仿生学
仿生学内容
1、鸟在天空飞翔:制造了各种飞行器。
2、蜜蜂造巢窝:各种正六边形的蜂巢结构板材。
3、每只蜻蜓的翅膀末端,都有一块比周围略重一些的厚斑点,这就是防止翅膀颤抖的关键。
飞机设计师研究苍蝇、蚊子、蜜蜂等的飞行方法,造出了许多具有各种优良性能的新式飞机。
4鲸:外形是一种极为理想的“流线体”,而“流线体”在水中受到的阻力是最小的。
后来工程师模仿(fǎng)鲸的形体,改进了船体的设计,大大提高了轮船舴的速度。
5、蛋壳:能够把受到的压力均匀(yún)地分散到蛋壳的各个部分。
建筑师根据这种“薄壳结构”的特点,设计出许多既轻便又省料的建筑物。
6、6、袋鼠:会跳跃的越野汽车,7、7、贝壳:外壳坚固的坦克……鱼儿在水中游荡:学会了游泳,发明潜艇。
8、8、连体鲨鱼装:第一代鲨鱼装模仿了鲨鱼的皮肤,在泳衣上设计了一些粗糙的齿状突起,以有效地引导水流,并收紧身体,避免皮肤和肌肉的颤动。
第二代鲨鱼装又增加了一些新的亮点,加入了一种叫做“弹性皮肤”的材料,可使人在水中受到的阻力减少4%。
9、9、大乌背小乌龟:转动炮塔的坦克。
10、10、让盲者见到光明:在植入了微小的仿生视网膜之后,3位失明患者不仅看到了明灭或者移动的光点,甚至还成功地用眼睛区别出杯子和盘子。
11、人工合成蛛丝:蛛丝含有一种纤维蛋白,这种蛋白质和存在于毛发和羊角中的角质蛋白相似。
这种蛋白分泌出来后开始变得坚韧。
通过精细的平衡水的含量,蜘蛛和蚕可以防止纤维蛋白过快固化。
12、蜻蜓-飞机;13、青蛙—快速扫描系统14、苍蝇-气味探测器15、螳螂—镰刀电鱼与伏特电池。
经过对电鱼的解剖研究,发现在电鱼体内有一种奇特的发电器官。
意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池。
16、水母耳朵:水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官。
16、动物仿生学17、生物学家通过对蛛丝的研究制造出高级丝线,抗撕断裂降落伞与临时吊桥用的高强度缆索。
仿生学的认识
仿生学:向大自然学习的智慧宝典嘿,小伙伴们,你们有没有想过,咱们身边的好多高科技玩意儿,其实都是从大自然里“偷师”来的?没错,我说的就是仿生学!这门学问听起来高大上,其实说白了,就是人类通过观察、研究自然界中的生物,然后模仿它们的特殊本领,创造出更厉害的东西。
今天,咱们就来聊聊这个既神奇又接地气的领域,看看大自然这位老师是怎么教会我们不少绝招的。
一、仿生学是啥?先来个简单粗暴的解释想象一下,你走在森林里,看到一只蜘蛛在网上悠闲地等着猎物上门,那网织得既结实又精巧,你是不是会想:要是咱们也能造出这么厉害的网,那该多好啊?嘿,你还别说,科学家们还真就这么干了,他们研究蜘蛛网的构造,然后发明了高强度、轻量化的纤维材料,用在防弹衣、航天器上,那可是杠杠的!这就是仿生学的魅力所在——从生物那里找灵感,解决咱们的问题。
二、大自然的“黑科技”,你get到了吗?1. 蝙蝠:黑夜中的导航高手晚上出去散步,偶尔能听到“吱吱”的蝙蝠叫声,它们可不是瞎飞哦,而是靠着一种叫做“回声定位”的技能,在黑暗中穿梭自如。
蝙蝠发出超声波,这些声波碰到障碍物就会反弹回来,告诉它们前方有啥。
科学家一看,这技能不错啊,于是发明了雷达,军舰、飞机上都离不开它,帮助我们在茫茫大海或夜空中找到方向。
2. 鲨鱼:水中的速度之王提到鲨鱼,是不是立马想到那锋利的牙齿和惊人的游速?鲨鱼的皮肤可不是普通的皮,上面布满了微小的凹槽,这些凹槽能减少水的阻力,让它们游得飞快。
工程师们一看,嘿,这不就是我们想要的泳衣材料吗?于是,模仿鲨鱼皮的泳衣诞生了,穿上它,游泳健将们在赛场上那叫一个如鱼得水,速度嗖嗖的。
3. 蜜蜂:建筑界的微型大师别看蜜蜂小小的,它们建的巢穴那可是六边形结构的完美典范,既节省材料又坚固耐用。
建筑师们从蜜蜂身上学到了这一课,设计了更加节能高效的建筑,比如蜂窝结构的墙体,既保温又隔音,让咱们住得更舒服。
4. 荷叶:自洁高手的秘诀夏天去池塘边,你有没有注意到荷叶上总是干干净净的,连水滴都站不住脚?这是因为荷叶表面有一层特殊的蜡质纳米结构,让水珠无法渗透,只能滚来滚去,顺便带走了表面的灰尘。
什么是“仿生学”,它如何利用自然界的设计原理改进技术?
什么是“仿生学”,它如何利用自然界的设计原理改进技术?随着现代科学技术的不断发展,人们越来越关注从自然界中寻找灵感来改进技术。
仿生学就是一种借鉴自然界中生物体的设计原理,将其用于工业、医学等领域的学科。
那么,什么是“仿生学”,它如何利用自然界的设计原理改进技术?下面我们来一探究竟。
一、什么是“仿生学”“仿生学”这个词汇来源于希腊语,意为“类似生命体的学问”。
作为一门新兴的跨学科研究领域,它结合了生物学、科学、工程学、计算机学等多个领域的知识,旨在学习生物体的结构和生命活动的方式,并在工程领域中应用这些原理。
在仿生学的研究中,科学家们会通过模仿自然界生物的骨架、肌肉、纤维、纹路等结构,探究它们发挥功能的原理,并将这些原理应用于机器人、医学、交通运输等领域。
二、仿生学应用案例1.仿生机器人仿生机器人是仿生学研究中的一个重要分支,它致力于在机器人设计中应用仿生学原理,模仿自然界中的生物运动、感觉和认知系统,使机器人的操作更加精细和适应环境。
比如,海龟机器人就是一种典型的仿生机器人,它的设计灵感来源于海龟的骨骼结构和游泳方式。
这种机器人可以在水下进行探索,具有较高的灵活性和稳定性。
2.仿生材料仿生材料是将仿生学原理应用到材料科学领域的一种技术,旨在研究和开发具有自愈性、可生长性、智能功能等特点的新型材料,以应对复杂的环境变化。
比如,仿生胶水就是一种仿生材料,其灵感来源于蚂蚁粘合物,可以在水下黏合物体,并具有较高的可靠性和耐久性。
3.仿生交通运输仿生交通运输就是将自然界中的有机体运动方式应用到交通工具设计中,以减少能量消耗和环境污染。
比如,高速列车的头部设计就是仿生交通技术的典型之一,其外形呈锥形,仿照了雄鹰的翅膀和鼻部特征,可以减少风阻和能耗。
三、总结仿生学在现代科技领域中占据着越来越重要的地位,它不仅能促进技术的升级和发展,更可以促进人与自然的和谐相处。
尽管仿生学的研究还有许多待探究的领域,但相信在未来,仿生学将会在各行各业中发挥越来越重要的作用。
什么是仿生学,它对我们的科学和技术有什么影响?
