高中数学复习提升专题05 立体几何中最值问题(第三篇)(原卷版)

合集下载

高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题专题辅导

高中数学立体几何中的最值问题 海红楼 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。

下面举例说明解决这类问题的常用方法。

一、运用变量的相对性求最值例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( )A. 55B. 552C. 2D. 1解析:如图1,由于点P 、Q 分别在线段BD 、SC 上移动,先让点P 在BD 上固定,Q 在SC 上移动,当OQ 最小时,PQ 最小。

过O 作OQ ⊥SC ,在Rt △SOC 中,552=OQ 中。

又P 在BD 上运动,且当P 运动到点O 时,PQ 最小,等于OQ 的长为552,也就是异面直线BD 和SC 的公垂线段的长。

故选B 。

图1二、定性分析法求最值例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。

AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。

解析:如图2,过点B 作平面α的垂线,垂足为O ,连结AO ,则∠BAO=30°。

过B 作BE//CD 交平面α于E ,则BE=CD 。

连结AE ,因为AB ⊥CD ,故AB ⊥BE 。

则在Rt △ABE 中,BE=AB ·tan ∠BAE ≥AB ·tan ∠BAO=3·tan30°=3。

故3≥CD 。

图2三、展成平面求最值例3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。

平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( )A. 2aB. 2bC. 2cD. a+b+c图3-1解析:如图3-2,将四面体的侧面展开成平面图形。

专题05 均值不等式及其应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

专题05  均值不等式及其应用--《2023年高考数学命题热点聚焦与扩展》【原卷版】

【热点聚焦】高考命题对基本不等式的考查比较灵活,重点考查应用基本不等式确定最值(范围)问题、证明不等式、解答函数不等式恒成立等问题.独立考查以选择、填空为主,有时以应用题的形式出现.有时与三角函数、数列、解析几何、平面向量函数等相结合,考查考生应用数学知识的灵活性.【重点知识回眸】1. 基本不等式 ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭,,a b R ∈:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,,a b R ∈(4)222()22a b a b ++≤,,a b R ∈ (5)2,,b aa b a b+≥同号且不为零 (6)重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 上述不等式,当且仅当a =b 时等号成立 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)x +y ≥2xy ,若xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小).(2)xy ≤⎝⎛⎭⎫x +y 22,若x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值q 24(简记:和定积最大).提醒:在应用基本不等式求最值时,一定要检验求解的前提条件:“一正、二定、三相等”,其中等号能否取到易被忽视.特别是:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围. 5、常见求最值的题目类型 (1)构造乘积与和为定值的情况 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解.(3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得234x y +≥,即()min 2434x y += 注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈【典型考题解析】热点一 直接法求最值【典例1】(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+【典例2】(2021·全国·高考真题)已知1F ,2F 是椭圆C :22194x y+=的两个焦点,点M 在C上,则12MF MF ⋅的最大值为( ) A .13B .12C .9D .6【典例3】(2023·全国·高三专题练习)若0a >、0b >,且411a b+=,则ab 的最小值为( ).A .16B .4C .116 D .14【典例4】(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>热点二 配凑法求最值【典例5】(2023·全国·高三专题练习)已知102x <<,则函数(12)y x x =- 的最大值是( ) A .12B .14C .18D .19【典例6】(2023·全国·高三专题练习)已知a >b ,关于x 的不等式220ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得20020ax x b ++=成立,则22a b a b+-最小值为_________.【典例7】(2023·全国·高三专题练习)已知 5<4x ,求函数14145y x x =-+- 的最大值. 【总结提升】形如()2ax bx c f x dx e +++=的函数,可化为()11[()]f x x k m x k+++=的形式,再利用基本不等式求解热点三 常数代换法求最值【典例8】(2023·全国·高三专题练习)在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是( ) A .3B .423+C .6 D .12【典例9】(2020·天津·高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________.【典例10】(2017·山东·高考真题(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为________. 【总结提升】常数代换法主要解决形如“已知x +y =t (t 为常数),求a b x y+的最值”的问题,先将a x +b y 转化为()a b x y x y t++⋅,再用基本不等式求最值. 热点四 基本不等式的实际应用【典例11】(2023·全国·高三专题练习)迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为( ).(本题中取π=3进行计算)A .6B .12315-C .3D .9【典例12】(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【总结提升】利用基本不等式解决实际问题的三个注意点(1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解,如利用()a f x x x=+(a >0)的单调性. 热点五 利用均值不等式连续放缩求最值【典例13】(2022·江苏·南京市第一中学高三开学考试)已知0a b >>,且1,ab =则不正确的是( ) A .20a b +> B .22log log 1a b +> C .2222a b +>D .22log log 0a b ⋅<【典例14】(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________. 【总结提升】第一次使用基本不等式是对原不等式的一次放缩,并为第二次使用基本不等式创造了条件,因此要使结果为原不等式的最值,两次使用基本不等式等号成立的条件应该是一致的.【精选精练】一、单选题 1.(2023·全国·高三专题练习)已知02x <<,则24y x x =- ) A .2B .4C .5D .62.(2023·全国·高三专题练习)已知a >0,b >0,且a +2b =ab ,则ab 的最小值是( ) A .4B .8C .16D .323.(2022·江西·高三阶段练习(理))已知双曲线22:1(0,0)4n C mx y m n -=>>的一个焦点坐标为(1,0)-,当m n +取最小值时,C 的离心率为( ) A 5B 3C .2D 24.(2021·浙江·高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0B .1C .2D .35.(2020·全国·高考真题(理))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4B .8C .16D .326.(2023·全国·高三专题练习)已知0a >,0b >,且2ab a b =+,若228a b m m +-恒成立,则实数m 的取值范围是( ) A .426426m -+ B .426m +或426m - C .19m -D .9m 或1m -7.(2023·全国·高三专题练习)已知ln ln 222+≥+-aa b b ,则a b +=( ) A .52B .4C .92D .68.(2017·天津·高考真题(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是( )A .47[,2]16-B .4739[,]1616-C .[3,2]-D .39[23,]16- 二、多选题9.(2022·全国·高考真题)(多选)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤D .221x y +≥10.(2020·海南·高考真题)(多选)已知a >0,b >0,且a +b =1,则( ) A .2212a b +≥B .122a b -> C .22log log 2a b +≥-D 2a b ≤11.(2023·全国·高三专题练习)(多选)已知a <b <0,则下列不等式正确的是( ) A .a 2>ab B .ln (1﹣a )>ln (1﹣b ) C .2a b ab+> D .a +cos b >b +cos a12.(2022·江苏省如皋中学高三开学考试)(多选)若实数x ,y 满足1221x y ++=,m x y =+,111()()22-=+x y n ,则( )A .0x <且1y <-B .m 的最大值为3-C .n 的最小值为7D .22m n ⋅<三、填空题13.(2020·江苏·高考真题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.14.(2019·天津·高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________.15.(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.16.(2018·天津·高考真题(理))已知,R a b ∈,且360a b -+=,则128a b+的最小值为_____________.17.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 四、解答题18.(2023·全国·高三专题练习)设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求a ,b 的值;(2)若(1)3f =,0a >,0b >,求11a b+的最小值,并指出取最小值时a ,b 的值.。

2020年高考数学冲刺复习知识点精讲:立体几何中的最值问题含解析

2020年高考数学冲刺复习知识点精讲:立体几何中的最值问题含解析

立体几何中的最值问题一、考情分析立体几何中的最值问题一般涉及到距离、面积、体积、角度等四个方面,此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从两个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是直接法,即根据几何体的结构特征或平面几何中的相关结论,直接判断最值. 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享1.解决立体几何中的最值问题常见方法有:(1)建立函数法是一种常用的最值方法,很多情况下,我们都是把这类动态问题转化成目标函数,最终利用代数方法求目标函数的最值.解题途径很多,在函数建成后,可用一次函数的端点法;二次数的配方法、公试法;有界函数界值法(如三角函数等)及高阶函数的拐点导数法等.(2)公理与定义法通常以公理与定义作依据,直接推理问题的最大值与最小值,一般的公理与定理有:两点之间以线段为最短,分居在两异面直线上的两点的连线段中,以它们的公垂线段为短.球面上任意两点间的连线中以过这两点与球心的平面所得圆的劣弧长为最短等.如果直接建立函数关系求之比较困难,而运用两异面直线公垂线段最短则是解决问题的捷径.(3)解不等式法是解最值问题的常用方法、在立体几何中同样可利用不等式的性质和一些变量的特殊不等关系求解:如最小角定理所建立的不等关系等等.(4)展开体图法是求立体几何最值的一种特殊方法,也是一种常用的方法,它可将几何题表面展开,也可将几何体内部的某些满足条件的部分面展开成平面,这样能使求解问题,变得十分直观,由难化易.(5)变量分析法是我们要透过现象看本质,在几何体中的点、线、面,哪些在动,哪些不动,要分析透彻,明白它们之间的相互关系,从而转化成求某些线段或角等一些量的求解最值总题的方法.除了上述5种常用方法外,还有一些使用并不普遍的特殊方法,可以让我们达到求解最值问题的目的,这就是:列方程法、极限思想法、向量计算法等等其各法的特点与普遍性,大家可以通过实例感受其精彩内涵与思想方法所在.2.决定棱锥体积的量有两个,即底面积和高,当研究其体积的最值问题时,若其中有一个量确定,则只需另一个量的最值;若两个量都不确定,可通过设变量法,将体积表示为变量的函数解析式,利用函数思想确定其最值;将空间问题转化为平面问题是转化思想的重要体现,通过旋转到一个平面内,利用两点之间距离最短求解3.解决几何体体积最值问题的方法(1) 根据条件建立两个变量的和或积为定值,利用基本不等式求体积的最值;通过建立相关函数式,将所求的最值问题转化为函数的最值问题求解,此法应用最为广泛;由图形的特殊位置确定最值,如垂直求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.4.解题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次从本文所标定的方法顺序思考,必能找到解题的途径三、题型分析(一) 距离最值问题1.空间中两点间距离的最值问题A C与BD上,求MN的最小值. 【例1】正方体的棱长为1,M、N分别在线段11【分析】方法一,该题可以结合正方体的结构特征,将其转化为两异面直线的距离来求;方法二,可设出变量,构建相应的函数,利用函数的最值求解;方法三,建立空间直角坐标系,利用点的坐标以及距离公式表示出目标函数,然后利用函数方法求解最值.A C与BD是异面直线,所以当MN是两直线的共垂线段时,MN 【解析】方法一(定义转化法)因为直线11取得最小值.取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.下证明之.在矩形11BDD B 中,PQ 为中位线,所以1//PQ BB ,又因为1BB ⊥平面ABCD ,所以PQ ⊥平面ABCD又因为BD ⊆平面ABCD ,所以PQ BD ⊥.同理可证11PQ A C ⊥,而, ,所以线段PQ 就是两异面直线11A C 与BD 的共垂线段,且1PQ =.由异面直线公垂线段的定义可得,故MN 的最小值为1.方法二:(参数法)如图,取11A C 的中点P ,BD 的中点Q .则线段PQ 就是两异面直线11A C 与BD 的共垂线段.由正方体的棱长为1可得1PQ =.连结AC ,则11//AC A C ,所以BQC ∠为两异面直线11A C 与BD 所成角.在正方形ABCD 中,AC BD ⊥,所以.过点M 作MH AC ⊥,垂足为H ,连结NH ,则//MH PQ ,且. 设PM m =,QN t =,则QH m =.在Rt QNH ∆中,, 在Rt MHN ∆中,.显然,当0m n ==时,2MN 取得最小值1,即MN 的最小值为1.方法三:(向量法)如图,以D 为坐标原点,分别以射线DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系.设DN m =,1A M n =.则,即;,即.所以,故当2m n ==时,2MN 取得最小值1,即MN 的最小值为1.【点评】空间中两点距离的最值,最基本的方法就是利用距离公式建立目标函数,根据目标函数解析式的结构特征求解最值.对于分别在两个不同对象上的点之间距离的最值,可以根据这两个元素之间的关系,借助立体几何中相关的性质、定理等判断并求解相应的最值.如【典例1】中的两点分别在两条异面直线上,显然这两点之间距离的最小值即为两异面直线的公垂线段的长度.另外注意直线和平面的距离,两平面的距离等的灵活运用.【小试牛刀】【湖南省长沙市2019届上学期高三统一检测】设正方体的棱长为,为的中点,为直线上一点,为平面内一点,则,两点间距离的最小值为()A. B. C. D.【答案】B【解析】结合题意,绘制图形结合题意可知OE是三角形中位线,题目计算距离最短,即求OE与两平行线的距离,,所以距离d,结合三角形面积计算公式可得,解得,故选B。

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题

高中数学立体几何中的最值问题在高中数学的学习中,立体几何一直是一个重点和难点,而其中的最值问题更是让许多同学感到头疼。

这类问题往往需要我们综合运用空间想象力、几何知识以及数学方法来求解。

接下来,让我们一起深入探讨立体几何中的最值问题。

一、常见类型及解法1、距离最值问题(1)两点间距离最值在立体几何中,求两点间距离的最值,常常需要我们将空间中的两点转化到同一平面内。

例如,在长方体中,求异面直线上两点的最短距离,就需要通过平移将其转化为共面直线,然后利用平面几何中的知识求解。

(2)点到直线距离最值求点到直线的距离最值时,通常要找到点在直线上的投影。

如果直线是某一平面的斜线,那么可以通过作垂线找到投影,再利用勾股定理计算距离。

(3)点到平面距离最值对于点到平面的距离最值,一般可以利用空间向量法。

先求出平面的法向量,然后通过向量的数量积来计算点到平面的距离。

2、面积最值问题(1)三角形面积最值在立体几何中,涉及三角形面积的最值问题,可能需要考虑三角形的边长关系或者角度大小。

例如,已知三角形的两边及其夹角,当夹角为直角时,面积最大。

(2)四边形面积最值对于四边形,如平行四边形,其面积可以表示为底边乘以高。

当底边长度固定时,高取得最大值时面积最大;或者当四边形的对角线相互垂直时,面积等于对角线乘积的一半。

3、体积最值问题(1)柱体体积最值对于柱体,如圆柱、棱柱,其体积等于底面积乘以高。

当底面积不变时,高最大则体积最大;反之,高最小时体积最小。

(2)锥体体积最值锥体体积为三分之一底面积乘以高。

在求解锥体体积最值时,需要关注底面积和高的变化。

二、例题分析例 1:在棱长为 2 的正方体 ABCD A1B1C1D1 中,E、F 分别是棱AB、BC 的中点,求点 A1 到直线 EF 的距离。

解:连接 A1C1、C1F、EF,因为 A1C1 平行于 EF,所以点 A1 到直线 EF 的距离等于点 A1 到直线 C1F 的距离。

高三数学立体几何中的最值问题复习

高三数学立体几何中的最值问题复习

突破立体几何之《立体几何中的最值问题》 考点动向高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力,因此,将是有中等难度的考题.此类问题,可以充分考查图形推理与代数推理,同时往往也需要将问题进行等价转化,比如求一些最值时,向平面几何问题转化,这些常规的降维操作需要备考时加强关注与训练.例1如图6-1,在直三棱柱111ABC A B C -中,底面为直角三角形,1906ACB AC BC CC ∠==== ,,.P 是1BC 上一动点,则1CP PA +的最小值为 .解析 考虑将立体几何问题通过图形变换,转化为平面几何问题解答.解 连结1A B ,沿1BC 将1CBC △展开与11A BC △在同一个平面内,如图6-2所示,连1AC ,则1AC 的长度就是所求的最小值.通过计算可得1190AC C ∠=︒,又145BC C ∠=︒故11135AC C ∠=︒,由余弦定理可求得1AC =.例2 如图6-3,在四棱锥P ABCD -中,PA ⊥底面A B C D ,DAB ∠为直角,2A B C D A D C D A B ==,∥,E F ,分别为PC CD ,的中点.(I )试证:CD ⊥平面BEF ;(II )设PA k AB =,且二面角E BD C --的平面角大于30︒,求k 的取值范围.解析 对(I ),可以借助线面垂直的判定定理,或者借助平面的法向量及直线的方向A1A 11图6-1AC PB1A1C1B图6-2C C图6-3向量解答;对(II ),关键是确定出所求二面角的平面角.解法1(I )证:由已知DF AB ∥且DAB ∠为直角, 故ABFD 是矩形,从而CD BF ⊥.又PA ⊥底面ABC D ,CD AD ⊥,故由三垂线定理知CD PD ⊥.在PDC △中,E ,F 分别为PC ,CD 的中点,故EF PD ∥,从而CD EF ⊥,由此得CD ⊥面BEF .(II )连接AC 交BF 于G ,易知G 为AC 的中点,连接EG ,则在PAC △中易知EG PA ∥.又因PA ⊥底面ABCD ,故EG ⊥底面ABCD . 在底面ABCD 中,过G 作GH BD ⊥,垂足为H ,连接EH ,由三垂线定理知EH BD ⊥,从而EHG ∠为二面角E BD C --的平面角. 设AB a =,则在PAC△中,有1122EG PA ka ==.以下计算GH ,考虑底面的平面图(如图6-5),连接GD ,因1122BD S BD GH GB DF == △G , 故GB DFGH BD = .在ABD △中,因AB a =,2AD a =,得BD =.而1122GB FB AD a ===,DF AB =,从而得GB AB GH BD ===.因此1tan kaEG EHG GH ===.故0k >知EHG ∠是锐角,故要使30EHG >∠,必须tan 3023>=, 解之得,k的取值范围为15k >. 解法2(I )如图6-6,以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴建立空间直角坐标系,设AB a =,则易知点A ,B ,C ,D ,F 的坐标分别为()000A ,,,()00B a ,,,()220C a a ,,,()020D a ,,,()20F a a ,,.C图6-4图6-5A从而(200)(020)DC a BF a ==,,,,,,0DC BF = ,故DC BF ⊥ .设PA b =,则(00)P b ,,,而E 为PC 中点,故2b E a a ⎛⎫ ⎪⎝⎭,,,从而02b B E a ⎛⎫= ⎪⎝⎭ ,,.0DC BE = ,故D C B E⊥.由此得CD BEF ⊥面. (II )设E 在xOy 平面上的投影为G ,过G 作GH BD ⊥垂足为H ,由三垂线定理知EH BD ⊥.从而EHG ∠为二面角E BD C --的平面角.由PA k AB = 得(00)P ka ,,,2ka E a a ⎛⎫ ⎪⎝⎭,,,(0)G a a ,,.设(0)H x y ,,,则(0)(20)GH x a y a BD a a =--=- ,,,,,,由0GH BD =得()2()0a x a a y a --+-=,即2x y a -=-. ①又因(0)BH x a y =- ,,,且BH 与BD的方向相同,故2x a ya a-=-, 即22x y a +=. ②由①②解得3455x a y a ==,,从而21055GH a a GH ⎛⎫=--= ⎪⎝⎭,,,.tan ka EG EHG GH=== .由0k >知EHG ∠是锐角,由30EHG ∠>︒,得t a n t a n30E H G >︒,>. 故k的取值范围为k >. [规律小结]立体几何中的最值与范围,需要首先确定最值或范围的主体,确定题目中描述的相关变动的量,根据必要,可确定是利用几何方法解答,还是转化为代数(特别是函数)问题解答.其中的几何方法,往往是进行翻折变换,这时可以想象实际情形,认为几何体是利用硬纸等折图6-6成的,可以动手翻折的,在平时做练习时,不妨多动手试试,培养自己的空间想象能力,在考试时就可以不动手,动脑想就可以了.特别注意变动的过程,抓住变动的起始与终了等特殊环节.考点误区分析(1)这类问题容易成为难点,关键是学生的空间想象能力缺乏,或者对问题的转化方向不明确.因此,要注意常见的转化方向,如化立体几何问题为平面几何问题,或化立体几何问题为代数问题等,根据题目特征进行转化.(2)对题目所描述的情形没有清醒的认识也是造成错解的主要原因,注意产生量的变化的主要原因是什么,相关的数量和位置关系都做怎样的变化,抓住问题的关键,才能顺利解决问题.同步训练1.如图6-7,在直三棱柱111ABC A B C -中,AB BC ==12BB =, 90=∠ABC ,,E F分别为111,AA C B 的中点,沿棱柱的表面从E 到F 两点的最短路径的长度为 .2.有两个相同的直三棱柱,高为a2,底面三角形的三边长分别为)0(5,4,3>a a a a .用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,全面积最小的是一个四棱柱,则a 的取值范围是__________.3.如图6-8,正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 .[参考答案]1.[解析]分别将111A B C △沿11A B 折到平面11ABB A 上;将111A B C △沿11AC 折到平面11ACC A 上;将11BCC B 沿1BB 折到平面11ABB A 上;将11BCC B 沿1CC 折到平面11ACC AA图6-71A 1E图6-8上,比较其中EF 长即可.[答案]22.[解析]可知,全面积最小的是四棱柱面积为22428a +,全面积最小的是三棱柱面积为21248a +,解2212482428a a +>+即可.[答案]3150<<a . 3.[解析]当CD 所在的直线与平面α平行时,所求射影面积最大,为1122AB CD ⨯=;当CD 所在的直线与平面α垂直时,所求射影面积最小,可求得为4.[答案]1[]42.。

立体几何中的动点问题和最值问题(解析版)--高二数学上册常考题专练(人教A版2019选修一)

立体几何中的动点问题和最值问题(解析版)--高二数学上册常考题专练(人教A版2019选修一)

