谈谈几种典型地抽样方法(案例)

合集下载

抽样方案设计的经典案例有哪些

抽样方案设计的经典案例有哪些

抽样方案设计的经典案例有哪些抽样方案设计的经典案例有哪些在市场研究领域中,抽样方案设计是非常重要的一项工作。

通过合理的抽样方案设计,可以确保市场调查的结果具有代表性和可靠性。

在实际工作中,有一些经典的抽样方案设计案例被广泛应用。

本文将从六个方面展开叙述,分别介绍这些经典案例。

1. 简单随机抽样简单随机抽样是指每个样本有相等的被选中的机会。

这种抽样方法简单直接,适用于总体特征均匀的情况。

例如,在研究某一地区居民消费习惯时,可以采用简单随机抽样的方式,从总体中随机选取一定数量的样本进行调查。

2. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中独立地进行抽样。

这种抽样方法适用于总体具有明显分层特征的情况。

例如,在研究某一市场中不同年龄段消费者的购物习惯时,可以将总体分为不同年龄层次,然后从每个年龄层次中进行抽样。

3. 整群抽样整群抽样是指将总体划分为若干个互不相交的群体,然后从每个群体中选取全部样本。

这种抽样方法适用于总体的群体具有明显差异的情况。

例如,在研究某一地区不同职业群体的收入情况时,可以将总体划分为不同职业群体,然后从每个职业群体中选取全部样本进行调查。

4. 整体抽样整体抽样是指将总体的全部个体作为样本,进行全面调查。

这种抽样方法适用于总体规模较小或者调查成本相对较低的情况。

例如,在研究某一公司的员工满意度时,可以对所有员工进行调查。

5. 系统抽样系统抽样是指按照一定的规则从总体中选取样本。

这种抽样方法适用于样本的选择没有明确的规则,但又需要保证样本具有代表性的情况。

例如,在研究某一品牌产品的用户满意度时,可以从该品牌的销售记录中,按照一定的规则选取样本。

6. 效应抽样效应抽样是在抽样过程中考虑到不同因素对样本选择的影响,从而使样本更具代表性。

这种抽样方法适用于总体的不同因素之间存在相互影响的情况。

例如,在研究某一产品的市场潜力时,可以从不同地区、不同年龄段、不同收入水平的人群中选择样本,以确保调查结果更具代表性。

三种抽样方法范文

三种抽样方法范文

三种抽样方法范文在进行研究时,抽样是收集数据的重要方法之一、根据研究目的和时间成本,研究者可以选择不同的抽样方法。

下面将介绍三种常用的抽样方法:简单随机抽样、系统抽样和分层抽样。

简单随机抽样是最常用的一种抽样方法。

在简单随机抽样中,研究者从总体中随机选择一定数量的样本,以保证样本的代表性。

研究者首先需要明确总体的范围,然后利用随机数表或随机数生成器来进行随机抽样。