什么是仿生学,它对我们的科学和技术有什么影响?一、仿生学是什么?仿生学指的是生物学和工程学之间的一种跨学科领域,它研究如何从生物系统中汲取灵感,应用于技术创新中。
其主要研究范围涵盖了从生物机制、器官和行为到生态系统等各个层次。
仿生学是基于自然界生物的优异性能和独特的适应能力,借鉴其内在的形态、运动、智能和环境适应能力,将其应用于制造工艺和技术创新中。
二、仿生学的应用1. 仿生材料仿生材料是仿生学的一个重要应用领域。
仿生材料可以模拟天然材料的结构和性能,将其用于制造人造材料。
例如,仿生材料可以模仿蜘蛛丝的小直径、高韧性和耐腐蚀性,在医疗、航空航天等领域得到应用。
2. 仿生机器人仿生机器人是将仿生学理论和机器人技术相结合的产物。
仿生机器人可以模仿生物的运动姿态和动作,实现更加灵活、高效的机器人运动控制。
例如,仿生机器人可以像章鱼一样灵活地伸缩触手,用于深海探测或医疗手术。
3. 生物传感技术生物传感技术是一种利用生物体的传感器和反应器制造出人造传感器的技术。
利用这种技术,可以制造出更加精准、灵敏的传感器,用于环境监测、医疗器械等领域。
三、仿生学对我们的影响1. 创新源泉仿生学的不断发展为人类提供了更加广阔的创新源泉。
仿生学的研究成果可以用于各个领域,例如医疗、交通、环保和军事等领域,为人们的生活和工作带来更多的便利和效益。
2. 提高人类生活质量仿生学研究的应用可以大幅提高人类的生活质量。
例如,仿生技术可以制造出更加轻盈、高效的机器人,减轻人们的劳动强度;仿生医学技术可以制造出更加准确、针对性更强的医疗器械,提高患者的治疗效果。
3. 推动科学进步仿生学的研究不仅可以创造出实用性的技术,同时也能推动科学理论的发展。
仿生学研究的深入,可以揭示出生物的内在机制及其优异性能,为人类研究和解决众多科学难题提供启示和参考。
总结:仿生学是一门富有前景的交叉学科,其研究成果有助于推动技术创新和科学进步。
不仅如此,仿生学的应用还可以提高人类生活质量,改善环境状况,具有广泛的社会意义和科学价值。
仿生学的例子大全及原理
仿生学的例子大全及原理仿生学是一门将自然界中的生物系统和生物机制应用到工程和技术领域的学科。
它的研究对象涵盖了动物、植物和微生物等各种形态和生理功能的生物。
在不同的领域中,仿生学都有着自己特定的应用和原理。
下面将介绍一些典型的仿生学例子及其原理。
1. 鸟类飞行的仿生学原理鸟类的翅膀结构和飞行方式一直是人类所向往和模仿的对象。
仿生学在航空领域中,通过研究鸟类的翅膀结构和飞行姿态,设计出了更加轻盈和高效的飞行器。
蝴蝶机器人采用了仿生设计的翅膀,可以实现类似于蝴蝶飞行的机动性。
2. 蜘蛛丝的仿生学原理蜘蛛丝是一种坚韧而轻巧的材料,在工程领域中,蜘蛛丝的仿生设计被应用于建筑和纺织等领域。
研究人员通过分析蜘蛛丝的分子结构和纤维排列方式,设计出了更加轻盈和强韧的纺织材料,使得建筑结构更加稳定,纺织品更加耐久。
3. 蝌蚪的游泳动作的仿生学原理蝌蚪在水中游泳时的动作非常灵活和高效。
仿生学在水下机器人设计中借鉴了蝌蚪的游泳原理,设计出了更加灵活和高速的水下机器人。
通过模仿蝌蚪的身体形态和尾巴运动方式,实现了机器人在水中的高效移动。
4. 蓮花叶面的仿生学原理蓮花叶能够抵御水滴的粘附,这是因为其表面上具有微小的凹凸结构。
仿生学在涂层和表面处理领域中,借鉴了蓮花叶的原理,设计出了具有抗粘附性和自清洁性的材料。
这些材料可以应用于防污染、防结冰等领域。
5. 蚁群行为的仿生学原理蚂蚁在寻找食物和组织行动时,能够通过简单的局部交流实现整体的复杂行为。
仿生学在人工智能领域中,借鉴了蚂蚁的群体行为原理,设计出了分布式智能系统。
这些系统能够通过分布式节点之间的局部交流和协作,实现复杂的任务分配和决策。
以上只是仿生学在不同领域中的一些应用例子和原理,并不是详尽无遗。
随着科学技术的进步,仿生学在多个领域中的应用将会更加广泛。
通过借鉴自然界中的智慧和生物机制,可以帮助我们解决很多实际问题,并推动科技的发展。
仿生学的概念
仿生学的概念仿生学是一门研究生物系统和生物学原理,以及如何应用这些原理设计和创造新技术的跨学科领域。
它结合了生物学、物理学、化学、工程学和计算机科学等多学科的知识,旨在通过模仿生物系统的结构、功能和策略,开发出具有相似性能的新材料、新技术和新产品。
仿生学的发展起源于对生物系统的观察和研究。
人们发现自然界中存在许多生物体具有优秀的适应性能力,能够在各种环境中生存和繁衍。
例如,许多昆虫拥有轻巧而坚固的翅膀,使得它们能够高速飞行同时保持平衡。
有些动物具有优秀的运动能力,如鲨鱼的流线型身体和腹鳍使其在水中游动非常迅速。
还有些昆虫对于光的反射波动非常敏感,这使得它们能够在光线微弱的条件下仍然保持对外界环境的感知能力。
仿生学的研究目标之一是揭示生物系统的结构和功能,并探索这些原理如何应用于人造系统的设计中。
例如,参考昆虫的翅膀结构,科学家可以设计出拥有更好稳定性和轻巧性能的飞机翼。
通过研究鲨鱼的皮肤纹理和流线型身体,人们可以开发出减阻、降噪的船舶表面涂层。
仿生学的另一个目标是从生物系统中获得新材料的灵感。
例如,格栅状结构的蜂巢可以启发人们设计更轻、更坚固的建筑结构。
莲花叶片表面具有超疏水性,这启发了科学家们开发出防水、自洁的材料。
仿生学的研究方法主要包括以下几个方面。
首先,观察和研究现有的生物系统。
通过对生物体的解剖和功能的深入研究,科学家可以了解到生物系统的工作原理和性能特点。
其次,将自然界中的生物系统和现有的技术进行对比和分析。
通过对比,科学家可以发现生物系统中存在的一些独特特征和优势,从而为新技术的开发提供灵感。
第三,仿生学研究还经常采用数学模型和计算机模拟来解释和预测生物系统的行为。
模型和模拟可以帮助科学家更好地理解生物系统的复杂性以及它们的内在原理。
仿生学的应用范围非常广泛。
它在材料科学、工程设计、机器人技术、医学、环境保护等领域都有重要应用。
在材料科学中,仿生学的原理被应用于设计新材料,通过模仿生物体特殊的结构和性能,开发出具有更好性能的材料,例如自愈合塑料和超弹性金属。
