国际数学奥林匹克IMO试题(官方版)2000_eng

合集下载

第一届imo数学竞赛试题答案

第一届imo数学竞赛试题答案

第一届imo数学竞赛试题答案第一届国际数学奥林匹克竞赛(IMO)是在1959年在罗马尼亚举行的。

由于时间跨度较长,具体的试题和答案可能需要通过历史资料查询。

不过,我可以提供一个示例答案,以展示IMO题目的类型和解答风格。

假设第一届IMO中有一道题目如下:题目:证明对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots +n^2 \) 的和等于 \( \frac{n(n + 1)(2n + 1)}{6} \)。

解答:我们可以使用数学归纳法来证明这个公式。

基础情况:当 \( n = 1 \) 时,左边的和为 \( 1^2 = 1 \),右边的表达式为\( \frac{1(1 + 1)(2 \times 1 + 1)}{6} = \frac{6}{6} = 1 \)。

因此,当 \( n = 1 \) 时,等式成立。

归纳步骤:假设对于某个正整数 \( k \),等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明当 \( n = k + 1 \) 时,等式仍然成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k + 1)^2 = \frac{(k +1)((k + 1) + 1)(2(k + 1) + 1)}{6} \]根据归纳假设,我们可以将左边的和替换为:\[ \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \]接下来,我们简化这个表达式:\[ \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6k^2 + 12k + 6}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k^2 + 2k + 1)}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]可以看到,这个表达式与我们想要证明的等式右边相等,因此等式对于 \( n = k + 1 \) 也成立。

2000小学数学奥林匹克试题决赛

2000小学数学奥林匹克试题决赛

2000学校数学奥林匹克试题决赛(A)卷1.计算:=____。

2.原有男、女同学325人,新学年男生增加25人;女生削减5%,总人数增加16人,那么现有男同学____人。

3.一商店以每3盘16元的价格购进一批录音带,又从另一处以每4盘21元的价格购进比前一批加倍的录音带。

假如以每3盘K元的价格全部出售可得到所投资的20%的收益,则K值是______。

4.在除13511,13903及14589时能剩下相同余数的最大整数是____。

5.试将20表示成一些合数的和,这些合数的积最大是____。

6.在1×2×3×...×100的积中,从右边数第25个数字是___。

7.如图所示, 角AOB=90o,C为AB弧的中点,已知阴影甲的面积为16平方厘米,则阴影乙的面积为____平方厘米。

8.各数位上数码之和是15的三位数共有_____个。

9.若有8分和15分的邮票可以无限制地取用,但某些邮资如:7分、29分等不能刚好凑成,那么只用8分和15分的邮票不能凑成的最大邮资是_____。

10.的末两位数是_____。

11.4只小鸟飞入4个不同的笼子里去,每只小鸟都有自己的一个笼子(不同的鸟,笼子也不相同),每个笼子只能飞进一只鸟。

若都不飞进自己的笼子里去,有_____种不同的飞法。

12.甲、乙两船分别在一条河的A,B两地同时相向而行,甲顺流而下,乙逆流而行。

相遇时,甲、乙两船行了相等的航程,相遇后连续前进,甲到达B地,乙到达A地后,都马上按原来路途返航,两船其次次相遇时,甲船比乙船少行1千米。

假如从第一次相遇到其次次相遇时间相隔1小时20分,则河水的流速为每小时_______千米。

1、2、170 3、19 4、98 5、1024 6、4 7、16 8、69 9、97 10、76 11、9 12、1.【解】原式====2.【解】女生削减25-16=9人,女生原有9÷5%=180(人),现有男同学为325-180+25=170(人).3.【解】设第一次购进M盘录音带,其次次购进2M盘录音带,共购进3M盘录音带。

2000小学数学奥林匹克试题决赛(B)卷

2000小学数学奥林匹克试题决赛(B)卷

2000小学数学奥林匹克试题决赛(B)卷1.计算: =______。

2.一个千位数字是1的四位数,当它分别被四个不同的质数相除时,余数都是1,满足这些条件的最大的偶数是____。

3.有两个三位数,它们的和是999,如把较大数放在较小数的左边,点一个小数点在两数之间所成的数,正好等于把较小数放在较大数的左边,点一个小数点在两数之间所成的数的6倍,那么这两个数的差(大减小)是_____。

4.一千个体积为1立方厘米的小立方体合在一起成为一个边长为10厘米的大立方体,表面涂油漆后再分开为原来的小立方体,这些小立方体中至少有一面被油漆涂过的数目是_____。

5.某班有50名学生,参加语文竞赛的有28人,参加数学竞赛的有23人,参加英语竞赛的有20人,每人至多参加两科,那么参加两科的最多有_____人。

6.甲、乙两人进行百米赛跑,当甲到达终点时,乙在甲后面20米处;如果两人各自的速度不变,要使甲、乙两人同时到达终点,甲的起跑线应比原来的起跑线后移_____米。

7.一水池有一根进水管不断地进水,另有若干根相同的抽水管。

若用24根抽水管抽水,6小时即可把池中的水抽干;若用21根抽水管抽水,8小时可将池中的水抽干。

若用16根抽水管抽水,____小时可将池中的水抽干。

8.如右图, P为平行四边形ABCD外一点,已知三角形PAB与三角形PCD 的面积分别为7平方厘米和3平方厘米,那么平行四边形ABCD的面积为_____平方厘米。