1/31专题03立体几何中的动点和最值问题题型一立体几何中的动点问题1.如图,在棱长为2的正方体1111ABCD A B C D -中,M 为棱11A D 的中点,下列说法正确的是()A .直线AC ⊥直线BMB .过点的C 的平面MB α⊥,则平面α截正方体所得的截面周长为325+C .若线段BM 上有一动点Q ,则Q 到直线1AA 255D .动点P 在侧面11BCC B 及其边界上运动,且AP BM ⊥,则AP 与平面11BCC B 成角正切的取值范围是255[]52【解答】解:对于A ,AC BD ⊥ ,1AC BB ⊥,1BD BB B = ,BD 、1BB ⊂平面11BB D D ,AC ∴⊥平面11BB D D ,BM⋂ 平面11BB D D ,∴直线AC 与直线BM 不垂直,故A 错误;对于B ,如图1,取1BB ,AB 的中点E 、F ,连接CE 、EF 、CF .因为BN CE ⊥,1EF A B ⊥,由三垂线定理得BM CE ⊥,BM EF ⊥,所以BM ⊥平面CEF ,所以α截正方体所得的截面为CEF ∆141411252+++=+B 错误;对于C ,如图过BM 构造平面与1AA 平行,2/31AH 即Q 到直线1AA 的距离的最小值,255AH =,故C 正确;对于D ,如图3,取1CC 的中点Q ,因为1BM AB ⊥,1BM B Q ⊥,所以BM ⊥平面1AB Q ,故P 点轨迹为1B Q .在正方形11BCC B 中,当P 与Q 重合时,BP 最大,当1BP B Q ⊥时,BP 最小.所以4[,5]5BP ∈因为AB ⊥平面11BCC B ,所以APB ∠为AP 与平面11BCC B 所成角,255tan [,]52AB APB BP ∠=∈则AP 与平面11BCC B 成角正切的取值范围是255[,]52,故D 正确.故选:CD .2.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是()A .对任意动点F ,在平面11ADD A 内不存在与平面CBF 平行的直线B .对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线3/31C .当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变D .当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大【解答】解:对任意动点F ,在平面11ADD A 内只要与AD 平行的直线,即可与平面CBF 平行,所以A 不正确;对任意动点F ,在平面ABCD 内存在与平面CBF 垂直的直线,不正确;因为二面角F BC A --的大小不变是锐角,所以B 不正确;当点F 从1A 运动到1D 的过程中,二面角F BC A --的大小不变,由二面角的定义可知,命题是真命题,正确;当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变大,不正确;因为A BCF V -是定值,三角形BCF 的面积是定值,所以点D 到平面CBF 的距离不变,所以D 不正确;故选:C .3.如图,正方体1111ABCD A B C D -的棱长为1,线段11B D 上有两个动点E ,F ,且22EF =,则下列结论中正确的有()A .当E 点运动时,1A C AE ⊥总成立B .当E 向1D 运动时,二面角A EF B --逐渐变小C .二面角E AB C --的最小值为45︒D .三棱锥A BEF -的体积为定值【解答】解:对于A ,易证11B D ⊥平面11A C C ,所以111A C B D ⊥,同理可证11A C AD ⊥,从而1A C ⊥平面11AB D ,所以1A C AE ⊥恒成立,A 正确;对于B ,平面EFB 即平面11BDD B ,而平面EFA 即平面11AB D ,所以当E 向1D 运动时,二面角A EF B --的大小不变,B 错误;对于C ,当点E 从11B D 的中点向点1D 运动时,平面ABE 逐渐向底面ABCD 靠拢,4/31这个过程中,二面角越来越小,所以二面角E AB C --的最小值为45︒,C 正确;对于D ,因为1221224BEF S ∆=⨯⨯=,点A 到平面11BDD B 的距离为22,所以体积为122134212⨯⨯=,即体积为定值,D 正确.故选:ACD .4.如图,在棱长为6的正方体1111ABCD A B C D -中,E 为棱1DD 上一点,且2DE =,F 为棱11C D 的中点,点G 是线段1BC 上的动点,则()A .无论点G 在线段1BC 上如何移动,都有异面直线1A G ,1B D 的夹角为2πB .三棱锥A GAE -的体积为108C .直线AE 与BF 所成角的余弦值1015D .直线1AG 与平面1BDC 所成最大角的余弦值为13【解答】解:在正方体1111ABCD A B C D -中,易证1DB ⊥面11A BC ,又1A G ⊂平面11A BC ,所以11A G B D ⊥,所以异面直线1A G ,1B D 的夹角为2π,则A 正确;1116663632A GAE G A AE V V --⨯==⨯⨯=三棱锥三棱锥,则B 错误;在棱1CC 上取点N ,使2CN =,连结BN ,NE ,FN (如图),则易知FBN ∠为直线AE 与BF 所成角或其补角,可得10BN =,5FN =,9FB =,5/31则222(210)958410cos 1529210310FBN +-∠===⨯⨯,则直线AE 与BF 所成角的余弦值为41015,则C 正确;由题意知三棱锥11A BDC -为棱长为62的正四面体,作1A O ⊥平面1BDC ,O 为垂足,则O 为正1BDC ∆的中心,且1A GO 为直线1A G 与平面1BDC 所成角,所以211211cos 1AO OG AGO AG AG ∠==-,当点G 移动到1BC 的中点时,1A G 最短,如图,此时1cos A GO ∠最小,1A GO ∠最大,此时1161cos 336OG AGO AG ∠===,则D 正确.故选:ACD .5.在棱长为1的正方体1111ABCD A B C D -中,M 是线段11A C 上一个动点,则下列结论正确的有()A .存在M 点使得异面直线BM 与AC 所成角为90︒B .存在M 点使得异面直线BM 与AC 所成角为45︒C .存在M 点使得二面角M BD C --的平面角为45︒D .当1114A M A C =时,平面BDM 截正方体所得的截面面积为98【解答】解:对于A ,连接11A C 、11B D ,交于1O ,连接BD ,取点M 为1O 时,连接1O B ,因为AC BD ⊥、1AC B B ⊥,所以AC ⊥平面11BB D D ,又因为1O B ⊂平面11BB D D ,所以1AC O B ⊥,所以A 对;对于B ,因为11//A C AC ,所以异面直线BM 与AC 所成角就是1BMC ∠,6/31因为160BMC ∠︒,所以B 错;对于C ,因为二面角M BD C --的平面角为MOC ∠,因为45MOC ∠>︒,所以C 错;对于D ,取OA 中点N ,连接MN ,过M 作11//EF B D ,交11A D 于E ,交11A B 于F ,连接ED 、FB ,22EF =,BD =324OM =,112329()22248EFBD S EF BD OM =⋅+⋅=⋅⋅.所以D 对.故选:AD.6.已知正方体1111ABCD A B C D -的棱长为4,EF 是棱AB 上的一条线段,且1EF =,点Q 是棱11A D 的中点,点P 是棱11C D 上的动点,则下面结论中正确的是()A .PQ 与EF 一定不垂直B .二面角P EF Q --C .PEF ∆的面积是D .点P 到平面QEF 的距离是常量【解答】解:对于A ,当P 与点1D 重合时,PQ EF ⊥,故选项A 错误;对于B ,由于点P 是棱11C D 上的动点,EF 是棱AB 上的一条线段,所以平面PEF 即平面11ABC D ,建立如图所示的空间直角坐标系,则(2Q ,0,4),(4A ,0,0),(4B ,4,0),所以(2,04),(0,4,0)QA AB =-=,平面QEF 即平面QAB ,设平面QAB 的法向量为(,,)n x y z = ,则00n QA n AB ⎧⋅=⎪⎨⋅=⎪⎩,即24040x z y -=⎧⎨=⎩,令1z =,则(2,0,1)n =,同理可求得平面11ABC D 的法向量为(1,0,1)m =,设二面角P EF Q --为θ,7/31所以||21310|cos ||cos ,|||||1025m n m n m n θ⋅+=<>===⨯,故2231010sin 11()1010cos θθ=-=-=,故选项B 正确;对于C ,由于AB ⊥平面11BB CC ,又1BC ⊂平面11BB CC ,所以1AB BC ⊥,所以1BC EF ⊥,所以1BC 是PEF ∆的高,所以1111422222PEF S EF BC ∆=⋅⋅=⨯⨯=,故选项C 正确;对于D ,由于11//C D EF ,且11C D ⊂/平面QEF ,EF ⊂平面QEF ,所以11//C D 平面QEF ,又点P 在11C D 上,所以点P 到平面QEF 的距离为常量,故选项D 正确.故选:BCD .7.在长方体1111ABCD A B C D -中,1226BC AB BB ===,点E 为棱BC 上靠近点C 的三等分点,点F 是长方形11ADD A 内一动点(含边界),且直线1B F ,EF 与平面11ADD A 所成角的大小相等,则()A .1//A F 平面11BCC B B .三棱锥1F BB E -的体积为4C .存在点F ,使得11//A F B ED .线段1A F 的长度的取值范围为5[2,258【解答】解: 平面11//ADD A 平面11BCC B ,1A F ⊂平面11ADD A ,1//A F ∴平面11BCC B ,故A 正确;8/311111343632F BB E A BB E V V --==⨯⨯⨯⨯=,故B 错误;连接1A F ,作//EG CD 交AD 于G ,连接FG ,11A B ⊥ 平面11ADD A ,11A FB ∴∠为1B F 与平面11ADD A 所成的角,EG ⊥ 平面11ADD A ,EFG ∴∠为EF 与平面11ADD A 所成角.直线1B F ,EF 与平面11ADD A 所成角的大小相等,11A FB EFG ∴∠=∠,则11111tan tan A B EGA FB EFG A F FG∠==∠=,又11A B EG = ,1A F FG ∴=,则点F 在1A G 的中垂线上,即点F 在线段HI 上运动,当点F 与点K 重合时,11//A F B E ,故C 正确;126BC BB == ,E 为棱BC 上靠近C 的三等分点,13AA ∴=,4AG =,则15A G =,11cos AG KG A GA A G HG∠==,1258HG A I ∴==,当点F 在点I 或点H 处时,线段1A F 的长度取得最大值,最大值为258,当点F 在点K 处时,线段1A F 的线段取得最小值,最小值为52,∴线段1A F 的长度的取值范围为5[2,25]8,故D 正确.故选:ACD .8.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32[32B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大9/31C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点【解答】解:对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点(2A ,0,0)、(2B ,2,0),设点(0M ,2,)(02)a a ,AM ⊥ 平面α,则AM为平面α的一个法向量,且(2,2,)AM a =- ,(0,2,0)AB =,||32|cos ,|[,]32||||AB AM AB AM AB AM ⋅<>==⋅,所以,直线AB 与平面α所成角的正弦值范围为32[32,A选项正确;对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC ,在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD,BD ⊂ 平面ABCD ,1BD CC ∴⊥, 四边形ABCD 是正方形,则BD AC ⊥,1CC AC C = ,BD ∴⊥平面1ACC ,1AC ⊂ 平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥,10/311A D BD D = ,1AC ∴⊥平面1A BD ,易知△1A BD是边长为的等边三角形,其面积为1234A BD S =⨯=,周长为3=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH的正六边形,且平面//EFQNGH 平面1A BD ,正六边形EFQNGH的周长为26=则△1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误;对于C 选项,设平面α交棱11A D 于点(E b ,0,2),点(0M ,2,1),(2,2,1)AM =-,AM ⊥ 平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,(1E ∴,0,2),所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则(2F ,1,2),(1,1,0)EF = ,而(2,2,0)DB = ,∴12EF DB =,//EF DB ∴且EF DB ≠,由空间中两点间的距离公式可得DE ==,BF ==DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,∴2MC AC DN AD ===-1122MC CC =≠,11/31所以,点M 不是棱1CC 的中点,D选项错误.故选:AC .9.如图,在正四棱柱1111ABCD A B C D -中,3AB AD ==,14AA =,P 是侧面11BCC B 内的动点,且1AP BD ⊥,记AP 与平面11BCC B 所成的角为θ,则tan θ的最大值为()A .43B .53C .2D .259【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设(P a ,3,)c ,(03,04)a c ,则(3A ,0,0),(3B ,3,0),1(0D ,0,4),(3AP a =- ,3,)c ,1(3BD =- ,3-,4),平面11BCC B 的法向量(0n = ,1,0),1AP BD ⊥ ,∴13(3)940AP BD a c ⋅=---+= ,解得34c a =,∴(3AP a =- ,3,3)4a ,AP 与平面11BCC B 所成的角为θ,222||312sin ||||9484896(3)95()1625625AP n AP n a a a θ⋅∴==⋅-++-+ ,∴当4825a =时,sin θ34.此时25cos 1()3434θ=-=12/31tan θ∴53=.故选:B.10.在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[0λ∈,1],[0μ∈,1],则()A .当1λ=时,△1AB P 的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 【解答】解:对于A ,当1λ=时,1BP BC BB μ=+ ,即1CP BB μ= ,所以1//CP BB ,故点P 在线段1CC 上,此时△1AB P 的周长为11AB B P AP ++,当点P 为1CC 的中点时,△1AB P,当点P 在点1C 处时,△1AB P的周长为1,故周长不为定值,故选项A 错误;13/31对于B ,当1μ=时,1BP BC BB λ=+ ,即1B P BC λ= ,所以1//B P BC,故点P 在线段11B C 上,因为11//B C 平面1A BC ,所以直线11B C 上的点到平面1A BC 的距离相等,又△1A BC 的面积为定值,所以三棱锥1P A BC -的体积为定值,故选项B正确;对于C ,当12λ=时,取线段BC ,11B C 的中点分别为M ,1M ,连结1M M ,因为112BP BC BB μ=+,即1MP BB μ= ,所以1//MP BB,则点P 在线段1M M 上,当点P 在1M 处时,1111A M B C ⊥,111A M B B ⊥,又1111B C B B B = ,所以11A M ⊥平面11BB C C ,又1BM ⊂平面11BB C C ,所以111A M BM ⊥,即1A P BP ⊥,同理,当点P 在M 处,1A P BP ⊥,故选项C 错误;14/31对于D ,当12μ=时,取1CC 的中点1D ,1BB 的中点D ,因为112BP BC BB λ=+ ,即DP BC λ= ,所以//DP BC,则点P 在线的1DD 上,当点P 在点1D 处时,取AC 的中点E ,连结1A E ,BE ,因为BE ⊥平面11ACC A ,又1AD ⊂平面11ACC A ,所以1AD BE ⊥,在正方形11ACC A 中,11AD A E ⊥,又1BE A E E = ,BE ,1A E ⊂平面1A BE ,故1AD ⊥平面1A BE ,又1A B ⊂平面1A BE ,所以11A B AD ⊥,在正方体形11ABB A 中,11A B AB ⊥,又11AD AB A = ,1AD ,1AB ⊂平面11AB D ,所以1A B ⊥平面11AB D ,因为过定点A 与定直线1A B 垂直的平面有且只有一个,故有且仅有一个点P ,使得1A B ⊥平面1AB P ,故选项D正确.故选:BD .15/3111.如图,已知四边形ABCD 为直角梯形,BDEF 为矩形,平面BDEF ⊥平面ABCD ,//AD BC ,90DAB ABC ∠=∠=︒,1AD AB ED ===,2BC =.(1)若点M 为EF 中点,求证:BM ⊥平面CDF ;(2)若点M 为线段EF 上一动点,求BD 与平面BCM所成角的取值范围.【解答】证明:(1) 平面BDEF ⊥平面ABCD ,平面BDEF ⋂平面ABCD BD =,BF ⊂面BDEF 且BF BD ⊥,BF ∴⊥面ABCD .建立空间直角坐标系B xyz -如图,则(0B ,0,0),(0A ,1,0),(2C ,0,0),(1D ,1,0),(0F ,0,1),(1E ,1,1),1(2M ,12,1).11(,,1)22BM = ,(1,1,0)CD =- ,(1,1,1)DF =-- ,故11022BM CD ⋅=-+= ,111022BM DF ⋅=--+= .CD BM ∴⊥,FD BM ⊥,又FD CD D = ,FD ,CD ⊂面FCD ,故BM ⊥面FCD ;解:(2)由(1)知,(1,1,0)FE = ,设(,,0)FM FE λλλ== ,则(M λ,λ,1),∴(,,1),(2,0,0),(1,1,0)BM BC BD λλ=== ,设平面BMC 的法向量为(,,)n x y z = ,由200n BC x n BM x y z λλ⎧⋅==⎪⎨⋅=++=⎪⎩,取1y =-,则z λ=,故平面BMC 的一个法向量为(0,1,)n λ=- .16/31设BD 与平面BCM 所成角为θ,∴||sin |cos ,|||||n BD n BD n BD θ⋅=<>==⋅ .∴当0λ=时取最大值22,当1λ=时取最小值12.故BD 与平面BCM 所成角的取值范围为[30︒,45]︒.12.如图,在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别是棱AB ,BC 上的动点,且AE BF =.(1)求证:11A F C E ⊥;(2)当EF 取得最大值时,求二面角11E A C F --的余弦值.【解答】解:(1)证明:如图,建立空间直角坐标系D xyz -,设AE m =,(02)m ,则1(2A ,0,2),(2F m -,2,0),1(0C ,2,2),(2E ,m ,0),∴1(A F m =- ,2,2)-,1(2C E = ,2m -,2)-,∴1122440A F C E m m ⋅=-+-+= ,11A F C E ∴⊥.(2)由(1)得EF ==,17/3102m ,∴当0m =或2m =时,EF 取得最大值为2,当0m =时,点E 与点A 重合,即(2E ,0,0),点F 与点B 重合,即(2F ,2,0),∴11(2A C =- ,2,0),1(0EA = ,0,2),1(0FA = ,2-,2),设平面11A C E 的一个法向量为(n x = ,y ,)z ,则1122020n AC x y n EA z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,取1x =,得(1n = ,1,0),设平面11A C F 的一个法向量(m a = ,b ,)c ,则111220220m A C a b m FA b c ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取1a =,得(1m = ,1,1),设二面角11E A C F --的平面角为θ,则||cos ||||3m n m n θ⋅===⋅ ,∴二面角11E A C F --的余弦值为63.当2m =时,点E 与点B 重合,点F 与点C 重合,同理可得二面角11E A C F --综上,当EF 取得最大值时,二面角11E A C F --的余弦值为63.题型二立体几何中的最值问题13.在四面体ABCD 中,ABC ∆是边长为2的正三角形,60ADB ∠=︒,二面角D AB C --的大小为60︒,则下列说法正确的是()A .AB CD⊥18/31B .四面体ABCD 的体积V的最大值为2C .棱CDD .四面体ABCD 的外接球的表面积为529π【解答】解:对于A ,假设AB CD ⊥,设AB 的中点为E ,因为三角形ABC 为正三角形,则CE AB ⊥,又CE CD C = ,CE ,CD ⊂平面CDE ,故AB ⊥平面CDE ,又DE ⊂平面CDE ,故AB DE ⊥,而题中并不能得到AB DE ⊥,故假设不成立,所以AB 不垂直CD ,故选项A 错误;对于B ,要使的ABCD V 最大,只需高最大,故V的最大值为113332ABC S DF ∆⋅⋅=⨯=,故选项B 正确;对于C ,由选项B 中可知,此时CD 也最小,故CD=,故选项C 正确;对于D ,设ABD ∆的外心为M ,E 为AB的中点,MA MB MD ===设过M 与平面ABD 垂直的直线为MN ,过C 作CR ED ⊥于点R ,则外接球球心O 在MN 上,只需OA OC =,又32CR =,ER EM MR ===,设OM x =,由22OA OC =,可得22223()2x x +=+-,解得13x =,所以21413939R =+=,所以四面体ABCD 的外接球的表面积为213524499R πππ⋅=⋅=,故选项D 正确.故选:BCD .19/3114.已知长方体1111ABCD A B C D -的高12AA =,AC =,1AB x =,1AD y =,则当x y +最大时,二面角111A B D C --的余弦值为()A .155B .155-C .55D .55【解答】解: 长方体1111ABCD A B C D -的高12AA =,AC =,1AB x =,1AD y =,∴当x y +最大时,AB BC ==,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则A ,0,0),1B ,2),1(0D ,0,2),1(0C,,2),1(0AB =,,2),1(AD =- 2),设平面11AB D 的法向量(n x = ,y ,)z ,则112020n AB z n AD z ⎧=+=⎪⎨=-+=⎪⎩ ,取1x =,得(1n = ,1-,平面111B D C 的法向量(0m = ,0,1),设二面角111A B D C --的平面角为α,结合图形得α为钝角,则||cos ||||m n m n α=-== .∴二面角111A B D C --的余弦值为5-.故选:B .20/3115.如图,在棱长为4的正方体1111ABCD A B C D -中,M 是棱1A A 上的动点,N 是棱BC 的中点.当平面1D MN 与底面ABCD 所成的锐二面角最小时,1A M =85.【解答】解:以D 为坐标原点建立空间直角坐标系如图所示,设MA k =,则1(0D ,0,4),(0C ,4,0),(2N ,3,0),(4M ,0,)k ,所以11(4,0,4),(2,4,4)D M k D N =-=- ,设平面1D MN 的法向量为(,,)n x y z = ,则有1100n D M n D N ⎧⋅=⎪⎨⋅=⎪⎩ ,即4(4)02420x k z x y z +-=⎧⎨+-=⎩,令8z =,则82x k =-,4y k =+,故(82,4,8)n k k =-+ ,平面ABCD 的一个法向量为(0,0,1)m = ,设平面1D MN 与底面ABCD 所成的锐二面角为α,则||cos ||||n m n m α⋅== ,21/31锐二面角α越小,则cos α越大,所以求2524144k k -+的最小值,令2212576()5241445()55f k k k k =-+=-+,所以当125k =时,α有最小值,此时11284455A M k =-=-=.故答案为:85.16.四棱锥P ABCD -的底面ABCD 是边长为a 的菱形,PA ⊥面ABCD ,120BAD ∠=︒,E ,F 分别是CD ,PC 的中点.(1)求证:平面AEF ⊥平面PAB ;(2)M 是PB 上的动点,EM 与平面PAB 所成的最大角为45︒,求二面角F AE D --的余弦值.【解答】解:(1)证明:底面ABCD 是边长为a 的菱形,120BAD ∠=︒,故60ADE ∠=︒,12DE a =,AD a =,由22222211132cos 6024224AE AD DE AD DE a a a a a =+-︒=+-= ,所以222AE DE AD +=,故Rt ADE ∆,AE ED ⊥,又//AB CD ,所以AE AB ⊥,22/31又PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以AE PA ⊥,又AB PA A = ,所以AE ⊥平面PAB ,又AE ⊂平面AEF ,故平面AEF ⊥平面PAB ;(2)连接AM ,则由(1)知,AE ⊥平面PAB ,则AME ∠为直线EM 与平面PAB 所成的角,在Rt AME ∆中,tan AEAME AM ∠=,当AM 最小时,即AM PB ⊥时,AME ∠取得最大值45︒,此时AE AM =,设PA x =,则由PA AB PB AM =得,2ax a =,解得x =,根据题意,以AB ,AE ,AP 分别为x ,y ,z 轴建立空间直角坐标系,则(B a ,0,0),(0E ,32,0),(2aC ,32,0),(0P ,0),33(,,)442a F,(0,,0)2AE =,(,442a AF = ,设平面AEF 的法向量为(,,)m x y z = ,由0204m AE a m AF x ⎧==⎪⎪⎨⎪=++=⎪⎩,得(m =-,又平面AED 的法向量为(0,0,1)n = ,由cos ,13m n <>== ,因为二面角F AE D --为钝角,所以二面角F AE D --的余弦值为1313-.23/3117.如图,在直三棱柱111ABC A B C -中,底面三角形ABC 为直角三角形,其中AB AC ⊥,3AB =,4AC =,18CC =,M ,N 分别为1BB 和1AA 的中点.(1)求证:CN ⊥平面1C MN ;(2)当点P 在线段1C A 上移动时,求直线NP 与平面11BB C C所成角正弦的最大值.【解答】解:依题意可得AB ,AC ,1AA 两两垂直,故以A 为原点建立空间直角坐标系(如图),(0A ,0,0),(3B ,0,0),(0C ,4,0),1(0A ,0,8),1(3B ,0,8),1(0C ,4,8),(1)(3M ,0,4),(0N ,0,4),(3,0,0)MN =- ,(0,4,4)CN =- ,1(0,4,4)C N =-- ,∴0MN CN ⋅= ,10CN C N ⋅= ,CN MN ∴⊥,1CN C N ⊥,且1C N M N N = ,CN ∴⊥面1C MN .(2)设1AP AC λ= ,01λ,(0NP NA AP =+= ,0,4)(0λ-+,4,8)(0=,4λ,84)λ-,(3,4,0)BC =- ,1(0BB = ,0,8),24/31设面11BB C C 的法向量为(m x = ,y ,)z ,由134080m BC x y m BB z ⎧⋅=-+=⎪⎨⋅==⎪⎩ ,可取(4m = ,3,0),则直线NP 与平面11BB C C所成角正弦值为||||||m NP m NP ⋅===当12λ=时,2145λλ-+取得最小值1的值最大为35.即直线NP 与平面11BB C C 所成角正弦的最大值为35.18.如图,矩形ABCD 所在的平面与半圆弧 CD所在的平面垂直,2AB =,22AD =,M 是 CD 上异于C ,D 的动点.(1)证明:平面AMD ⊥平面BMC ;(2)设BM 和平面ABCD 所成角为θ,求sin θ的最大值.【解答】(1)证明:由题意可知,平面CMD ⊥平面ABCD ,且平面CMD ⋂平面ABCD CD =,又BC CD ⊥,BC ⊂平面ABCD ,故BC ⊥平面CMD ,25/31又DM ⊂平面CMD ,所以BC DM ⊥,因为M 是 CD上异于C ,D 的动点,且CD 为直径,所以DM CM ⊥,又BC CM C = ,BC ,CM ⊂平面BMC ,所以DM ⊥平面BMC ,又DM ⊂平面AMD ,故平面AMD ⊥平面BMC ;(2)解:过点M 作MH CD ⊥,交CD 于点H ,连接HB ,MC ,由平面DMC ⊥平面ABCD ,且平面CMD ⋂平面ABCD CD =,所以MH ⊥平面ABCD ,则MBH ∠为MB 与平面ABCD 所成角,即MBH θ∠=,不妨设HC x =,(02)x <<,所以2DH x =-,则由射影定理可得,22(2)2MH x x x x =-=-,又222221(22HB x x =+=+,所以222122MB MH HB x =+=+,故22222122MH x x sin MB x θ-==+,令1192(,)222x y +=∈,故22112()()595122()441642y y y sin y y θ--==-+-=,当且仅当12x =时取等号,所以sin θ的最大值为22.19.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,26/31D 为棱11A B 上的点,11BF A B ⊥.(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE所成的二面角的正弦值最小?【解答】(1)证明:连接AF ,E ,F 分别为直三棱柱111ABC A B C -的棱AC 和1CC 的中点,且2AB BC ==,1CF ∴=,BF =11BF A B ⊥ ,11//AB A B ,BF AB∴⊥3AF ∴=,AC ===,222AC AB BC ∴=+,即BA BC ⊥,故以B 为原点,BA ,BC ,1BB 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则(2A ,0,0),(0B ,0,0),(0C ,2,0),(1E ,1,0),(0F ,2,1),设1B D m =,则(D m ,0,2),∴(0BF = ,2,1),(1DE m =- ,1,2)-,∴0BF DE ⋅= ,即BF DE ⊥.(2)解:AB ⊥ 平面11BB C C ,∴平面11BB C C 的一个法向量为(1p = ,0,0),由(1)知,(1DE m =- ,1,2)-,(1EF =- ,1,1),设平面DEF 的法向量为(n x = ,y ,)z ,则00nDEn EF ⎧⋅=⎪⎨⋅=⎪⎩,即(1)200m x y z x y z -+-=⎧⎨-++=⎩,令3x =,则1y m =+,2z m =-,∴(3n = ,1m +,2)m -,27/31cos p ∴<,||||p n n p n ⋅>====⋅ ∴当12m =时,面11BB C C 与面DFE 所成的二面角的余弦值最大,此时正弦值最小,故当112B D =时,面11BB C C 与面DFE所成的二面角的正弦值最小.20.如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD所成二面角的正弦值.【解答】解:(1)证明:在半圆中,DM MC ⊥,正方形ABCD 所在的平面与半圆弧 CD所在平面垂直,AD ∴⊥平面DCM ,则AD MC ⊥,AD DM D = ,MC ∴⊥平面ADM ,MC ⊂ 平面MBC ,∴平面AMD ⊥平面BMC .(2)ABC ∆ 的面积为定值,∴要使三棱锥M ABC -体积最大,则三棱锥的高最大,此时M 为圆弧的中点,28/31建立以O 为坐标原点,如图所示的空间直角坐标系如图正方形ABCD 的边长为2,(2A ∴,1-,0),(2B ,1,0),(0M ,0,1),则平面MCD 的法向量(1m = ,0,0),设平面MAB 的法向量为(n x = ,y ,)z 则(0AB = ,2,0),(2AM =- ,1,1),由20n AB y == ,20n AM x y z =-++= ,令1x =,则0y =,2z =,即(1n = ,0,2),则cos m <,||||m n n m n >== ,则面MAB 与面MCD所成二面角的正弦值sin 5α==.21.如图,在四棱锥P ABCD -中,四边形ABCD 为矩形,PD ⊥平面ABCD ,1PD CD ==,PA 与平面ABCD 所成角为30︒,M 为PB 上一点且CM PA ⊥.(1)证明:PA DM ⊥;(2)设平面PAD 与平面PBC 的交线为l ,在l 上取点N 使PN DA = ,Q 为线段PN 上一动点,求平面ACQ与平面PDC 所成二面角的余弦值的最大值.29/31【解答】解:(1)证明: 四边形ABCD 为矩形,AD CD ∴⊥,PD ⊥ 平面ABCD ,PD CD ∴⊥,AD PD D = ,AD ,PD ⊂平面PAD ,CD ∴⊥平面PAD ,PA ⊂ 平面PAD ,PA CD ∴⊥,CM PA ⊥ ,CM CD C = ,CM ,CD ⊂平面CMD ,PA ∴⊥平面CMD ,DM ⊂ 平面CMD ,PA DM ∴⊥.(2)PD ⊥ 平面ABCD ,PAD ∴∠为PA 与平面ABCD 所成角,PA 与平面ABCD 所成角为30︒,30PAD ∴∠=︒,1PD =,AD ∴=以D 为原点,DA 为x 轴,DC 为y 轴,DP 为z轴,建立空间直角坐标系,AD = 1PD CD ==,PN DA =,PN ∴=令(0PQ λλ=,则(0D ,0,0),A 0,0),(0C ,1,0),(Q λ,0,1),(AC = 1,0),(CQ λ= ,1-,1),设(n x = ,y ,)z 是平面ACQ 的一个法向量,则00nAC y n CQ x y z λ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取1x =,得(1n =)λ,平面PDC 的一个法向量为(1m = ,0,0),cos ,||||m n m n m n ⋅∴<>==⋅,0λ ,∴当λ=cos ,m n <> 的最大值12,30/31∴平面ACQ 与平面PDC 所成二面角的余弦值的最大值为12.22.如图,四边形ABDE 为直角梯形,其中//AE BD ,AE AB ⊥,33AE BD ==,F 为腰DE 上的一个动点.ABC ∆为等腰直角三角形,2AB AC ==,平面ABDE ⊥平面ABC .(1)求证:AC BF ⊥;(2)当直线CF 与平面ABDE 所成角最大时,求平面FBC 与平面ABC所成锐二面角的余弦值.【解答】(1)证明:ABC ∆ 为等腰直角三角形,AB AC =,AC AB ∴⊥,又 平面ABDE ⊥平面ABC ,平面ABDE ⋂平面ABC AB =,AC ⊂平面ABC ,AC ∴⊥平面ABDE ,BF ⊂ 平面ABDE ,AC BF ∴⊥;(2)解:连接AF ,由(1)知AC ⊥平面ABDE ,直线CF 与平面ABDE 成角为CFA ∠,2tan AC CFA AF AF ∠==,∴当AF 最小时,CF 与平面ABDE 所成角最大,此时AF DE ⊥,过F 作FM AB ⊥于M ,过M 作MN BC ⊥于N ,连接NF ,则FNM ∠为二面角F BC A --的平面角,在AE 上取得H ,使1AH BD ==,连接DH ,则DH AE ⊥,在Rt DHE ∆中,由2EH =,2DH =,可得ED =,由1122ADE S AE DH DE AF ∆=⋅=⋅,可得322AE DH AF DE ⋅==,则322EF ===,32222DE ∴=-=,由1124FM-=,可得32FM=,由Rt BNM Rt BAC∆∆∽,得NM BMAC BC=,即12224NM⨯==,NF∴===cos19NMFNMFN∴∠===.31/31。