常见仿生学例子100个
常见仿生学例子100个常见的仿生学例子有很多,包括但不限于:1. 鸟类的飞行机制启发了飞机的设计。
2. 鲨鱼的皮肤纹理启发了防水材料的设计。
3. 蜻蜓的翅膀结构启发了风力发电机的设计。
4. 蝴蝶的色彩启发了光学材料的设计。
5. 蚂蚁的协作行为启发了无人机的协同工作系统。
6. 海星的吸盘启发了工业机器人的设计。
7. 蝙蝠的超声波导航启发了声纳技术的发展。
8. 蝴蝶的触角启发了化学传感器的设计。
9. 蚂蚁的蚁群智能启发了分布式计算系统的设计。
10. 象鼻的灵活性启发了机器人的抓取技术。
11. 蝙蝠的独特听觉启发了声音定位技术的发展。
12. 蜘蛛的网结构启发了轻质高强度材料的设计。
13. 蝴蝶的迁徙行为启发了无线传感器网络的设计。
14. 蚂蚁的寻路能力启发了优化算法的设计。
15. 鲸鱼的流线型身体形状启发了船舶设计。
16. 蝴蝶的群体行为启发了群体智能算法的发展。
17. 蚂蚁的自组织能力启发了自组织网络的设计。
18. 鸟类的骨骼结构启发了轻质材料的设计。
19. 海豚的超声波通信启发了水下通信技术的发展。
20. 蚂蚁的社会组织启发了分布式系统的设计。
21. 蜘蛛的丝绸启发了高强度纤维材料的设计。
22. 蝴蝶的翅膀纹理启发了光学材料的设计。
23. 蜻蜓的飞行姿态启发了无人机的设计。
24. 蜘蛛的捕食方式启发了捕食性机器人的设计。
25. 蚂蚁的信息传递方式启发了分布式传感网络的设计。
26. 蝴蝶的飞行路径规划启发了无人机的路径规划算法。
27. 蚂蚁的蚁群优化启发了优化算法的设计。
28. 蜘蛛的蜘蛛网结构启发了建筑结构的设计。
29. 蝴蝶的色彩变化启发了光学材料的设计。
30. 蚂蚁的蚁群搜索启发了搜索算法的设计。
31. 蜘蛛的丝绸纤维启发了高强度纤维材料的设计。
32. 蝴蝶的飞行动力学启发了飞行器的设计。
33. 蚂蚁的信息素通信启发了分布式通信系统的设计。
34. 蜘蛛的自修复能力启发了材料自修复技术的发展。
35. 蝴蝶的迁徙行为启发了路径规划算法的设计。
仿生学的例子25篇
仿生学的例子25篇《仿生学的例子》仿生学的例子(1):蝙蝠与雷达蝙蝠会释放出一种超声波,这种声波遇见物体时就会反弹回来,而人类听不见。
雷达就是根据蝙蝠的这种特性发明出来的。
在各种地方都会用到雷达,例如:飞机、航空等。
仿生学的例子(2):苍蝇与小型气体分析仪令人厌恶的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
苍蝇是声名狼藉的逐臭之夫,凡是腥臭污秽的地方,都有它们的踪迹。
苍蝇的嗅觉个性灵敏,远在几千米外的气味也能嗅到。
但是苍蝇并没有鼻子,它靠什么来充当嗅觉的呢原先,苍蝇的鼻子嗅觉感受器分布在头部的一对触角上。
每个鼻子只有一个鼻孔与外界相通,内含上百个嗅觉神经细胞。
若有气味进入鼻孔,这些神经立即把气味刺激转变成神经电脉冲,送往大脑。
大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质。
因此,苍蝇的触角像是一台灵敏的气体分析仪。
仿生学家由此得到启发,根据苍蝇嗅觉器的布局和功能,仿制成一种非常奇特的小型气体分析仪。
这种仪器的探头不是金属,而是活的苍蝇。
就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发觉气味物质的信号,便能发出警报。
这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的身分。
这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体。
利用这种原理,还可用来改善计算机的输入装置和有关气体色层分析仪的结构原理中。
仿生学的例子(3):鲸的前鳍--神奇能量的秘密!10项鲜为人知的仿生学案例-博闻网明白就好-博闻网---XXX探究博客座头鲸前侧有垒球般大崛起的前鳍,能够划过水面,让它悠游在海洋里。
但根据流动力学原理,这崛起就应会妨碍前鳍的运动。
根据他的研究,XXX为风扇设计具突出边缘的叶片,叶片划过空气的效率比一般标准的风扇高百分20.他成立一家叫鲸鱼能量的公司来生产他的产品,很快地会将这项节能的技术授权给世界各地的公司工厂。
仿生学的20个例子
仿生学的20个例子以下是仿生学的20个例子:1. 鲨鱼皮肤:模仿鲨鱼皮肤纹理的泳衣被称为“快皮”,它可以减少水流阻力,使游泳速度更快。
2. 飞鸟:飞机、直升机等飞行器的设计灵感来源于鸟类。
例如,莱特兄弟的飞机就是仿照鸟类的翅膀设计而成的。
3. 蝙蝠回声定位:模仿蝙蝠回声定位原理的雷达技术可以用于探测障碍物、跟踪目标等。
4. 蜻蜓翅膀:蜻蜓翅膀具有独特的结构,可以使其在飞行时自动调整角度和速度。
模仿蜻蜓翅膀的原理,可以设计出更轻、更高效的飞机和直升机。
5. 鱼类:鱼类的流线型身体可以使其在水中游得更快、更远。
模仿鱼类的身体结构,可以设计出更快的船只和潜水器。
6. 蜘蛛丝:蜘蛛丝具有很高的强度和弹性,可以用于制造高强度材料、生物材料等。
7. 蜜蜂舞蹈:蜜蜂通过特定的舞蹈来交流食物来源的位置信息。
人类通过模仿蜜蜂的舞蹈,可以更好地理解自然界的交流方式和生态系统的运作规律。
8. 蛇的热感应器官:模仿蛇的热感应器官,可以设计出用于寻找目标的红外线传感器。
9. 壁虎足部:壁虎足部具有粘附力强的特点,可以使其在垂直表面上攀爬。
通过模仿壁虎足部的结构和功能,可以制造出更可靠的粘附材料和表面材料。
10. 象鼻:大象的鼻子具有灵活、强壮的特点,可以用于挖掘、吸水等。
通过模仿象鼻的结构和功能,可以设计出更加实用的机械臂和工具手。
11. 鳄鱼夹子:鳄鱼的夹子具有强力的夹持力和自锁功能,可以用于夹持、固定等应用场景。
通过模仿鳄鱼夹子的结构和功能,可以制造出更加可靠的夹具和工具。
12. 鹿角:鹿角具有独特的结构和强度,可以用于防御和攻击。
通过模仿鹿角的结构和功能,可以设计出更加实用的材料和结构。