9.甲、乙、丙三人跑步锻炼,都从A地同时出发,分别跑到B,C,D三地,然后立即往回跑,跑回A地再分别跑到B,C,D,再立即跑回A地,这样不停地来回跑。

B与A相距千米,C与A相距千米,D与A相距千米,甲每小时跑3.5千米,乙每小时跑4千米,丙每小时跑5千米。

问:若这样来回跑,三人第一次同时回到出发点需用____小时。

10.一个盒子里面装有标号为1到100的100张卡片,某人从盒子里随意抽卡片,如果要求取出的卡片中至少有两张标号之差为5,那么此人至少需要抽出_____张卡片。

第49届国际数学奥林匹克(IMO)试题及解答 (1)

第49届国际数学奥林匹克(IMO)试题及解答 (1)


2
,( 借) <丝掣( 2) . 舒任意n,6∈I,口<6,当A>0时恒有
剖析:这里( 1) 与( 2) 等价是有条件的,并不 是对任意的函数,( z) 都成立的.如反例:
当J =Q( 有理数) ,A为无理数时,则对于任
意 的 口 , 6, ∈ Q, 厂 (z)=z2, 有 竿 尝 ∈ Q, 所 以
6.在凸四边形ABcD中,BA≠BC,∞l 和 甜z 分 别足△ABC和△ADC的内 切圆.假 没存 在一个圆 鲫与射线BA相 切( 切点不在 线段BA 上),与射线BC相切( 切点不在线段BC上) ,且
与直线AD和直线CD都相切.证明:圆叫1和 c【J 2 的两条外公切线的交点在圆cc ,上.( 俄罗斯提供)
作圆的一条平行于ac的切线z靠近边上海中学数学2008年第l324006浙江省衢州高级中学吴光耀严密性是数学的三大特点之一数学计算与教学证明的严密性既是数学科学的特点又可以训练思维使学生细心周密而这些素质又指导学生去思考生活工作中的问题使他们养成周密稳重的习惯有助于提高基本素质
上海中学数学·2008年第l O期
证明:由于n一2Rs i nA,6—2Rs i nB,c一
2Rsi nC只要证:
■ — — i 忑 ■ 一 s i n2A+s i n2B

■.I
si

n2B— si n2C
— 瓦砑 ■ 一
f
、 彳
■垡g二堑垡垒! ……m
AC的那条) ,设 z与圆鲫相切于点丁,下证B,y, T三点共线.
田●
如图4,设z 与射线BA,BC分别交于点A1, C1,则圆御是三角形BAl Cl 的关于顶点B的旁 切圆,T是它与A1Cl 的切点,而圆叫3是三角形 BAC关于点B的旁切圆,圆螂与AC相切于点 V.则由Al Cl ∥AC知,△BAC和△BAl C1以B 为中心位似,而V,T分别是对应旁切圆与对应 边的切 点,因此 y,丁 是这一对位 似形中的 对应 点,而B是位似中心,故B,V,T共线,从巾i 命题 得证.

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

国际数学奥林匹克IMO试题(官方版)1986_eng

国际数学奥林匹克IMO试题(官方版)1986_eng

27th International Mathematical OlympiadWarsaw,PolandDay IJuly9,19861.Let d be any positive integer not equal to2,5,or13.Show that one canfinddistinct a,b in the set{2,5,13,d}such that ab−1is not a perfect square. 2.A triangle A1A2A3and a point P0are given in the plane.We define A s=A s−3for all s≥4.We construct a set of points P1,P2,P3,...,such that P k+1is the image of P k under a rotation with center A k+1through angle120◦clockwise (for k=0,1,2,...).Prove that if P1986=P0,then the triangle A1A2A3is equilateral.3.To each vertex of a regular pentagon an integer is assigned in such a way thatthe sum of allfive numbers is positive.If three consecutive vertices are assigned the numbers x,y,z respectively and y<0then the following operation is allowed:the numbers x,y,z are replaced by x+y,−y,z+y respectively.Such an operation is performed repeatedly as long as at least one of thefive numbers is negative.Determine whether this procedure necessarily comes to and end after afinite number of steps.27th International Mathematical OlympiadWarsaw,PolandDay IIJuly10,19864.Let A,B be adjacent vertices of a regular n-gon(n≥5)in the plane havingcenter at O.A triangle XY Z,which is congruent to and initially conincides with OAB,moves in the plane in such a way that Y and Z each trace out the whole boundary of the polygon,X remaining inside the polygon.Find the locus of X.5.Find all functions f,defined on the non-negative real numbers and taking non-negative real values,such that:(i)f(xf(y))f(y)=f(x+y)for all x,y≥0,(ii)f(2)=0,(iii)f(x)=0for0≤x<2.6.One is given afinite set of points in the plane,each point having integer coor-dinates.Is it always possible to color some of the points in the set red and the remaining points white in such a way that for any straight line L parallel to either one of the coordinate axes the difference(in absolute value)between the numbers of white point and red points on L is not greater than1?。

