第五章分子发光分析法(精)

合集下载

分子发光分析法

分子发光分析法

3.检测器 3.检测器
荧光计采用光电管作检测器 荧光分光光度计采用光电倍增管作检测器 电感耦合器件(charge couple device, CCD)
四、荧光分析方法与应用
1. 特点: 特点: (1)灵敏度高 比紫外-可见分光光度法高2~4个数量级

光度法 A = lg I0/I = KC 荧光法 I= KC
(c) 刚性平面结构:可减少分子振动,减少与溶剂的相互作用 刚性平面结构:
(d) 取代基效应 取代基效应:给电子取代基使荧光增强;吸电子取代基使荧光减弱 如苯胺和苯酚荧光较强,而硝基苯为非荧光物质 (e)重原子效应 )重原子效应:卤素取代基随原子序数的增加,荧光减弱,而磷光增强
(3)荧光螯合物 荧光螯合物
I p = 2 . 3ϕ p I o c
式中:Ip 为磷光效率,Io 为激发光的强度人为磷光物质的摩尔吸收系数,b为 试样池的光程。在一定的条件下,ϕ 、I p、 、b均为常数,因此上式可写成: κ
I p = Kc
根据上式可以用磷光强度对磷光物质浓度制作定量分析的标准曲线
2. 温度对磷光强度的影响:随着温度的降低,磷光逐渐增强 温度对磷光强度的影响: 3.重原子效应: 3.重原子效应:重原子的高核电荷使磷光分子的电子能级交错,容易引 重原子效应 起或增强磷光分子的自旋轨道偶合作用,从而使S 起或增强磷光分子的自旋轨道偶合作用,从而使S1→ T1的体系间窜跃 概率增大,有利于增大磷光效率。 4.室温磷光 4.室温磷光 (1)固体基质:在室温下以固体基质吸附磷光体,增加分子刚性、减少三重 态猝灭等非辐射跃迁,从而提高磷光量子效率。 (2)胶束增稳:利用表面活性剂在临界浓度形成具多相性的胶束,改变磷光 体的微环境、增加定向约束力,从而减小内转换和碰撞等去活化的几率,提 高三重态的稳定性。 (3)敏化磷光: 激发三重态将能量转移于另一易发磷光的受体,让其法磷光

分子发光分析法

分子发光分析法

只有在极稀的溶液中,当 b c <0.02时才成立,对于浓度较 高的溶液,由于自猝灭和自吸收等原因,使荧光强度和荧光 物质浓度不呈线性关系。
3 .荧光的产生与分子结构的关系
• 分子产生荧光必须具备两个条件: • 物质分子必须具有能吸收一定频率紫外可见辐射
的特征结构,分子必须具有吸光的结构 • 吸光后被激发的分子还必须具有高的荧光量子产
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320
380 440醇溶液荧(磷)光光谱
7-1 概述
• 分子发光分析法包括荧光分析法、磷光分析法和化学发光 分析法。这三种都是通过测量被激发的分子回到基态时所 发射的光辐射来进行分析的,不同之处在于光谱产生的机 制。
荧光强度 If正比于吸收的光量Ia和荧光量子效率 :

If = Ia

由朗-比耳定律: Ia = I0(1-10- b c )

If = I0(1-10- b c ) = I0(1-e-2.3 b c )
• 浓度很低时,将括号项近似处理后:

If = 2.3 I0 b c = Kc
② 荧光 (或磷光)发射光谱
• 固定激发光波长(选最大激发波长), 化合物发射的荧光(或 磷光强度)与发射光波长关系曲线。
荧光发射光谱 荧光激发光谱
磷光光谱
200
260 320
380 440 500 560 620
室温下菲的乙醇溶液荧(磷)光光谱
③ 激发光谱与发射光谱的关系
(1) Stokes(斯托克斯)位移 激发光谱与发射光谱之间的波长差值。发射光谱的波长比
激发光谱的长,振动弛豫消耗了能量。 (2) 荧光光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量(如l2

分子发光—荧光、磷光和化学发光法

分子发光—荧光、磷光和化学发光法

第5章分子发光—荧光、磷光和化学发光法(Molecular Emisssion and Luminescence)(3学时)教学目的和要求:1.学会分子发光——荧光、磷光和化学发光原理。