13. 蝴蝶翅膀:蝴蝶翅膀具有绚丽多彩的色彩和独特的结构,可以用于制造美丽的装饰品和艺术品。
通过模仿蝴蝶翅膀的色彩和结构,可以制造出更加美观的材料和表面处理技术。
14. 鼹鼠爪子:鼹鼠的爪子具有强大的挖掘能力,可以用于挖掘隧道和寻找食物。
什么是仿生学
什么是仿生学仿生学一词是1960年由美国斯蒂尔根据拉丁文“bios”(生命方式的意思)和字尾“nlc”(“具有……的性质”的意思)构成的。
他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”。
尽管人类在文明进化中不断从生物界受到新的启示,但仿生学的诞生,一般以1960年全美第一届仿生学讨论会的召开为标志。
仿生学的研究范围主要包括:力学仿生、分子仿生、能量仿生、信息与控制仿生等。
力学仿生,是研究并模仿生物体大体结构与精细结构的静力学性质,以及生物体各组成部分在体内相对运动和生物体在环境中运动的动力学性质。
例如,建筑上模仿贝壳修造的大跨度薄壳建筑,模仿股骨结构建造的立柱,既消除应力特别集中的区域,又可用最少的建材承受最大的载荷。
军事上模仿海豚皮肤的沟槽结构,把人工海豚皮包敷在船舰外壳上,可减少航行揣流,提高航速;分子仿生,是研究与模拟生物体中酶的催化作用、生物膜的选择性、通透性、生物大分子或其类似物的分析和合成等。
例如,在搞清森林害虫舞毒蛾性引诱激素的化学结构后,合成了一种类似有机化合物,在田间捕虫笼中用千万分之一微克,便可诱杀雄虫;能量仿生,是研究与模仿生物电器官生物发光、肌肉直接把化学能转换成机械能等生物体中的能量转换过程;信息与控制仿生,是研究与模拟感觉器官、神经元与神经网络、以及高级中枢的智能活动等方面生物体中的信息处理过程。
例如根据象鼻虫视动反应制成的“自相关测速仪”可测定飞机着陆速度。
根据鲎复眼视网膜侧抑制网络的工作原理,研制成功可增强图像轮廓、提高反差、从而有助于模糊目标检测的—些装置。
已建立的神经元模型达100种以上,并在此基础上构造出新型计算机。
模仿人类学习过程,制造出一种称为“感知机”的机器,它可以通过训练,改变元件之间联系的权重来进行学习,从而能实现模式识别。
此外,它还研究与模拟体内稳态,运动控制、动物的定向与导航等生物系统中的控制机制,以及人-机系统的仿生学方面。
什么是仿生学
什么是仿生学
仿生学(Bionics)是一门研究生物体结构、功能和生理过程,以及将从生物体中获得的原理应用到技术和工程领域的学科。
仿生学的目标是通过模仿自然界的设计和工作原理,创造出更有效、更智能、更适应的技术和系统。
仿生学的主要原则包括:
1. 生物体结构和功能的理解:仿生学关注于深入研究各种生物体的结构和功能,了解它们是如何适应环境、执行任务和解决问题的。
2. 生物体的适应性:仿生学强调生物体对环境的适应性和生存成功的原因。
这包括在不同环境中生存、繁殖和适应的机制。
3. 生物体的生物学原理:仿生学试图理解并应用生物学原理,如进化、自组织、能量转换等,以解决工程和技术上的问题。
4. 应用于技术和工程:仿生学将从生物体中获得的原理应用于技术和工程领域,创造出新型材料、先进传感器、智能机器人等。
仿生学的应用领域包括但不限于:
1. 仿生材料:制造具有类似生物体结构和性质的材料,如仿生纤维、仿生液体等。
2. 仿生机器人:设计和构建模仿生物体运动和行为的机器人,以改善在复杂环境中的操作和导航。
3. 仿生传感器:开发仿生传感器来模拟生物体的感知机制,用于检测环境中的信息。
4. 仿生计算:利用生物体的信息处理方式,设计新型计算方法和算法,如神经网络和进化算法。
5. 仿生医学:利用仿生学原理来设计医学设备、人工器官和生物医学材料。
6. 仿生建筑:设计建筑物和结构,模仿自然界的优化结构,以提高能效和可持续性。
仿生学的发展促使了生物学、工程学和计算机科学等多个领域之间的合作,为技术创新提供了新的思路和方法。
仿生学及其应用
仿生学及其应用【引言】何为仿生学?它的应用范围有哪些呢?在本篇文章中,我们将对仿生学的定义、原理、应用进行探讨。
仿生学是一门纵横交错的学科,拥有许多令人惊叹的应用,涉及到医学、机器人技术、建筑设计等多个领域。
由于其广泛的应用,仿生学的研究也在不断发展和壮大。
【什么是仿生学?】仿生学源于生物学、物理学、化学、工程学等多个学科,是模拟自然界生物机理和生物结构,研制出新型产品和技术的学科。
它通过研究生物发展进化的原理,从而模仿人体或者其他生物的构造、生理特性、生态系统、生物行为等来开发新技术,不同于传统的机械式创新,仿自然是仿生学的理念核心。
【仿生学的应用】1. 医学领域仿生学在医学领域的应用非常广泛。
例如,借助仿生学的原理,世界许多国家在研制仿生心肺机器人、仿生手术器械和仿生义肢等等。
仿生心肺机器人可以替代医生进行心肺复苏,仿生手术器械可以完成一些难度较高的微创手术,仿生义肢可以很好地替代肢体残缺的人们。
2. 机器人技术仿生学在机器人技术中也发挥着极其重要的作用。
钱学森院士曾经提醒我们,“机器人模仿生物构造和行为将是未来机器人的研究方向。
” 比如,研制仿生机器人在复杂地形下行进,仿生智能机器人在民用和工业领域中的应用等,都是应用仿生学的原理开发出的新技术。
3. 建筑设计仿生学在建筑设计领域中的应用也非常广泛。
比如,通过仿生原理提高建筑物的耐力、降低建筑物的噪音等。
蚂蚁窝源于蚂蚁的生活方式,通过对蚂蚁的行为进行模仿,开发了蚂蚁窝无人系统模拟方案,来简化采矿斗进入矿井的过程。
4. 纺织和材料科学听说过莲花效应吗?仿生科学家通过研究莲花叶片的结构和翡翠的光泽,开发了一种水汽屏障材料和一种新型的光电探测器。
这些材料在亚洲国家的农业、漆器、纸和医疗等有广阔的用途。
【总结】总之,仿生学是将欣赏自然的美与现实没落的技术相结合,将人技技并感的情感和机器的智慧相结合。
仿生学不仅是一门学科,更是人类与自然本真的交互与融合,它的应用将深深地影响我们的生活,成为人类社会进步的不朽之臣。
什么是仿生学,它对我们的科学和技术有什么影响?