这种抽样方法的优点是简单易行,可以满足随机性的要求。

然而,由于完全依赖于随机性,有时候可能会导致样本的偏差或掉落。

系统抽样是一种比较简单且常用的抽样方法。

在系统抽样中,研究者根据其中一种规则从总体中选择样本。

例如,研究者可以根据总体中的编号,选择每隔k个单位的样本作为样本。

系统抽样可以减少随机抽样可能引入的偏差,同时也比较容易实施。

然而,如果总体中存在其中一种规律或周期性,选择的样本可能会失去随机性。

分层抽样是一种将总体划分为若干层次,并从每个层次中随机选择样本的抽样方法。

研究者可以根据总体的一些特征,如年龄、性别、教育程度等将总体进行分层。

在每个层次中进行简单随机抽样,以获取代表性的样本。

分层抽样可以保证样本的多样性,使研究结果更具有普适性。

然而,分层抽样需要对总体进行详细的分析和了解,且对样本规模和随机性的要求较高。

以上介绍的是三种常用的抽样方法,每种方法都有其特点和适用范围。

在选择抽样方法时,研究者需要根据研究目的、总体特征和时间成本等因素进行综合考虑。

在抽样过程中,研究者还应当注意样本的代表性和随机性,以提高研究结论的可靠性和有效性。

最后,无论采用哪种抽样方法,都需要在研究结果中对抽样方法和样本特征进行明确说明,以确保研究的可信度和可重复性。

常用的抽样方法范文

常用的抽样方法范文

常用的抽样方法范文1. 简单随机抽样(Simple Random Sampling)简单随机抽样是最基本、也是最常用的抽样方法。

在简单随机抽样中,每个个体有相等的概率被选入样本,抽样过程中所有个体都是相互独立的。

为了实施简单随机抽样,可以使用随机数表或随机数发生器来选择样本。

2. 系统抽样(Systematic Sampling)系统抽样是一种有规则的抽样方法,个体在总体中有固定的顺序,并以一个间隔来进行抽样。

例如,在总体中每隔k个个体选择一个样本,这个k即为系统抽样的抽样间隔。

系统抽样不需要随机数,适用于总体有明确次序的情况。

3. 分层抽样(Stratified Sampling)分层抽样是将总体根据其中一种特征或属性分成若干层次,从每层中抽取一定数量的个体作为样本,以保证样本的代表性和可靠性。

分层抽样可以使得样本更具代表性,减少抽样误差,广泛应用于统计调查和市场研究等领域。

4. 整群抽样(Cluster Sampling)整群抽样是将总体划分成若干互不相交的群体或群组,然后随机选取部分群组作为样本进行调查。

该方法主要适用于总体分布不均匀的情况,可以减少抽样的工作量。

5. 分段抽样(Sequential Sampling)分段抽样是一种动态抽样方法,在调查过程中逐步选取样本,每次抽样都会根据预先设定的规则加入新的样本,直到满足预定的样本容量。