国际数学奥林匹克 IMO 竞赛试题

国际数学奥林匹克 IMO 竞赛试题

国际数学奥林匹克(IMO)竞赛试题(第2届)
1.找出所有具有下列性质的三位数N:N能被11整除且N/11等于N的各位数字的平方和.
2.寻找使下式成立的实数x:
3.直角三角形ABC的斜边BC的长为a,将它分成n 等份(n为奇数),令为从A 点向中间的那一小段线段所张的锐角,从A到BC边的高长为h,求证:
tan = 4nh/(an2 - a).
4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC.
5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D').X是对角线AC上任意一点,Y是B'D'上任意一点.
a.求XY中点的轨迹;
b.求(a)中轨迹上的、并且还满足ZY=2XZ的点Z的轨迹.
6.一个圆锥内有一内接球,又有一圆柱体外切于此圆球,其底面落在圆锥的底面上.令V1为圆锥的体积,V2为圆柱的体积.
(a) 求证:V1不等于V2;
(b) 求V1/V2的最小值;并在此情况下作出圆锥顶角的一般.
7.等腰梯形ABCD,AB平行于DC,BC=AD.令AB=a,CD=c,梯形的高为h.X点在对称轴上并使得角BXC、AXD都是直角.试作出所有这样的X点并计算X到两底的距离;再讨论在什么样的条件下这样的X点确实存在.。

(完整版)(完整版)2018年(第59届)国际数学奥林匹克(IMO)竞赛试题及答案图片版

(完整版)(完整版)2018年(第59届)国际数学奥林匹克(IMO)竞赛试题及答案图片版

岁马尼亚克卢日蜻沐卡第一天«1. itΓ<HΛ三角砒4〃C的外44圈・点D和EAru殳/CAC上∙^nAD ≈ AEφ BI)^CE的•克羊分线⅛Γ上劣弧AB AC分別文于点FG im ADE⅜FG1 ⅛A÷*t•⅛ 2.求所有的整4⅛□23∙便俗存在实软5皿2.・・・.<¼+2∙滿足"*ι = <M∙ 5∙2 Ua2异且<≡∙<<∙⅛1 + 1 = α∣÷3— 1.2. - - ■” 戍立・題3・反忖斷卡三蔦砒是由铁俎戎的一个正三角外障•港足除了鬟下方一行.孕个敦是它下方相你两金铁之屋的绘对值•例*\下而是一金四忡的反恤浙卡三角耐・由Hl MlO tt⅛.42 65 7 18 3 10 9请MΛ5 4Λ2018fτ的反帕浙卡三 E 包含IMl +2十・∙∙ + 2018所亦的蹩典?鈿二夭« 4.我们呀谓一个(IJL是斯d角坐栋丰而上的一个A(X.,V)∙乳中工・"需足不雄述20的正史软.最初时•所有400个位豆那是空的.甲乙两人轮濃霖放石子•由甲先遗ft∙毎次伦刘甲时.他41 一个空的住I±Λ±-¼*的化也若子•要求任急两金红己石子舸息<1 Jt之问的距离都不#于%・每次伦刘乙片•他/1任直一个空的CiJt上崔上一个M6⅛2Lt>&子.(Jl色石子所在位直与戻它石于所在位直之问雎禹可以是任倉值・)4此UAitfTT去直至某金人无法再霖放石子•试确岌遥大的位再无论乙知何报就這色若予.Y⅛*Ef⅛Ui∙>∙4X⅛K个红已若子・« 5. Ha i.a2.…走一个>LfPil正整软斥列.已知4在於敦N>l∙使碍对每个^Kn > .V t Oi i o2 . I Q*1“ I OH――+ — + ・• • + ・■■■・ + —。

国际数学奥林匹克IMO试题(官方版)1974_eng

国际数学奥林匹克IMO试题(官方版)1974_eng

Sixteenth International Olympiad,19741974/1.Three players A,B and C play the following game:On each of three cards an integer is written.These three numbers p,q,r satisfy0<p<q<r.The three cards are shuffled and one is dealt to each player.Each then receives the number of counters indicated by the card he holds.Then the cards are shuffled again;the counters remain with the players.This process(shuffling,dealing,giving out counters)takes place for at least two rounds.After the last round,A has20counters in all,B has10and C has9.At the last round B received r counters.Who received q counters on thefirst round?1974/2.In the triangle ABC,prove that there is a point D on side AB such that CD is the geometric mean of AD and DB if and only ifsin A sin B≤sin2C 2 .1974/3.Prove that the number nk=02n+12k+123k is not divisible by5for any integern≥0.1974/4.Consider decompositions of an8×8chessboard into p non-overlapping rect-angles subject to the following conditions:(i)Each rectangle has as many white squares as black squares.(ii)If a i is the number of white squares in the i-th rectangle,then a1<a2<···<a p.Find the maximum value of p for which such a decomposition is possible.For this value of p,determine all possible sequences a1,a2,···,a p. 1974/5.Determine all possible values ofS=aa+b+d+ba+b+c+cb+c+d+da+c+dwhere a,b,c,d are arbitrary positive numbers.1974/6.Let P be a non-constant polynomial with integer coefficients.If n(P)is the number of distinct integers k such that(P(k))2=1,prove that n(P)−deg(P)≤2,where deg(P)denotes the degree of the polynomial P.。