什么是仿生学,它对我们的科学和技术有什么影响?一、什么是仿生学?
仿生学是从生物体本身得到启示,研究自然生物的结构、功能和行为,以帮助解决人类面临的问题,同时提高技术和工程的应用水平。
它涉
及诸多领域,如生物学、物理学、机械学、电子学等,最终目的是创
造出更加高效、环保和经济的产品和技术。
二、仿生学对科学家和技术人员有什么影响?
1. 加速技术应用的进程
仿生学研究可以为科学家和技术人员提供启示和帮助,丰富知识储备,加速创新,从而加速技术应用的进程。
2.创造具有更好性能的产品
仿生学研究可以帮助科学家和技术人员了解生物体的物理结构、材料
和构造等,进而改进设计,创造具有更好性能的产品。
3. 实现更多环保和可持续发展的措施
仿生学研究也可以帮助科学家和技术人员了解各种生物体之间的相互
作用和协同效应,从而实现更多的环保和可持续发展的措施。
三、仿生学在科学和技术领域的应用
1.仿生机器人
仿生机器人是仿生学研究的重要领域,它的目的是创造出具有与生物体相似的功能和行为的机器人,如医疗机器人、救援机器人、军用机器人等等。
2.仿生材料
仿生材料是仿生学研究的另一重要领域,它的目的是通过了解生物体的物质结构和功能,创造出具备生物体材料特性的新型材料,如人造绷带、高强度纤维等。
3.仿生设计
仿生设计是将生物体的自然结构、功能和行为转化为设计模式的具体过程,它涉及到物理学、机械学、建筑学等,如高效节能建筑、无人车等。
总之,仿生学对于科学和技术的发展有着巨大的提升作用,它激发创新灵感,提高效率和质量,创造出更多的环保和可持续发展措施,为我们的未来提供更好的保障。
仿生学
• 早在40年代,人们根据对萤 火虫的研究,创造了日光灯, 近年来,科学家先是从萤火 虫的发光器中分离出了纯荧 光素,后来又分离出了荧光 酶,接着,又用化学方法人 工合成了荧光素。由荧光素、 荧光酶、ATP和水混合而成 的生物光源,可在充满爆炸 性瓦斯的矿井中当闪光灯。 由于这种光没有电源,不会 产生磁场,因而可以在生物 光源的照明下,做清除磁性 水雷等工作。
• 苍蝇,是细菌的传播者, 谁都讨厌它。可是苍蝇的 楫翅(又叫平衡棒)是 “天然导航仪”,人们模 仿它制成了“振动陀螺 仪”。这种仪器目前已经 应用在火箭和高速飞机上, 实现了自动驾驶。
水母的顺风耳,仿照水 母耳朵的结构和功能, 设计了水母耳风暴预测 仪,能提前19小时对风 暴作出预报,对航海和 渔业的安全都有重要意 义。
一天,我走在公园里。忽然,我的衣角碰到了一株含羞草; 他一感觉到有东西触碰了他,它就立即把它的叶子卷起来。 就在这时,我的灵感一瞬间激发了:我想发明一种防盗 衣——含羞草防盗衣。这一种衣服有一个特点,名副其实, 就是防盗。它是怎么防盗的呢?就让我这个创造者告诉你 们答案吧:这一种衣服的触觉很灵敏,当这种衣服感受到 一种:“未受登记”的指纹在触摸它,衣服就会将第一层, 也就是表面“钻”到衣服的最底层,露出第二层。第二层 上满是一种拥有很强粘力的液体;这样小偷的手就会被黏 在衣服上,这样,小偷就无法逃跑,只好跟着衣服的主人 去公安局自首了。
青 蛙 电 子 蛙 眼
苍 蝇 平 衡 棒
—— 水 母 “ 顺 风 耳 ” ——
—— 萤 火 虫 日 光 灯 ——
人们根据蛙眼的视觉原理,已研制 成功一种电子蛙眼。这种电子蛙眼 能像真的蛙眼那样,准确无误地识 别出特定形状的物体。把电子蛙眼 装入雷达系统后,雷达抗干扰能力 大大提高。这种雷达系统能快速而 准确地识别出特定形状的飞机、舰 船和导弹等。特别是能够区别真假 导弹,防止以假乱真。 电子蛙眼 还广泛应用在机场及交通要道上。
仿生学
仿生学仿生学(Bionics),是模仿生物的特殊本领的一门科学。
仿生学籍了解生物的结构和功能原理,来研制新的机械和新技术,或解决机械技术的难题。
1960年由美国的J.E.Steele首先提出。
仿生学这个名词来源于希腊文“Bio”,意思是“生命”,字尾“nic”有“具有……的性质”的意思。
他认为“仿生学是研究以模仿生物系统的方式、或是以具有生物系统特征的方式、或是以类似于生物系统方式工作的系统的科学”。
大约从1960年才开始使用。
生物具有的功能迄今比任何人工制造的机械都优越得多,仿生学就是要在工程上实现并有效地应用生物功能的一门学科。
例如关于信息接受(感觉功能)、信息传递(神经功能)、自动控制系统等,这种生物体的结构与功能在机械设计方面给了很大启发。
可举出的仿生学例子,如将海豚的体形或皮肤结构(游泳时能使身体表面不产生紊流)应用到潜艇设计原理上。
仿生学也被认为是与控制论有密切关系的一门学科,而控制论主要是将生命现象和机械原理加以比较,进行研究和解释的一门学科。
仿生学的光荣使命就是为人类提供最可靠、最灵活、最高效、最经济的接近于生物系统的技术系统,它显示出无穷的生命力,它的发展和成就将为促进世界整体科学技术的发展做出巨大的贡献,为人类造福。
鱼儿在水中有自由来去的本领,人们就模仿鱼类的形体造船,以木桨仿鳍。
相传早在大禹时期,我国古代劳动人民观察鱼在水中用尾巴的摇摆而游动、转弯,他们就在船尾上架置木桨。
通过反复的观察、模仿和实践,逐渐改成橹和舵,增加了船的动力,掌握了使船转弯的手段。
这样,即使在波涛滚滚的江河中,人们也能让船只航行自如。
苍蝇与振动陀螺仪。
苍蝇为人类做出了的伟大的贡献。
令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了。