分段抽样可以逐步接近总体的真实情况,并提高样本的效率。

6. 整体抽样(Quota Sampling)整体抽样是设置固定的配额来选择样本,使得样本能够代表总体的一些特征或属性。

这种抽样方法常用于市场调查,其中样本需要按照一些人口统计特征进行配额,如年龄、性别、职业等。

此外,还有一些特殊的抽样方法,如多阶段抽样、整齐抽样、模型抽样等,根据具体问题和研究目的选择合适的抽样方法是非常重要的。

合理的抽样方法可以保证样本的代表性和可靠性,从而为统计调查、研究分析等提供有力的支持。

典型的抽样方法

典型的抽样方法

典型的抽样方法1.简单随机抽样:简单随机抽样是指从总体中随机选择个体,使得每个个体被选中的概率相等。

这种抽样方法适用于总体较小、个体之间没有明显差异的情况。

案例:研究人员想要调查大学学生对食堂饭菜满意度的情况。

该大学共有3000名学生,研究人员使用随机数表,随机选取了200名学生进行调查。

研究人员向这200名学生发放问卷,记录他们对食堂饭菜的满意度。

2.系统抽样:系统抽样是指按照一些规则从总体中选择个体,例如每隔一定间隔选择一个个体。

这种抽样方法适用于总体无序排列的情况。

案例:研究人员想要调查小区居民对小区环境的满意度的情况。

该小区共有1000户居民,研究人员将居民按照住址顺序给予编码,然后以编码数为5的倍数进行系统抽样。

例如,从第5户居民开始,每隔5户选取一个居民进行调查,直到选取够样本量为止。

3.分层抽样:分层抽样是指将总体划分为不同层级,然后分别从每个层级中进行抽样。

这种抽样方法适用于总体有明显差异的情况,可为每个层级设置不同的样本量。

案例:研究人员想要调查市不同年龄段人们对健康锻炼的情况。

该市有四个区,每个区又分为青年人、中年人和老年人三个年龄段,研究人员按照这个划分将总体分为12个层级。

然后从每个层级中随机抽取一定数量的样本,如每个层级抽取20人,共计240人进行调查。

4.群组抽样:群组抽样是指将总体划分为若干个群组,然后随机选取部分群组进行抽样。

这种抽样方法适用于群组内个体相似且群组之间有差异的情况。

案例:研究人员想要调查地区学校的教育质量情况。

该地区有20所学校,研究人员使用随机数生成器随机选取了5所学校进行调查。

对于每所选中的学校,研究人员从中随机抽取一定数量的教师和学生,以了解他们对教育质量的看法。

以上是典型的抽样方法及其相应的案例。

在实际应用中,根据研究目的和研究对象的特点,研究人员可以选择最适合的抽样方法来提高研究的准确性和可信度。

谈谈几种典型的抽样方法

谈谈几种典型的抽样方法

谈谈几种典型的抽样方法抽样是一种统计学中常用的数据收集方法,通过在总体中选择一部分代表性的样本进行研究和分析,以得出总体的特征和规律。

下面将介绍几种典型的抽样方法。

1. 简单随机抽样(Simple Random Sampling)简单随机抽样是最基本、最常见的一种抽样方法。

其思想是从总体中随机选择n个个体作为样本,每个个体被选中的概率是相等且独立的。

简单随机抽样可以保证样本具有代表性,但在总体容量较大时,实施起来可能不太方便。

2. 系统抽样(Systematic Sampling)系统抽样是在总体中随机选择一个起始点,然后按照事先规定的间隔选择个体作为样本。

例如,如果总体容量为N,需要选择n个样本,那么每隔N/n个个体选择一个,即可得到n个样本。

系统抽样比简单随机抽样实施起来更方便,但需要保证总体中个体的排列顺序是随机的。

3. 分层抽样(Stratified Sampling)分层抽样是将总体划分为若干层,然后从每一层中分别随机选择样本。

分层抽样可以确保每一层都有代表性的样本,从而减小估计误差。

例如,对于一个城市人口总体,可以按照年龄、性别等因素进行分层抽样,从每一层中随机选择一定数量的样本。

4. 整群抽样(Cluster Sampling)整群抽样是将总体划分为若干个相互独立的群或区域,然后从其中随机选择若干个群作为样本,并对选择的群内的所有个体进行调查。

整群抽样适用于总体分布不均匀或者在随机单元内调查成本较低的情况。

例如,对于一个大学,可以将各个学院看作是群,然后从中随机选择若干个学院进行调查。

5. 效应抽样(Stratified Cluster Sampling)效应抽样是将分层抽样和整群抽样相结合的一种方法。

总体首先按照一些特征进行分层,然后从每一层中随机选择若干个群或区域,再在选择的群或区域中进行个体抽样。

效应抽样可以同时考虑个体和群体的特征,提高样本的代表性和效率。

以上是几种典型的抽样方法的简要介绍。

谈谈几种典型的抽样方法(案例)

谈谈几种典型的抽样方法(案例)

谈谈几种典型的抽样方法(案例)学院:经济学院班级: 08经41学号: 08084004姓名:毛雪晨日期: 2011年10月20日摘要:本文以抽样方法为中心,主要阐述几种常见的抽样方法,如简单随机抽样,分层抽样,整群抽样,系统抽样以及配额抽样,探讨了各种抽样方法在实际生活的应用以及各自的优缺点等。

关键词:抽样调查,应用,缺点。

导语:抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并概率估计原理,应用所的资料对总体的数量特征进行推断的一种调查方法。