2020年国际数学奥林匹克(IMO)全部试题解答

2020年国际数学奥林匹克(IMO)全部试题解答

2020年第61届国际数学奥林匹克(IMO)全部试题解答海亮高级中学高三康榕博高二陈昶旭第一天第1题. 考虑凸四边形ABCD. 设P 是ABCD 内部一点. 且以下比例等式成立:∠PAD:∠PBA:∠DPA=1: 2 :3=∠CBP:∠BAP:∠BPC.证明: ∠ADP 的内角平分线、∠PCB 的内角平分线和线段AB 的垂直平分线三线共点.证明:如图,设∠PAD=α,∠PBC=β,则∠ABP=2α,∠BAP=2β, ∠APD=3α,∠BPC=3β,取△ABP外心O, 则∠AOP=4α=π-∠ADP∴A, O, P, D共圆.∴∠ADO=∠APO=∠PAO=∠PDO∴OD平分∠PDA.同理, OC平分∠PCB.而O为△ABP外心, 显然在AB中垂线上.故∠PDA平分线, ∠PCB平分线, AB中垂线均过点O.证毕.第2题. 设实数a, b, c, d 满足a ≥b ≥c ≥d > 0, 且 a + b + c + d = 1. 证明:(234)1a b c d a b c d a b c d +++<. 证明: 由加权AM -GM 不等式, 我们有2222a b c d a b c d a a b b c c d d a b c d <⋅+⋅+⋅+⋅=+++ 故只需证明22223(234)()()cyca b c d a b c d a ++++++<∑ (*)注意到332()36cyc cyc sym cyca a ab abc =++∑∑∑∑, 及32222cyca ab ad a a ++≥∑2232222222cyca b ab b bc bd b a ++++≥∑2222233333cyca cbc ac cd c a +++≥∑22234444cyc a d a b abd acd bcd d a ++++≥∑∴ (*)成立. 故原不等式成立.第3题. 有4n 枚小石子, 重量分别为1, 2, 3, . . . , 4n. 每一枚小石子都染了n 种颜色之一, 使得每种颜色的小石子恰有四枚. 证明: 我们可以把这些小石子分成两堆, 同时满足以下两个条件:• 两堆小石子有相同的总重量;• 每一堆恰有每种颜色的小石子各两枚.证明: 引理:将n 种颜色的点个4个两两分组, 则可取n 组使得每种颜色的点各2个.即证: n 阶4-正则图G(不一定简单)必有2-正则生成子图. n =1, G 为v 的2个自环, 成立.设0n n ≤成立, 则01n n =+时:若G 有点含两自环或有两点含4重边, 对其余部分用归纳假设,该部分取1自环或2重边即可.下设无这样的结构.若G 含三重边,设x,y 间有三条边, 且,(,)xu yv G u y v x ∈≠≠. 考虑将x,y 去掉, 并添入边uv 得到图G ’. 由归纳假设, 图G ’有2-正则生成子图, 若该图含添入的边 uv, 删去该边并加入ux, xy, yv 即可. 若不含, 加入xy, xy 即可.下设无三重边.显然G 有圈. 设最小圈为121,,...,t x x x x . 由G 无2自环,3重边知01t n <+, i x 有两边不指向12,,...t x x x . 设这两边指向,i i u v ,以下下标模t.在G 中删去点12,,...t x x x 并加入边1(1)i i i e u v i t +=≤≤得到G’. 由归纳假设, G ’有2-正则子图G 1.对1≤i ≤t, 若1i e G ∈, 则选择G 中的边11,i i i i x u x v ++, 若1i e G ∉, 则选自1i i x x +, 其余边按G 1中边选择, 则选出的边即为G 的2-正则生成子图的边集.结论成立.回到原题. 将重量为{,41}k n k +-的小石子分为一组.(12)k n ≤≤, 由引理可取n 组使每种颜色的小石子恰2个. 这2n 个分为一组, 其余分为一组, 此即满足条件的分法, 命题成立.第二天第4题. 给定整数n > 1. 在一座山上有n2个高度互不相同的缆车车站. 有两家缆车公司A和B, 各运营k辆缆车; 每辆从一个车站运行到某个更高的车站(中间不停留其他车站). A 公司的k辆缆车的k个起点互不相同,k个终点也互不相同, 并且起点较高的缆车,它的终点也较高. B公司的缆车也满足相同的条件. 我们称两个车站被某个公司连接,如果可以从其中较低的车站通过该公司的一辆或多辆缆车到达较高的车站(中间不允许在车站之间有其他移动). 确定最小的正整数k, 使得一定有两个车站被两个公司同时连接.解: 由题意得, 每个缆车与1或2个缆车相连. (否则有两辆缆车起点不同, 终点相同)∴A, B各自的缆车线路图可划分为若干个链.注意到每条链长度大于等于2, 且首尾两点不能作为终点和起点, 故恰有2n k-条链.若21k n n≥-+, 则A最多由n-1条链.由抽屉原理, 其中至少有一条链上有221nnn⎡⎤=+⎢⎥-⎢⎥个点, 设为P. 而B仅有n-1条链, 故P上一定有两个点同时在B 的一条链上, 则这两点可被两个公司同时连接.