仿生学家由此得到启发,根据苍蝇嗅觉器官的结构和功能,仿制成一种十分奇特的小型气体分析仪。
这种仪器的“探头”不是金属,而是活的苍蝇。
就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报。
仿生学-生命科学
控制仿生
.蛇的红外探测 .蝙蝠与超声波 .蛾的反雷达技术 .动物的天然导航
控制仿生
蛇的红外探测
蛇
蛇通过感受器 探测到热源
热血动物身体 向外散热
田鼠
控制仿生
蛇的红外探测
颊窝
颊窝是一个红外感受器,
对周围温度变化极为敏 感,能感受0.001℃的温 度变化。这类蛇能在夜 间准确判断周围恒温动 物的位置
神经纤维 气囊
振动器 鼓膜器
听觉 细胞
感受器
鼓膜
胸神经节
非听觉 角质皱折 细胞
控制仿生
动物的天然导航
千里迁徙
万里洄游
控制仿生
动物的天然导航
一些动物利用日月星辰导 航,也有些动物利用海流、 海水成分、地磁场、重力 场等进行导航,为研制通 讯设备和新型导航仪器提 供启迪
控制仿生 动物的天然导航
太阳原始的位置
前言
一、仿生学简介
仿生学之起源
中国古汉文中的仿生思想
前言
生活中的仿生学
凤蓬草 鱼尾 人眼晶状体 生物电 鸟 茅草缺口
轮子 船橹 透镜 电池 飞机 锯子
前言
仿生学的概念
仿生学(Bionics)
模仿生物系统的原理以建造技术系 统,或者使人造技术系统具有生物系统 特征或类似特征的科学
前言
二.仿生学研究
力学仿生
生物与造船
体形的模仿
模仿鳕鱼、鲇鱼外形建造的“复仇号”帆船
力学仿生
生物与造船
体形的模仿
力学仿生
生物与造船
体形的模仿
俄罗斯海军新型核潜艇
力学仿生
生物与造船
结构的模仿
模仿鲸的胸鳍给船装上了船鳍
仿生学
嗅敏检测仪
嗅敏电阻是一类以SnO2为主体 的金属半导体,它是一种表面
效应很强的材料。
萤火虫与人工冷光
萤火虫发光过程中几乎不产生 热,发出的光是“冷光”,它 几乎能将化学能百分之百地转 变为可见光,而一只普通白炽 灯泡会把98%的能源变成热量 浪费掉。
通过对萤火虫发光器的研究, 分离出了荧光素和荧光素酶, 弄清了萤火虫发光的奥秘;发 明了既省电又明亮的日光灯和 冷光源,广泛地应用于怕热、 怕磁等工农业生产上。
壁虎开颅后,在大脑内相应的
脑区、位点植入电极,待伤口
愈合后,就可以对其大脑发出
南京航让其按照研究人员的指令运动。
感觉仿生
水母耳与风暴预测仪
“耳”(细柄上的小球) 中有小小的听石,上面 布满神经感受器,能听 到风暴产生时发出的次 声波(由空气和波浪摩 擦而产生,频率为8赫 兹-13赫兹,传播比风 暴、波浪的速度快)。
“水母耳”风暴预测仪 可提前15小时左右预报风暴
感觉仿生
蝙蝠与超声波
蝙蝠的捕食
蝙蝠的声纳信息处理
仿生学
植物 鱼类 鸟类 哺乳动物
二 仿生学的研究方法
生物体 生物模型
数学模型 技术模型
技术装置
三 仿生学在工程技术中的应用
感觉仿生 结构仿生 拟态仿生 力学仿生 化学仿生 整体仿生 仿生材料
感觉仿生
探索人和动物感觉系统奥妙的仿生学研究工作, 称为感觉仿生。
视觉仿生 听觉仿生 嗅觉仿生 触觉仿生 味觉仿生 感觉仿生已经成为目前仿生学的发展重点。
结构仿生是通过研究自然界植物和动物系统 的优异结构和功能特征,并有选择性的在设 计过程中借鉴和应用这些结构原理和特征。
力学仿生是研究并模仿生物体大体结构与精 细结构的静力学性质,以及生物体各组成部 分在体内相对运动和生物体在环境中运动的 动力学性质。
仿生学
——先进制造技术
仿生学概述
(一)背景
自古以来,自然界就是人类各种技术思想、工程原理 及重大发明的源泉。
随着生产的需要和科学技术的发展,从20世纪50年 代以来,人们已经认识到生物系统是开辟新技术的主要 途径之一,生物学家和工程师们积极合作,开始将从生 物界获得的知识用来改善旧的或创造新的工程技术设备。 生物学开始跨入各行各业技术革新和技术革命的行列, 而且首先在自动控制、航空、航海等军事部门取得了成 功。于是生物学和工程技术学科结合在一起,互相渗透 孕育出一门新生的科学——仿生学。
荷叶效应的应用
模仿莲叶自洁的功能,可以应用于表面纳米结构的技 术,可开发出自洁、抗污的纳米涂料。不会脏的地板、墙 壁、没有灰尘阻挠的无线电用品以及不会被冰雪冻结的电 缆,将会不断的出现,人类的生活也会更加进步。
仿生机器壁虎
2008年11月15日我国 研制成功仿生机器人壁虎 “神行者”。
这种机器人壁虎,能在 墙面、地下和墙缝中垂直 上下迅速攀爬,或者在天 花板下倒挂行走,对光滑的 玻璃、粗糙或者粘有粉尘 的墙面以及各种金属材料 表面都能够适应,能够自 动辨识障碍物并规避绕行 ,动作灵活逼真。
(二)仿生学的概念
1、仿生学思想
生物经过亿万年的进化,其结构和功能 不仅适应了自然,而且其程度接近完善,有 些远远超过人们想象,人们试图模仿动物和 植物的结构、形态、功能和行为或者从中得 到启发来解决所面临的技术问题,这就是仿 生学的思想。
2、仿生学定义
1960年9月于美国召开的第一次仿生学讨论会上, 有J.Steele正式提出仿生学(Bionics),它被定义为: 仿生学是模仿生物系统的原理来建造技术系统,或者是 人造技术系统具有类似于生物系统特征的科学。
仿生学应用于生活实际的例子
仿生学应用于生活实际的例子
1. 你看那飞机,不就是模仿鸟儿的形状设计出来的嘛!我们从鸟儿身上学到了飞行的奥秘呀。
2. 哇塞,潜水艇也是仿生学的厉害应用呢!就像鱼儿能在水中自由穿梭,潜水艇不也能在深海游弋嘛!
