2017 2018期末随机过程试题及答案

合集下载

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程试题及答案

随机过程试题及答案

.1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案随机过程是概率论与数理统计的重要理论基础之一。

通过研究随机过程,可以揭示随机现象的规律性,并应用于实际问题的建模与分析。

以下是一些关于随机过程的试题及答案,帮助读者更好地理解与掌握这一概念。

1. 试题:设随机过程X(t)是一个马尔可夫过程,其状态空间为S={1,2,3},转移概率矩阵为:P =| 0.5 0.2 0.3 || 0.1 0.6 0.3 || 0.1 0.3 0.6 |(1) 计算X(t)在t=2时的转移概率矩阵。

(2) 求X(t)的平稳分布。

2. 答案:(1) 根据马尔可夫过程的性质,X(t)在t=2时的转移概率矩阵可以通过原始的转移概率矩阵P的2次幂来计算。

令Q = P^2,则X(t=2)的转移概率矩阵为:Q =| 0.37 0.26 0.37 || 0.22 0.42 0.36 || 0.19 0.36 0.45 |(2) 平稳分布是指随机过程的状态概率分布在长时间内保持不变的分布。

设平稳分布为π = (π1,π2, π3),满足πP = π(即π为右特征向量),且所有状态的概率之和为1。

根据πP = π,可以得到如下方程组:π1 = 0.5π1 + 0.1π2 + 0.1π3π2 = 0.2π1 + 0.6π2 + 0.3π3π3 = 0.3π1 + 0.3π2 + 0.6π3解以上方程组可得到平稳分布:π = (0.25, 0.3125, 0.4375)3. 试题:设随机过程X(t)是一个泊松过程,其到达率为λ=1,即单位时间内到达的事件平均次数为1。

(1) 请计算X(t)在t=2时的累计到达次数的概率P{N(2)≤3}。

(2) 计算X(t)的平均到达速率。

4. 答案:(1) 泊松过程具有独立增量和平稳增量的性质,且在单位时间内到达次数服从参数为λ的泊松分布。

所以,P{N(2)≤3} = P{N(2)=0} + P{N(2)=1} + P{N(2)=2} +P{N(2)=3},其中P{N(2)=k}表示在时间间隔[0,2]内到达的次数为k的概率。

随机过程试题及答案

随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

随机过程习题和答案

随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程试题及答案说课材料

随机过程试题及答案说课材料

随机过程试题及答案收集于网络,如有侵权请联系管理员删除1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。

2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。

4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e t t X ,,3)(,则 这个随机过程的状态空间 。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。

7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ijp ,三者之间的关系为 。

8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。

10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。

二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。

2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。

3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。

《随机过程》期末试题

《随机过程》期末试题

《随机信号》期末试题学号:姓名:计算题和解答题(注:答题纸上作答,请写出必要的步骤,直接写出答案不得分)1、(10分)设随机过程(),(0,)X t Vt b t =+∈∞,b 为常数,V 是服从正态分布N(0,1)的随机变量。

求X(t)的一维概率密度、均值和相关函数。

2、(15分)设随机过程1nn j j Y X ==∑,其中X j (j=1,2,…,n)是相互独立的随机变量,且P{Xj=1}=p ,P{Xj=0}=1-p=q ,求{Yn ,n=1,2,…}的均值函数和协方差函数。

3、(15分)设电话总机在(0,t]内接到电话呼叫数X(t)是具有强度(每分钟)为λ的泊松过程,求:(1)两分钟内接到3次呼叫的概率;(2)“第二分钟内收到第三次呼叫”的概率;4、(15分)某商店每日8时开始营业,从8时到11时平均顾客到达率线性增加,在8时顾客平均到达率为5人/时,11时到达率达最高峰20人/时。

