裂项相消法求和PPT课件

合集下载

高考数学一轮复习-裂项相消法求和课件

高考数学一轮复习-裂项相消法求和课件

归纳总结
若an (an b) qn
令:an A(n 1) B qn1 (An B) qn bn1 bn
Sn a1 a2 a3 an1 an Sn b2 b1 b3 b2 b4 b3 bn bn1 bn1 bn
bn1 b1

an
1 n(n
4n2 1
2n 1 2n 1
解:令an A(n 1) B 2n1 (An B) 2n
则an 2An 2A 2B 2n (An B) 2n
2An 2A 2B An B 2n An 2A B 2n
A1 2A B 0 A 1 B 2
an (n 1) 2 2n1 (n 2) 2n (n 1) 2n1 (n 2) 2n
第六章 数列
第四节 数列求和—裂项相消法
必备知识·整合
〔知识梳理〕
等差数列
1.通项公式:
2.前n项和公式:
等比数列
1.通项公式: 2.前n项和公式:
a1(1 qn ) q 1 1 q
(1).公式法(已知等差或等比或特殊数列) (2).分组求和法 (3).倒序相加法 (4).错位相减法 (5).裂项相消法
角度4 差比型
例题 已知an n 2n,求数列n bn1 bn
Sn a1 a2 a3 an1 an Sn b2 b1 b3 b2 b4 b3 bn bn1 bn1 bn
bn1 b1
(n 1) 2n1 2
1 1 an b an1 b
拓展2 混合型
(1)
n(n
1 1)(n
2)
1
2
1 n(n
1)
(n
1 1)(n
2)
(2) n 1 1 1 n2 (n 2)2 n2 (n 2)2

裂项相消法课件(微课堂)

裂项相消法课件(微课堂)

寻找相邻项
在分式中寻找相邻的项,特别是那些 具有相反符号的项,它们是裂项相消 的关键。
裂项相消法的注意事项
验证因式
在应用裂项相消法之前,要确保 分母中的因式是正确的。错误的
因式会导致后续计算出错。
保持代数恒等性
在应用裂项相消法时,要确保等式 的两边在经过变换后仍然保持恒等, 即等式的两边在变换后具有相同的 值。
3
分数裂项相消法的练习题
如求$frac{1}{2} + frac{1}{6} + frac{1}{12} + frac{1}{20} + ldots$的和,可以通过裂项相消法 快速得出结果。
代数表达式的裂项相消法练习
代数表达式裂项相消法的原理
将代数表达式拆分成多个部分,使得在求和或求积的过程中某些项相互抵消,简化计算过 程。
消法快速得出结果。
06Biblioteka 总结与展望裂项相消法的总结
裂项相消法是一种重要的数学方 法,主要用于解决数列求和问题。
它通过将一个数列拆分成若干个 子数列,然后利用相邻子数列的 相消性质,简化了数列求和的过
程。
裂项相消法在数学中有着广泛的 应用,不仅在数列求和中有用, 还可以用于解决一些组合数学问
题。
裂项相消法的应用前景与展望
02
裂项相消法的原理
分数的裂项
01 分数裂项法
将一个分数拆分成两个或多个分数的和或差,以 便于计算。
02 常见裂项形式
如$frac{1}{n(n+1)}$可以拆分为$frac{1}{n}frac{1}{n+1}$。
03 裂项技巧
根据分数的分子和分母特点,选择合适的拆分方 式,简化计算。

裂项相消法微课堂PPT课件

裂项相消法微课堂PPT课件
(3)相邻两项裂开后,前一项的后式与后一项的 前式互为相反数;
(4)裂项的关键是紧抓相邻两项的相同项;
第4页/共10页
数学运用 练习 1.