最新3. 立体几何中的最值问题资料资料

最新3. 立体几何中的最值问题资料资料

3. 立体几何中的最值问题(一)求解立体几何的最值问题主要应用代数中的有关函数知识或不等式有关知识求解。

解题的关键是恰当地引入参变量(一元或二元),建立目标函数,然后由表达式的特点求最值;求曲面上的两点间距离或多面体中的折线的最短长度问题,可考虑展开后转化为平面上两点间的最短距离问题,然后用通常的解三角形的方法加以解决。

一、面积的最值问题1. 【湖南省怀化市2014届高三第二次模拟考试统一检测】在空间中有一棱长为a 的正四面体,其俯视图的面积的最大值为( )A .2a B .22a C .24D .24a2. (湖北省荆州市2013届高三3月质量检测(Ⅱ)数学(理)试题)在半径为R 的球内有一内接圆柱,设该圆柱底面半径为r ,当圆柱的侧面积最大时,rR 为 ( )A .14B .12C .2D3.(东北三省三校2013年3月高三第一次联合模拟)点A B C D 、、、在同一个球的球面上,AB BC ==2AC =,若四面体ABCD 体积的最大值为23,则这个球的表面积为( )A .1256π3B .8πC .254πD .2516π4 .(河北省武邑中学2013届高三第一次模拟考试数学(理)试题)如图,在三棱锥ABC P -中,PA ⊥底面ABC ,∠ACB = 90,AE ⊥PB 于E ,AF ⊥PC 于F ,若2==AB PA ,∠BPC =θ,则当AEF ∆的面积最大时,θtan 的值为( )A .2B .21 C .2 D .225.(河南省豫东、豫北十所名校2012届高三阶段性测试四理科)已知长方体ABCD -A 1B 1C 1D 1的外接球的表面积为16,则该长方体的表面积的最大值为( )A .32B .36C .48D .646. (湖南省株洲市2008届高三第二次质检)已知三棱锥P —ABC 的四个顶点均在半径为1的球面上,且满足0=⋅,0=⋅,0=⋅,则三棱锥P —ABC 的侧面积的最大值为( )A .2B .1C .21D .417. 设圆柱轴截面的对角线长为定值,为使圆柱的侧面积最大,则轴截面的对角线与底面所成的角为( )A 、6πB 、4πC 、3πD 、125πFEPCBA8. 有一个棱长为a 的正方体骨架,其内放置一气球,使其充气且尽可能地膨胀(仍保持为球的形状),则气球表面积的最大值为( )A 、2a πB 、22a πC 、23a πD 、24a π9. 已知圆锥的母线长为,l 底面半径为R ,如果过圆锥顶点的轴截面面积的最大值是221l ,则( )A 、22≤l R B 、22=l R C 、22≥l R D 、22<l R10、如果过圆锥顶点的面积最大的截面是轴截面,则圆锥的侧面展开图的圆心角的取值范围是( )A 、⎪⎪⎭⎫ ⎝⎛π220,B 、()π20,C 、⎥⎦⎤ ⎝⎛π220, D 、(]π20,11. 圆锥的轴截面为正三角形,母线长为8,圆锥的内接圆柱的高为h ,当内接圆柱的侧面积最大时,h 的值是( )A 、334 B 、4 C 、33 D 、3212. 在正三棱锥P -ABC 中,AB =8,PC =54,动点ABM PC M ∆∈,则面积的最小值为( )A 、524B 、374C 、354D 、5551613. 【2014年呼伦贝尔市高考模拟统一考试(二)】设A 、B 、C 、D 是半径为2的球面上的四点,且满足,,AB AC AD AC AB AD ⊥⊥⊥,ABC ABD ACD S S S ∆∆∆++的最大值是 _______ .14【东北三省三校2014届高三第一次联合模拟】 正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为 .答案:1-12 BCCD AABB CCDD 13. 8; 14. 4π3. 立体几何中的最值问题(二)二、体积的最值问题1. (2010全国卷2理数)(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )A .1B .C .2D .32. (2010全国卷1文理数)(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为( )A B C . D3.【湖北省稳派教育2014届高三上学期强化训练(三)数学(理)试题】在三棱锥ABC P -中,PC PB PA ,,两两垂直,且1,2,3===PC PB PA ,设M 是底面ABC ∆内一点,定义),,()(p n m M f =,其中p n m ,,分别是三棱锥PAB M -,三棱锥PBC M -,三棱锥PCA M -的体积,若),,21()(y x M f =,且81≥+y a x ,则正实数a 的最小值为( )A . 1B .2C .22D .44. 【陕西省西工大附中2014届高三第四次适应性训练】已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为( )A .12B .1C .22 D .25. (北京市朝阳区2013届高三上学期期末考试数学理试题 )在棱长为1的正方体1111ABCD A B C D 中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值是( ) A .124B .112 C .16D .126.(河南省十所名校2013届高三第三次联考数学(理)试题)四面体ABCD 中,AD 与BC 互相垂直,AD =2BC =4,且AB +BD =AC +CD =2,则四面体ABCD 的体积的最大值是( )A .4B .2C .5 D7.(吉林省实验中学2012届高三第六次模拟理科)已知正四棱锥S ABCD-中,SA=,那么当该棱锥的体积最大时,它的高为()A.1 B C.2 D.38.(四川省成都市新都一中高2008级12月月考)已知一个四面体有五条棱长都等于2,则该四面体的体积最大值为( )A、12B、22C、1D、29. (2009湖南师大附中第五次月考)如图,三棱柱ABC-A1B1C1的侧面A1ABB1⊥BC,且A1C与底面成 45°角,AB=BC=2,则该棱柱体积的最小值为 ()A.34B.33C.4 D. 310.【湖南省衡阳市八中2014届高三上学期第三次月考试卷数学(理)】在三棱锥D-ABC中,已知BC丄AD,BC=2 ,AD=6,AB+BD=AC+CD=10,则三棱锥D一ABC的体积的最大值是__________.11. 【山东省东营市高三4月统一质量检测】已知直角梯形ABCD,AB AD⊥,CD AD⊥,222AB AD CD===,沿AC折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为.12.【2012高考真题上海理14】如图,AD与BC是四面体ABCD中互相垂直的棱,2=BC,若cAD2=,且aCDACBDAB2=+=+,其中a、c为常数,则四面体ABCD的体积的最大值是。

专题03 立体几何中的动点问题和最值问题(原卷版)

专题03  立体几何中的动点问题和最值问题(原卷版)
(1)证明:平面 平面 ;
(2)当三棱锥 体积最大时,求面 与面 所成二面角的正弦值.
21.如图,在四棱锥 中,四边形 为矩形, 平面 , , 与平面 所成角为 , 为 上一点且 .
(1)证明: ;
(2)设平面 与平面 的交线为 ,在 上取点 使 , 为线段 上一动点,求平面 与平面 所成二面角的余弦值的最大值.
专题03立体几何中的动点和最值问题
题型一立体几何中的动点问题
1.如图,在棱长为2的正方体 中, 为棱 的中点,下列说法正确的是
A.直线 直线
B.过点的 的平面 ,则平面 截正方体所得的截面周长为
C.若线段 上有一动点 ,则 到直线 的距离的最小值为
D.动点 在侧面 及其边界上运动,且 ,则 与平面 成角正切的取值范围是
A. B. C.2D.
10.在正三棱柱 中, ,点 满足 ,其中 , , , ,则
A.当 时,△ 的周长为定值
B.当 时,三棱锥 的体积为定值
C.当 时,有且仅有一个点 ,使得
D.当 时,有且仅有一个点 ,使得 平面
11.如图,已知四边形 为直角梯形, 为矩形,平面 平面 , , , , .
(1)若点 为 中点,求证: 平面 ;
D.直线 与平面 所成最大角的余弦值为
5.在棱长为1的正方体 中, 是线段 上一个动点,则下列结论正确的有
A.存在 点使得异面直线 与 所成角为
B.存在 点使得异面直线 与 所成角为
C.存在 点使得二面角 的平面角为
D.当 时,平面 截正方体所得的截面面积为
6.已知正方体 的棱长为4, 是棱 上的一条线段,且 ,点 是棱 的中点,点 是棱 上的动点,则下面结论中正确的是
(2)若点 为线段 上一动点,求 与平面 所成角的取值范围.