另一方面, 2k n n=-时, 记2n个车站高度排序为21,2,...n (从低到高)令A的2n n-辆缆车为2(1)i n i i n n→+≤≤-令B的2n n-辆缆车为21(11,|)i i i n n i→+≤≤-/易见此时任两个车站不能被两个公司同时相连.2 min 1k n n∴=-+.第5题. 有一叠n > 1张卡片. 在每张卡片上写有一个正整数. 这叠卡片具有如下性质:其中任意两张卡片上的数的算术平均值也等于这叠卡片中某一张或几张卡片上的数的几何平均值.确定所有的n, 使得可以推出这叠卡片上的数均相等? 解: 设这n 张卡片上的数为1212,,....(...)n n x x x x x x ≤≤. 若12gcd(,,...)1n x x x d =>, 用i x d 代替i x , 不影响结果. 故不妨设12gcd(,,...)1n x x x =.由题意得, 1,2i jx x i j n +∀≤≤≤为代数整数.则2|i j i x x x +⇒模2同余. 又12gcd(,,...)1n x x x =, 故i x 全为奇数.任取一个素数p, p ≥3.记{|1,|},{|1,|}i i i i A x i n p x B x i n p x =≤≤=≤≤/ 则对,,2x y x A y B +∀∈∈不为p 的倍数. 设121(...)2k k i i i x y x x x +=, 则121|(...)2k k i i i x y p x x x +=/ ∴对1,j i j k x B ∀≤≤∈.max 2i i x B x y x ∈+∴≤. 取max ,max i i i i x A x B x x y x ∈∈==, 则max max i i i i x A x B x x ∈∈≤若1n x ≠, 取n x 的奇素因子p, 由12gcd(,,...)1n x x x =知, i ∃, 使|i p x /.取0max{|1,|}i i i i n p x =≤≤/, 由上述结论知0n i x x ≤, 则o n i x x =. 又0|,|i n p x p x /, 矛盾!1n x ∴=. 则1,1i i n x ∀≤≤=.∴对任意n ≥2, 卡片上的所有数均相等.第6题. 证明: 存在正常数c 具有如下性质:对任意整数n > 1, 以及平面上n 个点的集合S, 若S 中任意两点之间的距离不小于1,则存在一条分离S 的直线ℓ, 使得S 中的每个点到直线ℓ 的距离不小于13cn -.(我们称直线ℓ分离点集S, 如果某条以S 中两点为端点的线段与ℓ 相交.)证明: 以每个点为圆心,12为半径作圆, 则这些圆两两公共部分面积为0.引理1: 对凸多边形P, 其内部最多由421s l π++个点在S 中,其中s,l 代表P 的面积和周长. 证明: 如图, 将P 的每条边往外侧平移12, 并以P 上每个点为圆心, 12为半径作圆, 拓展区域面积为124l π+. ∴P 内部最多1422414S l s l πππ+++=+个点. 现在对于一条直线l, 作S 中每个点在l 上的投影. 任取相邻两个投影点, 则这两点连线的中垂线分离点集S, 且所有的到该直线的距离≥12投影点距离.设S 的直径为D, 则可作一个以D 为边长的正方形覆盖S. 由引理1, 122481()D Dn D n π++≥⇒=Ω 设P,Q ∈S, PQ =D. 将PQ 作为上述l, 记我们所能做到的使每个点到一条直线的距离均不小于该数的最大值为d.由于仅与夹角有关, 故d 存在.而l 上除P,Q 外有n -2个投影点.2(1)2D D d n n∴≥>-. 又12()D n =Ω, 故12()d n -=Ω. 需证明13()d n -=Ω .取点集S 的凸包P. 若一直线过P 上一点且使得S 中所有点都在该线一侧, 我们认为其亦分离S. 称其为支撑边. 对于任一常数C, 作两条平行的距离为C 的直线, 满足这两条直线分离S. 作他们的垂线l, 设这个带状区域内有m 个S 中的点, 则11c c d m m d≥⇒≥-+. 不妨设(1)d o =, 则可以认为m 远远大于1. 为使m 尽量小, 应取两直线其中之一为支撑边.∴现在对于一条分离S 的直线l, 设l 与P 围成的区域内部有B 个点. P 中与l 距离最近的点到l 距离为0s , 则01s d B ≥+ (以下用≥代表数量级估计) 我们证明d≥从而311D d n D n ≥⋅= 则13()d n -=Ω. 如图, P 夹在这样一个区域里, 取XY 上一点Z, 使得0YZ s =. 过Z 作MN ⊥XY , 点M,N 在以X 为圆心, D 为半径的圆上. 则B ≤YMN 内S 中点的个数.不妨设XY 为x 轴, 对YMN 内任意两点1122(,),(,)x y x y , 221201212||,()()1x x s x x y y -≤-+-≥, 则12||1y y B -≥⇒≤+.而MN =02s d MN∴≥=+由于0(1)s =Θd ∴≥, 则13d n -≥, 即13()d n -=Ω证毕.。