n
n 1
A.2n 1 B.2n 1
C.2n 1
2n 1
D.2n 2 2n 1
第5页/共10页
【解析】
=
第6页/共10页
数学运用
练习2

Sn
1 1 3
1 24
第10页/共10页
1
型如:
an an1
{an}是d 0的等差数列
第8页/共10页
归纳小结 裂项相消法
常见的拆项方法:
1 1 1 n(n 1) n n 1
1 n(n
k)
=
1(1 - kn
1 n+k

1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
1
n 1 n
n 1 n
第9页/共10页
感谢您的观看!
22334
n n1
(2)求数列
1 , 1 , 1 ,, 1 1 2 2 3 3 4 n(n 1)
的和
(1)解:数列的通项公式
an
1 n
1 n 1
数列的和为
Sn
1
n
1
1
n
n
1
第2页/共10页
(2)解:
第3页/共10页
你能说“裂项相消求和法”的特征吗?
(1)通项的分母是因式相乘的形式; (2)每项裂成两个式子的差;
1 35
1 n(n
2)
解: an
1 n(n
2)

《数列求和裂项》课件

《数列求和裂项》课件

实例二:分式数列的求和
分式数列
(frac{1}{1} + frac{1}{2} + frac{1}{3} + ... + frac{1}{n})
裂项求和
利用分数的性质,将每一项拆分成更小的部分,然后进行求和。
具体操作
(frac{1}{1} + frac{1}{2} + frac{1}{3} + ... + frac{1}{n} = (1 - frac{1}{2} + frac{1}{2} - frac{1}{3} + ... + frac{1}{n - 1} - frac{1}{n}) + frac{1}{n})
裂项求和法的总结
裂项求和法是一种常用的数列求和方法,通过将数列的每一项拆分成易于求和的形式,简化求和过程 。
裂项求和法适用于多种类型的数列,如等差数列、等比数列等,能够有效地解决一些复杂的数列求和问 题。
在应用裂项求和法时,需要仔细分析数列的结构和特点,选择合适的拆分方式,以达到简化求和的目的 。
分式形式的裂项公式在处理具有分式规律的 数列时非常有效,可以大大简化计算过程,
提高解题效率。
几何级数的裂项公式
几何级数的裂项公式是指将数列中的每一项表示为几何级数的形式,然后通过化 简或分解因式,将原数列的求和问题转化为新数列的求和问题。例如,对于数列 $1, 2, 4, 8, ldots$,其裂项公式为$2^{n-1}$。
差分形式的裂项公式在解决数列求和问题中非常常见,尤其在处理等差数列、等比数列等具有明显规 律的数列时,可以大大简化计算过程。
指数形式的裂项公式
指数形式的裂项公式是指将数列中的每一项表示为指数形式,然后通过因式分解或化简,将原数列的求和问题转化为新数列 的求和问题。例如,对于数列$1, 2^2, 3^3, ldots, n^n$,其裂项公式为$frac{1}{2} times (1 + n^n)$。

裂项相消法求和ppt课件

裂项相消法求和ppt课件

(4)an

log
a (1
1) n

__l__o__a_g (_n1)loag n
7
已知 Sn为数列an} {的n前 项和,且S满 n n足 223n, (1)求数an的 列通项 (2)若 bn an1an1,求数列bn} {的n前 项和 Tn
8
(15年全国)S卷 n为数列an} {的n前 项和,已 an 知 0, an2 2an 4Sn 3 (1)求{ an}的通项公式 (2)设 bn ana1n1,求数列bn} {的n前 项和
数列求和(二)—— 裂项相消法
能力提升
1 ________
anan1
2
三、重难点点拨
• •
裂项
1 1 1 n(n1) n n1
• 请填空:
nn1212(1nn 12)
• 一般地: nn1k1k(1nn1k)
3
• 变式训练
已知 an nn21,求 Sn
已知 an n(n12),求Sn
4
三、增效练习
5
三、增效练习
6
常见的裂项求和
11 1
(1) a n

1 n(n
k)

( )
__k___n__ nk
(2)an

1 4n2 1

___12__(_2_n_1__ 12n11)
(3)an
1 n 1
____n___1 n n
18
在数列ቤተ መጻሕፍቲ ባይዱan} {中, a1 若 1,an1 3an2, (1)证明数a列 n 1{ }为等比数列 (2)求数a列 n的通项公式
19
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!