例如,从某地区全部职工当中随机抽取部分职工,以家庭为单位按月调查取得有关收入、支出等方面的资料,并依据这些资料推断出全区职工的收支情况,这就是一种抽样调查。

从调查方法上来看,它是属于一种非全面调查。

但又与一般调查不同,它不只停留于搜集资料和整理资料,而且还要对资料进行分析,并据以推断总体的数量特征,从而提高统计的认识能力。

因此,抽样调查的理论和方法在统计中占有很重要的地位。

下面介绍一下常用的抽样方法:一. 简单随机抽样一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

直接抽选法例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。

抽签法又称“抓阄法”。

它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。

常用抽样方法范文

常用抽样方法范文

常用抽样方法范文
1.简单随机抽样
简单随机抽样是最基本的一种抽样方法,它是从总体中按照随机的原
则选择样本。

简单随机抽样的特点是每个样本都有相同的机会被选中,并
且每个样本之间是相互独立的。

2.系统抽样
3.分层抽样
分层抽样是根据总体的特征将总体划分为若干个层级,然后从每个层
级中按照其中一种抽样方法选择样本。

这种方法可以确保每个层级都有合
适的样本比例,从而更好地反映总体的特征。

4.整群抽样
整群抽样是将总体划分成若干个互不相交的群体,然后从其中一部分
群体中选择样本。

这种方法适用于总体内个体之间的相似性较高,群体内
个体之间的差异较小的情况。

5.效应抽样
效应抽样是一种根据研究目标选择合适的个体进行抽样的方法。

例如,在药物研究中,可根据药物的特性和研究对象的需求选择抽样方法,以确
保研究结果的有效性和可靠性。

除了以上常用的抽样方法,还有一些其他的抽样方法,如整理性抽样、初始抽样、逐步回归抽样等。

每种抽样方法都有其适用的场景和限制条件,研究人员需要根据具体情况选择合适的抽样方法。

总之,抽样方法的选择对研究结果的可靠性和推广性起着重要的作用。

研究人员需要根据研究目标、总体特征以及可行性等因素选择合适的抽样
方法,并结合抽样误差的估计和样本大小的确定,以保证研究结果的科学
性和准确性。

几种抽样方法范文

几种抽样方法范文

几种抽样方法范文抽样方法是指从总体中选取样本的方式和方法。

在统计学中,抽样方法对研究结果的可靠性和有效性有着重要的影响。

下面将介绍几种常见的抽样方法。

1.简单随机抽样:简单随机抽样是指每个个体被选入样本的概率是相等的。

在这种抽样方法中,每个个体都有同等的机会被选中。

简单随机抽样是最基本、最常用的抽样方法,其优点是简单易操作,适用于总体分布未知或均匀分布的情况。

2.系统抽样:系统抽样是从总体中按照一定的规则选取个体。

首先,将总体按照一定的顺序进行编号,然后通过设定一个随机起始点,按照固定的间隔抽取样本。

系统抽样适用于总体有一定的规律性分布时,其优点是相对简单且能保证样本的代表性。

3.分层抽样:分层抽样是将总体划分为若干个具有相似特征的层,然后从每一层中随机抽取样本。

这种抽样方法可以保证样本在不同层次上均匀分布,从而能更好地反映总体的特征。

分层抽样适用于总体的差异性较大,且不同层次具有代表性的情况。

4.整群抽样:整群抽样是将总体划分为几个互不相交的群体,然后随机选取若干个群体作为样本。

整群抽样可以减少抽样的工作量,但也可能导致样本不够随机。

这种抽样方法适用于总体可划分为群体并且群体内个体相对均匀的情况。

5.专家抽样:专家抽样是指通过专业人士的主观判断和评估来选取样本。

专家抽样适用于总体无法划分或者划分困难的情况,尤其是在研究异常或特殊事件时常常使用。

这种抽样方法的优点是能够专注于具体的问题,但也存在主观性和偏见问题。

以上是几种常见的抽样方法,它们的选择应根据具体研究目的和总体特征来确定。

无论哪种抽样方法,都需要保证样本具有一定的代表性,以确保研究结果的可靠性和有效性。

谈谈几种典型的抽样方法

谈谈几种典型的抽样方法

谈谈几种典型的抽样方法(案例)摘要:本文以抽样方法为中心,主要阐述几种常见的抽样方法,如简单随机抽样,分层抽样,整群抽样,系统抽样以及配额抽样,探讨了各种抽样方法在实际生活的应用以及各自的优缺点等。

关键词:抽样调查,应用,缺点。

导语:抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并概率估计原理,应用所的资料对总体的数量特征进行推断的一种调查方法。