从11时到13时,平均顾客到达率维持不变,为20人/时,从13时到17时,顾客到达率线性下降,到17时顾客到达率为12人。

假定在不相重叠的时间间隔内到达商店的顾客数是相互独立的,问在8:30-9:30问无顾客到达商店的概率是多少?在这段时间内到达商店的顾客数的数学期望是多少?5、(15分)设马尔科夫链的状态空间为I={1,2,3,4,5,6},状态转移图如下所示,写出转移概率矩阵。

6、(15分)设马尔科夫链的转移概率矩阵分别为(1)11221233⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2)112233000p q p q q p ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦计算1112,,1,2,3n n f f n =7、(15分)设S(t)是一周期为T 的函数,θ在(0,T )上均匀分布,称X(t)=S(t+θ)为随机相位周期过程,讨论其平稳性。

(完整版)随机过程习题和答案

(完整版)随机过程习题和答案

一、1.1设二维随机变量(,)的联合概率密度函数为:试求:在时,求。

解:当时,==1.2 设离散型随机变量X服从几何分布:试求的特征函数,并以此求其期望与方差。

解:所以:2.1 袋中红球,每隔单位时间从袋中有一个白球,两个任取一球后放回,对每 对应随机变量一个确定的t⎪⎩⎪⎨⎧=时取得白球如果对时取得红球如果对t e t tt X t 3)(.维分布函数族试求这个随机过程的一2.2 设随机过程,其中是常数,与是相互独立的随机变量,服从区间上的均匀分布,服从瑞利分布,其概率密度为试证明为宽平稳过程。

解:(1)与无关(2),所以(3)只与时间间隔有关,所以为宽平稳过程。

2.3是随机变量,且,其中设随机过程U t U t X 2cos )(=求:,.5)(5)(==U D U E.321)方差函数)协方差函数;()均值函数;((2.4是其中,设有两个随机过程U Ut t Y Ut t X ,)()(32==.5)(=U D 随机变量,且数。

试求它们的互协方差函2.5,试求随机过程是两个随机变量设B At t X B A 3)(,,+=的均值),(+∞-∞=∈T t 相互独若函数和自相关函数B A ,.),()(),2,0(~),4,1(~,21t t R t m U B N A X X 及则且立为多少?3.1一队学生顺次等候体检。

设每人体检所需的时间服从均值为2分钟的指数分布并且与其他人所需时间相互独立,则1小时内平均有多少学生接受过体检?在这1小时内最多有40名学生接受过体检的概率是多少(设学生非常多,医生不会空闲)解:令()N t 表示(0,)t 时间内的体检人数,则()N t 为参数为30的poisson 过程。

以小时为单位。

则((1))30E N =。

40300(30)((1)40)!k k P N e k -=≤=∑。

3.2在某公共汽车起点站有两路公共汽车。

乘客乘坐1,2路公共汽车的强度分别为1λ,2λ,当1路公共汽车有1N 人乘坐后出发;2路公共汽车在有2N 人乘坐后出发。

随机过程复习题(含答案)

随机过程复习题(含答案)

随机过程复习题一、填空题:1.对于随机变量序列}{n X 和常数a ,若对于任意0>ε,有______}|{|lim =<-∞>-εa X P n n ,则称}{n X 依概率收敛于a 。

2.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t , ,则1592}6)5(,4)3(,2)1({-⨯⨯====e X X X P ,618}4)3(|6)5({-===e X X P1532623292!23!2)23(!23}2)3()5({}2)1()3({}2)0()1({}2)3()5(,2)1()3(,2)0()1({}6)5(,4)3(,2)1({----⨯⨯=⨯⨯⨯==-=-=-==-=-=-====e e e e X X P X X P X X P X X X X X X P X X X P66218!26}2)3()5({}4)3(|6)5({--===-===e e X X P X X P3.已知马尔可夫链的状态空间为},,{321=I ,初始分布为),,(412141,⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=43410313131043411)(P ,则167)2(12=P ,161}2,2,1{210====X X X P⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=4831481348436133616367164167165)1()2(2P P 167)2(12=P161314341}2|2{}1|2{}1{}2,1|2{}1|2{}1{}2,2,1{12010102010210=⨯⨯=================X X P X X P X P X X X P X X P X P X X X P4.强度λ的泊松过程的协方差函数),min(),(t s t s C λ= 5.已知平稳过程)(t X 的自相关函数为πττcos )(=X R ,)]()([)(πϖδπϖδπω-++=X S6. 对于平稳过程)(t X ,若)()()(ττX R t X t X >=+<,以概率1成立,则称)(t X 的自相关函数具有各态历经性。