2.了解分子发光——荧光、磷光和化学发光法的特点和应用。

教学要点和所涵盖的知识点:荧光、磷光和化学发光原理、仪器、分析方法及应用重点和难点:荧光的原理、仪器、分析方法及应用。

分子发光:处于基态的分子吸收能量(电、热、化学和光能等)被激发至激发态,然后从不稳定的激发态返回至基态并发射出光子,此种现象称为发光。

发光分析包括荧光、磷光、化学发光、生物发光等。

物质吸收光能后所产生的光辐射称之为荧光和磷光。

第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

荧光分析的特点:灵敏度高:视不同物质,检测下限在0.1~0.001μg/mL之间。

可见比UV-Vis 的灵敏度高得多。

选择性好:可同时用激发光谱和荧光发射光谱定性。

结构信息量多:包括物质激发光谱、发射光谱、光强、荧光量子效率、荧光寿命等。

应用不广泛:主要是因为能发荧光的物质不具普遍性、增强荧光的方法有限、外界环境对荧光量子效率影响大、干扰测量的因素较多。

二、基本原理1、分子荧光的产生处于分子基态单重态中的电子对,其自旋方向相反,当其中一个电子被激发时,通常跃迁至第一激发态单重态轨道上,也可能跃迁至能级更高的单重态上。

这种跃迁是符合光谱选律的,如果跃迁至第一激发三重态轨道上,则属于禁阻跃迁。

单重态与三重态的区别在于电子自旋方向不同,激发三重态具有较低能级。

在单重激发态中,两个电子平行自旋,单重态分子具有抗磁性,其激发态的平均寿命大约为10-8s;而三重态分子具有顺磁性,其激发态的平均寿命为10-4~1s以上(通常用S和T分别表示单重态和三重态)。

处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式再回到基态。

辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射;无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫( VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC)等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构及激发时的物理和化学环境等因素有关。

仪器分析作业03参考答案(第三、五章紫外可见分光光度法+分子发光分析法)华南理工大学仪器分析

仪器分析作业03参考答案(第三、五章紫外可见分光光度法+分子发光分析法)华南理工大学仪器分析

01. 溶液有颜色是因为它吸收了可见光中特定波长范围的光。

若某溶液呈蓝色,它吸收的是什么颜色的光?若溶液无色透明,是否表示它不吸收光?答:溶液呈蓝色,表明其吸收了蓝光的互补光,即黄光(若答是吸收了黄光外的所有可见光,不能说错,但是这样的情况过于巧合,少见!)。

若溶液无色透明,仅能说明其不吸收可见波段的光。

2. 分别在己烷和水中测定某化合物UV-Vis 光谱,发现该化合物的某个吸收峰由285 nm (己烷)蓝移至275 nm (水),(1)判断产生该吸收峰的跃迁类型;(2)试估算该化合物与水生成氢键的强度。

答:(1)溶剂极性增大,λmax 蓝移,表明该吸收峰是由n →π*跃迁产生的。

(2)()()⎪⎪⎭⎫⎝⎛λ-λ⋅⋅=己烷氢键max O H max A 11hc N E 2 ⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯=--99834-23102851-102751100.31063.61002.61mol J 28.15-⋅=3. 按从小到大顺序对下列化合物的λmax 排序,并简单说明理由(不要想得太复杂)A. NO 2B. NO 2t-C 4H 9t-C 4H 9 C.NO 2CH 3 D. NO 2C 2H 5答:B<D<C<A (空间位阻依次减小,共轭程度依次增加,λmax 红移)4. 某化合物分子式为C 10H 16,用其他仪器方法已经证明有双键和异丙基存在,其紫外光谱λmax =230 nm (ε=9000),1mol 该化合物只能吸收2 mol H 2,加氢后得到1-甲基-4异丙基环己烷,试确定该化合物的可能结构。

答: 1mol 该化合物只能吸收2 mol H 2,且其紫外光谱λmax =230 nm (ε=9000)可知该化合物含两个共轭但非同环双键(同环共轭双键基值为253 nm );该化合物含异丙基(双键不会出现在异丙基上),根据加氢后产物结构可推出该化合物可能结构如下:根据Woodward 规则可计算出该化合物的λmax =214+5(环外双键)+5⨯2(烷基取代)=229 nm ,与所测值相符。

分子发光分析法

分子发光分析法

第五章 分子发光分析法: 基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光。

第一节 荧光分析法一、概 述 :分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

与分光光度法相比,荧光分析法的最大优点是灵敏度高和选择性高。

二、荧光产生的基本原理(一)分子荧光的产生(二)荧光效率及其影响因素1.荧光效率2.荧光与分子结构的关系(1)产生荧光的条件①必须含有共轭双键这样的强吸收基团,并且体系越大, 电子的离域性越强,越容易被激发产生荧光;大部分荧光物质都含有一个以上的芳香环,且随共轭芳环的增大,荧光效率越高,荧光波长越长。