例如,从某地区全部职工当中随机抽取部分职工,以家庭为单位按月调查取得有关收入、支出等方面的资料,并依据这些资料推断出全区职工的收支情况,这就是一种抽样调查。

从调查方法上来看,它是属于一种非全面调查。

但又与一般调查不同,它不只停留于搜集资料和整理资料,而且还要对资料进行分析,并据以推断总体的数量特征,从而提高统计的认识能力。

因此,抽样调查的理论和方法在统计中占有很重要的地位。

下面介绍一下常用的抽样方法:一. 简单随机抽样一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

直接抽选法例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。

抽签法又称“抓阄法”。

它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。

在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。

抽样方案有

抽样方案有

抽样方案有
在实施调查、研究或统计分析时,抽样方案是一个重要的工具,它可以帮助我们从总体中选取一部分样本,并基于这些样本进行分析和推断。

抽样方案的设计和执行对于研究结果的准确性和可靠性起着至关重要的作用。

下面将介绍一些常见的抽样方案。

一、简单随机抽样:简单随机抽样是最基本且常用的抽样方法之一。

在简单随机抽样中,每个个体有相等的机会被选为样本,抽样过程是完全随机的。

这种抽样方案能够有效地避免选择偏倚,使得样本能够代表总体。

二、系统抽样:系统抽样是按照一定的系统规则从总体中选取样本。

例如,我们可以每隔一定间隔选择一个个体作为样本。

系统抽样相对于简单随机抽样更加方便实施,但需要保证总体中个体的排列没有规律性。

三、分层抽样:分层抽样是将总体划分为若干个层次,然后从每个层次中独立地进行抽样。

这种抽样方案可以保证每个层次的代表性,并兼顾不同层次的特点。

分层抽样可以提高样本的有效性和精确性。

四、整群抽样:整群抽样是将总体划分为若干个群体,然后从每个群
体中选取样本。

整群抽样的优势在于可以减少抽样和调查的成本,但需要保证群体内的个体具有一定的相似性。

抽样方案的选择应该根据研究目的、调查对象和可行性等因素进行综合考虑。

同时,在执行抽样方案时,需要注意抽样误差的控制和样本的代表性。

通过合理的抽样方案,我们可以在调查、研究和统计分析中获取可靠的结果,为决策提供有力的支持。

几种常用抽样方案

几种常用抽样方案

几种常用抽样方案
常用抽样方案有很多种,以下是几种常见的抽样方案及其特点:
1.简单随机抽样:简单随机抽样是指从总体中随机地选择样本,每个个体有相等的概率被选中。

这种抽样方案适用于总体的分布和特征都是已知的情况,且总体规模不大的情况。

2.系统抽样:系统抽样是指按照一定的规则,从总体中按照一定的间隔选择样本。

例如,从一串编号的个体中每隔一定的距离选择一个个体作为样本。

系统抽样适用于总体规模较大,难以进行简单随机抽样的情况。

3.分层抽样:分层抽样是将总体分为若干层,然后从每一层中进行简单随机抽样。

这种抽样方案适用于总体具有明显的层次结构的情况,可以提高抽样的效率和精度。

4.整群抽样:整群抽样是将总体划分为若干个群体,然后随机选择几个群体作为样本进行调查。

这种抽样方案适用于总体划分明确,群体内的个体相似性较高的情况,能够提高抽样的效率。

5.分阶段抽样:分阶段抽样是将抽样过程划分为多个阶段,在每个阶段中进行不同的抽样方式。

例如,先进行简单随机抽样,然后在选定的样本中再进行分层抽样。

分阶段抽样适用于复杂的抽样情况,能够提高抽样的效率和灵活性。

6.整体抽样:整体抽样是指直接从总体中抽取全部个体作为样本。

这种抽样方案适用于总体规模较小,抽取全部个体的成本较低的情况。

以上是几种常用的抽样方案,不同的抽样方案适用于不同的调查情况。

在选择抽样方案时,需要考虑总体的特点、抽样目的以及可行性等因素,
以确保抽样结果的准确性和可靠性。

抽样的方案有哪些方法举例

抽样的方案有哪些方法举例

抽样的方案有哪些方法举例标题:抽样的方案有哪些方法举例1. 抽样方法的基本原理和分类2. 简单随机抽样方法及其应用举例3. 系统抽样方法及其应用举例4. 分层抽样方法及其应用举例5. 整群抽样方法及其应用举例6. 多阶段抽样方法及其应用举例【正文】抽样是指从总体中选取部分个体作为样本进行调查或研究,以代表总体特征的统计学方法。