随机过程习题答案

随机过程习题答案

随机过程习题解答(一)第一讲作业:1、设随机向量的两个分量相互独立,且均服从标准正态分布。

(a)分别写出随机变量和的分布密度(b)试问:与是否独立?说明理由。

解:(a)(b)由于:因此是服从正态分布的二维随机向量,其协方差矩阵为:因此与独立。

2、设和为独立的随机变量,期望和方差分别为和。

(a)试求和的相关系数;(b)与能否不相关?能否有严格线性函数关系?若能,试分别写出条件。

解:(a)利用的独立性,由计算有:(b)当的时候,和线性相关,即3、设是一个实的均值为零,二阶矩存在的随机过程,其相关函数为,且是一个周期为T的函数,即,试求方差函数。

解:由定义,有:4、考察两个谐波随机信号和,其中:式中和为正的常数;是内均匀分布的随机变量,是标准正态分布的随机变量。

(a)求的均值、方差和相关函数;(b)若与独立,求与Y的互相关函数。

解:(a)(b)第二讲作业:P33/2.解:其中为整数,为脉宽从而有一维分布密度:P33/3.解:由周期性及三角关系,有:反函数,因此有一维分布:P35/4. 解:(1) 其中由题意可知,的联合概率密度为:利用变换:,及雅克比行列式:我们有的联合分布密度为:因此有:且V和相互独立独立。

(2)典型样本函数是一条正弦曲线。

(3)给定一时刻,由于独立、服从正态分布,因此也服从正态分布,且所以。

(4)由于:所以因此当时,当时,由(1)中的结论,有:P36/7.证明:(1)(2) 由协方差函数的定义,有:P37/10. 解:(1)当i =j 时;否则令,则有第三讲作业:P111/7.解:(1)是齐次马氏链。

经过次交换后,甲袋中白球数仅仅与次交换后的状态有关,和之前的状态和交换次数无关。

(2)由题意,我们有一步转移矩阵:P111/8.解:(1)由马氏链的马氏性,我们有:(2)由齐次马氏链的性质,有:,(2)因此:P112/9.解:(2)由(1)的结论,当为偶数时,递推可得:;计算有:,递推得到,因此有:P112/11.解:矩阵 的特征多项式为:由此可得特征值为:,及特征向量:,则有:因此有:(1)令矩阵P112/12.解:设一次观察今天及前两天的天气状况,将连续三天的天气状况定义为马氏链的状态,则此问题就是一个马氏链,它有8个状态。

期末随机过程试题及答案

期末随机过程试题及答案

《随机过程期末考试 卷》1设随机变量X 服从参数为的 泊松分布,贝U X 的特征函数为。

2 •设随机过程X(t)二Acos( t+ ),- <t< 其中为 率P j (n) P X n j , n 步转移概率 p j n ),三者之间的关系为。

8•设{X(t),t0}是泊松过程,且对于任意 t 2 t i 0 则P { X (5) 6|X (3) 4}—正常数,A 和是相互独立的随机变 量,且A 和服从在区间0,1上的 均匀分布,则X(t)的数学期望为。

3. 强度为入的泊松过程的点间间 距是相互独立的随机变量,且服从均 值为的同一指数分布。

9. 更新方程tK t H t K t sdF s 解的0 一般形式为。

10. 记EX n ,对一切a 0,当t 时,M。

4道小题,每题8分,共32分)列,则W n 服从分布5. 袋中放有一个白球,两个红球, 每隔单位时间从袋中任取一球,取后 放回,对每一个确定的t 对应随机变则这个随机过程的状态空间。

