OP=R+5,由(1)中结论得,PA•PB=PC•PD,∠4×6=(R﹣5)×(R+5),解得R=7(R=﹣7舍去).所以∠O的半径R=7.【点睛】本题考查的是圆,熟练掌握相交弦定理和相似三角形的判定与性质是解题的关键.48.如图,点C在以AB为直径的∠O上.AE与过点C的切线垂直,垂足为D,AD 交∠O于点E,过B作BF∠AE交∠O于点F,连接CF.(1)求证:∠B=2∠F;(2)已知AE=8,DE=2,过B作BF∠AE交∠O于F,连接CF,求CF的长.49.如图,已知∠O的直径AB=8,过A、B两点作∠O的切线AD、BC.(1)当AD=2,BC=8时,连接OC、OD、CD.∠求∠COD的面积.∠试判断直线CD与∠O的位置关系,并说明理由.(2)若直线CD与∠O相切于点E,设AD=x(x>0),试用含x的式子表示四边形ABCD的面积S,并探索S是否存在最小值,写出探索过程.50.在平面直角坐标系xOy 中,对于线段MN 及点P 、Q ,若60MPN ∠=︒且线段MN 关于点P 的中心对称线段M N ''恰好经过点Q ,则称点Q 是点P 的线段60MN -︒对经点.(1)设点()0,2A .∠()1Q ,()24,0Q ,312Q ⎫-⎪⎪⎝⎭,其中为某点P 的线段60OA -︒对经点的是______.∠已知()0,1B ,设∠B 的半径为r ,若∠B 上存在某点P 的线段60OA -︒对经点,求r 的取值范围.(2)若点()4,0Q 同时是相异两点1P 、2P 的线段60OD -︒对经点,直接写出线段OD 长的取值范围. 为边的等边三角形的外接圆C 上优弧上的横纵坐标的最值,根据定义以及中点坐标公的方法作出图形,作M 的切线关于P 中心对N 为圆心,矩形对角线长度为半径两圆组成的图两直线之间的部分,除公共部分以外的图形,即图中阴影部分,包括边轴上的部分,根据图形求得)作辅助线,设,M N 在OD 同时是相异两点1P 、2P 的线段33DM x =,OM 长,解一元一次不等式组求解即可.Q 为边的等边三角形的外接圆C 上优弧上的一点,()0,2A2OA ∴=C 为AOP 的外心,则过点C 分别作CG 2OC33GC =3GC ∴=33C x ∴=∴P 的横坐标最大值为Qx交M于点S作M的是C的直径)AA交M于点F1根据对称性,同理可得过N的r的最值也为M N在OD)作辅助线,设,T 为,M N 的交点,2MT NT OM ∴===11=22TH MN OD ∴==在Rt NTH 中, NH OH ON NH =+OR ON NR =+()4,0D236+∴解得433即433≤。
数学圆圈测试题及答案解析
数学圆圈测试题及答案解析一、选择题1. 圆的周长公式为:A. C = πdB. C = 2πrC. C = πr^2D. C = 4πr答案:B解析:圆的周长公式是C = 2πr,其中C表示周长,r表示圆的半径,π是圆周率,约等于3.14159。
2. 圆的面积公式为:A. A = πd^2B. A = 2πr^2C. A = πr^2D. A = 4πr答案:C解析:圆的面积公式是A = πr^2,其中A表示面积,r表示圆的半径,π是圆周率。
3. 圆的直径是半径的:A. 1倍B. 2倍C. 4倍D. 0.5倍答案:B解析:圆的直径是半径的两倍,即d = 2r。
4. 如果一个圆的半径增加一倍,那么它的面积会增加:A. 1倍B. 2倍C. 4倍D. 8倍答案:C解析:设原圆的半径为r,那么原面积为A1 = πr^2。
半径增加一倍后,新半径为2r,新面积为A2 = π(2r)^2 = 4πr^2。
所以面积增加了4 - 1 = 3倍,但相对原面积增加了4倍。
二、填空题5. 已知圆的半径为3厘米,求圆的周长和面积。
周长:________面积:_______答案:周长:18.84厘米;面积:28.26平方厘米。
解析:根据周长公式C = 2πr,代入r = 3厘米,得到C = 2 ×3.14159 × 3 ≈ 18.84厘米。
根据面积公式A = πr^2,代入r = 3厘米,得到A = 3.14159 × 3^2 ≈ 28.26平方厘米。
6. 已知圆的直径为10厘米,求圆的半径和面积。
半径:________面积:_______答案:半径:5厘米;面积:78.54平方厘米。
解析:直径d = 10厘米,所以半径r = d / 2 = 5厘米。
根据面积公式A = πr^2,代入r = 5厘米,得到A = 3.14159 × 5^2 ≈ 78.54平方厘米。
三、解答题7. 一个圆的周长为25.12厘米,求这个圆的半径和面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
径是 BC,圆心角是 60 度,所以阴影面积=大扇形面积-小扇形面积.