在实践中,根据具体需求和研究对象的特点,可以采用不同的抽样方法。

本文将从基本原理和分类出发,分别介绍简单随机抽样、系统抽样、分层抽样、整群抽样以及多阶段抽样方法,并通过具体实例进行展开说明。

1. 抽样方法的基本原理和分类抽样方法的基本原理是要求样本能够代表总体的特征,并且有一定的可靠性和有效性。

根据样本的选择方式和抽样过程的规则,抽样方法可以分为概率抽样和非概率抽样两大类。

概率抽样是指每个个体被选中的概率是已知的,而非概率抽样则是指个体被选中的概率不是已知的。

2. 简单随机抽样方法及其应用举例简单随机抽样是指从总体中按照相同的概率独立地随机选取个体作为样本的方法。

它是最基本的抽样方法之一,因为每个个体被选中的概率相等,所以样本具有代表性。

例如,在一项市场调研中,我们可以通过简单随机抽样的方式从目标受众中选取一定数量的样本,以了解他们对某种新产品的接受程度。

3. 系统抽样方法及其应用举例系统抽样是指按照一定的规则从总体中选取个体作为样本的方法。

常见的规则包括按照一定的间隔或周期选取样本个体。

例如,在一项学生调查中,我们可以按照每隔五个学生选取一个样本的规则进行系统抽样,以了解学生对某项政策的看法。

4. 分层抽样方法及其应用举例分层抽样是指将总体分为若干层次,然后从每一层中分别选取个体作为样本的方法。

这样可以保证样本在不同层次上的代表性,从而更准确地反映总体的特征。

例如,在一个大型企业中,我们可以将员工根据职位分为不同层次,然后从每个层次中分别选取样本进行调查,以了解员工对公司文化的认同程度。

常见的抽样方案有哪几种方法

常见的抽样方案有哪几种方法

常见的抽样方案有哪几种方法常见的抽样方案有哪几种方法摘要:抽样是研究和调查中常用的一种方法,可以在大规模数据中选择合适的样本来代表整体。

本文将介绍六种常见的抽样方案,包括简单随机抽样、系统抽样、分层抽样、整群抽样、多阶段抽样以及方便抽样,并对每种抽样方案的优缺点进行详细分析。

通过本文的阅读,读者将能够更好地了解各种抽样方案的适用场景,为自己的研究和调查工作选择合适的抽样方法提供参考。

一、简单随机抽样简单随机抽样是最基本和最常见的抽样方法之一。

在这种抽样方案中,每个个体都有相等的机会被选入样本,且每次抽取是独立的。

简单随机抽样通常需要在目标总体中进行抽签或使用随机数表来进行随机抽取。

优点:1. 简单易行,实施成本较低。

2. 抽样结果具有代表性,能够有效地反映总体特征。

缺点:1. 当总体规模较大时,抽样过程可能较为费时费力。

2. 在总体中存在明显分层的情况下,简单随机抽样可能无法充分利用总体的层次特征。

二、系统抽样系统抽样是一种有规律的抽样方法,通过按照一定的规则从总体中选择样本,例如每隔固定的间隔选择一个样本。

系统抽样通常需要在总体中选择一个起始点,然后按照固定的间隔选择样本。

优点:1. 相对于简单随机抽样,系统抽样更加高效,能够节省时间和成本。

2. 抽样结果具有代表性,能够反映总体特征。

缺点:1. 如果总体中存在某种规律或周期性,系统抽样可能导致抽样偏差。

2. 对于周期性出现的特征,系统抽样可能会导致样本集中在某些特定的时段。

三、分层抽样分层抽样是将总体按照某些特定的特征划分为若干层次,然后在每个层次内进行抽样。

每个层次可以根据需要设定不同的抽样比例。

优点:1. 能够充分利用总体的层次特征,提高抽样效率。

2. 可以保证每个层次都有代表性的样本。

缺点:1. 对于总体中存在的较小层次,分层抽样可能导致样本数量不足。

2. 需要对总体进行合理的划分和层次设定,增加了实施难度。

四、整群抽样整群抽样是将总体按照某种特征划分为若干群体,然后在每个群体中进行全面抽样。

谈谈几种典型的抽样方法(案例)

谈谈几种典型的抽样方法(案例)

谈谈几种典型的抽样方法(案例)摘要:本文以抽样方法为中心,主要阐述几种常见的抽样方法,如简单随机抽样,分层抽样,整群抽样,系统抽样以及配额抽样,探讨了各种抽样方法在实际生活的应用以及各自的优缺点等。

关键词:抽样调查,应用,缺点。

导语:抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并概率估计原理,应用所的资料对总体的数量特征进行推断的一种调查方法。

例如,从某地区全部职工当中随机抽取部分职工,以家庭为单位按月调查取得有关收入、支出等方面的资料,并依据这些资料推断出全区职工的收支情况,这就是一种抽样调查。

从调查方法上来看,它是属于一种非全面调查。

但又与一般调查不同,它不只停留于搜集资料和整理资料,而且还要对资料进行分析,并据以推断总体的数量特征,从而提高统计的认识能力。

因此,抽样调查的理论和方法在统计中占有很重要的地位。

下面介绍一下常用的抽样方法:一. 简单随机抽样一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

直接抽选法例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。

抽签法又称“抓阄法”。

它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。

在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。

抽样的方案有哪几种方法举例

抽样的方案有哪几种方法举例

抽样的方案有哪几种方法举例抽样的方案有哪几种方法举例抽样是社会科学研究中常用的一种数据收集方法,它可以帮助研究人员从一个大的总体中选择一部分样本,以便进行统计分析和推断。