数列求和-裂项相消法-PPT课件

数列求和-裂项相消法-PPT课件
步骤: ①展开:将Sn展开
为等b比n 数列
②乘公比:等式两边乘以等比数列的公比
③错位:让次数相同的相对齐④相减⑤解出Sn
数列求和-裂项相消法
例题探究·提炼方法
(教材必修5习题2.3B组第四题)
解:
an
1 n(n 1)
1 n
1 n 1
Sn a1 a2 a3
an1 an
(1- 1)(1 - 1)(1 - 1) ( 1 1) (1 1 ) 2 2 3 3 4 n 1 n n n 1
1 (1 1 ) 3 3n 1
数列求和-裂项相消法
规律方法·反思提升
(1)an
1 n(n
k)
1 k
(
1 n
n
1
k
)
(2)bn
1 4n2 1
(2n
1 1)(2n
1)
1 2
(
1 2n 1
1) 2n 1
(3)bn
9n2
1 3n
2
(3n
1 2)(3n
1)
1 3
(1 3n
2
1) 3n 1
数列求和-裂项相消法
1 n+1+
= n
n+1-
n,
S2 016=a1+a2+a3+…+a2 016=( 2- 1)+( 3- 2)+( 4- 3) +…+( 2 016- 2 015)+( 2 017- 2 016)= 2 017-1. 答案:C
数列求和-裂项相消法
强化练习·扩展延伸
强化练习2
题型3:
2n
11
an (2n 1)(2n1 1) 2n 1 2n1 1
数列求和 数列求和的基本方法
知识回顾

【高中数学优质课件】数列求和之裂项相消法教学课件

【高中数学优质课件】数列求和之裂项相消法教学课件

常见的裂项求和模型
➢ 等差型
➢ 指数型
➢ 根式型
➢ 对数型
裂项求和在不等式证明的应用
• 先求和后放缩
• 先放缩后求和
启思明德 悟理达行
Hale Waihona Puke 《 数列求和 》 之裂项相消法
课前导入
启思明德 悟理达行
裂项模型
裂项模型
启思明德 悟理达行
裂项模型
启思明德 悟理达行
裂项模型
启思明德 悟理达行
练一练
启思明德 悟理达行
小结
启思明德 悟理达行
裂项模型
启思明德 悟理达行
练一练
启思明德 悟理达行
不等式证明应用
启思明德 悟理达行
练一练
课堂小结

裂项相消法课件(微课堂)

裂项相消法课件(微课堂)

三角函数中的应用实例
总结词
简化三角函数计算
详细描述
裂项相消法在三角函数中也有着重要的应用。对于一些复杂的三角函数式,如三角函数的乘积、除法 等,可以利用裂项相消法将其拆分成易于处理的形式,从而简化计算过程。这种方法在解决三角函数 相关问题时,如求值、化简等,能够大大提高解题效率。
数列求和中的应用实例
04裂项相消法的进阶技巧裂相消法的变形技巧变形技巧一
将通项公式变形为两个部分,使 得相邻的项能够相互抵消,从而 简化求和过程。
变形技巧二
通过调整系数或变量的形式,使 得相邻的项具有相同的部分,以 便于相消。
裂项相消法的组合技巧
组合技巧一
将多个裂项相消法的实例组合在一起 ,以解决更复杂的问题。
THANKS
感谢观看
求 (1/3 - 1/6 + 1/9 1/12 + ...) 的值。
这道题同样可以利用裂项 相消法进行求解,但需要 注意相邻两项之间的符号 变化规律,正确拆分并相 消各项。
高阶练习题与解析
总结词
练习题1
解析
练习题2
解析
挑战裂项相消法的复杂 应用
求 (1/2 - 1/3 + 1/4 1/5 + ...) 的值。
组合技巧二
将裂项相消法与其他数学方法结合使 用,以获得更广泛的应用。
裂项相消法的拓展技巧
拓展技巧一
通过推广裂项相消法的应用范围,将 其应用于更广泛的数学问题中。
拓展技巧二
探索裂项相消法的深层次原理,进一 步深化对这一数学方法的理解。
05
裂项相消法的练习题与解析
基础练习题与解析
总结词
练习题1
解析
这道题是裂项相消法的 复杂应用,相邻两项之 间的符号变化规律较为 复杂,需要仔细观察并 正确拆分各项,才能得 到最终结果。