高考数学出题人预测专题05 立体几何中最值问题(第三篇)(解析版)

高考数学出题人预测专题05 立体几何中最值问题(第三篇)(解析版)

备战2020年高考数学大题精做之解答题题型全覆盖高端精品第三篇 立体几何专题05 立体几何中最值问题【典例1】【河南省非凡吉创联盟2020届调研】如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,PA =,点C 是圆柱底面圆周上的点.(1)求三棱锥P ABC -体积的最大值;(2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值. 【思路引导】(1)三棱锥的高为定值,要根据三棱锥体积公式13V Sh =可知,要使得体积最大,就要底面积最大,又因为边AB 为定值,故当C 到AB 的距离取得最大值时,底面积最大,故此时棱锥的体积最大;(2)反向延长AB 至C ',使得,,C D E '三点共线,三点共线时,距离最短,则C D '为CE ED +最小值. 【详解】(1)三棱锥P ABC -高h =,3AB =,点C 到AB 的最大值为底面圆的半径32,则三棱锥P ABC -体积的最大值等于1133322⨯⨯⨯=. (2)将PAC ∆绕着PA 旋转到PAC '使其共面,且C '在AB 的反向延长线上,连接C D ',C D '与PA 的交点为E ,此时CE ED +最小,为C D ';由3AB =,PA =且易知PA AB ⊥,由勾股定理知6PB =,因为12AB PB =,所以30APB ∠=o ,则60DBC ∠='o ,243BD PB ==; 134C B C A AB '+=+'==,则BDC '∆是边长为4的等边三角形,故4C D '=,所以CE ED +的最小值等于4.【典例2】【江西省新余市第四中学2020届月考】 已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .(1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值; (2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值. 【思路引导】(1)由AEFD ⊥平面EBCF ,////EF BC AD ,可得AE EF ⊥,进而由面面垂直的性质定理得到AE ⊥平面EBCF ,进而建立空间坐标系E xyz -,可得()D BCF A BFC f x V V --==的解析式,根据二次函数的性质,易求出()f x 有最大值;(2)根据(1)的结论平面BCF 的一个法向量为()20,0,1n =u u v ,利用向量垂直数量积为零列方程组求出平面BDF 的法向量,代入向量夹角公式即可得到二面角D BF C --的余弦值.解:(1)∵平面AEFD ⊥平面EBCF ,AE ⊥EF,∴AE ⊥面平面EBCF ,AE ⊥EF,AE ⊥BE,又BE ⊥EF,故可如图建立空间坐标系E -xy z .则A (0,0,2),B (2,0,0),G (2,2,0),D (0,2,2), E (0,0,0)∵AD ∥面BFC ,所以()f x =V A -BFC =13BFC S AE ∆⋅ ()114432x x ⋅⋅⋅-⋅ ()22882333x =--+≤,即2x =时()f x 有最大值为83.(2)设平面DBF 的法向量为()1,,n x y z =u v,∵AE=2, B (2,0,0),D (0,2,2),F (0,3,0),∴()2,3,0,BF =-u u u v BD =u u u v (-2,2,2),则1100n BD n BF ⎧⋅=⎪⎨⋅=⎪⎩u v u u u vu v u u u v ,即()()()(),,2,2,20,,2,3,00x y z x y z ⎧⋅-=⎪⎨⋅-=⎪⎩,2220230x y z x y -++=⎧⎨-+=⎩ 取x =3,则y =2,z =1,∴()13,2,1n u v=面BCF 的一个法向量为()20,0,1n =u u v则cos<12,n n u v u u v>=121214n n n n u v u u v u v u u v ⋅=⋅. 由于所求二面角D -BF -C的平面角为钝角,所以此二面角的余弦值为:-14【典例3】【北京市昌平区2020届模拟】如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .(I )证明:AD ∥平面EFGH ;(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值.【思路引导】 解法一:(I ) 证明:在长方体ABCD -A 1B 1C 1D 1中,AD ∥A 1D 1 又∵EH ∥A 1D 1,∴AD ∥EH. ∵AD ¢平面EFGH EH 平面EFGH ∴AD//平面EFGH.(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2EB 1 ·B 1F )·B 1C 1=b/2·EB­1·B 1 F ∵EB 12+ B 1 F 2=a 2∴EB 12+ B 1 F 2≤ (EB 12+ B 1 F 2)/2 = a 2 / 2,当且仅当EB­1=B 1F=2a 时等号成立 从而V 1≤ a 2b /4 .故 p=1-V 1/V ≥22412a ba b-=78 解法二:(I ) 同解法一(II ) 设BC=b ,则长方体ABCD -A 1B 1C 1D 1的体积V=AB·AD·AA 1=2a 2b , 几何体EB 1F -HC 1G 的体积V 1=(1/2 EB­1·B 1 F )·B 1C 1=b/2 EB­1·B 1 F设∠B 1EF=θ(0°≤θ≤90°),则EB­1=" a" cosθ,B 1 F ="a" sinθ 故EB­1·B 1 F = a 2sinθcosθ=,当且仅当sin 2θ=1即θ=45°时等号成立.从而214a bV ≤ ∴p=1- V 1/V≥22412a ba b-=78,当且仅当sin 2θ=1即θ=45°时等号成立.所以,p 的最小值等于7/81. 【广东省佛山市第一中学2020届月考】如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==.(1)当x 为何值时,三棱锥1B BEF -的体积最大? (2)求异面直线1A E 与1B F 所成的角的取值范围. 【思路引导】(1)首先得到体积函数,然后利用均值不等式确定取得最值时x 的值即可;(2)首先作出异面直线1A E 与1B F 所成的角,然后结合余弦定理求得角的余弦值取值范围,最后利用余弦值的范围确定异面直线1A E 与1B F 所成的角的取值范围. 【详解】 (1),当2ax =时,三棱锥1B BEF -的体积最大. (2)在AD 上取点H 使AH =BF =AE ,则,,,所以1HA E∠(或补角)是异面直线1A E 与1B F 所成的角;在Rt △1A AH 中,1A H =在Rt △1A AE 中,1A E =在Rt △HAE 中,HE ==,在△1HA E 中,222111112A H A E EH cosHA E A H A E +-=⋅ 222a a x=+, 因为0x a <≤,所以22222a x a a <+≤,222112a x a≤<+,1112cosHA E ≤<,1π03HA E <∠≤ 2.【安徽省安庆市2020届模拟】如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,AB EB ==(1)求证:DE ⊥平面ADC ;(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值. 【思路引导】(1)要证(1)要证DE ⊥平面ADC ,需证BC ⊥平面ADC ,需证DC BC BC AC ⊥⊥,,用综合法书写即可.(2)由(1)可知BE ⊥平面ABC ,所以体积为13ABC BE S ⨯, AC x BC EB ===,均值不等式求解最大值.详解:(1)证明:∵四边形DCBE 为平行四边形,∴CD ∥BE ,BC ∥DE . ∵DC ⊥平面ABC ,BC ⊂平面ABC ,∴DC ⊥BC . ∵AB 是圆O 的直径,∴BC ⊥AC ,且DC ∩AC =C . ∴BC ⊥平面ADC .∵DE ∥BC ,∴DE ⊥平面ADC ; (2)∵DC ⊥平面ABC ,∴BE ⊥平面ABC . 在Rt △ABE 中,AB =2,EB =3√.在Rt △ABC 中,∵AC =x ,BC =4−x 2−−−−−√(0<x <2). ∴S △ABC =12AC ⋅BC =12x ⋅4−x 2−−−−−√, ∴V (x )=VE −ABC =3√6x ⋅4−x 2−−−−−√,(0<x <2).∵x 2(4−x 2)⩽(x 2+4−x 22)2=4,当且仅当x 2=4−x 2,即x =2√时,取等号, ∴x =2√时,体积有最大值为3√3.3.【浙江省金华市十校2020届模拟】如图,在三棱锥P ABC -中,AB BC =,AP PC =,60ABC ∠=︒,AP PC ⊥,直线BP 与平面ABC 成30°角,D 为AC 的中点,PQ PC λ=u u u v u u u v,(0,1)λ∈.(Ⅰ)若PB PC >,求证:平面ABC ⊥平面PAC ;(Ⅰ)若PC PB <,求直线BQ 与平面PAB 所成角的正弦值的取值范围. 【思路引导】由题意可得直线BP 与平面ABC 所成角是PBD ∠,即30PBD ∠=︒.设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,由勾股定理可得PD DB ⊥,又PD AC ⊥,据此可得PD ⊥平面ABC ,平面PAC ⊥平面ABC .(Ⅰ)若PB PC <,则PB a =,故PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法可得7C h a =,7Q h a λ=.设直线BQ 与平面PAB 所成角为α,则sin α=,据此可得直线BQ 与平面PAB 所成角的正弦值的取值范围为0,7⎛ ⎝⎭.试题解析:∵AB BC =,AP PC =,D 为AC 的中点,∴BD AC ⊥,PD AC ⊥,∴AC ⊥平面PBD , ∴直线BP 与平面ABC 所成角是PBD ∠,30PBD ∠=︒. 设2AC a =,则BD =,PD a =,由余弦定理得PB a =或2a .(Ⅰ)若PB PC >,则2PB a =,∴在PBD ∆中222PD DB PB +=.∴PD DB ⊥, 又PD AC ⊥,AC DB D ⋂=,∴PD ⊥平面ABC ,∴平面PAC ⊥平面ABC . (Ⅰ)若PB PC <,∴PB a =,∵PQ PC λ=u u u v u u u v,∴PQ a =,BQ =,设Q h 是Q 到面PAB 的距离,C h 是C 到面PAB 的距离,则Q C h h λ=,由等体积法:)2112323C aa a h ⋅=⋅,∴7C h a =,∴7Q h a λ=. 设直线BQ 与平面PAB 所成角为α,则HQsin BQα==a=7=.∵()0,1λ∈10,2⎛⎫ ⎪⎝⎭.∴0sin α<<故直线BQ 与平面PAB所成角的正弦值的取值范围为0,7⎛ ⎝⎭. 4.【北京市城六区2019届高三模拟】已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P ABC -中: (I)证明:平面PAC ⊥平面ABC ; (Ⅰ)求二面角A PC B --的余弦值; (Ⅰ)若点M 在棱PC 上,满足CMCP λ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP的取值范围.【思路引导】第一问取AC 中点O ,根据等腰三角形的性质求得PO AC ⊥,根据题中所给的边长,利用勾股定理求得PO OB ⊥,利用线面垂直的判定定理以及面面垂直的判定定理得到结果;第二问根据题中所给的条件建立空间直角坐标系,写出相应的点的坐标,求得面的法向量,利用法向量所成角的余弦值得出结果;第三问利用向量间的关系,利用向量垂直的条件,利用向量的数量积等于0,得出所求的比值μ与λ的关系式,利用函数的有关知识求得结果. (Ⅰ)方法1:设AC 的中点为O ,连接BO ,PO . 由题意PA PB PC ===,1PO =,1AO BO CO ===因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法2:设AC 的中点为O ,连接BO ,PO .因为在PAC ∆中,PA PC =,O 为AC 的中点 所以PO AC ⊥,因为PA PB PC ==,PO PO PO ==,AO BO CO == 所以POA ∆≌POB ∆≌POC ∆ 所以90POA POB POC ∠=∠=∠=︒ 所以PO OB ⊥因为AC OB O ⋂=,,AC OB ⊂平面ABC 所以PO ⊥平面ABC 因为PO ⊂平面PAC 所以平面PAC ⊥平面ABC 方法3:设AC 的中点为O ,连接PO ,因为在PAC ∆中,PA PC =, 所以PO AC ⊥设AB 的中点Q ,连接PQ ,OQ 及OB . 因为在OAB ∆中,OA OB =,Q 为AB 的中点 所以OQ AB ⊥.因为在PAB ∆中,PA PB =,Q 为AB 的中点 所以PQ AB ⊥.因为PQ OQ Q ⋂=,,PQ OQ ⊂平面OPQ所以AB ⊥平面OPQ因为OP ⊂平面OPQ所以OP AB ⊥因为AB AC A ⋂=,,AB AC ⊂平面ABC所以PO ⊥平面ABC因为PO ⊂平面PAC所以平面PAC ⊥平面ABC(Ⅰ)由PO ⊥平面ABC ,OB AC ⊥,如图建立空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P由OB ⊥平面APC ,故平面APC 的法向量为()0,1,0OB =u u u v由()1,1,0BC =-u u u v ,()1,0,1PC =-u u u v设平面PBC 的法向量为(),,n x y z =v,则 由00n BC n PC ⎧⋅=⎨⋅=⎩u u u v u u u v 得:00x y x z -=⎧⎨-=⎩ 令1x =,得1y =,1z =,即()1,1,1n =vcos ,n OB n OB n OB⋅===⋅u u u v v u u u v v u u u v v 由二面角A PC B --是锐二面角,所以二面角A PC B --的余弦值为3(Ⅰ)设BN BP μ=u u u v u u u v ,01μ≤≤,则()()()1,1,01,0,11,1,BM BC CM BC CP λλλλ=+=+=-+-=--u u u u v u u u v u u u u v u u u v u u u v ()()()1,1,00,1,11,1,AN AB BN AB BP μμμμ=+=+=+-=-u u u v u u u v u u u v u u u v u u u v 令0BM AN ⋅=u u u u v u u u v得()()()11110λμλμ-⋅+-⋅-+⋅= 即1111λμλλ==-++,μ是关于λ的单调递增函数, 当12,33λ⎡⎤∈⎢⎥⎣⎦时,12,45μ⎡⎤∈⎢⎥⎣⎦, 所以12,45BN BP ⎡⎤∈⎢⎥⎣⎦。

立体几何中最值问题-玩转压轴题(原卷版)

立体几何中最值问题-玩转压轴题(原卷版)

专题4.4 立体几何中最值问题一.方法综述高考试题将趋于关注那些考查学生运用运动变化观点处理问题的题目,而几何问题中的最值与范围类问题,既可以考查学生的空间想象能力,又考查运用运动变化观点处理问题的能力。

最值问题一般涉及到距离、面积、体积、角度等四个方面。

此类问题多以规则几何体为载体,涉及到几何体的结构特征以及空间线面关系的逻辑推理、空间角与距离的求解等,题目较为综合,解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,变动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.二.解题策略类型一 空间角的最值问题【例1】(2020·浙江高三期末)如图,四边形ABCD ,4AB BD DA ===,22BC CD ==,现将ABD ∆沿BD 折起,当二面角A BD C --的大小在2[,]33ππ时,直线AB 和CD 所成角为α,则cos α的最大值为( )A .2268- B .6224- C .2268+ D .2264+ 【举一反三】1.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13B .33C .12D .222.(2020·河南高三月考(理))如图,在菱形ABCD 中,∠ABC =60°,E ,F 分别是边AB ,CD 的中点,现将△ABC 沿着对角线AC 翻折,则直线EF 与平面ACD 所成角的正切值最大值为( )A .2B .213C .33D .223.AB 是圆锥 S O 的直径,SB 是它的一条母线,E 、F 是SB 的两个三等分点(E 点靠近S 点),C 点在圆O 上运动(不与A 、B 两点重合),则二面角 --E AC F 的平面角为α则tan α的最大值是_______.类型二 空间距离的最值问题【例2】(2020银川一中模拟)正方体1111ABCD A B C D -的棱长为1,M 、N 分别在线段11A C 与BD 上,MN 的最小值为【举一反三】1.(2020河南省焦作市模拟)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .22.(2020·四川高三期末(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A 3B 3C 23D 433.(2020·山西高三月考)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( )A 25B 2C .1D 64.如图,三棱锥A BCD -中,10812AC AD BC BD AB CD ======,,,点P 在侧面ACD 内,且点P 到直线AB 的距离为4,则点P 到平面BCD 距离的最小值为_________.【来源】山西省临汾市2021届高三下学期二模数学(理)试题类型三 周长、面积与体积的最值问题【例3】已知点P 是等边△ABC 外一点,且点P 在△ABC 所在平面内的射影恰好在边BC 上,若△ABC 的边长为2,三棱锥P ﹣ABC 的外接球体积为3π,则三棱锥P ﹣ABC 体积的最大值为___________.【来源】湖南省三湘名校教育联盟2021届高三下学期第三次大联考数学试题【例4】已知,,,A B C D 为球面上四点,,M N 分别是,AB CD 的中点,以MN 为直径的球称为,AB CD 的“伴随球”,若三棱锥A BCD -的四个顶点在体积为36π的球面上,它的两条边,AB CD 的长度分别为2和5,AB CD 的伴随球的表面积的取值范围是_____.【来源】安徽省宣城市2021届高三下学期第二次调研理科数学试题【例5】(2020·重庆南开中学高二期末)如图所示,直平行六面体111ABCD A BC D -的所有棱长都为2,60DAB ︒∠=,过体对角线1BD 的截面S 与棱1AA 和1CC 分别交于点E 、F ,给出下列命题中:①四边形1BED F 的面积最小值为26; ②直线EF 与平面11BCC B 所成角的最大值为4π; ③四棱锥11B BED F -的体积为定值;④点1B 到截面S 的距离的最小值为2217. 其中,所有真命题的序号为( )A .①②③B .①③④C .①③D .②④【举一反三】1.在直三棱柱111ABC A B C -中,ABC 是等腰直角三角形,且AB BC ⊥.若该三棱柱的外接球半径是2,则三棱锥1C ABC -体积的最大值为__________.【来源】湖北省十堰市2021届高三下学期4月调研数学试题2、如图,已知平面l αβ=,A 、B 是l 上的两个点,C 、D 在平面β内,且,,DA CB αα⊥⊥4AD =,6,8AB BC ==,在平面α上有一个动点P ,使得APD BPC ∠=∠,则P ABCD -体积的最大值是( )A.24316 C.48 D.1443.(2020·河北高三期末(理))已知正六棱锥 P ABCDEF 的所有顶点都在一个半径为1的球面上,则该正六棱锥体积的最大值为( )A .8327B .16327C .839 D .32327三.强化训练 1.(2020·内蒙古高三)如图,在长方体1111ABCD A B C D -中,1AB =,2AD =,13AA =,点M 是AD 的中点,点P 是底面ABCD 内(不包括边界)一动点,且三棱锥1A BMP -体积为12,则PC 的最小值是( )A 3B 2C .32D .222.(2020·北京高三)三棱柱111ABC A B C -的侧棱与底面垂直,11AA AB AC ===,AB AC ⊥,N 是BC 的中点,点P 在11A B 上,且满足111A P A B λ=,当直线PN 与平面ABC 所成的角取最大值时,λ的值为()A.12B.22C.32D.2553.(2020·黑龙江高三(理))设,,,A B C D是同一个半径为4的球的球面上四点,在ABC中,6BC=,60BAC∠=︒,则三棱锥D ABC-体积的最大值为()A.123B.183C.243D.5434.(2020兰州高考诊断)四棱锥的顶点均在一个半径为3的球面上,若正方形的边长为4,则四棱锥的体积最大值为()A.B.C.D.5.(2020广东省东莞市质检)已知一个四棱锥的正主视图和俯视图如图所示,其中,则该四棱锥的高的最大值为A.B.C.4 D.26.(2020湖南省衡阳市模拟)如图,直角三角形,,,将绕边旋转至位置,若二面角的大小为,则四面体的外接球的表面积的最小值为( )A .B .C .D .7.如图,在矩形ABCD 中, 2,1AB AD ==,点E 为CD 的中点, F 为线段CE (端点除外)上一动点现将DAF ∆沿AF 折起,使得平面ABD ⊥平面ABC 设直线FD 与平面ABCF 所成角为θ,则sin θ的最大值为( )A. 13B. 24C. 12D. 238.(2020·山东师范大学附中高三期中(理))如图所示,五面体ABCDE 中,正ABC ∆的边长为1,AE ⊥平面,ABC CD AE ∥,且12CD AE =.设CE 与平面ABE 所成的角为,(0)AE k k α=>,若ππ[,]64α∈,则当k 取最大值时,平面BDE 与平面ABC 所成角的正切值为( )A 2B .1C 2D 39.(2020·重庆巴蜀中学高三期末(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83 C .4 D .110.(2020·河南高三期末(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( )A .92B .52C .32D .5411.已知正四面体A BCD -的边长为22,点P 、Q 分别为线段AB ,CD 上的动点,满足224+=AP CQ ,M 为线段PQ 的中点,则||AM 的最大值为( )A .32+B .2C .5D .612.如图是一个底面半径和高都是1的装满沙子的圆锥形沙漏,从计时开始,流出沙子的体积V 是沙面下降高度x 的函数()V f x =,若正数a ,b 满足1a b +=,则()()f a f b +的最大值为( )A .3πB .49πC .712πD .23π 【来源】陕西省宝鸡市2021届高三下学期二模理科数学试题13.如图,在长方体1111ABCD A B C D -中,3AB AD ==11AA =,若面对角线1A B 上存在一点P ,使得1AP D P +取得最小值,则此最小值为( )A .1B .3C .13+D .7【来源】黑龙江省哈尔滨市第九中学2021届高三第三次模拟考试理科数学试题14.在直三棱柱111ABC A B C -中,156,8,10AA AB BC AC ====,,则该三棱柱内能放置的最大球的表面积是( )A .9πB .16πC .24πD .25π【来源】陕西省汉中市2021届高三下学期第二次检测理科数学试题15.已知一个圆柱的两个底面的圆周在半径为23的同一个球的球面上,则该圆柱体积的最大值为( ) A .32π B .323π C .10π D .24π【来源】广东省2021届高三二模数学试题16.在正四棱锥S ABCD -中,SO ⊥面ABCD 于O ,2SO =,底面的边长为2,点,P Q 分别在线段,BD SC 上移动,则,P Q 两点的最短的距离为( )A .55B .255C .2D .117.在正四面体P ABC -中,点M 是棱PC 的中点,点N 是线段AB 上一动点,且AN AB λ=,设异面直线NM 与AC 所成角为α,当1233λ≤≤时,则cos α的取值范围是__________. 18.(2020陕西省西安地区陕师大附中模拟)如图,已知正四棱柱和半径为的半球O ,底面ABCD 在半球O 底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.19.(2020江西省上饶市模拟)已知正方体的棱长为,平面与对角线垂直且与每个面均有交点,若截此正方体所得的截面面积为,周长为,则的最大值为______.20.(2020·浙江高三期末)如图,在矩形ABCD 中,AB =2,AD =1,M 为AB 的中点,将△ADM 沿DM 翻折.在翻折过程中,当二面角A —BC —D 的平面角最大时,其正切值为21.(2020·湖南高考模拟(理))已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是22.如图,一个有盖圆柱形铁桶的底面直径为43,高为8,铁桶盖的最大张角为60,往铁桶内塞入一个木球,则该木球的最大表面积为___________.【来源】陕西省榆林市2021届高三下学期第四次模拟考试文科数学试题23.已知长方体1111ABCD A B C D -外接球的体积为36π,125AA =ABCD 面积的最大值为__________.【来源】山西省晋城市2021届高三下学期二模数学(理)试题24.某中学开展劳动实习,学习加工制作模具,有一个模具的毛坯直观图如图所示,是由一个圆柱体与两个半球对接而成的组合体,其中圆柱体的底面半径为1,高为2,半球的半径为1.现要在该毛坯的内部挖出一个中空的圆柱形空间,该中空的周柱形空间的上下底面与毛坯的圆柱体底面平行,挖出中空的圆柱形空间后模具制作完成,则该模其体积的最小值为___________.【来源】河北省承德市2021届高三下学期二模数学试题25.已知直四棱柱1111ABCD A B C D -的高为4,底面边长均为2,且60BAD ∠=︒,P 是侧面11BCC B 内的一点,若1DP D P ⊥,则AP 的最小值为___________.【来源】浙江省台州市第一中学2021届高三下学期4月模拟考试数学试题26.正方体1111ABCD A B C D -的棱长为2,点O 为底面ABCD 的中心,点P 在侧面11BB C C 的边界及其内部运动,若1D O OP ⊥,则11C D P 面积的最大值为_________.27.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为_____.【来源】宁夏六盘山市高级中学2021届高三下学期一模数学(理)试题试题28.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,点M 是AD 的中点,动点P 在底面正方形ABCD 内(不包括边界),若B 1P //平面A 1BM ,则C 1P 长度的取值范围是____.。