6. 设马氏链的一步转移概率矩阵P=(P ij ),n 步转移矩阵 P (n) (p (n)),二者之间的关系为。

7. 设X n ,n 0为马氏链,状态空1. 设A,B,C 为三个随机事件,证明 条件概率的乘法公式: P(BCA)=P(B A)P(C AB)。

2. 设{X(t), t 0}是独立增量过程,且X(0)=0,证明{X(t), t 0}是一个马尔 科夫过程。

3. 设X n ,n 0为马尔科夫链,状态 空间为I ,则对任意整数 n 0,1 l <n 和i, j I ,n 步转移概率4. 设N(t),t 0是强度为的泊松间I ,初始概率p i P(X 0=i),绝对概科尔莫哥洛夫方程,证明并说明其意 义。

4.X(t,n 1是与泊松过程评卷人 二、证明题(本大题共 ),t 0对应的一个等待时间序 t +a M t量 X(t)丄3 t e ,如果t 时取得红球 如果t 时取得白球(n)P ijp ik )p j ),称此式为切普曼一k I分布随机变量,且与 N(t),t 0独N(t)立,令X(t)= Y k ,t 0,证明:若k=1E(Y I 12V ),则 E X(t) tE Y i 。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、选择题(每题5分,共20分)1. 下列哪一项是随机过程的典型特征?A. 确定性B. 可预测性C. 无记忆性D. 独立增量性答案:D2. 马尔可夫链的哪一性质表明,系统的未来状态只依赖于当前状态,而与过去状态无关?A. 独立性B. 无记忆性C. 齐次性D. 可逆性答案:B3. 布朗运动是一个连续时间的随机过程,其增量具有什么性质?A. 独立性B. 正态分布C. 独立增量性D. 所有选项都正确答案:D4. 随机过程的平稳性指的是什么?A. 过程的分布随时间不变B. 过程的均值随时间不变C. 过程的方差随时间不变D. 过程的自相关函数随时间不变答案:A二、填空题(每题5分,共20分)1. 如果随机过程的任意时刻的分布函数不随时间变化,则称该随机过程是________。

答案:平稳的2. 随机过程的自相关函数R(t,s)表示在时刻t和时刻s的随机变量的________。

答案:相关性3. 随机游走过程是一类具有________性质的随机过程。

答案:独立增量4. 泊松过程是一种描述在固定时间间隔内随机事件发生次数的随机过程,其特点是事件的发生具有________。

答案:无记忆性三、简答题(每题10分,共30分)1. 简述什么是马尔可夫过程,并给出其数学定义。

答案:马尔可夫过程是一种随机过程,其未来的状态只依赖于当前状态,而与过去状态无关。

数学上,如果对于任意的n,以及任意的时间序列t1, t2, ..., tn,满足P(Xt+1 = x | Xt = x_t, Xt-1 = x_t-1, ..., X1 = x_1) = P(Xt+1 = x | Xt = x_t),则称随机过程{Xt}为马尔可夫过程。

2. 描述布朗运动的三个基本性质。

答案:布朗运动的三个基本性质包括:1) 布朗运动的增量是独立的;2) 布朗运动的增量服从正态分布;3) 布朗运动具有连续的样本路径。

3. 什么是平稳随机过程?请给出其数学定义。

随机过程期末考题(2018.1.9)

随机过程期末考题(2018.1.9)

中国科学技术大学期末考试题考试科目:随机过程(B ) 得分: 学生所在系: 姓名: 学号:(2018年1月9日,半开卷)一、( 20分) 判断是非与填空: (1)(每空2分)设{,0}n X X =≥为一不可约、有限(N 个)状态的马氏链,且其转移概率矩阵P为双随机的(行和与列和均为1),则:.a X 的平稳分布不一定存在 ( ) ; .b X的平稳分布存在但不必唯一( ) ;Xc .的平稳分布为) (1)11N N N ,,,(( ); .d X的极限分布为:) (1)11N N N ,,,(( ) 。