②分子的刚性平面结构有利于荧光的产生③.取代基对荧光物质的荧光特征和强度的影响 给电子基团:-OH 、-NH2、-NR2和-OR 等可使共轭体系增大,导致荧光增强。

吸电子基团:-COOH 、-NO 和-NO2等使荧光减弱。

随着卤素取代基中卤原子序数的增加,使系间窜跃加强,物质的荧光减弱,而磷光增强。

3.环境因素对荧光强度的影响(1)溶剂极性对荧光强度的影响: 一般来说,电子激发态比基态具有更大的极性。

溶剂的极性增强,对激发态会产生更大的稳定作用,结果使物质的荧光波长红移,荧光强度增大. 奎宁在苯、乙醇和水中荧光效率的相对大小为1、30和1000。

(2)温度荧光强度的影响: 一般情况下,辐射跃迁的速率基本不随温度而改变,而非辐射跃迁的速率随温度升高而显著增大。

对大多数的荧光物质而言,升高温度会使非辐射跃迁概率增大,荧光效率降低。

由于三重态的寿命比单重激发态寿命更长,温度对于磷光的影响比荧光更大。

(3)pH 对荧光强度的影响:共轭酸碱两种体型具有不同的电子氛围,往往表现为具有不同荧光性质的两种体型,各具有自己特殊的荧光效率和荧光波长。

另外,溶液中表面活性剂的存在,可以使荧光物质处于更有序的胶束微环境中,对处于激发单重态的荧光物质分子起保护作用,减小非辐射跃迁的概率,提高荧光效率。

chapter5分子磷光和荧光

chapter5分子磷光和荧光
有不同衍射图
电子衍射:电子衍射是透射电子显微镜的
一、荧光与磷光的产生过程
luminescence process of molecular fluorescence phosphorescence
1. 分子能级与跃迁 分子能级比原子能级复杂; 在每个电子能级上,都存在振动、转动能
级; 基态(S0)→激发态(S1、S2、激发态振动能
级):吸收特定频率的辐射;量子化;跃迁一 次到位;
2.电子激发态的多重度 电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数和(0或1); 分子中一对电子为自旋反平行,S=0,M=1,这 种态被称为单重态或单线态,大多数有机分子 的基态处于单重态。 处于S0态的一对电子吸收光子受激后,产生了在 两平个行轨自道旋中比自成旋 方 向 平 行 的 电 子 , 这 时 S=1 , M对=自3,旋这稳种定状(态洪称为三重态或三线态。 特规则),三重 态能级比相应
11. 顺磁共振波谱分析法 在外磁场的作用下,电子的自旋磁矩
与磁场相互作用而裂分为磁量子数不同的 磁能级,吸收微波辐射后产生能级跃迁, 1根2. 据旋吸光收法光谱可进行结构分析。
溶液的旋光性与分子的非对称结构有 密切关系,可利用旋光法研究某些天然产 物及配合物的立体化学问题,旋光计测定 1糖3. 的衍含射量法。 X射线衍射:研究晶体结构,不同晶体具
二、激发光谱与荧光光谱
excitation spectrum and fluore-scence spectrum
三、荧光的产生与分子结构关系
relation between fluorescence and molecular structure
四、影响荧光强度的因素
factor influenced fluorescence