专题05二项分布、超几何分布与正态分布(原卷版) 专项复习(人教A版选择性必修第三册)

专题05二项分布、超几何分布与正态分布(原卷版) 专项复习(人教A版选择性必修第三册)

专题05二项分布、超几何分布与正态分布一、单选题1.(2020·全国高二课时练习)抛掷一枚质地均匀的正方体骰子4次,设X 表示向上一面出现6点的次数,则X 的数学期望()EX 的值为( ) A .13 B .49 C .59 D .232.(2020·全国高二课时练习)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数X 的数学期望是( ) A .43 B .119 C .1 D .893.(2021·河南驻马店市·高三期末(理))已知~(20,)X B p ,且()6E X =,则()D X =( ) A .1.8 B .6 C .2.1 D .4.24.(2021·山东德州市·高二期末)已知随机变量X 服从二项分布(),XB n p ,若()54E X =,()1516=D X ,则p =( )A .14B .13C .34D .45 5.(2020·全国高二课时练习)已知圆2228130+--+=x y x y 的圆心到直线()10kx y k +-=∈Z 的距离为若14,4XB ⎛⎫ ⎪⎝⎭,则使()P X k =的值为( ) A .23 B .35C .13D .27646.(2021·辽宁大连市·高三期末)2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .351287.(2020·江苏省苏州中学园区校高二月考)设随机变量ξ服从正态分布(2,9)N ,若(21)(1)P m P m ξξ<+=>-,则实数m 的值是( )A .23B .43C .53D .28.(多选)(2021·全国高二课时练习)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( )A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128 9.(多选)(2020·全国高三专题练习)某计算机程序每运行一次都随机出现一个五位二进制数12345A a a a a a =(例如10100)其中A 的各位数中()2,3,4,5k a k =出现0的概率为13,出现1的概率为23,记2345X a a a a =+++,则当程序运行一次时( )A .X 服从二项分布B .()8181P X ==C .X 的期望()83E X =D .X 的方差()83V X =10.(2020·江苏南京市·南京田家炳高级中学高三期中)下列命题中,正确的命题是( )A .已知随机变量服从二项分布(),B n p ,若()30E x =,()20D x =,则23p =B .已知34n n AC =,则27n =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为X ,()~10,0.8X B ,则当8X =时概率最大.二、填空题11.(2021·江西高三其他模拟(理))已知随机变量ξ服从正态分布()23,N σ,()60.84P ξ≤=,则()0P ξ≤=______.12.(2020·福建三明市·高二期末)已知某批零件的长度误差X 服从正态分布()2,N μσ,其密度函数()()222,12x x e μσμσϕπσ--=的曲线如图所示,则σ=______;从中随机取一件,其长度误差落在()3,6内的概率为______. (附:若随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<≤+=,()220.9544P μσξμσ-<≤+=,()330.9974P μσξμσ-<≤+=.)三、解答题13.(2021·全国高二课时练习)某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记(3)若规定分数在[80,90)为“良好”,[]该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.14.(2020·全国高三专题练习(理))袋子中有1个白球和2个红球.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X的分布列;(3)每次取1个球,有放回,共取5次,求取到白球次数X的分布列.15.(2021·全国高三其他模拟)某商场举行有奖促销活动,凡10月13日当天消费每超过400元(含400元),均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折;若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若小方、小红均分别消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率.(2)若小勇消费恰好满600元,试比较说明小勇选择哪种方案更划算.16.(2021·全国高二课时练习)第13届女排世界杯于2019年9月14日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKSA-V200W ,已知这种球的质量指标ξ (单位:g )服从正态分布N (270,25).比赛赛制采取单循环方式,即每支球队进行11场比赛(采取5局3胜制),最后靠积分选出最后冠军积分规则如下:比赛中以3:0或3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.已知第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为p(0<p<1).(1)如果比赛准备了1000个排球,估计质量指标在(260,265]内的排球个数(计算结果取整数).f p.(2)第10轮比赛中,记中国队3:1取胜的概率为()(i)求出f(p)的最大值点0p;(ii)若以0p作为p的值记第10轮比赛中,中国队所得积分为X,求X的分布列.σ),则p(μ-σ<X<μ+σ)≈0.6826,p(μ-2σ<X <μ+2σ)≈0.9644.参考数据:ζ ~N(u,2。

专题05 直线的交点、距离公式与对称、最值问题(知识梳理+专题过关)(原卷版)

专题05 直线的交点、距离公式与对称、最值问题(知识梳理+专题过关)(原卷版)

专题05直线的交点、距离公式与对称、最值问题【知识梳理】1、直线的交点求两直线1111110(0)A x B y C A B C ++=≠与2222220(0)A x B y C A B C ++=≠的交点坐标,只需求两直线方程联立所得方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩的解即可.若有111222A B CA B C ==,则方程组有无穷多个解,此时两直线重合;若有111222A B C A B C =≠,则方程组无解,此时两直线平行;若有1122A B A B ≠,则方程组有唯一解,此时两直线相交,此解即两直线交点的坐标.2、两点间的距离公式两点111()P x y ,,222()P x y ,间的距离公式为12PP =.3、点到直线的距离公式点00()P x y ,到直线0Ax By C ++=的距离为d =4、两平行线间的距离直线10Ax By C ++=与直线20Ax By C ++=的距离为d =.5、点关于点对称点关于点对称的本质是中点坐标公式:设点11()P x y ,关于点00()Q x y ,的对称点为22()P x y ',,则根据中点坐标公式,有12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩可得对称点22()P x y ',的坐标为0101(22)x x y y --,6、点关于直线对称点11()P x y ,关于直线:0l Ax By C ++=对称的点为22()P x y ',,连接PP ',交l 于M 点,则l 垂直平分PP ',所以PP l '⊥,且M 为PP '中点,又因为M 在直线l 上,故可得12121022l PP k k x x y y AB C '⋅=-⎧⎪⎨++++=⎪⎩,解出22()x y ,即可.7、直线关于点对称法一:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;法二:求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程.8、直线关于直线对称求直线1:0l ax by c ++=,关于直线2:0l dx ey f ++=(两直线不平行)的对称直线3l 第一步:联立12l l ,算出交点00()P x y ,第二步:在1l 上任找一点(非交点)11()Q x y ,,利用点关于直线对称的秒杀公式算出对称点22()Q x y ',第三步:利用两点式写出3l 方程9、常见的一些特殊的对称点()x y ,关于x 轴的对称点为()x y -,,关于y 轴的对称点为()x y -,.点()x y ,关于直线y x =的对称点为()y x ,,关于直线y x =-的对称点为()y x --,.点()x y ,关于直线x a =的对称点为(2)a x y -,,关于直线y b =的对称点为(2)x b y -,.点()x y ,关于点()a b ,的对称点为(22)a x b y --,.点()x y ,关于直线x y k +=的对称点为()k y k x --,,关于直线x y =k -的对称点为()k y x k +-,.【专题过关】【考点目录】考点1:两直线的交点问题考点2:两点的距离考点3:点到直线的距离考点4:两平行直线的距离考点5:点线对称考点6:线点对称考点7:线线对称考点8:两线段和与差的最值问题【典型例题】考点1:两直线的交点问题1.(2021·江苏连云港·高二期中)若三条直线280,10x ky x y ++=--=和20x y -=交于一点,则k 的值为()A .2-B .12-C .3D .122.(2021·四川·遂宁中学高二期中(理))已知直线ax +y+1=0,x +ay+1=0和x +y+a =0能构成三角形,则a 的取值范围是()A .a≠2-B .a≠±1C .a≠2-且a≠±1D .a≠2-且a≠13.(2021·安徽省六安中学高二期中(文))已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为()A .210x y --=B .210x y +-=C .210x y --=D .210x y +-=4.(多选题)(2021·江苏徐州·高二期中)已知a 为实数,若三条直线280,43100ax y x y ++=+-=和2100x y --=不能围成三角形,则a 的值为()A .83B .1C .1-D .4-5.(2021·全国·高二期中)经过两条直线2310x y ++=和2330x y -+=的交点,并且平行于直线y x =的直线的一般式方程为______.6.(2021·上海·南洋中学高二期中)关于x 、y 的二元一次方程组7352x by ax y -=⎧⎨+=⎩有无穷多组解,则a 与b 的积是_____.7.(2021·云南临沧·高二期中)已知直线l 1:10ax y ++=与l 2:210x by --=相交于点(1,1)M ,则a b +=__.8.(2021·四川省宜宾市第一中学校高二期中(理))过点P (0,1)作直线l ,使它被直线l 1:280x y +-=和l 2:3100x y -+=截得的线段恰好被点P 平分,求直线l 的方程.9.(2021·江苏·东海县教育局教研室高二期中)已知直线l :(41)(1)30x y λλ+-++=.(1)求证:直线l 过定点;(2)若直线l 被两平行直线1l :220x y -+=与2l :260x y --=所截得的线段AB 的中点恰好在直线260x y ++=上,求λ的值.10.(2021·安徽省六安中学高二期中(理))已知两直线1110a x b y +-=和2210a x b y +-=的交点为(1,2)P ,则过111(,),Q a b 222(,)Q a b 两点的直线方程为_________.考点2:两点的距离11.(2021·福建三明·高二期中)已知直线1l :220x y --=与直线2l :380x y +-=的交点为A ,则点A 与点()23B ,间的距离为()AB .CD .112.(2021·广西·防城港市防城中学高二期中)已知()2,3A -,()5,7B -,则AB =()A .3B .4C .5D .613.(2021·云南·昆明一中高二期中)已知三角形的三个顶点A(2,4),B(3,6),C(5,2)-,则过A 点的中线长为()A B .C .D .14.(2021·河北唐山·高二期中)已知ABC 三顶点为()1,4A --、()5,2B 、()3,4C ,则ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形15.(2021·北京·临川学校高二期中(文))已知点(),1M m -,()5,N m ,且MN =实数m 等于()A .1B .3C .1或3D .1-或316.(2021·四川巴中·高二期中(文))当实数k 变化时,直线1:20l kx y k -++=到直线2:30l kx y --=的距离的最大值是______.考点3:点到直线的距离17.(2021·内蒙古·阿拉善盟第一中学高二期中(文))直线2x =与32120x y +-=的交点到直线10x y +-=的距离______.18.(2021·辽宁·高二期中)对任意的实数λ,求点()2,2P -到直线()()212320x y λλλ+-+-+=()的距离d 的取值范围为______.19.(2021·全国·高二期中)已知ABC 的三个顶点的坐标为()3,3A 、()2,2B -、()7,1C -,试求:(1)BC 边上的高所在的直线方程;(2)ABC 的面积.20.(2021·全国·高二期中)已知直线l 垂直于直线3490x y +-=,点()2,3A 到直线l 的距离为1,求直线l 的方程.21.(2021·黑龙江·大兴安岭实验中学高二期中)已知点(3,4)A --,(6,3)B 到直线:10l ax y ++=的距离相等,则实数a 的值为_______22.(2021·山东威海·高二期中)已知(2,6),(0,4)A B --两点到直线:10l ax y ++=的距离相等,则实数a 的值为________.23.(2021·湖北黄冈·高二期中)过点()1,1P 引直线,使()2,3A ,()4,5B -到它的距离相等,则该直线的方程是()A .450x y +-=B .450x y +-=C .20x y +-=或450x y +-=D .20x y +-=或450x y +-=考点4:两平行直线的距离24.(2021·10y +-=与直线30my ++=平行,则它们之间的距离是()A .1B .54C .3D .425.(2021·贵州·遵义市第五中学高二期中(理))直线120l x y ++=:与直线22210l x y +-=:之间的距离为_________.26.(2021·广东·江门市第二中学高二期中)直线1:3460l x y -+=与2:340l x y C -+=间的距离为3,则C =_______.考点5:点线对称27.(2021·吉林油田高级中学高二期中)已知点P 与点()1,2Q -关于直线10x y +-=对称,则点P 的坐标为_______.28.(2021·江苏·苏州市苏州高新区第一中学高二期中)已知ABC 的顶点(4,1),A AB 边上的高所在直线平行于直线3510x y +-=,角B 的平分线所在直线方程为250x y --=,则BC 边所在直线方程___________.29.(2021·浙江·宁波咸祥中学高二期中)求(3,5)A -关于直线:3440l x y -+=对称的点的坐标___________.30.(2021·湖北省广水市实验高级中学高二期中)光线沿直线730x y --=入射到直线220x y -+=后反射,则反射光线所在直线的方程为________.31.(2021·安徽宿州·高二期中)已知点()1,3A 与点B 关于直线:10l x y -+=对称,则点B 的坐标为()A .()3,3B .()2,2C .53,22⎛⎫⎪⎝⎭D .()3,232.(2021·江苏南京·高二期中)在平面直角坐标系xOy 中,点()3,1关于直线10x y -+=的对称点为()A .()4,0B .()0,4C .()2,1-D .()1,2-33.(2021·江苏·40y --=,经直线10x y +-=反射,则反射光线所在直线的方程是()A50y ++=B .40x +=C .50x +=D .0x =考点6:线点对称34.(2021·江西·上高二中高二期中(文))已知直线l :33y x =+.(1)求点()4,5P 关于直线l 的对称点坐标;(2)求直线l 关于点()4,5P 对称的直线方程.35.(2021·江苏连云港·高二期中)已知直线l 经过两条直线2380x y ++=和10x y --=的交点,且________,若直线m 与直线l 关于点()1,0对称,求直线m 的方程.试从以下两个条件中任选一个补充在上面的问题中,完成解答,若选择多个条件分别解答,按照第一个解答计分.①与直线3280x y ++=垂直;②在y 轴上的截距为12.36.(2021·四川·邻水实验学校高二期中(理))已知直线:2310l x y -+=,点(1,2)A --.求:(1)点A 关于直线l 的对称点A '的坐标;(2)直线:3260m x y --=关于直线l 对称的直线m '的方程;(3)直线l 关于点(1,2)A --对称的直线l '的方程.37.(2021·北京·北理工附中高二期中)点()1,2P 在直线l 上,直线1l 与l 关于点()0,1对称,则一定在直线1l 上的点为()A .13,22⎛⎫ ⎪⎝⎭B .31,2⎛⎫- ⎪⎝⎭C .()1,0-D .1,02⎛⎫⎪⎝⎭38.(2021·全国·高二期中)与直线3450x y -+=关于坐标原点对称的直线方程为()A .3450x y +-=B .3450x y ++=C .3450x y -+=D .3450x y --=39.(2021·北京市平谷区第五中学高二期中)直线y =4x ﹣5关于点P (2,1)对称的直线方程是()A .y =4x +5B .y =4x ﹣5C .y =4x ﹣9D .y =4x +9考点7:线线对称40.(2021·北京市八一中学高二期中)已知直线l 与直线21y x =+关于x 轴对称,则直线l 的一般方程为___________.41.(2021·全国·高二期中)直线3450x y -+=关于直线0x y +=对称的直线方程为________.42.(2021·四川成都·高二期中(文))直线2y -x +1=0关于y -x =0对称的直线方程是()A .y -2x -1=0B .y +2x -1=0C ..y +2x +1=0D .2y +x +1=043.(2021·山西·高二期中)直线220x y -+=关于直线1x =对称的直线方程是()A .240x y +-=B .210x y +-=C .230x y +-=D .240x y +-=44.(2021·全国·高二期中)与直线:2310l x y -+=关于y 轴对称的直线的方程为()A .2310x y ++=B .2310x y +-=C .3210x y -+=D .3210x y ++=45.(多选题)(2021·广东·广州市第七中学高二期中)下列说法正确的是()A .截距相等的直线都可以用方程1x ya a+=表示B .方程20()x my m +-=∈R 能表示平行y 轴的直线C .过点(1,2)P 引直线l ,使点3(2,)A -,(4,5)B 到它的距离相等,则这条直线l 的方程为420x y --=D .直线3450x y -+=关于直线0x y +=的对称的直线方程为4350x y -+=考点8:两线段和与差的最值问题46.(2021·吉林长春·高二期中)已知点M ,N 分别在直线1l :0x y +=与直线2l :30x y +-=,且1MN l ⊥,点()1,3P --,71,22Q ⎛⎫⎪⎝⎭,则PM QN +|的最小值为()A 152B C D .47.(2021·安徽·合肥市第六中学高二期中(文))著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事休.”事实上,有很多代数问题可以转化为几何问题加以解决,如:(,)M x y 与点(,)N a b 的距离,结合上述观点,可得()f x =的最小值为()A .5BC D .248.(2021·浙江·绍兴一中高二期中)已知点()1,2A ,()2,3B -,直线:l y x =,在直线l 上找一点P 使得PA PB +最小,则这个最小值为()A B .C D49.(2021·安徽省六安中学高二期中(文))已知(0,2),(3,1)A B -,点P 为x 轴上一动点,则PA PB -的最大值是()A B .C .D 50.(2021·安徽省六安中学高二期中(理))直线2360x y +-=分别交x 轴和y 于点,A B ,P 为直线y x =上一点,则PA PB -的最大值是()A .1B .2C .3D .451.(2021·全国·高二期中)已知,x y R ∈,则()2211x y x y -++-⎛⎫ ⎪⎝⎭的最小值为()A .14B .22C .12D .1252.(2021·贵州黔西·高二期中(理))已知实数a ,b 满足4230a b -+=,则的最小值为___________.53.(2021·辽宁实验中学高二期中)若x ∈R ___________.54.(2021·广东实验中学高二期中)若,x y R ∈的最小值为___________.55.(2021·河南·高二期中(理))函数y =____________.56.(2021·上海交大附中高二期中)已知点()10,2A -,()5,7B .若在x 轴上存在一点P ,使PA PB -最小,则点P 的坐标为________.57.(2021·新疆维吾尔自治区喀什第二中学高二期中)求函数()f x 58.(2021·江苏连云港·高二期中)若不等式m +对于任意的实数,x y 恒成立,则m 的最大值是________,此时x y +=________.。