裂项相消求和课件-高二上学期数学人教A版(2019)选择性必修第一册

裂项相消求和课件-高二上学期数学人教A版(2019)选择性必修第一册

n
1) 1
(1 n
n
1
2)
1 (1 1 1 1 ) 2 2 n1 n 2
追问2:裂项相消后前后各保留哪几项?
相消后剩余项数具有对称性
追问3:若
a否知道裂项相消后保留哪几项?
追问4:你能在原有一般形式进行推广吗?
已知数列an(an 0) 是公差为 d(d ≠0) 的等差数列,
n 21 3 3 5 5 7
2n 1 2n 1
1(1 1 ) n . 2 2n1 2n1
问题1:上面两个裂项相消求和的问题,会与什么类型的数列有关联? 裂开后的“项”有何特征?
1 1 1 n(n 1) n n 1
1
1( 1 1 )
(2n 1)(2n 1) 2 2n 1 2n 1
n, n 1是等差数列n的第n和n 1项. 2n 1,2n 1是等差数列2n 1的第n和n 1项.
数列求和
—裂项相消法
数列求和
S a a a
n
1
2
n
等差数列通项 下标和性质
等比数列各项乘 公比等于下一项
倒序相加法 错位相减法
等差数列求和 等比数列求和
项进行适当的变形
求和一般思路:无限项的和
不规则
有限项的和 规则
1
引例:已知Sn为数列的前n项和,若
a n
n(n
1)
,求Sn
S 1 1 1
问题2:
能不能用裂项相消法求出数列
1 n(n
2)
的前n项和?
1 1 (1 1 ) n(n 2) 2 n n 2
追问1:能不能相消?为什么?
S n
1 2
(1
1) 3
(1 2

裂项相消ppt课件

裂项相消ppt课件

精选
1
小试身手
应该怎样拆项?
精选
2
[思考探究]
用裂项相消法求数列前n项和的前提是什么? 提示:数列中的每一项均能分裂成一正一负两项,这是用
裂项相消法的前提.一般地,形如{ 的数列可选用此法来求.
}({an}是等差数列)
精选
3
裂项法求和
例:求数列 1 ,1, 1, 1 , , 1 , (n N * ) 1 21 2 31 2 3 41 2 3 n
1[(1 1)(1 1) ( 1 1 )]
3 4 47
3n2 3n1
1(1 1 ) n
3 3n1 3n精选1
7
当堂测试
在等差数列{an}中,a5=5,S3=6.
(1)若Tn为数列{
}的前n项和,求Tn;
(2)若an+1≥λTn对任意的正整数n都成立,求实数λ的最大值.
[思路点拨]
精选
8
[课堂笔记] (1)设等差数列{an}的首项为a1,公差为d,则
的前n项和
提示: a n 1 2 1 nn (n 2 1 )2 (1 nn 1 1 )
S n 2 [ 1 1 2 1 2 1 3 1 n n 1 1 2 1 n 1 1 n 2 n 1
精选
4
当堂训练
1.数列{an}的前n项和为Sn,若an=
裂项相消法求和
所谓”裂项相消法”就是把数列的各项分裂成两项之差,相 邻的项两彼此相消,就可以化简后求和.
一些常用的裂项公式:
(1)
1
nn 1
1 n
n
1
1
(2)(2n1)12n112
(1 1) 2n1 2n1
(3) 1 n(n 2)