第五章分子发光—荧光、磷光和化学发光法

第五章分子发光—荧光、磷光和化学发光法

2.化学发光效率
发射光子的分子数 cl ce em 参加反应的分子数
激发态分子数 化学效率: ce 参加反应分子数
发光效率:
em
产生光子数 激发态分子数
时刻t 的化学发光强度(单位时间发射的光量子数):
dc I cl t cl dt
dc/dt 分析物参加反应的速率;
目 录
5-1 荧光和磷光光谱法
5-1-1 5-1-2 5-1-3 5-1-4 基本原理 荧光分析仪器 荧光分析方法的特点与应用 磷光分析法
5-2 化学发光与生物发光分析法
5-1-1 基本原理
5-1-1-1 5-1-1-2 5-1-1-3 5-1-1-4 荧光和磷光的产生 光谱曲线 荧光的影响因素 荧光强度的定量关系
5-1-1-4 荧光强度的定量关系
根据Parker方程,荧光强度F与荧光物质的浓度c 之间的关系是:
F 2.3kI 0 Fcl[1 (2.3cl) / 2! (2.3cl) 2 / 3! ]
k 与仪器有关的常数
I0 激发光的强度 F 荧光量子产率 荧光物质在激发波长处的摩尔吸光系数 l 光程长度。
当cl项很小时,括号内第二项及以后的高次项均 可忽略不计,Parker方程可简化为: F 2.3kI 0 Fcl F = Kc
5-1-2 荧光分析仪器
5-1-2-1 荧光分析仪器框图
光源
消除溶液中可能共存的其它 光线的干扰,以获得所需要 的荧光.
显示
激发光单色器
信号处理
I0
样品池 F 发射光单色器 (荧光单色器) 检测器
4.化学发光反应的类型
(1)气相化学发光反应 a. 一氧化氮与O3的发光反应(可测定空气中NO2的含量) NO + O3 → NO2* NO2* → NO2 + h

发光分析法

发光分析法

3.苯环上取代基的类型
1) 给电子基团使荧光增强;
2) 同π电子体系相互作用较小的取代基和 烷基对分子荧光影响不明显; 3) 吸电子基团及卤素会减弱甚至破坏荧光。
五、环境对荧光的影响
1.温度的影响 一般说来,大多数荧光物质的溶液随 着温度的降低,荧光效率和荧光强度将增 加,相反,温度升高荧光效率将下降。 如荧光素的乙醇溶液在0℃以下每降低10 ℃, 荧光效率增加3%,冷至-80℃时,荧光效率 为100%。
第五章 发光分析法
概述 分子荧光分析理论基础 定量分析方法 荧光计和荧光分光光度计 分子荧光分析法在医学检验中的应用
§1 概述
发光分析包括:
(1)分子荧光分析 (2)磷光分析 (3)化学发光分析 (4)原子荧光分光光度法
分子荧光分析和磷光分析
(Molecule fluorescence analysis and phosphorescence analysis)
§5 分子荧光分析法的在医学检验中的应用 1.无机阳离子发生荧光的很少,但很多能与 一些有机试剂形成荧光络合物而被测定; 2.一些阴离子能使荧光减弱,可利用荧光猝 灭法测定; 3.脂肪族有机物分子能发生荧光的也不多, 可与某些有机试剂反应后生成会发射荧光的 衍生物加以测定;
4.芳香族化合物因有共轭结构,多数能发射荧 光; 5.弱荧光的芳香族化合物也可与荧光试剂作用 生成强荧光衍生物以提高测量灵敏度。
2.两个光谱的形状及其相互间的关系
两个光谱的形状 ⑴ 荧光物质的激发光谱与紫外吸收光谱形状 相似 (2) 激发波长不同时,荧光光谱的形状、位置 都相同。但荧光物质发射的荧光强度不同, 最大激发波长下产生的荧光最强。
两个谱带的相互关系: ⑴ 荧光波长一般比激发波长要长(前者能量较 低); ⑵ 两者形状相似,呈镜像对称。

分子发光分析法

分子发光分析法

第7章分子发光分析法【7-1】解释下列名词。

(1)单重态;(2)三重态;(3)荧光;(4)磷光;(5)化学发光;(6)量子产率;(7)荧光猝灭;(8)振动弛豫;(9)系间跨越;(10)内转换;(11)重原子效应。

答:(1)单重态:在给定轨道中的两个电子,必定以相反方向自旋,自旋量子数分别为1/2和-1/2,其总自旋量子数s=0。

电子能级的多重性用M=2s+1=1,即自旋方向相反的电子能级多重性为1。

此时分子所处的电子能态称为单重态或单线态,用S表示。

(2)三重态:当两个电子自旋方向相同时,自旋量子数都为1/2,其总自旋量子数s=1。

电子能级的多重性用M=2s+1=3,即自旋方向相同的电子能级多重性为3,此时分子所处的电子能态称为三重态或三线态,用T表示。

(3)荧光:分子受到激发后,无论处于哪一个激发单重态,都可通过振动弛豫及内转换,回到第一激发单重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光。

(4)磷光:分子受到激发后,无论处于哪一个激发单重态,都可通过内转换、振动弛豫和体系间跨越,回到第一激发三重态的最低振动能级,然后以辐射形式回到基态的各个振动能级发射的光(5)化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。