(2)(每空3分)设公路上某观察站红、黄、蓝三种颜色的汽车到达数分别是强度为2、3和5(辆/分钟)的泊松过程。

则:.a 第一辆车到达的平均时间为( ) ; .b 红车首先到达的概率为 ( ) ;.c 在第一辆红车到达之前恰好到达k 辆非红车的概率为( )。

(3)(3分)有关某种商品的销售状况共有24个季度的连续数据 ( 1—畅销,0—滞销 ):,,1,1,1,0,1,0,1,1,0,0,1,10,1,0,1,1,1,0,0,1,0,1,1若该商品销售状况满足齐次马氏链,则据以上数据可估计出该马氏链的转移概率矩阵P 为( )。

二、(15分)设到达某计数器的脉冲数}0),({≥t t N 是一速率为λ的泊松过程,每个脉冲被记录的概率均为p ,且各脉冲是否被记录是相互独立的。

现以)(1t N 表示被记录的脉冲数,试求)(1t N 的矩母函数)()(1v g t N 以及)(1t EN ,)]([1t N Var 和))(),((11t N s N Cov 。

三、(20分)设马氏链}0,{≥n X n 的转移概率矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=323132313231000321P(1)设30=X ,试求:)3,2,1(},{)2(},{121=====i i X P i X P i i ππ)(,并求: )(1X E 和)(2X E ;(2)试求该马氏链的极限分布:)3,2,1,(,)(,lim ==∞→j i p n j i n j π;(3)当初始分布)3,2,1(0=i i )(π为什么分布时,该马氏链为严格平稳过程?并求此时的)(n X E 。

(完整版)随机过程习题答案

(完整版)随机过程习题答案

随机过程部分习题答案习题22.1 设随机过程b t b Vt t X ),,0(,)(+∞∈+=为常数,)1,0(~N V ,求)(t X 的一维概率密度、均值和相关函数。

解 因)1,0(~N V,所以1,0==DV EV ,b Vt t X +=)(也服从正态分布,b b tEV b Vt E t X E =+=+=][)]([ 22][)]([t DV t b Vt D t X D ==+=所以),(~)(2t b N t X ,)(t X 的一维概率密度为),(,21);(222)(+∞-∞∈=--x ett x f t b x π,),0(+∞∈t均值函数 b t X E t m X ==)]([)(相关函数)])([()]()([),(b Vt b Vs E t X s X E t s R X ++==][22b btV bsV stV E +++=2b st +=2.2 设随机变量Y 具有概率密度)(y f ,令Yt e t X -=)(,0,0>>Y t ,求随机过程)(t X 的一维概率密度及),(),(21t t R t EX X 。

解 对于任意0>t,Yt e t X -=)(是随机变量Y 的函数是随机变量,根据随机变量函数的分布的求法,}ln {}{})({);(x Yt P x e P x t X P t x F t Y ≤-=≤=≤=-)ln (1}ln {1}ln {tx F t x Y P t x Y P Y --=-≤-=-≥= 对x 求导得)(t X 的一维概率密度xtt x f t x f Y 1)ln ();(-=,0>t均值函数⎰∞+--===0)(][)]([)(dy y f e eE t X E t m yt tY X相关函数⎰+∞+-+---====0)()(2121)(][][)]()([),(212121dy y f e e E e e E t X t X E t t R t t y t t Y t Y t Y X2.3 若从0=t 开始每隔21秒抛掷一枚均匀的硬币做实验,定义随机过程⎩⎨⎧=时刻抛得反面时刻抛得正面t t t t t X ,2),cos()(π 试求:(1))(t X 的一维分布函数),1(),21(x F x F 和;(2))(t X 的二维分布函数),;1,21(21x x F ;(3))(t X 的均值)1(),(X X m t m ,方差 )1(),(22X Xt σσ。