【详解】
阴影面积= 60 36 16 10 π.
360
3
故选 D.
【点睛】
本题的关键是理解出,线段 AB 扫过的图形面积为一个环形.
2.如图,已知 AB 是⊙O 是直径,弦 CD⊥AB,AC=2 2 ,BD=1,则 sin∠ABD 的值是( )
7.如图, AB 是 O 的直径, C 是 O 上一点( A 、 B 除外), AOD 132 ,则 C
的度数是( )
A. 68
【答案】D 【解析】
B. 48
C. 34
D. 24
【分析】
根据平角得出 BOD 的度数,进而利用圆周角定理得出 C 的度数即可.
【详解】 解: AOD 132 , BOD 48 , C 24 ,
故选: D .
【点睛】 本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于 这条弧所对的圆心角的度数的一半是解答此题的关键.
8.如图, O 的外切正六边形 ABCDEF 的边长为 2,则图中阴影部分的面积为 ( )
A. 3 2
B. 3 3 2
C. 2 3
D. 3 3
C. 在一个三角形中,任意两边之差小于第三边,是真命题; D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.
故选 D. 【点睛】 本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.
5.如图,△ABC 的外接圆是⊙O,半径 AO=5,sinB= 2 ,则线段 AC 的长为( ) 5
【答案】D
பைடு நூலகம்【解析】
【分析】
首先根据二次函数的解析式求出点 A、B、C 三点的坐标,再由当点 O、P、C 三点共线时,
OP 取最小值为 3,列出关于 a 的方程,即可求解.
【详解】
∵ y ax2 6ax 5(a a>0)与 x 轴交于 A、B 两点,
∴A(1,0)、B(5,0),
∵ y ax2 6ax 5a (a x 3)2 4a , ∴顶点 C(3,-4a),
积是( )
A. 20 8 3 3
B. 20 8 3 3
C.8 3 20 3
D. 4 3 20 3
【答案】A
【解析】
【分析】
如图,连接 CE.图中 S 阴影=S 扇形 BCE−S 扇形 BOD−S△OCE.根据已知条件易求得 OB=OC=OD=
4,BC=CE=8,∠ECB=60°,OE=4 3 ,所以由扇形面积公式、三角形面积公式进行解答
ABC ≌ A' B'C '
C.在一个三角形中,任意两边之差小于第三边 D.同弧所对的圆周角和圆心角相等 【答案】D 【解析】 【分析】 根据相关的知识点逐个分析. 【详解】
解:A. 任意多边形的外角和为 360 ,是真命题; B. 在 ABC 和 A' B'C ' 中,若 AB A' B' , BC B'C ' , C C ' 90 ,则 ABC ≌ A' B 'C ' ,根据 HL,是真命题;
∴∠CEO=30°,∠ECB=60°,OE=4 3 ,
∴S 阴影=S 扇形 BCE−S 扇形 BOD−S△OCE
= 60 82 - 1 42 - 1 4 4 3
360 4
2
= 20 -8 3 3
故选:A. 【点睛】
本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计
算.
10.如图,△ABC 内接于⊙O,∠BAC=120°,AB=AC=4,BD 为⊙O 的直径,则 BD 等于 ()
A.4
B.6
C.8
D.12
【答案】C
【解析】
【分析】
根据三角形内角和定理求得∠C=∠ABC=30°,再根据圆周角定理及直角三角形的性质即可求
得 BD 的长.
【详解】
∵∠BAC=120°,AB=AC=4,
即可. 【详解】 解:如图,连接 CE.
∵AC⊥BC,AC=BC=8,以 BC 为直径作半圆,圆心为点 O;以点 C 为圆心,BC 为半径作 弧 AB, ∴∠ACB=90°,OB=OC=OD=4,BC=CE=8. 又∵OE∥AC, ∴∠ACB=∠COE=90°. ∴在 Rt△OEC 中,OC=4,CE=8,
A.48°
B.42°
C.34°
D.24°
【答案】B
【解析】
【分析】
根据切线的性质求出∠OAC,结合∠C=42°求出∠AOC,根据等腰三角形性质求出∠B=∠
BDO,根据三角形外角性质求出即可.