表示。

(6)量子产率:激发态分子发射荧光的光子数与基态分子吸收激发光的光子数之比,常用f(7)荧光猝灭:指荧光物质分子与溶剂分子之间发生猝灭,荧光猝灭分为静态猝灭和动态猝灭。

(8)振动弛豫:处于激发态最高振动能级的外层电子回到同一电子激发态的最低振动能级以非辐射的形式将能量释放的过程。

(9)系间跨越:处于激发态分子的电子发生自旋反转而使分子的多重性发生变化的过程。

即分子由激发单重态以无辐射形式跨越到激发三重态的过程。

(10)内转换:相同多重态的两个电子态之间的非辐射跃迁。

(11)重原子效应:使用含有重原子的溶剂(如碘乙烷、溴乙烷)或在磷光物质中引入重原子取代基,都可以提高磷光物质的磷光强度,这种效应称为重原子效应。

分析化学-分子发光分析法

分析化学-分子发光分析法

3. 流式细胞术(FCM) 对悬液中的单细胞或其他生物粒子,通过检测
标记的荧光信号,实现高速、逐一的细胞定量 分析和分选的技术。
§4 化学发光分析法
Chemiluminescence Analysis
基本原理 化学发光反应类型 化学发光测量仪器 化学发光分析法的应用
一、基本原理
化学发光是由于化学反应而导致的光发射。 发生于生命体系的化学发光称为生物发光。 生物发光均有酶(荧光素酶)参加。
最大化学发光强度与发光物质浓度成正 比: Icl max = Kc
化学发光的积分值与发光物质浓度成正 比: Icl = Kc
二、化学发光反应的类型
直接化学发光
A 十 B C* , C* C 十 hν
间接(敏化)化学发光 A 十 B C* + D , C*+ F C 十 F*
F* F 十 hν
三、New technique of fluorescence analysis
1. 激光荧光分析 F 与 I0 成正比,激光的强度大,可提高
荧光法的灵敏度。
2.时间分辨荧光分析
由于不同分子的荧光寿命不同,在激发 和检测之间延缓一段时间,使不同荧光寿命 的物质达到分别检测的目的。
时间分辨荧光免疫法 将稀土元素的螯合物标记抗体,与体液中 的抗原结合。当加入一种增效剂时,稀土 元素被释放出来,形成新的螯合物,能产生 长寿命的 荧光(10 ~1000 μs)。待样品中 蛋白质等物质所发荧光完全衰减后进行测定, 可有效消除背景干扰。 已用于测定甲胎蛋白、促性腺绒毛激素、 皮质醇等体内微量物质的测定。
2.化学发光免疫分析仪
化学发光免疫分析是将化学发光分析和 免疫分析相结合而建立的一种超微量分析 技术。兼具发光分析的高灵敏性和抗原抗 体反应的高特异性的特点。

分子发光分析法

分子发光分析法

分子发光分析法基态分子吸收了一定能量后,跃迁至激发态,当激发态分子以辐射跃迁形式将其能量释放返回基态时,便产生分子发光(Molecular Luminescence)。

依据激发的模式不同,分子发光分为光致发光、热致发光、场致发光和化学发光等。

光致发光按激发态的类型又可分为荧光和磷光两种。

本章讨论分子荧光(Molecular Fluorescence)、分子磷光(Molecular Phosphorescence)和化学发光(Chemiluminescence)分析法。