2000年IMO中国国家集训队选拔考试试题

2000年IMO中国国家集训队选拔考试试题

2000年IMO中国国家集训队选拔考试试题时间:2004-6-11 15:36:00 来源:2000年IMO作者:姚健钢供题一、如图,在△ABC中,AB=AC,线段AB上有一点D,线段AC的延长线上有一点E,使得DE=AC;线段DE与 ABC的外接圆交于T点,P是线段AT的延长线上的一点.证明:点P满足PD+PE=AT的充分必要条件是点P在△ADE的外接圆上.(裘宗沪供题)二、给定正整数k、m、n,满足1≤k≤m≤n,试求的值,并写出推算过程.(许以超供题)三、对正整数a≥2,记Na为具有以下性质的正整数k的个数:k的a进制表示的各位数字的平方和等于k.证明:(1)Na为奇数;(2)对任意给定的正整数M,存在正整数a≥2,使得Na≥M.(陈永高供题)(2000-04-018:00~12:30)四、设f(x)是整系数多项式,并且f(x)=1有整数根.约定将所有满足上述条件的f组成的集合记为F.对于任意给定的整数k>1,求最小的整数m(k)>1,要求能保证存在f∈F,使得f(x)=m(k)恰有k个互不相同的整数根.(张筑生供题)五、(1)设a、b是正实数,数列{xk}和{yk}满足x0=1,y0=0,且k=0,1,2,….求证:xk=,其中λk,1=.(2)记uk=,对任意给定的正整数m,将uk除以2m所得的余数记为zm,k.求证:{zm,k },k=0,1,2,…,为纯周期数列,并求出最小正周期.(黄玉民供题)六、设n为正整数,记集合M={(x,y)|x,y是整数,1≤x,y≤n}.定义在M上的函数f具有性质:(a)f(x,y)取值于非负整数;(b)当1≤x≤n时,有=n-1;(c)若f(x1,y1)f(x2,y2)>0,则(x1-x2)(y1-y2)≥0.试计算这样的函数f的个数N(n),并求出N(4)的具体数值.。

最新第51届imo(国际数学奥林匹克竞赛(第1、2天试题含答案合集

最新第51届imo(国际数学奥林匹克竞赛(第1、2天试题含答案合集

晌爹冉时改扬链闪 竭辖聚梨惰需 逃歼讥鸦仪毡 晰丙儒脓娟妊 育耿睬像悯锣 巢钠玖明疼湃 撬瞪哥励噪卫 蓄杆醛舔妹由 府挞尖谢骂邻 宦慑醚渭啦怯 担慧赃缘柒抚 迸傻滋狱抠饭 咙奎蓉埃疟雍 辣娟缘弊抵霜 佑槛价狄遥幅 基驱瞬尿穆许 氮脖瀑大缓敞 华跳甭滥着名 圈扎表怯拖洗 汽止越盛乙俗 仑询丈袖全菩 税盐苏倦佳咖 堪骡挝椽究盟 质羌帅仁捞歧 卤浇鄂胡搁伍 脂脂疤的四姆 枝锤曾树儒关 惦胀灿勾暑秸 次六讲博湿浆 息被仇斗用状 呸籍到飘陶瞪 腻侨十裕领摔 您搭瑟舒么泪 银章糯赖淤厦 虹晴龙五只刹 告泌悠占仅棋 氛梅牢鄂锋启 坯辉拎妥昏鹅 屉酵饰甭佛企 乱纪村疤顿滁 磁艳伏 芍乖 递钦悼很坚僚 台蚊茫旧拼掸 崩良茄剖捌凳 戏捍惰筷邪饿 踞黑胳昨靡烹 狱膘待揪站歉 委弘衙跪兑睁 蝴苟蓝蘸烫疾 妥曙像抓础薛 牟抄贿擅爆虐 萎糟揪啪雪卜 糖步膨瞎幢硕 奠抓漾蒂蚕侈 趾遂乱股瘩硫 强斜胶弊拎侵 枷皿痔反记净 服县蘸椿楷滦 蝶宏卵负双命 甭棉实撇钟卓 滤杀羌烦秉威 非戊辅千念咆 鲜券乒刨著肌 樱伺占乍任鹿 络罪征演鹰凯 摔申镰肮崇员 砍档游纸琢祟 晦圣脆达芍条 石上麓朵许逆 馅腿畅毒届秒 曼度嫂彭酶奇 彝验符疤调何 蔗卧榔篷署拔 辩插会阂病期 号茨肖烧肃名 烬扩题场亮淌 雍匪淑流喘唬 喊槽吠夏韩炕 话忻哉鄂枢靡 巡愈怪汛四杏 赏悬屏 逢遇断鸳罢制矩室 稀秋滇第 51 届 imo(国际 数学奥林匹克 竞赛)(第 1 、2 天试题含 答案)翰酋交 褪筒骄勉束芭 北苹菇岸要隧 厘感尼己盾秸 嘘菠袋茵妆宣 待旨荧累矽馅 待符如蛊选滤 过吊桂械愿恳 廷骏镐畜兹斋 析阜涨但男濒 紫况粗笋冗官 静番焚蚂雹纯 勺貉春暗中测 减稳通墨售予 耿增哺腰咖挥 急屠散神赐霞 眩阐蘑伞诵猾 惊跺施几鹊粗 景逻驻社港并 敷履梁央盂籽 仰罚对授韵壤 讫稗矣渝悲抨 渗新靠隋拂楔 掩沁痔粹含惺 共章坦尼救糠 途棺恤盾儿懈 侄现别男磁床 靠镑拉倘噶哲 敢幽植航距课 鸣梢郁盗弗肺 曳工蛊壁划拘 之坯挫袖昭镣 帽睦肛帘狡腻 侄颤赎防钱歧 酱蛊固坡 乡痞俞裤瘫墩身煮 宛伯姜恿乳啊 荆阵旬沾刷雏 课汕住囱沽誓 廊搬业联似踞 够滔予稿为勿 梦举饰巍局萌 锤教掐箕爹封 悔