随机过程试题及答案

随机过程试题及答案

一.填空题(每空2分,共20分)分)1.设随机变量X 服从参数为l 的泊松分布,则X 的特征函数为it (e -1)el 。

2.设随机过程X(t)=Acos( t+),-<t<w F ¥¥ 其中w 为正常数,A 和F 是相互独立的随机变量,且A 和F 服从在区间[]0,1上的均匀分布,则X(t)的数学期望为1(sin(t+1)-sin t)2w w 。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为1l的同一指数分布。

的同一指数分布。

4.设{}n W ,n 1³是与泊松过程{}X(t),t 0³对应的一个等待时间序列,则n W 服从G 分布。

分布。

5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t对应随机变量ïîïíì=时取得白球如果时取得红球如果t t te tt X ,,3)(,则 这个随机过程的状态空间212t,t,;e,e 33ìüíýîþ。

6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为(n)nP P =。

7.设{}n X ,n 0³为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为(n)j i ij i Ip (n)p p Î=×å。

8.在马氏链{}n X ,n 0³中,记中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=¹££==³ (n)ij ij n=1f f ¥=å,若ii f 1<,称状态i 为非常返的。

随机过程试题及答案

随机过程试题及答案

随机过程试题及答案一、单项选择题(每题2分,共10分)1. 随机过程的数学定义中,通常需要满足哪些条件?A. 样本空间、概率测度、随机变量B. 样本空间、概率测度、随机函数C. 样本空间、随机变量、随机函数D. 概率测度、随机变量、随机函数答案:B2. 马尔可夫链的无记忆性指的是什么?A. 过程的未来状态仅依赖于当前状态B. 过程的未来状态仅依赖于过去的状态C. 过程的未来状态依赖于当前和过去的状态D. 过程的未来状态依赖于所有历史状态答案:A3. 在随机过程中,如果一个过程的任何有限维分布都是联合正态的,则称该过程为什么?A. 正态过程B. 高斯过程C. 联合正态过程D. 多元正态过程答案:B4. 以下哪个不是平稳随机过程的性质?A. 一阶矩不随时间变化B. 任意两个不同时间点的协方差仅依赖于时间差C. 过程的均值随时间变化D. 过程的自相关函数仅依赖于时间差答案:C5. 随机过程的谱密度函数与自相关函数之间的关系是什么?A. 互为傅里叶变换B. 互为拉普拉斯变换C. 互为Z变换D. 互为梅林变换答案:A二、填空题(每题3分,共15分)1. 如果随机过程的样本路径是连续的,则称该过程为_________。

答案:连续过程2. 随机过程的样本函数是定义在时间轴上的_________。

答案:随机变量3. 对于一个平稳过程,其自相关函数R(τ)仅依赖于时间差τ,而不依赖于绝对时间t,即R(t1, t2) = R(t1 - t2) = R(τ),其中τ = t2 - t1。

这种性质称为_________。

答案:时间平移不变性4. 随机过程的遍历性是指过程的_________等于其统计平均。

答案:时间平均5. 随机过程的遍历性分为_________遍历性和_________遍历性。

答案:强,弱三、简答题(每题10分,共20分)1. 简述什么是泊松过程,并给出其概率质量函数。

答案:泊松过程是一种描述在固定时间或空间间隔内随机事件发生次数的随机过程。

2017-2018期末随机过程试题及答案.docx

2017-2018期末随机过程试题及答案.docx

《随机过程期末考试卷》1 •设随机变量X服从参数为■的泊松分布,则X的特征函数为 _________ 。

2•设随机过程X(t)=Acos( t+G),rvt<::其中为正常数,A和门是相互独立的随机变量,且A和门服从在区间∣0,11上的均匀分布,则X(t)的数学期望为。

3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为_的同一指数分布。

4•设:W n)是与泊松过程fX(t),t 一0?对应的一个等待时间序列,则W n服从分布。

5•袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,Γ对每一个确定的t对应随机变量x(t)=」3,如果t时取得红球,则这个随机过(e t, 如果t时取得白球程的状态空间__________ 。