第一节荧光分析法一、概述分子荧光分析法是根据物质的分子荧光光谱进行定性,以荧光强度进行定量的一种分析方法。

早在16世纪,人们观察到当紫外和可见光照射到某些物质时。

这些物质就会发出各种颜色和不同强度的光,而当照射停止时,物质的发光也随之很快消失。

到1852年才由斯托克斯(Stokes)给予了解释,即它是物质在吸收了光能后发射出的分子荧光。

斯托克斯在对荧光强度与浓度之间的关系进行研究的基础上,于1864年提出可将荧光作为一种分析手段。

1867年Goppelsroder应用铝—桑色素络合物的荧光对铝进行了测定。

进入20世纪,随着荧光分析仪器的问世,荧光分析的方法和技术得到了极大发展,如今已成为一种重要且有效的光谱分析手段。

荧光分析法的最大优点是灵敏度高,它的检出限通常比分光光度法低2~4个数量级,选择性也较分光光度法好。

虽然能产生强荧光的化合物相对较少,荧光分析法的应用不如分光光度法广泛,但由于它的高灵敏度以及许多重要的生物物质都具有荧光性质。

使得该方法在药物、临床、环境、食品的微量、痕量分析以及生命科学研究各个领域具有重要意义。

二、基本原理(一)分子荧光的产生大多数分子含有偶数电子。

根据保里不相容原理,基态分子的每一个轨道中两个电子的自旋方向总是相反的,因而大多数基态分子处于单重态(2S+1=1),基态单重态以S0表示。

当物质受光照射时,基态分子吸收光能就会产生电子能级跃迁而处于第一、第二电子激发单重态,以S1、S2表示。

分子发光分析

分子发光分析
3
第一节
荧光分析法
处于激发态的电子,通常以辐射跃迁方式或无辐
射跃迁方式再回到基态。
辐射跃迁:荧光、磷光的发射。
无辐射跃迁:振动弛豫(VR)、内转化(ic)、
体系间窜跃(isc)等。
4
三重态能级低于单重态 (Hund规则)
激发单重态:分子吸收能 量,电子自旋仍然配对, 为单重态,称为激发单 重态,以S1,S2…表示
一、概述 定义:某些物质在进行化学反应时,由于吸收了 反应时产生的化学能,而使反应产物分子激发至 激发态,受激分子由激发态回到基态时,便发出 一定波长的光。这种吸收化学能使分子发光的过 程称为化学发光。利用化学发光反应而建立起来 的分析方法称为化学发光分析法。 特点:p62
27
第三节
化学发光分析
二、基本原理 (一)化学发光反应的条件: 能快速释放出足够的能量。化学反应必须提 供足够的激发能,激发能主要来源于反应焓。 要有有利的化学反应历程,使化学反应的能 量至少能被一种物质所接受并生成激发态。 激发态能释放光子或能够转移它的能量给另 一个分子,而使该分子激发,然后以辐射光子的 形式回到基态。
23
第二节
磷光分析法
四、室温磷光 由于低温磷光需要低温实验装置,溶剂选择的限制 等因素,从而发展了多种室温磷光法(RTP)。 (1)固体基质室温磷光法(SS-RTP) 此法基于测量室温下吸附于固体基质上的有机化合 物所发射的磷光。所用的载体种类较多,有纤维素载体 (如滤纸、玻璃纤维)、无机载体(如硅胶、氧化铝) 以及有机载体(如乙酸钠、聚合物、纤维素膜)等。理 想的载体是既能将分析物质牢固地束缚在表面或基质中 以增加其刚性,并能减小三重态的碰撞猝灭等非辐射去 活化过程,而本身又不产生磷光背景。

第五章 分子发光分析法

第五章 分子发光分析法

s
体系间窜跃( 不同多重态, 体系间窜跃( isc ):不同多重态,有重叠的转动能级间的非辐 射跃迁( S1→T1跃迁 跃迁) 磷光发射:电子由第一激发三重态 射跃迁( S1→T1跃迁) 。磷光发射:电子由第一激发三重态 的最低振动能级( =0)跃迁至基态各振动能级 跃迁至基态各振动能级( T1→S0跃迁 跃迁)。 的最低振动能级(v=0)跃迁至基态各振动能级( T1→S0跃迁)。 S2 Intersystem Crossing 系间窜跃 S1 磷光发射 Phosphorescence T1
第五章 分子发光分析法
基态分子吸收一定能量后,跃迁至激发态, 基态分子吸收一定能量后,跃迁至激发态,当激 发态分子以辐射跃迁形式将其能量释放返回基态时 分子以辐射跃迁形式将其能量释放返回基态 发态分子以辐射跃迁形式将其能量释放返回基态时, 便产生分子发光 分子发光( 便产生分子发光(Molecular Luminescence)。 )。 依据激发的模式不同,分子发光分为光致发光 依据激发的模式不同,分子发光分为光致发光 按激发的类型又可分为荧光和磷光两种)、 荧光和磷光两种)、热致发 (按激发的类型又可分为荧光和磷光两种)、热致发 场致发光和化学发光等 光、场致发光和化学发光等。 本 分子荧光(Molecular Fluorescence)、 分子荧光( )、 章 分子磷光( 分子磷光(Molecular Phosphorescence) ) 化学发光( 化学发光(Chemiluminescence) )
S0 λ2 λ1
内转移( ) 相同多重态的两个电子能级之间 之间( 内转移(ic) :相同多重态的两个电子能级之间(如S2 S1,S1 S0)的非辐射跃迁 。 )
S2 T1 S1
S0 λ2 λ1

第五章第2节_分子荧光和磷光分_[1]...