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()515 1 5 1 5 1A. B. C. D.4 2 4 2【答案】C【解析】【分析】1设C D a,PE b,利用P O2 CD PE 得到关于a,b的方程,解方程即可得到答案.22a【详解】如图,设C D a,PE b,则P O PE 2 2 2 ,OE b41 a2 1 b b由题意P O2 ab,即b 2 ab,化简得4() 2 210,2 4 2 a ab1 5解得(负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国I I卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A. EB. FC.GD.H【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,D D B C上的点在俯视图中对应的点为N,3 4上的点在正视图中都对应点M,直线1 4∴在正视图中对应M ,在俯视图中对应N 的点是D4,线段D D,上的所有点在侧试图中都对应E ,∴点3 4D4在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.A, B,C 为球O 的球面上的三个点,⊙O为 A B C的外接圆,若⊙O3. 【2020 年高考全国Ⅰ卷理数】已知11的面积为 4π , AB BC AC OO ,则球O的表面积为()1A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边 AB C 的外接圆半径,进而求出其边长,得出O O的值,根据球的截面性质,求出球的半 1径,即可得出结论. 【详解】设圆O半径为 ,球的半径为 R ,依题意, r 14,r 2 , A B C为等边三角形,得r2由正弦定理可得 AB 2rsin 60 2 3 ,O O AB 2 3 ,根据球的截面性质O O 平面 ABC , 11 O O O A ,R OA O O2 O A 2 OO 1 2 r 4 , 21 1 1 1 O 球2 的表面积 S 4R 64 .故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 4. 【2020 年高考全国Ⅲ理数】下图为某几何体的三视图,则该几何体的的表面积是( )A.6+4 2B.4+4 2C.6+2 3D.4+2 3【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形1根据立体图形可得:S△ABC S△AD C S△C DB 22 22根据勾股定理可得:AB A D DB 2 2△A DB是边长为22的等边三角形根据三角形面积公式可得:1 1 3S △A D B AB AD s in60(22) 2 2 32 2 2该几何体的表面积是:3223623.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 5. 【2020 年高考全国 I I 卷理数】已知△ABC 是面积为若球 O 的表面积为 16π,则 O 到平面 ABC 的距离为( 3 9 34的等边三角形,且其顶点都在球 O 的球面上. )3 A. 3 B.C. 1D.22【答案】C 【解析】 【分析】根据球O 的表面积和 ABC 的面积可求得球O 的半径 R 和 AB C 外接圆半径 ,由球的性质可知所求距r 离 2 2 .d R r 【详解】设球O 的半径为 R ,则 4 R 16 ,解得: R 2 . 2 设 AB C 外接圆半径为 ,边长为 a,r 9 3ABC是面积为 的等边三角形, 41 3 9 32 a 22 9 a 2 ,解得: a 3,r a 2 93 , 2 24 3 4 3 4球心 O 到平面 ABC 2 2 的距离d R r 43 1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明 确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.6. 【2019 年高考全国Ⅰ卷理数】已知三棱锥 P −AB C 的四个顶点在球 O 的球面上,PA=PB=P C ,△ABC 是边 长为 2 的正三角形,E ,F 分别是 PA ,AB 的中点,∠CEF =90°,则球 O 的体积为A .8 6B . 4 6 D . 6C . 2 6 【答案】D【解析】解法一: PA P B PC, ABC 为边长为 2 的等边三角形,P ABC为正三棱锥,△ PB AC ,又 E , F 分别为 PA , AB 的中点,EF ∥PB ,EF AC ,又 EF CE ,C E AC C,EF 平面 PAC ,∴ PB 平面 PAC ,APB PA PB PC 2 ,P ABC 为正方体的一部分, 2R 2 2 2 6 ,即6 4 4 6 68 R, V R 3 π 6,故选 D . P A, AB 2 3 3解法二:设 PA PB PC 2x ,E, F 分别为 的中点, 1EF ∥PB ,且 EF PB x ,△ABC 为边长为 2 的等边三角形,C F 3 ,21 又 CEF 90,CE 3 x 2, AE PA x , 2 x 243 x 22 x2△AEC 中,由余弦定理可得 cos EAC作 PD AC 于 D ,,A D 1 x 2 4 3 x 4x 21PA PC \ D AC cos EAC , , 为 的中点, ,PA 2x 2x1 2 2x 2 1 2,x 2,x ,PA PB PC 2 ,2 2又 AB=B C=A C=2 , PA , PB , PC 两两垂直,6 2R 2 2 2 6 ,R,24 4 6 68 V R 3 6 ,故选 D. 3 3【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到 三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.7. 【2019 年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 C .α,β平行于同一条直线 【答案】BB .α内有两条相交直线与β平行 D .α,β垂直于同一平面【解析】由面面平行的判定定理知: 内两条相交直线都与 平行是∥的充分条件,由面面平行性质定理知,若∥,则必要条件,故选 B .内任意一条直线都与 平行,所以平行是∥内两条相交直线都与的【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用 面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易 犯的错误为定理记不住,凭主观臆断,如:“若 a ,b ,a b ,则 ∥ ∥”此类的错误.8. 【2019 年高考全国Ⅲ卷理数】如图,点 N 为正方形 AB C D 的中心,△EC D 为正三角形,平面 EC D ⊥平 面 ABC D ,M 是线段 E D 的中点,则A .B M =E N ,且直线 B M ,EN 是相交直线 B .B M ≠EN ,且直线 B M ,E N 是相交直线C .B M =E N ,且直线 B M ,E N 是异面直线D .B M ≠EN ,且直线 B M ,EN 是异面直线 【答案】B【解析】如图所示,作 EO C D 于O ,连接O N ,B D ,易得直线 B M ,E N 是三角形 EB D 的中线,是 相交直线.过 M 作 MF OD 于 F ,连接 BF ,AB C D ,E O C D, E O 平面C DE ,EO平面C D E 平面 平面 ABC D , M F 平面 AB C D ,△MFB 与△EO N 均为直角三角 形 . 设 正 方 形 边 长 为 2 , 易 知 E O 3,ON 1,EN 2 ,3 5M F,BF ,BM 7 ,B M EN ,故选 B .2 2【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利 用垂直关系,再结合勾股定理进而解决问题.9. 【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正 视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A . 2 17B . 2 5 D .2C .3 【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点 M 在上底面上,点 N 在下底面上,且可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B .【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需 要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平 铺,利用平面图形的相关特征求得结果.10. 【2018 年高考全国Ⅰ卷理数】已知正方体的棱长为 1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为3 342 3 3 A .C .B .D .3 2 43 2【答案】A【解析】根据相互平行的直线与平面所成的角是相等的,AB C D A B C D 中,1所以在正方体 1 1 1AB D AA , A B , A D 所成的角是相等的,11 11 1平面 与线 1 1AB D 所以平面 与正方体的每条棱所在的直线所成角都是相等的,11 C BD 1同理,平面 也满足与正方体的每条棱所在的直线所成角都是相等的,AB D C BD要求截面面积最大,则截面的位置为夹在两个面与1中间,且过棱的中点的正六边形,且1 12边长为,223 2 3 34所以其面积为S 6,故选A.4 2【名师点睛】该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.即首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.11.【2018年高考全国Ⅲ卷理数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.12.【2018年高考全国Ⅲ卷理数】设A ,,,是同一个半径为的球的球面上四点,△A B C 为等边三B C D 4角形且其面积为A.12 3,则三棱锥D ABC 体积的最大值为9 3B.18 3D.54 3C.24 3【答案】B【解析】如图所示,设点 M 为三角形 ABC 的重心,E 为 AC 中点,当点 D 在平面 ABC 上的射影为 M 时,三棱锥 D ABC 的体积最大,此时,O D OB R 4,3 S △AB CAB 9 3 ,AB 6 ,点 M 为三角形 ABC 的重心,2 4 2B M BE 2 3 ,3 Rt △OB M 中,有O M OB 2 2 2,D M O D O M 4 2 6,B M1V DABCm ax9 36 18 3 ,故选 B. 3【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公 式,判断出当点 D 在平面 ABC 上的射影为三角形 AB C 的重心时,三棱锥 DABC 体积最大很关键,2由 M 为三角形 ABC 的重心,计算得到 B M BE 2 3 ,再由勾股定理得到 O M ,进而得到结果, 3属于较难题型.13. 【2018 年高考全国Ⅱ卷理数】在长方体 AB C D A B C D 中,AB BC 1,AA 3 ,则异面直线 A D 与 1 1 1 1 11 D B 所成角的余弦值为1 1 A .5 5 B . D .6 5 2 C .52【答案】C【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,B P ∥A D D B DP= 5B P 2,,则11如图,则 1,连接 DP ,易求得 1 DB P A D DB与所成的角,11是异面直线1 D B2 1 B P 2 DP 25 4 5 5 由余弦定理可得cos DB P 1. 12DB PB 4 5 5 1 1故选 C.方法二:以 D 为坐标原点,DA,D C,D D 所在直线分别为 x ,y ,z 轴建立空间直角坐标系, 1D 0, 0, 0, A 1, 0, 0,B 1, 1, 3,D 0, 0, 3A D1, 0, 3 ,DB 1, 1, 3 ,则 ,所以 1 1 1 1cos AD , DB A D DB A D DB 1 3 2 5 5 1 1因为 , 1 15 1 15 A D DB 所以异面直线 与 所成角的余弦值为 1,故选 C. 15【名师点睛】先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角 与线线角相等或互补关系求结果.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”, 构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出直线的方向向量或平面的法向量;第四,破“应用公式关”. ABC A B C 中, ABC 120 BC CC 1,AB 2 ,,113. 【2017 年高考全国Ⅱ卷理数】已知直三棱柱1 1 1 AB BC 所成角的余弦值为1则异面直线 与 13 15 5 A .B .D .2 103 C . 53【答案】CAB C D A B C D ,1【解析】如图所示,补成直四棱柱 1 1 1则所求角为 BC D,BC 2, BD 2 21 221cos 60 3,C D AB 5 ,11 1 1 BC12 5105 易得 C D 12 BD 2BC 12 ,因此cos BC D,故选 C . 1C D1【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为 共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,],当所作的角为钝角时,应取它的补角作为两条异面2直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.14.【2017年高考全国Ⅰ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12D.16C.14【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)212,故选.B2【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.15.【2017年高考全国Ⅱ卷理数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90 C.42B.63 D.36【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 32 436,上半部分是一个底面半径为,高为的圆柱的一半,其体积3 611 V (3 26) 27,故该组合体的体积V V V36 27 63.21 2 2故选 B .【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规 则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何 体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空 间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用 相应体积公式求解.16. 【2017 年高考全国Ⅲ卷理数】已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为3π π A .C .B .D .4 π π24【答案】B【解析】绘制圆柱的轴截面如图所示:21 1 3 由题意可得: AC 1, AB ,结合勾股定理,底面半径 r 1 2,2 2 223 3由圆柱的体积公式,可得圆柱的体积是V πr 2h π 1 π ,故选 B.2 4【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系, 利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、 补形法等方法进行求解.17. 【2020 年高考全国 I I 卷理数】设有下列四个命题: p :两两相交且不过同一点的三条直线必在同一平面内.1p :过空间中任意三点有且仅有一个平面.2p :若空间两条直线不相交,则这两条直线平行.3p :若直线 l 平面α,直线 m ⊥平面α,则 m ⊥l . 4则下述命题中所有真命题的序号是__________.p p p p p ppp③④122334① ② 1 4【答案】①③④【解析】【分析】p p2利用两交线直线确定一个平面可判断命题的真假;利用三点共线可判断命题的真假;利用异面直线可1p p4判断命题的真假,利用线面垂直的定义可判断命题的真假.再利用复合命题的真假可得出结论.3p1l1l2【详解】对于命题,可设与相交,这两条直线确定的平面为;l l若与相交,则交点A 在平面内,3 1l l同理,与的交点B 也在平面内,3 2所以,AB ,即l3,命题为真命题;p1p2对于命题,若三点共线,则过这三个点的平面有无数个,p命题为假命题;2p对于命题,空间中两条直线相交、平行或异面,3p命题为假命题;3p4,若直线m 平面,对于命题m 垂直于平面则内所有直线,直线l 平面,直线m 直线,lp命题为真命题.4综上可知,,为真命题,,为假命题,p p p p为假命题,1 2为真命题,1 4p p p p为真命题.3 4为真命题,2 3故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力, 属于中等题.18. 【2020 年高考全国Ⅲ理数】已知圆锥的底面半径为 1,母线长为 3,则该圆锥内半径最大的球的体积为_________. 2 【答案】 3【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,B C 2, AB AC 3 其中 ,且点 M 为 BC 边上的中点,设内切圆的圆心为O ,1由于A M 3 2 1 22 2 ,故 S △ABC2 2 2 2 2 , 2r设内切圆半径为 ,则:1 1 1 S △AB C S △A O B S △BO C S △A O C AB r BC r AC r2 2 21 3 3 2r2 2 ,22 4 2解得: r =,其体积:V r 3 . 2 3 32故答案为:. 3【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的 位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于 球的直径.19. 【2019 年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体AB C D A B C D 挖去四棱锥 O —EF G H 后所得的几何体,其中 O 为长方体的中心,E ,F ,G ,H 分11 1 1AB = BC = 6 cm, AA = 4 cm 别为所在棱的中点, ,3D 打印所用原料密度为 0.9 g/cm 3,不考虑打印 1损耗,制作该模型所需原料的质量为___________g .【答案】118.81【解析】由题意得, S 46 4 23 12cm 2 ,四边形EF G H2 1∵四棱锥 O −EF G H 的高为 3cm , ∴V O EF G H 123 12cm 3 .3AB C D A B C D V 466 144cm,3又长方体 的体积为 1 1 1 1 2 所以该模型体积为 VV V144 12 132cm 3 ,其质量为 0.9132 118.8g .OEF G H2 【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式 求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质 量即可.20. 【2019 年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是 由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共 有________个面,其棱长为_________.(本题第一空 2 分,第二空 3 分.)【答案】26,21【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826个面.x如图,设该半正多面体的棱长为,则AB BE x,延长CB与FE 的延长线交于点G,延长BC交正方体的棱于H ,由半正多面体对称性可知,△BG E 为等腰直角三角形,2 2BG GE C H x,G H 2x x(21)x1,2 21x21,21即该半正多面体的棱长为21.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.721.【2018年高考全国I I卷理数】已知圆锥的顶点为S,母线SA,SB 所成角的余弦值为,SA与圆锥8 底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为__________.【答案】402π7 15 8【解析】因为母线 SA , SB 所成角的余弦值为 ,所以母线 SA , SB 所成角的正弦值为,因为 81 15 8 △SAB 的面积为5 15 ,设母线长为l ,所以l 2 25 15 ,l80 , 2π 2因为 SA 与圆锥底面所成角为 45°,所以底面半径为 r l cosl , 4 22 因此圆锥的侧面积为 πr lπl 40 2π. 22【名师点睛】本题考查线面角、圆锥的侧面积、三角形面积等知识点,考查学生空间想象与运算能力. 先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式 求结果.22. 【2017 年高考全国 I 卷理数】如图,圆形纸片的圆心为 O ,半径为 5 c m ,该纸片上的等边三角形 ABC 的中心为 O.D ,E ,F 为圆 O 上的点,△DB C ,△ECA ,△FA B 分 别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以 BC ,CA ,AB 为折 痕折起△DB C ,△ECA ,△FAB ,使得 D ,E ,F 重合,得到三棱锥.当△ABC 的边长变 化时,所得三棱锥体积(单位:cm 3)的最大值为 【答案】 4 15.【解析】如下图,连接 DO 交 BC 于点 G ,设 D ,E ,F 重合于 S 点,正三角形的边长为 x(x>0),则 1 3 3O G x x. 3 2 63FG SG 5x , 6223 3x3x, SO h SG2GO2 5 x 556 631 1 3 3 15 3 三棱锥的体积V S △ABC h x2 5 5 x 4 x 5 . 5x3 34 3 1233 5 3 设 n x 5x 4x 5 ,x>0,则 n x 20x 3 x 4, 3 3x 4 n x 0 ,即 4x 30,得 ,易知 n x 在 令 处取得最大值. x 4 3x 4 3 3 15∴V max 48 5 4 4 15 .12【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.。

专题07 立体几何中的最值问题(解析版)

专题07 立体几何中的最值问题(解析版)