在抽样过程中,选择适当的抽样方案至关重要。

下面将介绍一些常见的抽样方案及其示例。

1. 简单随机抽样简单随机抽样是最基本、最常见的一种抽样方法。

在这种抽样方案中,每个个体都有相同的机会被选入样本。

例如,研究人员想要调查某地区居民对某一政策的看法,可以使用随机数生成器从人口登记册中随机选择一定数量的居民作为样本。

2. 分层抽样分层抽样是将总体划分为若干层次,然后在每个层次上进行独立的随机抽样。

这种方法可以确保样本在不同层次上的代表性。

例如,某市要进行关于教育水平与收入关系的调查,可以将总体按照不同教育程度进行分层,然后在每个层次中进行随机抽样。

3. 整群抽样整群抽样是将总体划分为若干个群组,然后随机选择部分群组作为样本,再对选中的群组中的所有个体进行调查。

这种方法适用于研究群体间差异较大的情况。

例如,某公司要了解不同部门员工的满意度,可以将各部门作为群组,随机选择一定数量的部门进行调查。

4. 系统抽样系统抽样是按照一定的规则和顺序从总体中选择样本。

例如,某研究人员要调查某医院每天就诊的患者数量,可以在每天的特定时间段内,按照一定的时间间隔选择一位患者进行调查。

5. 整齐抽样整齐抽样是将总体划分为若干个相等的部分,然后随机选择其中的一个部分作为样本。

例如,某研究人员要调查某小学学生的学习状况,可以将学生按照年级划分为若干个部分,然后随机选择一个年级进行调查。

以上是一些常见的抽样方案及其示例。

在实际应用中,研究人员需要根据研究目的、总体特点以及资源限制等因素选择适当的抽样方案。

正确选择和应用抽样方法可以提高研究结果的可靠性和代表性。

常用的取样方法范文

常用的取样方法范文

常用的取样方法范文
1.简单随机取样:从总体中按照相同的概率随机选择样本,每个样本
被选择的概率相等。

这种方法避免了主观倾向,具有较强的代表性。

2.系统抽样:对总体进行编号后,以一定的间隔选择样本。

例如,从
一个有100个员工的公司中选择10个进行调查,可以先对员工进行编号,然后每隔10个员工选择一个,即可得到样本。

3.分层抽样:将总体根据一些特征划分为若干层,然后从每层中随机
选择样本。

这种方法可以保证样本的多样性,同时保证每一层都有充分的
代表性。

4.整群抽样:将总体划分为若干个群体,然后从每个群体中选择一个
样本。

这种方法适用于总体中群体之间差异较大的情况,可以减少抽样误差。

5.比例抽样:根据其中一特定属性的比例选择样本。

例如,从一个有1000个学生的学校中选择200个样本,如果男女比例为1:2,则选择100
个男生和100个女生作为样本。

6.集束抽样:将总体划分为若干个子总体,然后分别从每个子总体中
选择样本。

这种方法适用于总体结构复杂、难以抽样的情况。

7.效用抽样:根据研究目的和资源限制选择样本。

例如,当研究对象
为少数族裔时,可以倾向选择该族群的样本,以增加研究结果的影响力。

以上是常用的取样方法,每种方法都有其适用的场景和优缺点。

在实
际应用中,根据研究目的、资源限制和总体特点选择合适的取样方法是十
分重要的。

此外,取样过程中还需要注意抽样误差的控制,如样本大小、样本分布、抽样方式等,以确保样本的代表性和可靠性。

(完整word版)谈谈几种典型的抽样方法(案例)

(完整word版)谈谈几种典型的抽样方法(案例)

谈谈几种典型的抽样方法(案例)摘要:本文以抽样方法为中心,主要阐述几种常见的抽样方法,如简单随机抽样,分层抽样,整群抽样,系统抽样以及配额抽样,探讨了各种抽样方法在实际生活的应用以及各自的优缺点等。

关键词:抽样调查,应用,缺点。

导语:抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法.显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并概率估计原理,应用所的资料对总体的数量特征进行推断的一种调查方法.例如,从某地区全部职工当中随机抽取部分职工,以家庭为单位按月调查取得有关收入、支出等方面的资料,并依据这些资料推断出全区职工的收支情况,这就是一种抽样调查。

从调查方法上来看,它是属于一种非全面调查.但又与一般调查不同,它不只停留于搜集资料和整理资料,而且还要对资料进行分析,并据以推断总体的数量特征,从而提高统计的认识能力。

因此,抽样调查的理论和方法在统计中占有很重要的地位。

下面介绍一下常用的抽样方法:一。

简单随机抽样一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样.简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