第五章第2节_分子荧光和磷光分_[1]...
21:34:31
二、荧光分析方法与应用
1. 特点
(1)灵敏度高
比紫外-可见分光光度法高2~4个数量级;为什么? 检测下限:0.1~0.1g/cm-3 相对灵敏度:0.05mol/L 奎宁硫酸氢盐的硫酸溶液。 (2)选择性强
既可依据特征发射光谱,又可根据特征吸收光谱;
(3)试样量少 缺点:应用范围小。
(2)生物与有机化合物的分析
见表
21:34:31
21:34:31
21:34:31
三、磷光分析法的应用
分子磷光与分子荧光光谱的主要差别是磷光 是第一激发单重态的最低能层,经系间跨越跃 迁到第一激发三重态,并经振动弛豫至最低振 动能层,然后跃迁回到基态发生的。与荧光相 比,磷光具有如下三个特点: (1)磷光辐射的波长比荧光长 分子的T1态能量比S1态低。 (2)磷光的寿命比荧光长 由于荧光是S1 S0跃迁产生的,这种跃迁 是自旋许可的跃迁,因而S1态的辐射寿命通常 在10-7~ 10-9s,磷光是T1 S0跃迁产生的,这 种跃迁属自旋禁阻的跃迁,其速率常数要小, 因而辐射寿命要长,大约为10-4~ 10s。
21:34:31
可获得三维光谱图的仪器
可获得激发光谱与发射光谱同时变化时的荧(磷)光光谱图
21:34:31
磷光检测
荧光计上配上磷光测量附件即可对磷光进行测量。在有 荧光发射的同时测量磷光。 测量方法: (1)通常借助于荧光和磷
光寿命的差别,采用磷光
镜的装置将荧光隔开。 (2)采用脉冲光源和可控 检测及时间分辨技术。 室温测量时,不需要 杜瓦瓶。
21:34:31
2.室温磷光
由于低温磷光需要低温实验装置,溶剂选择 的限制等因素,从而发展了多种室温磷光法 (RTP)。 (1)固体基质室温磷光法(SS-RTP) 此法基于测量室温下吸附于固体基质上的有 机化合物所发射的磷光。所用的载体种类较多, 有纤维素载体(如滤纸、玻璃纤维)、无机载 体(如硅胶、氧化铝)以及有机载体(如乙酸 钠、聚合物、纤维素膜)等。理想的载体是既 能将分析物质牢固地束缚在表面或基质中以增 加其刚性,并能减小三重态的碰撞猝灭等非辐 射去活化过程,而本身又不产生磷光背景。

5 荧光分析

5 荧光分析

3. 刚性平面结构
荧光物质的刚性和平面 性增加,有利于荧光发射。
芴 联苯
F=1
F=0.2
-O
O C
O
N N
荧光黄 不产生荧光
产生荧光
偶氮苯
COO-
F=0.92
-O C COOO
N N
偶氮菲
酚酞 产生荧光 不产生荧光
H3C CH3
萘 VA
CH2OH
F(萘)= 5F(VA)
4. 取代基效应
一、分子荧光与磷光的产生
luminescence process of molecular fluorescence phosphorescence
1.单重态与三重态
电子激发态的多重度:M=2S+1 S为电子自旋量子数的代数 和(0或1); 单重态:全部轨道里的电子都是自旋配对的,S=0,M=1; 三重态:分子具有自旋不配对的电子,S=1,M=3. 平行自旋比成对自旋稳定(洪特规则),三重态能级比相应单重 态能级低; 大多数有机分子的基态处于单重态;
1
K1 [M*]
M* Q k 2 M Q ΔH K2 [M*] [Q]
共振能量转移:
D* D hv , A hv A*
分子内能量转移:
N
D* ( S1 ) A( S 0 ) D( S 0 ) A* ( S1 ) D* (T1 ) A( S 0 ) D( S 0 ) A* ( S1 )
CH3 CH3
hv
+
_
N
CH3
CH3
(3) 氧的熄灭作用 氧分子是荧光、磷光的熄灭剂,
1
3
M O 2 3 M* 3 O 2