3. 嘿,你想想看,荷叶表面的不沾水特性,让我们发明出了超厉害的防水材质呀!这多神奇!
4. 雨伞的设计不也是仿生吗?不就跟蘑菇的形状很像嘛,能帮我们遮风挡雨呢!
5. 哎呀呀,那锯子的发明可是受到了茅草边缘的启发呢!你说是不是很有意思!
6. 还有还有,建筑师们仿照蜂巢的结构设计出了坚固又漂亮的建筑呢,这不是很了不起吗!
7. 雷达,知道吧?那可是仿照蝙蝠的超声定位系统来的呀!这仿生学真的好酷!
总之,仿生学在我们生活中处处可见,给我们带来了太多的便利和惊喜!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[据大众科学网站2011年9月15日报道]海洋研究、海中航行、海床测绘、目标追踪等行为均需要依赖声音来进行正确定位,声音在目前仍然是水下传输信息的最佳媒介。
受到逆戟鲸耳朵的启发,来自美国斯坦福大学的科学家Kilic正在研发一种独特的水下传声器,该传声器既能够听到最安静的声音,也能够听到最吵闹的声音,甚至可以在水下6英里、压力是水面1000倍的深度下工作。
一些能够在深海中游弋的鲸鱼,如逆戟鲸,能够改变自身内耳的压力从而和周围环境相适应,这种能力使逆戟鲸在水下听的更加真切。
科学家们想要研发的水下传声器能够实现同样的功能。
该水下传声器的传感器中有三层硅材料薄膜,每层薄膜的厚度都是人类发丝直径的百分之一,薄膜上有数千个微孔,水能够在这些微孔中通过。
随着传感器工作深度越深,流进薄膜内的水也越多,在平衡内外压力的同时也使传感器对于外界声音的探测更为敏感。
然而,在解决了一个问题的同时,一个新的问题接踵而至。
当接触到声波的时候,硅材料薄膜会产生十分微小的位移,尤其在深海的时候现象更为明显,这是由于水的不易压缩性造成的。
海洋中最安静的声音能使薄膜产生0.00001纳米的位移,这相当于原子直径的万分之一。
由于产生的位移过于微小,该研究方案似乎走进了死胡同。
然而有方法证明利用激光能够准确测量到薄膜产生的位移。
在科学家制造出的水下传声器样机中,一条可分支的光纤电缆被引入进来:其中一分支可以发射激光,另外一分支则是光学探测器。
激光对薄膜进行照射,薄膜将激光反射到光学探测器上,这就对声音实现了探测的目的(具体实现原理见上图)。
水下传声器能探测到160分贝以内的声音,这意味着从图书馆内的窃窃私语到60英尺外TNT炸药的隆隆爆破,这些声音利用水下传声器都可以完全无损的探测到。
在低频端,水下传声器能够探测到地壳运动的声音;而在高频端,它能够探测到水分子撞击传感器的声音。
仿生船舶魅力无限目前世界上最快的船艇其速度也赶不上大多鱼类的游速,鱼儿行动速度之所以快,原因是多种多样的。
鱼儿都有流线型的“身材”,皮肤表面非常光滑,这使得它们受到的摩擦阻力非常小。
所以现今生产的高速船大都具有流线型光滑的外表。
另外,海豚之所以游得快,还和其有特殊的皮肤结构有关。
物理学表明,水接触坚硬的东西,水流则会产生混乱现象,会增大水的阻力;相反,若水接触的是柔软且具有极微细不平的表面时,则会消除水流混乱现象,从而减少水的阻力。
海豚皮肤表面就比较柔软且具有弹性,人们模仿海豚的皮肤构造,用橡胶制成了人造海豚皮,装在潜水艇上,使湍流减少了50%,从而大大提高了潜艇的航行速度。
德国研究新型船舶仿生涂层出处:大公报编辑:国际船舶网发布时间:2010-5-7 08:32德国波恩大学近日发表公报说,德国科研人员发现了槐叶萍「超级疏水性」的奥秘。
如果给船体刷上具有类似疏水性的仿生涂层,可大大降低船只行进过程中与水的摩擦,从而节省燃油。
槐叶萍是一种浮水性水生植物。
这种植物极不易被水沾湿。
把它浸入水中,再取出,上面挂的水珠马上就会全部滴落。
更准确地说,它在水下根本就没有被真正浸湿。
在水下时其叶片表层会形成极薄的一层空气膜,从而避免叶片与水直接接触。
材料学家称其为「超级疏水性」。
波恩大学植物多样性研究所等机构的研究人员发现,槐叶萍的表面有许多丛生的放射状微茸毛,而这些茸毛的尖端十分亲水。
入水后,这种植物能够将水分子锁定在茸毛尖端,令尖端到叶面的空气层得到有效保护。
研究人员认为,效仿槐叶萍表面结构制造新型涂层将会有广阔的应用前景。
以船运为例,目前船只的驱动能有一半以上被船体与水的摩擦消耗掉了。
如果能通过特殊涂层在船体表面形成空气膜,船与水摩擦而造成能耗则能降低10%,因而可以大量节省燃油。
此外,这一技术还能用于制造速干浴衣等方面。
这一成果发表于最新一期《先进材料》上。
据资料介绍,槐叶苹科(Salvinia natans)是一种多年生浮水性的水生蕨类草本植物,喜生长在温暖、无污染的静水域上。
根茎细长,其每节上长出3片叶子,轮生,2枚浮水叶,排成二列类似槐叶而得名。
别名:槐叶苹、蜈蚣萍、槐叶苹、山椒藻。
摘要近年来仿生技术在水下机器人上的应用已经成为水下机器人的重要研究方向之一。
本文介绍了哈尔滨工程大学研制的“仿生-Ⅰ”号水下机器人。
该机器人以蓝鳍金枪鱼为模本,长2.4m,前体固定,后体(约1/3体长)为具有3个节点的摆动装置,采用月牙形尾鳍。
水动力计算和水池实验表明,仿鱼推进和操纵方式比传统的桨舵具有高效性和高机动性。
0、引言21世纪是海洋开发的世纪,水下机器人在海洋环境研究、海洋资源探测和开发等民用领域和海洋军事方面具有广阔的应用前景和巨大的潜在价值,吸引了人们更多的注意力。
鱼类的游动方式具有高速、高效、灵活、低噪等特点[1,2],其游动和控制姿态的能力是任何目前装备传统的操纵与推进系统的潜器所无法比拟的,将其应用于水下机器人,将为水下机器人的研究和发展提供新的起点和更为广阔的空间。
近年来仿生水下机器人已经成为水下机器人的重要研究方向之一。