第三篇 立体几何专题07 立体几何中的最值问题常见考点考点一 最大值问题典例1.如图,在ABC 中,1AC BC ==,120ACB ∠=︒,O 为ABC 的外心,PO ⊥平面ABC ,且PO =(1)求证://BO 平面PAC ;(2)设平面PAO 面PBC l =,若点M 在线段PC (不含端点)上运动,当直线l 与平面ABM 所成角取最大值时,求二面角A BM O --的正弦值. 【答案】(1)证明见解析【解析】 (1)如图,连接OC ,交AB 于点D ,O 为ABC 的外心,所以OA OB OC ==,又因为1AC BC ==,所以OAC OBC ≅△△, 所以1602ACO BCO ACB ∠=∠=∠=︒,故OAC 和OBC 都为等边三角形,可得1OA AC CB BO ====, 即四边形OACB 为菱形,所以OB//AC ; 又AC ⊂平面PAC 、OB ⊄平面PAC , 所以//BO 平面PAC , (2)因为//BC AO ,BC ⊄平面POA ,AO ⊂平面POA ,所以//BC 平面POA , 因为BC ⊂平面PBC ,平面PAO 平面PBC l =,所以//BC l .如图,以点D 为原点,分别以DA ,DC 所在的直线为x ,y 轴,过点D 垂直于面ACBO 的直线为z 轴建立空间直角坐标系,则B ⎛⎫ ⎪ ⎪⎝⎭,10,,02C ⎛⎫ ⎪⎝⎭,A ⎫⎪⎪⎝⎭,10,2P ⎛- ⎝⎭,10,,02O ⎛⎫- ⎪⎝⎭ 所以31,02BC ⎛⎫= ⎪ ⎪⎝⎭,(3,0,0)BA =,0,1,PC ⎛=⎝⎭,312BP ⎛=- ⎝⎭.因为点M 在线段PC 不含端点)上运动,所以//PM PC ,设PM PC λ=,所以31)2BM BP PM λλ⎛⎫=+=-- ⎪ ⎪⎝⎭,设平面ABM 的法向量为()1111,,n x y z =,则)11111103211022n BA x nBM x y z λλ⎧⋅==⎪⎨-⋅=++-=⎪⎩可得:10x =,令12y =可得1121z λλ-⎫=⎪-⎝⎭,所以1120,2,1n λλ⎛⎫-⎫= ⎪⎪ ⎪-⎝⎭⎝⎭, 所以直线l 与平面ABM 所成角α的正弦值为:1111sin cos ,24n n BC n BC BCα⋅===≤,即当12λ=时直线l 与平面ABM 所成角取最大值.此时1(0,2,0)n =,所以1,022OB ⎛⎫=- ⎪ ⎪⎝⎭,324BM ⎛⎫= ⎪ ⎪⎝⎭,设平面OBM 的法向量为()2222,,n x y z =,则222222310223024OB n x y BM n x z ⎧⋅=-+=⎪⎪⎨⎪⋅=+=⎪⎩,令21x =,2y 2z =所以2(1,3,n =,所以12121223cos ,22n n n n nn ⋅===⨯, 设二面角A BMO --的平面角为θ,则cos θ=,所以sin θ=变式1-1.如图,在正三棱柱111ABC A B C -中,12AB AA ==,点D 在边BC 上,E 为11B C 的中点.(1)如果D 为BC 的中点,求证:平面1BA E ∥平面1C DA ;(2)设锐二面角11/B AC D --的平面角为α,CD CB λ=,1,12λ⎡⎤∈⎢⎥⎣⎦,当λ取何值时,cos α取得最大值?【答案】(1)证明见解析 (2)1λ= 【解析】 【分析】(1)利用几何法证明,若要证明面面平行,只要证明其中一个平面中的两条相交直线平行于另一个平面即可;(2)建立如图所示空间直角坐标系,利用法向量来求二面角的大小即可得解.(1)证明:在正三棱柱111ABC A B C -中,因为D ,E 分别为BC ,11B C 的中点,所以1EC BD ∥, 所以四边形1BDC E 为平行四边形,所以1BE DC ∥, 又因为BE ⊄平面1C DA ,1DC ⊂平面1C DA , 所以BE ∥平面1C DA ,同理可证1//A E 平面1C DA ,1A EBE E =,1A E ,BE ⊂平面1BA E ,所以平面1BA E ∥平面1C DA ;(2)以A 为坐标原点,AC 方向为y 轴正方向,建立如图所示的空间直角坐标系,则()0,0,0A,)B ,()0,2,0C,)1B ,()10,2,2C ,所以()3,1,0CB =-,()13,1,2AB =,()10,2,2AC =,()0,2,0AC =,设平面11AB C 的法向量为(),,m x y z =,则110,0,m AB m AC ⎧⋅=⎪⎨⋅=⎪⎩即20,220.y z y z ++=+=⎪⎩令z =y =1x =,所以(1,3,m =, 由CD CB λ=,1,12λ⎡⎤∈⎢⎥⎣⎦,得()3,2,0AD CB AC λλλ=+=-,设平面1C DA 的法向量为(),,n a b c =,10,0,n AD n AC ⎧⋅=⎪⎨⋅=⎪⎩即()20,220a bb c λ+-=+=⎪⎩令c =b =2a λλ-=,所以2n λλ-⎛=⎝, 由1,12λ⎡⎤∈⎢⎥⎣⎦,得[]23,1λλ-∈--, 因为锐二面角11B AC D --的平面角为()cos 0αα>,所以26cos 7m n m n λα-+⋅==⋅⨯, 令26t λλ-=+,则[]3,5t ∈,故26t λλ-=-, 所以cos α==令111,53t μ⎡⎤=∈⎢⎥⎣⎦,则()242121f μμμ=-+在11,53⎡⎤⎢⎥⎣⎦上单调递增,所以cos α=11,53⎡⎤⎢⎥⎣⎦上单调递减,当15μ=,此时1λ=,即点D 与点B 重合时,cos α取得最大值.变式1-2.如图,在四棱锥S ABCD -中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,2SA AB BC ===,1AD =,M 是棱SB 的中点.(1)求证://AM 平面SCD ;(2)求平面SCD 与平面SAB的夹角的余弦值;(3)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值. 【答案】(1)证明见解析【解析】 【分析】(1)建立空间直角坐标系,利用向量法证得//AM 平面SCD. (2)利用向量法求得平面SCD 与平面SAB 所成的角的余弦值.(3)设出N 点的坐标,求得sin θ的表达式,结合二次函数的性质求得sin θ的最大值. (1)SA ⊥底面ABCD ,所以,SA A S B A A D ⊥⊥,由于AB AD ⊥,所以,,SA AB AD 两两垂直,以点A 为坐标原点,建立如图所示的空间直角坐标系, 则(0,0,0)A ,(2,2,0)C ,(1,0,0)D ,(0,0,2)S ,(0,1,1)M ,(0,1,1)AM ∴=,(1,0,2)SD =-,(1,2,0)CD =--.设平面SCD 的法向量为(,,)n x y z =,则0SD n CD n ⎧⋅=⎪⎨⋅=⎪⎩,2020x z x y -=⎧∴⎨--=⎩, 令1z =,得(2,1,1)n =-是平面SCD 的一个法向量.0AM n ⋅=,AM n ∴⊥,A ∉平面SCD ,//AM ∴平面SCD .(2)平面SAB 的一个法向量为1(1,0,0)n =, 设平面SCD 与平面SAB 的夹角为ϕ,则112cos 6n n n n ϕ⋅===⨯⋅∴平面SCD 与平面SAB(3)由题可设(,22,0)(12)N x x x -≤≤, 则(,23,1)MN x x =--.平面SAB 的一个法向量为1(1,0,0)n =,11sin 5nMN M n Nθ⋅∴====⋅,∴当135x =,即53x =时,sin θ变式1-3.如图,在正四棱锥S ABCD -中,点O ,E 分别是BD,BC 中点,点F 是SE 上的一点.(1)证明:OF BC ⊥;(2)若四棱锥S ABCD -的所有棱长为OF 与平面SDE 所成角的正弦值的最大值. 【答案】(1)证明见解析 【解析】 【分析】(1)作出辅助线,证明线面垂直,进而证明线线垂直;(2)建立空间直角坐标系,利用空间向量进行求解.(1)如图,连接SO和OE,-是正四棱锥,所以SO⊥平面ABCD,因为S ABCD⊥又因为BC⊂平面ABCD,所以SO BC⊥,因为ABCD是正方形,所以DC BC又因为点O,E分别是BD,BC中点,所以OE∥DC,⊥所以OE BC⋂=,OE、SO⊂平面SOE,又因为OE SO O所以BC⊥平面SOE,⊥.因为OF⊂平面SOE,所以OF BC(2)易知OB,OC,OS两两相互垂直,如图,以点O为原点,OB,OC,OS为x,y,z轴建立空间直角坐标系,因为四棱锥S ABCD -的所有棱长为4BD =,2SO =, 所以()0,0,0O ,()0,0,2S ,()2,0,0D -,()1,1,0E , 设()01SF SE λλ=<<,得(),,22F λλλ-,则()2,0,2SD =--,()3,1,0DE =,(),,22OF λλλ=-设平面SDE 的法向量为(),,n x y z =,则22030n SD x z n DE x y ⎧⋅=--=⎪⎨⋅=+=⎪⎩,解得3z x y x =-⎧⎨=-⎩,取1x =,得()1,3,1n =--, 设直线OF 与平面SDE 所成角为θ,则sin cos ,11n OF n OF n OFθ⋅===⋅)01λ=<<,当82263λ-=-=⨯时,2684λλ-+取得最小值43,此时sin θ.考点二 最小值问题典例2.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,1BF =,平面BFED ⊥平面ABCD .(1)求证:AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成的夹角为θ,试求θ的最小值. 【答案】(1)证明见解析(2)3π【解析】 【分析】(1)由已知条件可得AD BD ⊥,再由平面BFED ⊥平面ABCD ,可得DE ⊥平面ADB ,则DE AD ⊥,然后由线面垂直的判定定理可证得结论,(2)由于AD BD ⊥,DE AD ⊥,DE DB ⊥,所以建立直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0EP λλ=≤≤,然后利用空间向量求解即可 (1)证明,在梯形ABCD 中,∥//AB CD ,1===AD DC CB ,120BCD ∠=︒, ∥30CDB CBD ∠=∠=︒,120ADC DCB ∠=∠=︒, ∥90ADB ∠=︒,∥AD BD ⊥.又∥平面BFED ⊥平面ABCD ,平面BFED ⋂平面ABCD BD =,DE DB ⊥, ∥DE ⊥平面ADB ,∥DE AD ⊥. 又∥BD DE D ⋂=,∥AD ⊥平面BDEF . (2)由(1)可知AD BD ⊥,DE AD ⊥,DE DB ⊥.可建立直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0EP λλ=≤≤,则()0,0,0D ,()1,0,0A,()B ,()0,,1P λ,∥()AB =-,()0,BP λ=设()1,,n x y z =为平面PAB 的法向量,由1100n AB n BP ⎧⋅=⎪⎨⋅=⎪⎩,得(00x y z λ⎧-=⎪⎨+=⎪⎩,取1y =,()13,1,n λ=∥()20,1,0n =是平面ADE 的一个法向量,∥1212cos3n n n n θ⋅===∥0λ≤≤∥当λ=cos θ有最大值12,∥θ的最小值为3π变式2-1.如图,在ABC 中,1AB =,BC =4B π=,将ABC 绕边AB 翻转至ABP △,使面ABP⊥面ABC ,D 是BC 的中点.(1)求二面角P BC A --的平面角的余弦值;(2)设Q 是线段PA 上的动点,当PC 与DQ 所成角取得最小值时,求线段AQ 的长度.【答案】【解析】 【分析】(1)延长BA ,过点P 作PE BA ⊥,垂足为E ,过点E 作EF BC ⊥,垂足为F ,连接PF ,则PFE ∠是二面角P BC A --的平面角,再解三角形即得解;(2)连接EC ,以E 为原点,由题得EC EB ⊥,以EB 为x 轴,EC 为y 轴,EP 为z 轴,建立空间直角坐标系,利用向量法求出当λ=25时,PC 与DQ 所成的角最小,即得解. (1) 解:由题得21821cos 455,AC AC =+-⨯⨯=∴=所以cos 0BAC ∠=<,所以BAC ∠是钝角.延长BA ,过点P 作PE BA ⊥,垂足为E ,过点E 作EF BC ⊥,垂足为F ,连接PF , 则PFE ∠是二面角P BC A --的平面角.由题得cos 452PE BE ===, 所以2cos 452EF =⨯=所以tanPFE ∠==cos PFE ∠=.所以二面角P BC A -- (2)解:连接EC ,以E 为原点,由题得EC EB ⊥,以EB 为x 轴,EC 为y 轴,EP 为z 轴,建立空间直角坐标系,由题得(2,0,0),(1,0,0),(0,0,0),(0,2,0),B A E C 设(,,),Q x y z(1,0,2),[0,1],AQ AP λλλ→→==-∈即(1,,)(,0,2),(1,0,2)x y z Q λλλλ-=-∴-,因为(1,1,0),(,1,2),(0,2,2),D DQ PC λλ→→=--=-所以cos ,DQ PC =令2222(12)2(12)(2-5)(),[0,1],()51(51)f f λλλλλλλλ++'=∈∴=++,令2()0,[0,1],.5f λλλ'=∈∴=2[0,)5λ∈时,()0,f λ'>函数单调递增,2(,1)5λ∈时,()0f λ'<,函数单调递减.所以当λ=25时,()f λ取最大值,此时PC 与DQ 所成的角最小,2||||5AQ AP =变式2-2.如图,四棱锥S ABCD -的底面为矩形,SD ⊥底面ABCD ,设平面SAD 与平面SBC 的交线为m .(1)证明://m BC ,且m ⊥平面SDC ;(2)已知2SD AD DC ===,R 为m 上的点求SB 与平面RCD 所成角的余弦值的最小值.【答案】(1)证明见解析;(2 【解析】 【分析】(1)先由//BC AD 证明//BC 平面SAD ,再由线面平行推线线平行,可得//m BC ; 由SD BC ⊥,BC DC ⊥可得BC ⊥平面SDC ,再由//m BC ,即得证;(2)建立空间直角坐标系,计算平面RCD 的法向量,表示SB 与平面RCD 所成角,计算最值即得解 【详解】(1)由题意,四棱锥S ABCD -的底面为矩形,可知//BC AD , 又BC ⊄平面SAD ,AD ⊂平面SAD 所以//BC 平面SAD又m 为平面SAD 与平面SBC 的交线,且BC ⊂平面SBC ,故//m BC 因为SD ⊥底面ABCD ,BC ⊂平面ABCD ,所以SD BC ⊥, 又BC DC ⊥,且SD DC D =, 所以BC ⊥平面SDC , 又//m BC ,所以m ⊥平面SDC (2)由(1)可知,DS ,DA ,DC 两两互相垂直,以D 为坐标原点,DA ,,DC DS 的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D xyz -()0,0,0D ,()0,0,2S ,()2,2,0B ,()0,2,0C ,因为点R 在平面SAD 内的m 上,且//m AD ,所以可设(),0,2R a ()2,2,2SB =-,()0,2,0DC =,(),0,2DR a =设平面RCD 的法向量为(),,n x y z =,则2020n DR ax z n DC y ⎧⋅=+=⎪⎨⋅==⎪⎩即200ax z y +=⎧⎨=⎩可取()2,0,n a =- 设SB 与平面RCD 所成角为θ则3sin cos 233n SB n SB πθθ⋅⎛⎫=-=== ⎪⎝⎭ 因为2414aa ≤+当且仅当2a =时等号成立 所以sin θ≤,cos θ≥所以SB 与平面RCD变式2-3.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,1BF =.(1)求证:BD ⊥平面AED ,AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,设平面PAB 与平面ADE 所成锐二面角为θ,试求θ的最小值.【答案】(1)证明见解析;(2)3π.【解析】 【分析】(1)根据已知条件转化垂直关系,利用线面垂直的判断定理,即可证明;(2)分别以直线CA ,CB ,CE 为x 轴、y 轴、z 轴建立空间直角坐标系,令(0EP λλ=≤≤,然后写出各点坐标,求出平面PAB 和平面ADE 的法向量,由法向量夹角与二面角的关系求得cos θ(为λ的函数),由函数知识可得最小值.【详解】解:(1)证明,在梯形ABCD 中,∥//AB CD ,1===AD DC CB ,120BCD ∠=︒,∥30CDB CBD ∠=∠=︒,120ADC DCB ∠=∠=︒,∥90ADB ∠=︒,∥AD BD ⊥.∥平面BFED ⊥平面ABCD ,平面BFED ⋂平面ABCD BD =,DE ⊂平面BFED ,DE DB ⊥, 又∥AD DE D ⋂=,∥BD ⊥平面ADE .又四边形BDEF 是矩形,∥ED BD ⊥,∥ED ⊥平面ABCD ,∥ED AD ⊥, ∥ED BD D =,∥AD ⊥平面BDEF .(2)由(1)可建立直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0EP λλ=≤≤,则()0,0,0D ,()1,0,0A ,()B ,()0,,1P λ,∥()AB =-,()0,BP λ=.设()1,,n x y z =为平面PAB 的法向量,由1100n AB n BP ⎧⋅=⎪⎨⋅=⎪⎩,得(00x y z λ⎧-=⎪⎨+=⎪⎩,取1y =,则()13,1,n λ=.∥()20,1,0n =是平面ADE 的一个法向量,∥1212cos 3n n n n θ⋅===∥0λ≤≤∥当λ=cos θ有最大值12,∥θ的最小值为3π.巩固练习练习一 最大值问题1.如图所示,在三棱柱111ABC A B C -中,AB BC =,点1A 在平面ABC的射影为线段AC 的中点,侧面11AAC C 是菱形,过点1,,B B D 的平面α与棱11A C 交于点E .(1)证明:四边形1BB ED 为矩形;(2)求1CB 与平面11ABB A 所成角的正弦值的最大值. 【答案】(1)证明见解析 (2)23【解析】 【分析】(1)由已知线面平行的判定定理得到1//B B 平面11A ACC ,在运用面面平行的判定与性质得四边形1BB ED 为平行四边形.运用线面垂直判定定理可得BD ⊥平面11ACC A ,从而得出结论.(2) 以DB ,AC ,1A D 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系D xyz -,依题意得BD =,分别求解平面11ABB A 的法向量和1CB 的方向向量,运用线面角的向量求解方法得到答案. (1)取11A C 中点为E ,连接1B E ,DE .在三棱柱111ABC A B C -中,侧面11A ABB 为平行四边形,所以11//B B A A , 因为1B B ⊄平面11A ACC ,1A A ⊂平面11A ACC ,所以1//B B 平面11A ACC . 因为1B B ⊂平面1BB D ,且平面1BB D ⋂平面11A ACC DE =,所以1//B B DE .因为在三棱柱111ABC A B C -中,平面//ABC 平面111A B C ,平面1BB D ⋂平面ABC BD =, 平面1BB D ⋂平面1111A B C B E =,所以1//BD B E ,所以四边形1BB ED 为平行四边形. 在∥ABC 中,因为AB BC =,D 是AC 的中点,所以BD AC ⊥. 由题可知1A D ⊥平面ABC ,所以1A D BD ⊥,1A D AC ⊥, 因为1AC A D D ⋂=,所以BD ⊥平面11ACC A , 所以BD DE ⊥,所以四边形1BB ED 为矩形. (2)由(1)知DB ,AC ,1A D 两两垂直,以DB ,AC ,1A D 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系D xyz -.设1AD =,BD a =,在1AA D △中,12AA AD =,190A DA ∠=︒,所以1A D ,所以(0,0,0)D ,(0,1,0)A -,(1A ,(,0,0)B a ,则(1AA =,(,1,0)AB a =.因为(E ,所以(1DB DE DB a =+=,即(1B a .因为(0,1,0)C,所以(1CB a =.设平面11ABB A 的法向量为(,,)n x y z =,则10,0,n AA n AB ⎧⋅=⎪⎨⋅=⎪⎩即0,0,y ax y ⎧=⎪⎨+=⎪⎩所以,.y x ⎧=⎪⎨=⎪⎩令z a =,则y =,x =()3,,n a =-.设1CB 与平面11ABB A 所成角为θ,则111sin cos ,3n CB n CB n CB θ⋅===23=≤=, 当且仅当2294a a =,即a =时等号成立.故1CB 与平面11ABB A 所成角的正弦值最大为23.2.如图,在矩形ABCD 中,M 、N 分别是线段AB 、CD 的中点,2AD =,4AB =,将ADM △沿DM 翻折,在翻折过程中A 点记为P 点.(1)从ADM △翻折至NDM 的过程中,求点P 运动的轨迹长度; (2)翻折过程中,二面角P −BC −D 的平面角为θ,求tan θ的最大值. 【答案】 (2)12【解析】 【分析】(1)取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,由此可求得点P 运动的轨迹长度.(2)由(1)得,连接AN ,并延长交BC 延长线于F ,过P 作PO EF ⊥,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤,sin PO PE αα==,,3cos OF OG αα==-,可得tan PO PGO OG ∠==k =,运用辅助角公式和正弦函数的性质可求得最大值. (1)解:取DM 的中点E ,则从ADM △翻折至NDM 的过程中,点P 运动的轨迹是以点E 为圆心,AE 为半径的半圆,因为2AD =,4AB =,所以AE =P .(2)解:由(1)得,连接AN ,并延长交BC 延长线于F ,AN DM ⊥,折起后,有DM ⊥面PEN ,过P 作PO EF ⊥,则PO ⊥面DMBC ,再过点O 作OG BC ⊥,则PGO ∠就是二面角P −BC −D 的平面角θ,设(),0PEO ααπ∠=≤≤, sin PO PE αα==,,3cos OF AF AE OE OG ααα=--===-,tan PO PGO OG ∠==cos 3k k k αα=⇒+=)3k αβ+=,所以11-≤≤,解得1122k -≤≤. 所以tan θ的最大值为12.3.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,E 为棱BC 上的点,且14BE BC =.(1)求证:DE ⊥平面PAC ;(2)若二面角A PC D --的平面角的正切值为12,求PA 的长;(3)在(2)的条件下,若Q 为线段PC 上一点,求BQ 与面PCD 所成角为θ,求sin θ的最大值.【答案】(1)证明见解析(2)4【解析】【分析】(1)如图建系,设AP a =,求出DE 、AC 、AP 的坐标,计算0DE AC ⋅=,0DE AP ⋅=,可证明DE AC ⊥,DE AP ⊥,由线面垂直的判定定理即可求证;(2)设二面角A PC D --的平面角为α,由图知α为锐角,则1tan2α=,所以cos α=,分别求出平面PCD 和平面PAC 的一个法向量,利用空间向量夹角公式列方程求出a 的值即可求解;(3)设()=2,4,4PQ PC λλλλ=-,则()22,4,44BQ BP PQ λλλ=+=--,由(2)知平面PCD 的一个法向量11,1,2n ⎛⎫=-- ⎪⎝⎭,利用空间向量夹角公式将s sin ,co BQ n θ=表示为关于λ的函数,结合二次函数的性质即可求解.(1)因为PA ⊥平面ABCD ,,AB AD ⊂面ABCD ,所以PA AB ⊥,PA AD ⊥,因为AB AD ⊥,所以,,AB AD AP 两两垂直,如图以A 为原点,分别以,,AB AD AP 所在的直线为,,x y z 轴建立空间直角坐标系,设AP a =,则()0,0,0A ,()2,0,0B ,()2,4,0C ,()0,2,0D ,()0,0,P a ,()2,1,0E所以()2,1,0DE =-,()2,4,0AC =,()0,0,AP a =,因为221400DE AC ⋅=⨯-⨯+=,0DE AP ⋅=,所以DE AC ⊥,DE AP ⊥,即DE AC ⊥,DE AP ⊥,因为AC AP A =,所以DE ⊥平面PAC(2)由(1)知:DE ⊥平面PAC ,取平面PAC 的法向量()2,1,0DE =-,因为()2,4,PC a =-,()2,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =,由240220PC n x y az CD n x y ⎧⋅=+-=⎨⋅=--=⎩,取1x =,则1y =-,2z a =-,所以21,1,n a ⎛⎫=-- ⎪⎝⎭, 设二面角A PC D --的平面角为α,且α为锐角,则1tan 2α=,所以cos5α=所以cos ,5DE nDE n DE n ⋅===⨯⨯整理可得:3,解得:4a =,所以PA 的长为4. (3) 由(2)知PA 的长为4,即4a =,因为Q 为线段PC 上一点,所以//PQ PC ,设()=2,4,4PQ PC λλλλ=-,所以()()()2,0,42,4,422,4,44PQ BQ BP λλλλλλ=-+-=--+=,平面PCD 的一个法向量11,1,2n ⎛⎫=-- ⎪⎝⎭, 则(c sin os 2,BQ n BQ nBQ n θ==⋅=⨯=,当105299λ-=-=⨯= 所以sin θ== 综上所述:sin θ.4.如图,在直角三角形AOB 中,30OAB ∠=︒,斜边4AB =,直角三角形AOC 可以通过AOB 以直线AO 为轴旋转得到,且二面角B AO C --是直二面角,动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值;(3)求CD 与平面AOB 所成角的正切值的最大值.【答案】(1)证明见解析【解析】【分析】(1)证明BOC ∠为二面角C AO B --的平面角,然后证明CO ⊥平面AOB ,得证面面垂直; (2)取OB 中点E .连接,CE DE ,证明异面直线AO 与CD 所成角为CDE ∠(或其补角),在EDC △中计算其正切值;(3)证明CDO ∠是CD 与平面AOB 所成角,求出OD 的最小值即O 到AB 的距离即可得结论.(1)证明:因为CO AO ⊥,BO AO ⊥,所以BOC ∠为二面角C AO B --的平面角,即90COB ∠=︒,CO BO ⊥, 又AO BO O =,,AO BO ⊂平面AOB ,所以CO ⊥平面AOB ,因为CO ⊂平面COD ,所以平面COD ⊥平面AOB ;(2)解:取OB 中点E .连接,CE DE ,如图,因为D 是AB 中点,所以//AO DE ,所以异面直线AO 与CD 所成角为CDE ∠(或其补角), 由已知CO AO ⊥,BO AO ⊥,BO CO O =,,BO CO ⊂平面BOC ,所以AO ⊥平面BOC , 而CE ⊂平面BOC ,所以AO CE ⊥,所以DE CE ⊥,又4AB =,30OAB ∠=︒,所以2OB OC ==,AO =DE 1OE =,CE ==,tan CE ADE DE ∠===(3)由(1)知CO ⊥平面AOB ,所以CDO ∠是CD 与平面AOB 所成角,又OD ⊂平面AOB ,则CO DO ⊥,2tan CO CDO OD OD∠==,直角AOB 中,O 到AB 上点的距离的最小值为AB 边上的高即OA OB h AB ⨯===,所以tan CDO ∠=练习二 最小值问题5.如图,ABCD 为正方形,PDCE 为直角梯形,90PDC ∠=,平面ABCD ⊥平面PDCE ,且22PD AD EC ===.(1)若PE 和DC 延长交于点F ,求证://BF 平面PAC ;(2)若Q 为EC 边上的动点,求直线BQ 与平面PDB 所成角正弦值的最小值.【答案】(1)见解析(2【解析】【详解】试题分析:(1)先根据三角形中位线性质得C 为DF 中点,再根据ABFC 为平行四边形得//BF AC ,最后根据线面平行判定定理得结论,(2)利用空间向量求线面角,关键求出平面法向量:先建立空间直角坐标系,设立各点坐标,利用方程组求出平面法向量,根据向量数量积求出直线方向向量与平面法向量夹角的余弦值,最后根据线面角与两向量夹角之间关系求线面角正弦值,再根据自变量取值范围求最小值.试题解析:(1)证明:在梯形PDCE 中,PD =2EC ,C ∴为DF 中点,CF CD AB ∴==,且AB//CF ,ABFC ∴为平行四边形,//,BF AC AC ∴⊂面PAC ,BF ⊄面PAC ,∴BF ∥平面P AC .(2)方法一:令点Q 在面PBD 上的射影为O ,QBO ∠直线BQ 与平面PDB 所成角.EC ∥PD ,所以EC 平行于平面PBD ,因为ABCD 为正方形,所以AC BD ⊥,又因为PD ∥平面ABCD ,所以PD ∥AC ,所以AC ∥平面PBD ,所以点C 到面PBD 因为EC 平行于平面PBD ,所以点Q 到PBD 的距离OQ =令()01CQ k k =≤≤,所以BQ =sin OQ QBO BQ ∠==≥= 方法二:建立如图所示的空间直角坐标系O-xyz ,可知平面PDB 的一个法向量为()2,2,0AC =-,()2,2,0B ,()()0,2,01Q t t ≤≤,()2,0,BQ t ∴=-,令直线BQ 与平面PDB 所成角为α,sin 8BQ ACBQ AC α⋅∴==. 6.如图,在梯形ABCD 中,//AB CD ,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =,设点M 在线段EF 上运动.(1)证明:BC AM ⊥;(2)设平面MAB 与平面FCB 所成锐二面角为θ,求θ的最小值.【答案】(1)证明见解析;(2)3π. 【解析】(1)由平面几何知识,余弦定理可得BC AC ⊥.,再由面面垂直、线面垂直的性质可得证; (2)由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0FM λλ=≤≤,由二面角的向量求解方法可表示cos θ=由二次函数的性质可求得最值.【详解】(1)证明:在梯形ABCD 中,因为//AB CD ,1===AD DC CB ,60ABC ∠=︒,所以2AB =,所以2222cos603AC AB BC AB BC =+-⋅⋅︒=,所以222AB AC BC =+,所以BC AC ⊥.因为平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,因为BC ⊂平面ABCD ,所以BC ⊥平面ACFE .所以BC ⊥AM ;(2)解:由(1)可建立分别以直线CA ,CB ,CF 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令(0FM λλ=≤≤,则()0,0,0C ,)A ,()0,1,0B ,(),0,1M λ.∥()AB =,(),1,1BM λ=-. 设(),,n x y z =为平面MAB 的一个法向量,由00n AB n BM ⎧⋅=⎨⋅=⎩得0,0,y x y z λ⎧+=⎪⎨-+=⎪⎩,取1x =,则()1,3,n λ=, ∥()1,0,0m =是平面FCB 的一个法向量,∥||cos 1n m n m θ⋅==+∥0λ≤≤∥当λ=cos θ有最大值12,θ的最小值为3π.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。