奥数imo题目

奥数imo题目

奥数imo题目国际数学奥林匹克(IMO)的题目难度很高,需要参赛者具备深厚的数学基础和较高的解题能力。

以下是一些IMO的题目,供您参考:1. 设$x, y, z$是正实数,满足$xyz = 2$,求证:$\frac{x}{\sqrt{y}} +\frac{y}{\sqrt{z}} + \frac{z}{\sqrt{x}} \geq 2\sqrt{3}$。

2. 设$a_{1}, a_{2}, \ldots, a_{n}$是正实数,满足$a_{1}a_{2}\cdots a_{n} = 1$,求证:$\sqrt{a_{1}} + \sqrt{a_{2}} + \cdots + \sqrt{a_{n}} \geq n + \sqrt{n}$。

3. 设$f(x) = ax^{2} + bx + c$,其中$a, b, c \in \mathbb{R}$,且满足$f(x) \geq 0$对于所有$x \in \mathbb{R}$都成立。

求证:$(b^{2} - 4ac) \log{\frac{b}{\sqrt{a^{2} + b^{2}}} \leq 2\sqrt{2}$。

4. 设$x_{1}, x_{2}, \ldots, x_{n}$是正实数,满足$x_{1} + x_{2} + \cdots + x_{n} = 1$,求证:$(n - 1)\left( x_{1}^{2} + x_{2}^{2} + \cdots +x_{n}^{2} \right) \geq n^{3}(x_{1}x_{2}\cdots x_{n})$。

5. 设$a_{1}, a_{2}, \ldots, a_{n}$是正实数,满足$a_{1} + a_{2} + \cdots + a_{n} = 1$,求证:$\frac{a_{1}}{a_{2}} + \frac{a_{2}}{a_{3}} + \cdots + \frac{a_{n - 1}}{a_{n}} + \frac{a_{n}}{a_{1}} \geq n^{2}$。

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题

imo数学奥林匹克历届试题IMO(International Mathematical Olympiad)是国际数学奥林匹克竞赛的英文简称,是世界范围内最具影响力的数学竞赛之一。

自1959年起,IMO每年都在不同国家举办,每个国家都会派出一支由高中生组成的代表队参赛。

这场竞赛旨在挑战学生的数学智力、培养他们的创新思维和解决问题的能力。

在这篇文章中,我们将回顾IMO数学奥林匹克的历届试题,展示一些经典问题的解决方法。

1. 第一届IMO(1959年)题目:证明当n为整数时,n^2 + n + 41为素数。

解析:我们可以通过代入不同的整数n来验证这个结论。

当n=1时,结果为43,为素数;当n=2时,结果为47,同样为素数。

我们可以继续代入更多的整数,发现每次结果都是素数。

虽然这种代入法不能证明对于所有的整数n都成立,但是通过大量的例子验证,我们可以有很高的信心认为这个结论是成立的。

2. 第十届IMO(1968年)题目:证明不等式(1+1/n)^n < 3,其中n是大于1的整数。

解析:我们可以通过数学归纳法证明这个不等式。

首先,当n=2时,不等式成立:(1+1/2)^2 = 2.25 < 3。

假设当n=k时不等式成立,即(1+1/k)^k < 3。

我们需要证明当n=k+1时,不等式也成立。

通过观察(1+1/k)^k,我们可以发现随着k的增大,(1+1/k)^k的值趋近于e,其中e是自然对数的底数。

而e约等于2.71828,小于3。

因此,当n=k+1时,(1+1/(k+1))^(k+1) < (1+1/k)^k < 3。

根据数学归纳法原理,我们可以得出对于所有的n大于1的整数,不等式(1+1/n)^n < 3成立。

3. 第二十二届IMO(1981年)题目:设a、b、c是一个正数的三个边长,证明不等式(a^2 + b^2)/(a+b) + (b^2 + c^2)/(b+c) + (c^2 + a^2)/(c+a) ≥ a + b + c。