上世纪九十年代以来,随着仿生学、流体力学、机器人学的进步,计算机、传感器和智能控制技术的快速发展,以及新型材料的不断涌现,使水下机器人像鱼类那样在水中遨游已经不再是梦想。
美国MIT的CharlieⅠ、Robo TunalⅡ、Robot Pike[3];美国Draper实验室的VCUUV[4];日本国家海洋研究中心的UPF-2001、PF-700、PF-550[5];日本东京工业大学的机器海豚;日本东海大学的仿黑鲈机器鱼;中国北京航空航天大学的仿生机器鳗鱼、小型实验机器鱼和SPC;中科院自动化研究所的机器鱼系列“游龙”F1~F5等等,都是仿生技术在水下机器人上较为成功的应用。
另外,日本,加拿大等国的一些研究机构也在研究仿生水下机器人。
哈尔滨工程大学从2000年开始着手进行仿生水下机器人的研究,经过3年多的努力,先后完成了对仿金枪鱼尾推进系统的水动力性能的理论研究和分析、初步建立了机器人的仿真模型,并于2002年完成了以蓝鳍金枪鱼为模型的仿生水下机器人原理样机的设计、加工、装配和调试。
经过循环水槽和水池实验,掌握了其综合性能参数。
该机器人将作为微小型水下无人探测器基础技术研究的实验平台,在配以智能控制、通讯、导航、目标探测与识别、智能规划等相关技术后,将能完成传统的水下机器人难以承担的各种复杂任务。
1、仿生水下机器人结构仿生水下机器人原理样机“仿生-Ⅰ”号,以蓝鳍金枪鱼为蓝本,长2.4米,配有月牙形尾鳍和一对联动胸鳍,其外形如图1所示。
壳体用玻璃钢制成,分为三部分,头部和尾部为非水密部分,中体则为耐压舱段。
在机器人头部可以加装光纤陀螺和深度计,以实现闭环控制。
中部的耐压舱提供了70kg的储备浮力,可装载电池和其他设备。
尾部为具有三个节点的摆动机构,约占总长的1/3,其中前两个节点通过齿轮实现联动,控制尾柄的摆动,并通过包裹在外面的蒙皮形成整个鱼体的流线型。
最后一个结点则用来控制尾鳍的运动。
这种结构与金枪鱼的游动方式相适应,研究表明,金枪鱼在以常态高速游动时,躯体的前三分之二几乎没有摆动和变形,后三分之一则带动尾鳍以常频摆动,尾鳍接近于刚性,前进中躯体的横移极小[6]。
机器人采用月牙形尾鳍,尾鳍和胸鳍均采用NACA0018翼型。
躯体中部的背鳍和胸鳍可起到减摇作用。
仿生水下机器人内部结构如图2所示,内置三台伺服电机。
其中,两台驱动摆尾推进机构,其一控制尾柄的摆幅、频率,其二控制尾鳍的摆幅、频率,以及尾鳍和尾柄间的相位差,可通过调整电机的转速和转向,实现各种不同的配合,使尾部像鱼类那样摆动。
同时,如果配合光纤陀螺的反馈信号,就可达到直航和回转的目的。
第三台伺服电机用以驱动胸鳍,通过给胸鳍不同的攻角,使鱼体上浮或下潜。
配合深度计,可控制机器人的深度。
通过这种配置,就可实现机器人在一定深度以一定航速直航或回转。
该机器人还具有一定的内部空间和储备浮力,可用于安装各种水下探测设备。
当设备较多时,可以加长中体以增加容积和浮力。
为了增加仿生水下机器人长时间航行的稳定性和可靠性,经过一段时间的实验,在参考原设计的基础上,并结合对实验数据的分析,对机器人内部传动机构进行了改造,用蜗轮蜗杆传动代替了原来的光杠丝杠传动,改造后的机器人如图3所示。
采用一台电机驱动尾柄,而尾鳍则通过连接它和尾柄的弹簧片以一定的相位差随尾柄摆动。
改造后机器人体内的有效空间进一步增大。
为了仿生水下机器人体内传动装置安装和调试的方便,在设计阶段对躯体中部耐压舱段采用了向上揭盖的方式,这给机器人的水密带来了隐患。
通过在壳体上下接触面增加密封胶条,用紧定螺钉压紧,并在外部填充防水胶的办法,较好地解决了这个问题。
而尾部的贯穿件处采用聚四氟乙烯作为填充物做滑动密封,胸鳍则采用较成熟的动密封装置。
2、仿生水下机器人实验由于仿生水下机器人尚处于实验阶段,故用电缆提供外接电源,并通过信号缆进行数据交换。
为适应将来海上调试的需要,电缆和信号缆长为100米,采用485协议进行通讯,发送控制信号,接收反馈信息。
初步的实验以掌握机器人的性能为主要目标,未安装光纤陀螺、深度计等传感器,使用手操的方式。
首先,在循环水槽(7×1.7×1.5m)中进行了仿生水下机器人的配重、调平和水密测试。
接着,为考察整个系统性能,在水槽内进行了长时间的运行,机械传动部分和电子设备均状态良好。
然后,通过改变尾鳍和尾柄的摆幅、频率以及它们间的相位差,在系泊状态下粗略地测量了不同运动参数下尾鳍所产生的推力。
最后,在各种流速下对不同配合进行了顶流实验,以掌握较好的配合来指导水池实验。
水槽实验较好的验证了仿鱼尾推进系统的有效性。
由于机器人相对尺寸较大,在循环水槽中实验必然伴随着严重的阻塞效应,故只能定性的了解其性能。
在循环水槽实验的基础上,在船模试验水池(108×7×4m)中对仿生水下机器人进行了直航实验。
直航实验时,为减轻长缆对游动的影响,将缆固定在车架上,车架随机器人同步运动。
在不同的运动参数下,测量了其航速,结果如图4所示。
实验中,仿生水下机器人在尾鳍摆动频率为1.33赫兹时航速已达1.2米/秒。
如果进一步提高尾鳍摆动频率,仍有较大的提速空间。
实验中,配重浮球所产生的阻力,以及电缆和信号缆所产生的拉力对机器人的航速都有较大影响。
3、尾鳍流体动力性能研究对于鱼类尾鳍流体动力性能的研究,早在上世纪七十年代就开始了。
几十年来,研究者采用了多种方法进行估算,取得了很多成果[7~8],加深了人类对鱼尾推进机理的理解。
在仿生水下机器人建造之前,哈尔滨工程大学就对仿鱼尾推进系统的流体动力性能进行了理论研究[9]。
计算将金枪鱼尾的运动简化为一边摆动一边以匀速前进的月牙型尾翼,见图5,建立了数学模型,利用边界元方法计算分析了其水动力性能,见图6,7。