专题05函数的概念及表示--2022年(新高考)数学高频考点+重点题型(原卷版)

专题05函数的概念及表示--2022年(新高考)数学高频考点+重点题型(原卷版)

专题05函数的概念及表示--2022年(新高考)数学高频考点+重点题型一、关键能力通过函数概念和函数解析式的学习,从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。

学生能更好地理解数学概念、命题、方法和体系,能通过抽象、概括去认识、理解、把握事物的数学本质,能逐渐养成一般性思考问题的习惯,能在其他学科的学习中主动运用数学抽象的思维方式解决问题,逐步养成学习者的数学抽象能力。

二、教学建议在教学中,应强调对函数概念本质的理解,避免在求函数定义域、值域及讨论函数性质时出 现过于繁琐的技巧训练,避免人为地编制一些求定义域和值域的偏题。

求简单函数的定义域中,“简单函数”指下列函数:2,,,,log (),sin ,cos x a cx dy ax b y ax bx c y y y a y mx n y x y x ax b+=+=++====+==+求简单函数的值域中,简单函数指下列函数:2,,,log ,sin ,cos x a y ax b y ax bx c y a y x y x y x =+=++====,及它们之间简单的加减组合(更复杂的组合需在导数复习结束后加入)。

函数概念需要多次接触,反复体会,螺旋上升,逐步加深理解,才能真正掌握,灵活应用。

三、自主梳理1.函数的定义(☆☆☆)一般地,设A ,B 是非空数集,如果按照某种确定的对应法则f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应;那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . 2.函数的定义域、值域(☆☆☆)在函数y =f (x ),x ∈A 中,其中所有x 组成的集合A 称为函数y =f (x )的定义域;将所有y 组成的集合叫做函数y =f (x )的值域.3.函数的三要素是:定义域、值域和对应关系.(☆☆☆) 4.表示函数的常用方法有:列表法、图象法和解析法.(☆☆☆) 5.分段函数(☆☆☆)在函数的定义域内,对于自变量x 的不同取值区间,有着不同的对应法则,这种函数称为分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.四、真题感悟1.(2014浙江)已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f -=-=-≤≤,则A .3≤cB .63≤<cC .96≤<cD .9>c2.(2014江西)已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=aA .1B .2C .3D .-1 3.(2020北京11)函数1()=ln 1f x x x ++的定义域是__________. 4.(2017新课标Ⅲ)设函数1,0()2,0xx x f x x +⎧=⎨>⎩≤,则满足1()()12f x f x +->的x 的取值范围是___.5. (2014浙江)设函数若,则实数的取值范围是___.6.(2017浙江)若函数2()f x x ax b =++在区间[0,1]上的最大值是M ,最小值是m ,则M m -A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关 7.(2017浙江)已知a ∈R ,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 .8.(2013北京)函数的值域为 .五、高频考点+重点题型考点一、定义域 例1.(1)函数 )A .B .C .D .(2)(2021·湖北襄阳市·襄阳五中高三二模)已知函数22211x x y f x x ⎛⎫+-= ⎪+-⎝⎭的定义域是()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f ()()2≤a f f a 12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩1()lg(1)f x x =++[2,2]-[2,0)(0,2]-(1,0)(0,2]-⋃(-1,2][)1,+∞,则函数()y f x =的定义域是_______.对点训练1.(2021江西省临川高三押题预测卷)已知集合{A x y ==,{}24x B x =>,则A B =( )A .()2,+∞B .[)1,-+∞C .[]2,4D .(]2,4对点训练2.(2021湖北省荆州中学高三下学期四模)定义域是一个函数的三要素之一,已知函数()Jzzx x 定义域为[211,985],则函数 ()shuangyiliu x (2018)(2021)Jzzx x Jzzx x =+的定义域为( ) A .211985,20182021⎡⎤⎢⎥⎣⎦B .211985,20212018⎡⎤⎢⎥⎣⎦C .211985,20182018⎡⎤⎢⎥⎣⎦D .211985,20212021⎡⎤⎢⎥⎣⎦对点训练3.若函数212x y x ax -=++的定义域为R ,则实数a 的取值范围为________;【答案】((),22,-∞-+∞;【解析】(1) 212x y x ax -=++的定义域为R ,则22x ax -+恒不为零,即220x ax -+=没有实数根,所以280a ∆=-<,所以实数a 的取值范围为((),22,-∞-+∞;总结:1、给定函数解析式求定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴,要特别注意端点值的取舍.注意定义域是一个集合,要用集合或区间表示.常见基本初等函数定义域的基本要求为:(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数大于零且不等于1;(5)正切函数y =tan x ,x ≠k π+π2(k ∈Z );(6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求2、抽象函数的定义域要求:寻找内在的隐含条件考点二、函数值域与最值例2.(2021山东省济南市高三二模)(多选题)下列函数求值域正确的是( )A .()1f x x =+[2)+∞,B .222()1x x g x x ++=+的值域为[2)+∞,C .()h x =(0D .()w x =[2对点训练1.(2021陕西省西安市高三下学期适应性考试)已知集合(){}2ln M y y x e ==+,集合{N t s ==,则MN =( )A .{}01x x ≤≤B .{}02x x ≤≤ C .{}12x x ≤≤ D .{}2x x x e ≤≥或对点训练2.函数23)y x x =->的值域为__________.考点三、解析式例1、求下列函数的解析式(1)已知f (x +1)=x +2x ,则f (x )= ________.(2)已知()f x 是三次函数,且在0x =处的极值为0,在1x =处的极值为1,则()f x =______. (3)已知f (x )的定义域为{x |x ≠0},满足3f (x )+5f ⎝⎛⎭⎫1x =3x +1,则函数f (x )=________. (4)已知函数()1f x +是偶函数,且1x <时()24f x x x =-,则1x >时f (x )=________.对点训练1.已知函数 f (x )=2x ﹣1,g (x )={x 2,x ≥0−1,x <0,求f [g (x )]和g [f (x )]的解析式.对点训练2.(2021·云南高三二模(理))已知函数231,1()1,1x x f x x x +≤⎧=⎨->⎩,若n m >,且()()f n f m =,设t n m =-,则t 的取值范围为________.考点四、分段函数例4.【多选题】(2021·全国高三专题练习)已知函数()22,023,0x x x f x x x ⎧-<=⎨-+≥⎩,则( )A .()13f f -⎡⎤⎣=-⎦B .若()1f a =-,则2a =C .()f x 在R 上是减函数D .若关于x 的方程()f x a =有两解,则(]0,3a ∈对点训练1、(2021江西省高三5月联考)已知函数()222,0,2,0,x x x f x x x x ⎧+≥=⎨-+<⎩则不等式()()324f x f x +<-的解集为( )A .(),3-∞-B .3,2⎛⎫-∞-⎪⎝⎭C .(),1-∞-D .(),1-∞对点训练2.(2020•河西区三模)已知实数a ≠0,函数f(x)={2x +a ,x <1−x −2a ,x ≥1,若f (1﹣a )=f (1+a ),则a 的值为( ) A .−34 B .34C .−35D .35考点五、复合函数例5.(2021·青海西宁市·高三一模(理))函数()f x 的定义域为[]1,1-,图象如图1所示,函数()g x 的定义域为[]1,2-,图象如图2所示.若集合()(){}0A x f g x ==,()(){}0B x g f x ==,则A B 中有___________个元素.对点训练1.(多选题)已知定义域内的函数f (x )满足f (f (x ))-x >0恒成立,则f (x )的解析式不可能是 ( ) A.f (x )=2 019xB.f (x )=e xC.f (x )=x 2D.f (x )=lg √1+x 2对点训练2.【多选题】(2021·全国高三其他模拟)已知函数21,0,()2,0,x x f x x x x +<⎧=⎨-+≥⎩令()()()g x f f x =,则下列说法正确的是( )A .()10g -=B .方程()2g x =有3个根C .方程()2g x =-的所有根之和为-1D .当0x <时,()()f x g x ≤考点六、函数概念:对应法则例1.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4对点训练1.(上海卷)设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A .√3 B .√32C .√33D .0对点训练2.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有( ) A .()2f x x =B .()2f xx =C .(cos )f x x =D .()xf ex =巩固训练一、单选题 1.函数的值域为( ) A .B .C .D .2.(2021·浙江高一期末)下列函数中,与函数1y x =+是相等函数的是( ) A.2y =B.1y =C .21x y x=+D.1y =3.已知函数f (x )的定义域为R ,且f (x )+2f (﹣x )=x 2﹣x ,则f (x )=( ) A .x 2+2x 3B .2x 23+x C .2x 2+2x3D .x 23+x4.(2020秋•渝中区校级月考)对任意x ∈R ,存在函数f (x )满足( ) A .f (cos x )=sin2x B .f (sin2x )=sin x C .f (sin x )=sin2xD .f (sin x )=cos2x5(2021·河南新乡市·高三月考(理))如图,在正方形ABCD 中,2AB =点M 从点A 出发,沿A B C D A →→→→向,以每2个单位的速度在正方形ABCD 的边上运动;点N 从点B 出发,沿B C D A →→→方向,以每秒1个单位的速度在正方形ABCD 的边上运动.点M 与点N 同时出发,运动时间为t (单位:秒),AMN 的面积为()f t (规定,,A M N 共线时其面积为零,则点M 第一次到达点A 时,()y f t =的图象为( )A .B .C .D .()()10f x x x x=+<[)2,+∞(][),22,-∞+∞(],2-∞-R6.(2020山东潍坊一模)函数f (x )={√x +1,-1<x <0,2x,x ≥0,若实数a 满足f (a )=f (a -1),则f (1a )=( )A.2B.4C.6D.8二、多选题7.(2021·全国高一课时练习)已知f (x )=2211x x +-,则f (x )满足的关系有( )A .()()f x f x -=-B .1f x ⎛⎫⎪⎝⎭= ()f x - C .1f x ⎛⎫⎪⎝⎭=f (x ) D .1()()f f x x-=-8.(2021·全国高三专题练习)已知函数()f x 的定义域为(1,)+∞,值域为R ,则( ) A .函数()21f x +的定义域为RB .函数()211f x +-的值域为RC .函数1x x e f e ⎛⎫+ ⎪⎝⎭的定义域和值域都是R D .函数(())f f x 的定义域和值域都是R三、填空题 9.若函数y =R ,则实数a 的取值范围为________.10.(2021·全国高一课时练习)已知f 1-x x ⎛⎫ ⎪⎝⎭=x 2+21x ,则函数f (x )=_______,f (3)=_______. 四、解答题11.(2021内蒙古巴彦淖尔市高三月考)已知函数,.(1)求的解析式.(2)若方程有实数根,求实数a 的取值范围.()23log 24f x x x =-+1,33x ⎡⎤∈⎢⎥⎣⎦()f x ()233f x a a =-+12.某农家小院内有一块由线段OA ,OC ,CB 及曲线AB 围成的地块,已知,点A ,B 到OC 所在直线的距离分别为1 m,2 m, ,建立如图所示的平面直角坐标系xOy ,已知曲线OAB 是函数的图象,其中曲线AB 是函数图象的一部分.(1)求函数的解析式;(2)P 是函数的图象上的动点,现要在如图所示的阴影部分(即平行四边形PMCN 及其内部)种植蔬菜,求种植蔬菜区域的最大面积.12m 5OC =45,AOC ∠=︒tan OCB ∠54=-()y f x=y b =()y f x =()y f x =。

专题05 解析几何中的最值问题-高考数学二轮复习之大题 (原卷版)

专题05 解析几何中的最值问题-高考数学二轮复习之大题 (原卷版)

第五篇 解析几何专题05 解析几何中的最值问题常见考点考点一 面积最值问题典例1.已知椭圆C ∶22221(0)x y a b a b+=>>经过点P 332),O 为坐标原点,若直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为-14.(1)求椭圆C 的标准方程;(2)若3OM AOB 面积的最大值.变式1-1.已知椭圆221221x y C a b +=:的焦距为2,且过点(2P .若直线AB 为椭圆1C 与抛物线2C :22(0)y px p =>的公切线.其中点,A B 分别为1C ,2C 上的切点.(1)求椭圆1C 的标准方程:(2)求OAB 面积的最小值.变式1-2.已知曲线C 上任一点到点()3,0F 的距离等于该点到直线3x =-的距离.经过点()3,0F 的直线l 与曲线C 交于A 、B 两点.(1)求曲线C 的方程;(2)若曲线C 在点A 、B 处的切线交于点P ,求PAB △面积的最小值.变式1-3.已知椭圆E :22221(0)x y a b a b +=>>615⎛- ⎝⎭. (1)求E 的方程;(2)若()3,0M ,O 为坐标原点,点P 是E 上位于第一象限的一点,线段PM 的垂直平分线交y 轴于点N ,求四边形OPMN 面积的最小值.考点二 其他最值问题典例2.如图,已知椭圆C :22212x y a +=的左、右焦点为1F 、2F ,左、右顶点分别为1A 、2A ,离心率2e =M 为椭圆C 上动点,直线1A M 交y 轴正半轴于点A ,直线2A M 交y 轴正半轴于点B (当M 为椭圆短轴上端点时,A ,B ,M 重合).(1)求椭圆C 的方程;(2)若3OA OB =,求直线MA 的方程;(3)设直线2MA 、2AA 的斜率分别为1k 、2k ,求12k k +的最大值.变式2-1.已知曲线C 上任意一点(),P x y 2222(3)(3)2x y x y ++-+=,(1)求曲线C 的方程;(2)若直线l 与曲线C 在y 轴左、右两侧的交点分别是,Q P ,且0OP OQ ⋅=,求22||OP OQ +的最小值.变式2-2.已知椭圆2222:1(0)x y C a b a b+=>>过点(0,1)P ,椭圆上的任意一点到焦点距离的最小值为23.(1)求椭圆C 的方程;(2)设不过点P 的直线l 与椭圆相交于,A B 两点,若直线PA 与直线PB 斜率之和为1-,求点P 到直线l 距离的最大值.变式2-3.已知点()0,2R -,()0,2Q ,双曲线C 上除顶点外任一点(),M x y 满足直线RM 与QM 的斜率之积为4.(1)求C 的方程;(2)若直线l 过C 上的一点P ,且与C 的渐近线相交于A ,B 两点,点A ,B 分别位于第一、第二象限,2AP PB =,求AP PB ⋅的最小值.巩固练习练习一 面积最值问题1.点P 与定点()1,0F 的距离和它到定直线:4l x =的距离之比为1:2.(1)求点P 的轨迹方程;(2)记点P 的轨迹为曲线C ,直线l 与x 轴的交点M ,直线PF 与曲线C 的另一个交点为Q .求四边形OPMQ 面积的最大值.(O 为坐标原点)2.设椭圆E :22143x y +=的右焦点为F ,点A ,B ,P 在椭圆E 上,点M 是线段AB 的中点,点F 是线段MP 中点(1)若M 为坐标原点,且△ABP 的面积为3,求直线AB 的方程;(2)求△ABP 面积的最大值.3.设椭圆()2222:10x y E a b a b+=>>,点1F ,2F 为E 的左、右焦点,椭圆的离心率12e =,点31,2P ⎛⎫ ⎪⎝⎭在椭圆E 上. (1)求椭圆E 的方程;(2)M 是直线4x =上任意一点,过M 作椭圆E 的两条切线MA ,MB ,(A ,B 为切点). ①求证:2⊥MF AB ;②求MAB △面积的最小值.4.已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点.(1)证明:以AB 为直径的圆与直线1x =-相切;(2)设(1)中的切点为,P O 为坐标原点,直线OP 与C 的另一个交点为E ,求ABE △面积的最小值.练习二 其他最值问题5.已知抛物线()2:20E x py p =>的焦点为F ,直线4x =分别与x 轴交于点P ,与抛物线E 交于点Q ,且54QF PQ =.(1)求抛物线E 的方程; (2)如图,设点,,A B C 都在抛物线E 上,若ABC 是以AC 为斜边的等腰直角三角形,求AB AC ⋅的最小值.6.已知双曲线C :()222210,0x y a b a b-=>>的左右顶点分别为()1,0A -,()10B ,,两条准线之间的距离为1.(1)求双曲线C 的标准方程;(2)若点P 为右准线上一点,直线P A 与C 交于A ,M ,直线PB 与C 交于B ,N ,求点B 到直线MN 的距离的最大值.7.如图,已知点()2,2P 是焦点为F 的抛物线()2:20C y px p =<上一点,A ,B 是抛物线C 上异于P 的两点,且直线P A ,PB 的倾斜角互补,若直线P A 的斜率为()1k k <.(1)求抛物线方程;(2)证明:直线AB 的斜率为定值并求出此定值;(3)令焦点F 到直线AB 的距离d ,求d d FA FB -的最大值.8.已知抛物线()2:20C y px p =>的焦点为F ,A ,B 是该抛物线上不重合的两个动点,O 为坐标原点,当A 点的横坐标为4时,3cos 5OFA ∠=-.(1)求抛物线C的方程;(2)以AB为直径的圆经过点()1,2P,点A,B都不与点P重合,求AF BF+的最小值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战2020年高考数学大题精做之解答题题型全覆盖高端精品
第三篇 立体几何
专题05 立体几何中最值问题 类型
对应典例 利用侧面展开图求最值
典例1 利用目标函数求最值
典例2 利用基本不等式求最值
典例3
【典例1】【河南省非凡吉创联盟2020届调研】
如图,AB 是圆柱的直径,PA 是圆柱的母线,3AB =,33PA =,点C 是圆柱底面圆周上的点.
(1)求三棱锥P ABC -体积的最大值;
(2)若1AC =,D 是线段PB 上靠近点P 的三等分点,点E 是线段PA 上的动点,求CE ED +的最小值.
【典例2】【江西省新余市第四中学2020届月考】
已知梯形ABCD 中,AD ∥BC ,∠ABC =∠BAD =2
π,AB=BC=2AD=4,E 、F 分别是AB 、CD 上的点,EF ∥BC ,AE =x ,G 是BC 的中点.沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF .
(1)若以F 、B 、C 、D 为顶点的三棱锥的体积记为()f x ,求()f x 的最大值;
(2)当 ()f x 取得最大值时,求二面角D -BF -C 的余弦值.
【典例3】【北京市昌平区2020届模拟】
如图,在长方体ABCD -A 1B 1C 1D 1中,E ,H 分别是棱A 1B 1,D 1C 1上的点(点E 与B 1不重合),且EH ∥A 1D 1. 过EH 的平面与棱BB 1,CC 1相交,交点分别为F ,G .
(I )证明:AD ∥平面EFGH ;
(II ) 设AB=2AA 1="2" a .在长方体ABCD -A 1B 1C 1D 1内随机选取一点.记该点取自几何体A 1ABFE -D 1DCGH 内的概率为p ,当点E ,F 分别在棱A 1B 1上运动且满足EF=a 时,求p 的最小值. 【针对训练】
1. 【广东省佛山市第一中学2020届月考】
如图,正方体1111ABCD A B C D -的棱长为a ,E F 、分别为AB BC 、上的点,且AE BF x ==.
(1)当x 为何值时,三棱锥1B BEF -的体积最大?
(2)求异面直线1A E 与1B F 所成的角的取值范围.
2.【安徽省安庆市2020届模拟】
如图,△ABC 内接于圆O ,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC ,2,3AB EB ==
(1)求证:DE ⊥平面ADC ;
(2)设AC x =,(x)V 表示三棱锥B ACE -的体积,求函数(x)V 的解析式及最大值.
3.【浙江省金华市十校2020届模拟】
如图,在三棱锥P ABC -中,AB BC =,AP PC =,60ABC ∠=︒,AP PC ⊥,直线BP 与平面ABC 成30角,D 为AC 的中点,PQ PC λ=,(0,1)λ∈.
(Ⅰ)若PB PC >,求证:平面ABC ⊥平面PAC ;
(Ⅰ)若PC PB <,求直线BQ 与平面PAB 所成角的正弦值的取值范围.
4.【北京市城六区2019届高三模拟】
已知三棱锥P ABC -(如图1)的平面展开图(如图2)中,四边形ABCD 2的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P ABC -中:
(I)证明:平面PAC ⊥平面ABC ;
(Ⅰ)求二面角A PC B --的余弦值;
(Ⅰ)若点M 在棱PC 上,满足
CM CP λ=,12[,]33λ∈,点N 在棱BP 上,且BM AN ⊥,求BN BP
的取值范围.。

相关文档
最新文档