高三理科数学数列求和裂项相消法ppt课件

高三理科数学数列求和裂项相消法ppt课件

28
1 { } * an=f(n+1)+f(n),n ∈ N , 记数列 an 的前 n 项和为 Sn, 则
Sn=10 时,n 的值是 A.110 B.120 ( ) C.130 D.140
17
【解析】选 B.因为幂函数 y=f(x)=xα过点(4,2),
1 所以 4α=2,所以α= 2 ,
所以 an=f(n+1)+f(n) n 1 n ,
18
1 1 1 1 类型三:an n n( n n1 ) n 1 2 b 2 b 2 2 b 2 b
例 3.已知
an 2
n
1 1令 bn an an1 ,
Tn 是数列 bn 的前 n 项和,
1 Tn 证明: 6.
19
1 bn n n 1 证明: 2 1 2 1
6
1 (3)an n 1 n n 1 n ( n 1 n )( n 1 n ) n 1 n
sn 2 1 3 2 4 3 n 1 n n 1 1
7
1 (3)变式an nk n
nk n an k ( n k n )( n k n ) 1 ( n 1 n) k
*
3 m (3)设 bn= an an 1 ,Tn 是数列{bn}的前 n 项和,求使得 Tn< 20
对所有 n∈N*都成立的最小正整数 m.
24
解:(1)依题意可设f(x)=ax2+bx(a≠0), 则f′(x)=2ax+b.
由f′(x)=6x-2得a=3,b=-2,
∴f(x)=3x2-2x. 又由点(n,Sn)(n∈N*)均在函数y=f(x)的图象上, 得 S n = 3 n 2- 2 n .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2
nn
1,求S
n
已知an

1 n(n
2)
, 求Sn
4
三、增效练习
5
三、增效练习
6
常见的裂项求和
(1)an

1 n(n
k)

1 (1 1 )
__k__n___n k
(2)an

1 4n2 1

__12__( 2_n_1__1__2n1 1)
(3)an
1 n 1
(2)令bn

(n
1 1)an
, 求数列{bn }的前n项和Tn
16
17
18
在数列{an}中,若a1 1, an1 2an 3(n 1), (1)证明数列{an 3}为等比数列 (2)求数列an的通项公式
19
在数列{an}中,若a1 1, an1 3an 2, (1)证明数列{an 1}为等比数列 (2)求数列an的通项公式
12
已知等差数列{an}满足:a3 7, a5 a7 26,{an}的前n项和为Sn
(1)求an及Sn
(2)令bn

1 an2 1
(n
N *), 求数列{bn}的前n项和Tn

13
14
15
正项数列{an}满足an2 (2n 1)an 2n 0
(1)求数列{an }的通项公式an ;
数列求和(二)—— 裂项相消法
能力提升
• 归纳
1 ________ an an 1
2
三、重难点点拨
• •
裂项
1 1 1 n(n 1) n n 1
• 请填空:
1
nn
2

1 2
(
1 n

n
1
) 2

一般地:
1
nn
k


1 k
(
1 n

n
1
k
)
3
• 变式训练
已知an
an2 2an 4Sn 3
(1)求{an}的通项公式
(2)设bn

1 an an 1
, 求数列{bn}的前n项和
9
10

11
在数列{an}中,a1
1,当n

2时,其前n项和Sn2

an (Sn

1) 2
(1)求数列S
的表达式
n
(2)设bn

Sn 2n
1
,
求{bn}的前n项和Tn
20

21
___n___1_ n
n
(4)an

log a (1
1) n

__lo_g_a_(_n__1) log a n
7
已知Sn为数列{an}的前n项和,且满足Sn

n2
3n 2
,
(1)求数列an的通项
(2)若bn

an
1 an1
, 求数列{bn}的前n项和Tn
8
(15年全国卷)Sn为数列{an}的前n项和,已知an 0,
相关文档
最新文档