【详解】
解:∵∠ABD=24°,
∴∠AOC=48°,
∵AC 是⊙O 的切线,
∴∠OAC=90°,
∴∠AOC+∠C=90°,
2
360
2
9.在 Rt△ABC 中,∠ACB=90°.AC=8,BC=3,点 D 是 BC 边上动点,连接 AD 交以 CD 为直径 的圆于点 E,则线段 BE 长度的最小值为( )
A.1
B. 3
C. 3
D. 5
2
2
【答案】A
【解析】
【分析】
根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以 AC 为直径的圆的圆心为
当点 O、P、C 三点共线时,OP 取最小值为 3, ∴OC=OP+2=5,
∴ 9 16a2 5(a 0) ,
∴a 1 , ∴C(3,﹣4), 故选:D. 【点睛】 本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点 与圆心的距离减去半径长.
14.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,OC 交⊙O 于点 D,若∠ABD=24°,则∠C 的度数是( )
∴∠C=∠ABC=30°
∴∠D=30°
∵BD 是直径
∴∠BAD=90°
∴BD=2AB=8.
故选 C.
11.一个圆锥的侧面展开图是半径为 1 的半圆,则该圆锥的底面半径是( )
A. 1 3
B. 1 2
C. 3 4
D.1
【答案】B
【解析】 【分析】 根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半 径长. 【详解】 圆锥的底面周长是:π; 设圆锥的底面半径是 r,则 2πr=π.
∴∠C=90°﹣48°=42°,
故选:B.
【点睛】
考查了切线的性质,圆周角定理,三角形内角和定理,解此题的关键是求出∠AOC 的度
数,题目比较好,难度适中.
15.如图,在边长为 8 的菱形 ABCD 中,∠DAB=60°,以点 D 为圆心,菱形的高 DF 为半径 画弧,交 AD 于点 E,交 CD 于点 G,则图中阴影部分的面积是 ( )
【答案】A 【解析】 【分析】 【详解】 解:∵六边形 ABCDEF 是正六边形, ∴∠AOB=60°,∴△OAB 是等边三角形,OA=OB=AB=2, 设点 G 为 AB 与⊙O 的切点,连接 OG,则 OG⊥AB,
∴OG=OA•sin60°=2× 3 = 3 , 2
∴S 阴影=S△OAB﹣S 扇形 OMN= 1 ×2× 3 ﹣ 60 ( 3)2 = 3 .故选 A.
A.圆形铁片的半径是 4cm
B.四边形 AOBC 为正方形
C.弧 AB 的长度为 4πcm
D.扇形 OAB 的面积是 4πcm2
【答案】C
【解析】
【分析】
【详解】
解:由题意得:BC,AC 分别是⊙O 的切线,B,A 为切点,
∴OA⊥CA,OB⊥BC,
又∵∠C=90°,OA=OB,
∴四边形 AOBC 是正方形,
∴OA=AC=4,故 A,B 正确;
∴
AB
的长度为:
90 4 180
=2π,故 C
错误;
S 扇形 OAB= 90 42 =4π,故 D 正确. 360
故选 C. 【点睛】 本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.
4.下列命题中,是假命题的是 ( ) A.任意多边形的外角和为 360 B.在 ABC 和 A' B'C ' 中,若 AB A' B' , BC B'C ' , C C ' 90 ,则
O,若 BE 最短,则 OB 最短,根据直角三角形斜边上的中线等于斜边的一半可得
OE= 1 AC=4,在 Rt△OBC 中,根据勾股定理可求得 OB=5,即可得解. 2
【详解】
解:连接 CE,
∵E 点在以 CD 为直径的圆上,
∴∠CED=90°,
∴∠AEC=180°-∠CED=90°,
∴E 点也在以 AC 为直径的圆上,
解得:r= 1 . 2
故选 B.
【点睛】 本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决 本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.
12.下列命题中哪一个是假命题( ) A.8 的立方根是 2 B.在函数 y=3x 的图象中,y 随 x 增大而增大 C.菱形的对角线相等且平分 D.在同圆中,相等的圆心角所对的弧相等 【答案】C 【解析】 【分析】 利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确 的选项. 【详解】 A、8 的立方根是 2,正确,是真命题; B、在函数 y 3x 的图象中,y 随 x 增大而增大,正确,是真命题; C、菱形的对角线垂直且平分,故错误,是假命题; D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题, 故选 C. 【点睛】 考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周 角定理等知识是解题关键.