imo试题答案

imo试题答案

imo试题答案一、选择题1. 以下哪个选项是IMO历史上最年轻的金牌获得者?A. 彼得·舒尔茨B. 陶哲轩C. 陈景润D. 约翰·纳什答案:B. 陶哲轩2. IMO竞赛中,每天的试题解答时间是多少小时?A. 3小时B. 4小时C. 5小时D. 6小时答案:C. 5小时3. IMO试题通常由哪个组织提供?A. 各国数学奥林匹克委员会B. 国际数学联合会C. 主办国的数学学会D. 国际奥林匹克委员会答案:C. 主办国的数学学会4. 在IMO竞赛中,参赛者需要解决多少个问题?A. 3个B. 4个C. 5个D. 6个答案:B. 4个5. IMO试题的答案需要满足什么条件?A. 必须是唯一的B. 必须是普遍接受的C. 必须是简洁的D. 必须是证明过程完整的答案:D. 必须是证明过程完整的二、填空题1. IMO竞赛始于______年,首届比赛在______举行。

答案:1959年,罗马尼亚2. 每位参赛者在IMO竞赛中每天需要解答______个问题,共计______分。

答案:3个,45分3. IMO试题的难度通常分为三个等级,分别是______、______和______。

答案:简单、中等、困难4. 参赛者在IMO竞赛中获得的最高分是______分。

答案:42分5. 根据IMO规则,每个国家可以派出最多______名参赛者。

答案:6名三、解答题1. 请简述IMO竞赛的评分标准。

答:IMO竞赛的评分标准非常严格。

每个问题的满分为7分,参赛者需要提供完整且正确的解答过程才能获得满分。

评委会根据解答的正确性、完整性和逻辑性来评分。

如果解答过程中有错误或者不完整,将会扣除相应的分数。

每个参赛者需要在两天内解答四个问题,每天三个问题,总分42分。

2. 描述IMO竞赛的选拔过程。

答:各国选拔参加IMO竞赛的选手通常通过国内数学奥林匹克竞赛进行选拔。

选拔过程包括初赛、复赛和最终的国家集训队选拔。

在国家集训队中,选手们会接受高强度的培训和模拟比赛,最终选拔出最优秀的选手代表国家参加国际数学奥林匹克竞赛。

第49届国际数学奥林匹克(IMO)试题及解答

第49届国际数学奥林匹克(IMO)试题及解答

第49届国际数学奥林匹克(IMO)试题及解答
佚名
【期刊名称】《上海中学数学》
【年(卷),期】2008(000)010
【摘要】@@ 第二天rn2008年7月17日,星期四rn(接第9期)rn4.求所有的函数,f:(0,+∞)→(0,+∞),满足对所有的正实数w,x,y,z,z,wx=yz,都有
(f(w))2+(f(x))2/f(y2)+f(z)2=w2+xw/y2+z2.(韩国提供)
【总页数】3页(P3-5)
【正文语种】中文
【相关文献】
1.第51届国际数学奥林匹克(IMO)竞赛试题 [J],
2.第49届国际数学奥林匹克(IMO)试题及解答 [J], 马德里
3.第47届国际数学奥林匹克(IMO)中国代表队选拔考试试题 [J], 无
4.第46届国际数学奥林匹克(IMO)试题 [J], 王建伟
5.第46届国际数学奥林匹克(IMO)试题解答 [J], 王建伟
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

41st IMO2000
Problem1.AB is tangent to the circles CAMN and NMBD.M lies between C and D on the line CD,and CD is parallel to AB.The chords NA and CM meet at P;the chords NB and MD meet at Q.The rays CA and DB meet at E.Prove that P E=QE.
Problem2.A,B,C are positive reals with product1.Prove that(A−1+
1 B )(B−1+1
C
)(C−1+1
A
)≤1.
Problem3.k is a positive real.N is an integer greater than1.N points are placed on a line,not all coincident.A move is carried out as follows. Pick any two points A and B which are not coincident.Suppose that A lies to the right of B.Replace B by another point B to the right of A such that AB =kBA.For what values of k can we move the points arbitrarily far to the right by repeated moves?
Problem4.100cards are numbered1to100(each card different)and placed in3boxes(at least one card in each box).How many ways can this be done so that if two boxes are selected and a card is taken from each,then the knowledge of their sum alone is always sufficient to identify the third box?
Problem5.Can wefind N divisible by just2000different primes,so that N divides2N+1?[N may be divisible by a prime power.]
Problem6.A1A2A3is an acute-angled triangle.The foot of the altitude from A i is K i and the incircle touches the side opposite A i at L i.The line K1K2is reflected in the line L1L2.Similarly,the line K2K3is reflected in L2L3and K3K1is reflected in L3L1.Show that the three new lines form a triangle with vertices on the incircle.
1。

相关文档
最新文档