分析化学(仪器分析)第五章 分子发光分析法

分析化学(仪器分析)第五章 分子发光分析法
给电子基团(-OH, -NH2, -NR2, -OR)使共轭体系增 大,导致荧光增强。反之, 吸电子基团(-COOH, NO, -NO2)使荧光减弱。
“重原子效应”--- 随着卤素取代基原子序数的增 加,物质的荧光减弱,磷光增强的现象。 分子中由于重原子的存在导致容易发生系间 窜跃的效应,产生的原因是原子序数高的重原子 的电子自旋和轨道间的相互作用变大,容易发生 自旋偶合作用,使S1-T1的体系间窜跃显著增加 所致。
23
② 静态猝灭(组成化合物的猝灭) 由于部分荧光物质分子与猝灭剂分子生成非荧光 的配合物而产生的。此过程往往还会引起溶液吸收 光谱的改变。 ③ 转入三重态的猝灭(S1—T1–– S0) 分子由于系间的跨越跃迁,由单重态跃迁到三重 态。转入三重态的分子在常温下不发光,它们在与 其它分子的碰撞中消耗能量而使荧光猝灭。 溶液中的溶解氧对有机化合物的荧光产生猝灭效 应是由于三重态基态的氧分子和单重激发态的荧光 物质分子碰撞,形成了单重激发态的氧分子和三重 态的荧光物质分子,使荧光猝灭。
18
(3)环境因素对荧光的影响
a. 溶剂的影响 电子激发态比基态具有更大的极性, 溶剂的极性增强,对激发态会产生更大的 稳定作用,使荧光波长红移,强度增大。 b. 温度的影响 辐射跃迁的速率不随温度而变,而非 辐射跃迁的速率随温度升高而显著增大。 温度升高,使得非辐射跃迁概率增大。 T增大, φf减小
26
如果 固定激发光波长为其 最大激发波长,然后测定 不同的波长时所发射的荧 光或磷光强度,即可得到 荧光或磷光发射光谱曲线。 荧光强度最大时的波长即 为发射波长λem 激发光谱和荧光光谱是荧 光测定时选择激发波长和 荧光测量波长的依据,也 可以用于鉴别荧光物质
27
激发光谱与发射光谱的关系

分子发光分析法(精)

分子发光分析法(精)

(3) 间接测定某些生物试样
氨基酸 + O2
葡萄糖氧化酶 氨基酸氧化酶
酮酸 +NH3 + H2O2
葡萄糖 + O2 + H2O 葡萄糖酸 + H2O2 通过测定生成的H2O2 ,确定氨基酸、葡萄糖含量。
2018/9/16
草酸二酯(能量提供体)+高浓度双氧水+稠环芳烃(能量接
pH7 - 8
复合物与氧反应,产生化学发光: AMP·LH2 ·E + O2 [氧化荧光素]* + AMP+CO2 + H2O
[氧化荧光素]* 氧化荧光素 + h
最大发射波长562nm;
2018/9/16
生物发光分析应用 2
烟酰胺腺嘌呤二核苷酸(NADH)在细菌中的黄素酶作用 下,在氧化型黄素单核苷酸(FMA)存在下,发生发光反应 : NADH + FMA + H+ NAD+ + FMNH2 FMNH2 + RCHO + O2 FMN + RCOOH + H2O + h
受体)+金属离子+溶剂组成的反应体系,可发出很强的可见光 ,发光效率高,使用不同的稠环芳烃,发射出不同颜色的光( 冷光源)。
2018/9/16
பைடு நூலகம்
生物发光分析应用 1
在pH 7~8;荧光素酶(E)和Mg2+的存在下,荧光素 (LH2)与磷酸三腺甙(ATP)的反应,生成磷酸腺甙(AMP)荧光 素和荧光素酸的复合物和镁的焦磷酸盐(ppi): ATP + LH2 + E + Mg2+ AMP·LH2 ·E +Mg ppi + 2H+
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章分子发光分析法
一、选择题
1.根据下列化合物的结构,判断那种物质的荧光效率最大?()
(1)苯(2)联苯(3)对联三苯(4)9-苯基蒽
2.比浊法与拉曼光谱法的共同特点在于()
(1)光源(2)单色器(3)散射光源(4)检测器
3.欲测定污水中痕量三价铬与六价铬应选用下列那种方法?()
(1)原子发射光谱法(2)原子吸收光谱法
(3)荧光光度法(4)化学发光法
4.若需测定生物中的微量氨基酸应选用下列那种方法?()
(1)荧光光度法(2)化学发光法(3)磷光光度法(4)X荧光光谱法
二、问答题
1.试比较分子荧光和化学发光
2.简述瑞利散射与拉曼散射的区别。

1。

相关文档
最新文档