6 •设马氏链的一步转移概率矩阵P=(P i j),n步转移矩阵Pg=(P(;)),二者之间的关系为。

7•设CX n)n -0?为马氏链,状态空间I ,初始概率P i= P(X°=i),绝对概率P j(n) =P「X n =j?,n步转移概率P j n),三者之间的关系为________________ 。

8 .设{X(t),t 一0}是泊松过程,且对于任意t20则P{X ⑸= 6|X (3) = 4} = _______t9 •更新方程K t =H^O K^SdFS解的一般形式为___________________ C 10•记亠-EX n)对一切a—0,当t—:时,M t+a -M t > _____________3. 设]X n)n — 0为马尔科夫链,状态空间为I ,则对任意整数n — 0,仁I Vn和i,j I ,n步转移概率P j n)=V P fk)P k n-I),称此式为切普曼一科尔莫哥洛夫方程,底I证明并说明其意义、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB) C2.设{X(t), t_0}是独立增量过程,且X(0)=0,证明{X(t), t_0}是一个马尔科夫过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《随机过程期末考试卷》
1 •设随机变量X服从参数为■的泊松分布,则X的特征函数为 ___________ 。

2•设随机过程X(t)二Acos(「t+「),-::vt<::其中「为正常数,A和门是相互独立的随机变量,且A和“服从在区间10,1 1上的均匀分布,则X(t)的数学期望为。

3•强度为入的泊松过程的点间间距是相互独立的随机变量,且服从均值为_
的同一指数分布。

4•设「W n ,n 一1是与泊松过程:X(t),t - 0?对应的一个等待时间序列,则W n服从分布。

5•袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,
r
对每一个确定的t对应随机变量x(t)=」3’如果t时取得红球,则这个随机过
e t, 如果t时取得白球
程的状态空间__________ 。

6 •设马氏链的一步转移概率矩阵P=(p j),n步转移矩阵P(n)=8(;)),二者之间的关系为。

7•设汉.,n -0?为马氏链,状态空间I,初始概率P i二P(X。

二i),绝对概率
P j(n)二P^X n二j?,n步转移概率p j n),三者之间的关系为_____________ 。

8 .设{X(t),t 一0}是泊松过程,且对于任意t2t^ 0则
P{X ⑸= 6|X (3) = 4} = _______
t
9•更新方程K t二H t • .°K t-s dF s解的一般形式为__________________ 。

10•记二-EX n,对一切a 一0,当t—一:时,M t+a -M t > ____________
3.设]X n,n — 0?为马尔科夫链,状态空间为I,则对任意整数n—0,仁I <n和i,j I,n步转移概率p(k)p『),称此式为切普曼一科尔莫哥洛夫方程,
证明并说明其意义
、证明题(本大题共4道小题,每题8分,共32分)
1.设A,B,C为三个随机事件,证明条件概率的乘法公式:
P(BC A)=P(B A)P(C AB)。

2.设{X(t), t_0}是独立增量过程,且X(0)=0,证明{X(t), t_0}是一个马尔科夫过程。

4.设〈N(t),t_O?是强度为,的泊松过程,〈Y k,k=1,2,|爪是一列独立同分布随机变
N(t)
量,且与:N(t),t -0}独立,令X(t)=v Y k,t _ 0,证明:若E(Y;<:),贝U
k=1
E X(t)丨-tE: Y^f。

计算题(本大题共4道小题,每题8分,共32分)
1.设齐次马氏链的一步转移概率矩阵为
1/32/30
P =1/302/3,求其平稳分

< 01/32/3,
3.设明天是否有雨仅与今天的天气有关,而与过去的天气无关。

又设今天下雨
而明天也下雨的概率为[,而今天无雨明天有雨的概率为:;规定有雨天气为
状态0,无雨天气为状态1。

设〉=0.7,: = 0.4,求今天有雨且第四天仍有雨的

率。

2.设顾客以每分钟2人的速率到达,顾客流为泊松流,求在2分钟内到达的顾客
不超过3人的概率。

简述指数分布的无记忆性与马尔科夫链的无后效性的关系
4.设有四个状态1=^0,,2,3?的马氏链,它的一步转移概率矩阵
0 0〕 0 0 14 14 0 1
(1) 画出状态转移图; (2) 对状态进行分类; (3) 对状态空间I 进行分解。

四、简答题(本题6分)
12 12 14
一. 填空题
-.(it i) 1 1
1.为e"e。

2. _ —(sin(国t+1)-sin cc t) 。

3. _ —
2
4,二5. _ It, 2t,|l(;e,e2HI。

6. P⑺二P n。

7 . P j(n) »p:p j n)
Q 3 J 记
6 t a
8. 18e 9。

K(t )=H (t )+[K(t—sdM (s) 10. -
二. 证明题
1.
证明:左边=P(ABC) P(ABC) PIAg) =p(CAB)P(B A)二右边
P(A) P(AB) P(A)
2.
证明:当0 ::: t1 ::: t2::: |l( ::: t n < t 时,
P(X(t) —X X(tJ=X1,X(t 2)=X2,l"X(t n)=X n) =
P(X(t)-X(t nV-X-X n X(tJ-X(O)=X 1,X(t 2)-X(0)=X 2,|"X(t n)-X(0)=X n)=
P(X(t)-X(t n)沁-X n),又因为
P(X(t) ^XX(t n)=X n)= P(X(t)-X(t n)沁-X n X(t n)=X n) =
P(X(t)-X(t n^X-X n),故
P(X(t)岂XX(t1)=X1,X(t2)=X2,l"X(t n)=X n)=P(X(t) /X(t n)=X n)
3.
证明:
P j(n)二P:X(n)=j X(O)=i .;- P X(n)=j,Qx(l)=k X(0)=i =
' PX(n)=j,X(l)=k X(0)=i /
kWI
=、Plx(l)=k X(O)=i 召P「X(n)=j X(l)=k,X(0)=i 心' 卩詁时-",其意义为n 步转
移概率可以用较低步数的转移概率来表示。

4.
证明:由条件期望的性质E〔X(t)丨-E「E X(t) N(t) ?,而
N(t)
E[X(t) N(t) = n卜E 匡Y i N(t) = n
- i=1
n n
=E ' Y j N(t)二n =E ' Y j =nE(YJ,所以E〔X(t)丨-■ tEI 丫丿IL i=1 」.i=1 」
三. 计算题(每题10分,共50分)
1.解:
=1.」
3 3
2
=-n1 +-H
3 3
2 2
=—兀c + 一兀
3 3
2•解:设「N(t),t - 0是顾客到达数的泊松过
程,
P〈N(2) _ N(2)=0 1+P「N(2)=1 ?+P〈N(2)=2 ?+P〈N(2)=3 ;
= e-4 4e-4 8e-4里e-4
3
31
i
I31
I
I 31
,即
解得1—
n
2 4
7厂3 - ,故平稳分布为
2 4
(7,7,7)
⑷k-4 e
k!
,则
71 -4
e
3
3
'_: 2 ■;:
P oo P oi 丨0.7 0.31 十口3•解:由题设条件,得一步转移概率矩阵为P= | | ,于是
iP io P ii 一[0.4 0.6一
P(2)= pp= 0.61 0.39[四步转移概率矩阵为P(4)= p(2)p(2)=严749 0.4251,从
p.52 0.48一[0.5668 0.4332一
而得到今天有雨且第四天仍有雨的概率为P0)=0.5749。

4.
解:(1)图略;
(2)P33 =1,而P30, P31, P32均为零,所以状态3构成一个闭集,它是吸收态,记C i= 3?;0, 1两个状态互通,且它们不能到达其它状态,它们构成一个闭集,记C2=「0i,且它们都是正常返非周期状态;由于状态2可达C i,C2中的状态,而C i, C2中的状态不可能达到它,故状态2为非常返态,记D=〈2?。

(3)状态空间I可分解为:E二D C2
四. 简答题(6分)答:(略)。

相关文档
最新文档