直接抽选法例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000——12,000元之间。

抽签法又称“抓阄法”。

它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取号码,直到抽足样本。

在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。

抽样方案的设计案例有哪些

抽样方案的设计案例有哪些

抽样方案的设计案例有哪些抽样方案的设计案例有哪些摘要:抽样方案是研究中常用的一种方法,通过从总体中选取一部分样本来进行研究,以期能够准确地推断总体的特征。

本文将介绍抽样方案的设计案例,并分别从六个方面展开叙述,包括:简单随机抽样、系统抽样、整群抽样、分层抽样、多阶段抽样和判断抽样。

一、简单随机抽样简单随机抽样是抽样中最基本的方法之一,它的特点是每个样本有相同的概率被选入样本集。

在设计简单随机抽样方案时,需要明确总体和样本的定义,并根据总体的特征确定样本的数量。

然后,通过随机数表、随机数发生器等工具来进行随机抽取。

简单随机抽样的优点是简单易行,不受主观因素的影响,适用于总体特征分布均匀的情况。

二、系统抽样系统抽样是一种按照固定的规则从总体中选取样本的方法。

在设计系统抽样方案时,需要确定抽样框的大小和顺序,以及每隔多少个单位进行抽样。

系统抽样的优点是简单易行,抽样效率高,并且可以保证样本的代表性,但也存在周期性误差的问题。

三、整群抽样整群抽样是将总体分成若干群体,然后从每个群体中选取样本的方法。

在设计整群抽样方案时,需要明确群体的定义,确定群体的大小和数量,并使用合适的抽样方法来选取样本。

整群抽样的优点是可以减少抽样误差,提高估计的精确性,但也存在群体的异质性问题。

四、分层抽样分层抽样是将总体分成若干层次,然后从每个层次中选取样本的方法。

在设计分层抽样方案时,需要明确层次的定义,确定各层次的大小和数量,并使用合适的抽样方法来选取样本。

分层抽样的优点是可以提高估计的精确性,减少抽样误差,并且可以根据不同层次的特征进行分析。

五、多阶段抽样多阶段抽样是将总体分成多个阶段,然后在每个阶段中选取样本的方法。

在设计多阶段抽样方案时,需要确定阶段的数量和大小,并使用合适的抽样方法来选取样本。

多阶段抽样的优点是可以减少调查成本和工作量,但也存在阶段间相关性的问题。

六、判断抽样判断抽样是根据研究目的和研究者的主观判断来选取样本的方法。

抽样方案的设计案例有哪些类型

抽样方案的设计案例有哪些类型

抽样方案的设计案例有哪些类型抽样方案的设计案例有哪些类型概述:抽样方案的设计是在实施调查、研究或统计分析等工作中非常重要的一步。

通过抽样方案的设计,可以从总体中选择出一部分样本,通过对这些样本的研究和分析,得出对总体的推断。

在实际应用中,根据不同的研究目的和数据需求,可以采用多种不同类型的抽样方案,本文将就此展开叙述,包括简单随机抽样、系统抽样、分层抽样、整群抽样、多阶段抽样和区域抽样。

一、简单随机抽样:简单随机抽样是最常见和最简单的抽样方法,也是其他抽样方法的基础。

其基本原理是从总体中随机地选择出一部分样本进行研究。

这种方法具有抽样过程简单、样本代表性好等优点,但在总体分布不均匀时可能导致样本的集中或分散。

二、系统抽样:系统抽样是指在总体中按照一定的间隔选择样本的方法。

例如,可以按照每隔五个选择一个样本的规则进行抽样。

这种方法相对于简单随机抽样更加快捷和经济,但如果总体的规律性导致样本选择与总体分布不一致,可能会引入偏差。

三、分层抽样:分层抽样是将总体划分为若干个层次,然后在每个层次内进行抽样。

这种方法可以充分考虑到总体不同层次的特点,提高样本的代表性。

例如,在研究一个地区的人口情况时,可以将该地区按照城市和农村两个层次划分,然后在每个层次内进行抽样。

四、整群抽样:整群抽样是将总体划分为若干个群体,然后随机选择其中的若干个群体作为样本进行研究。

这种方法适用于总体中存在群体特征的情况,例如在研究某个地区的学校教育水平时,可以将学校作为群体进行抽样。

五、多阶段抽样:多阶段抽样是在大样本总体中,先抽取一部分小样本,然后再从这些小样本中抽取更小的样本进行研究。

这种方法常用于大规模调查和研究中,可以有效减少样本规模和调查成本。

例如,在全国范围内研究某个社会问题时,可以先在各省抽取样本,再在各省内的城市抽取样本,最后在城市内的社区抽取样本。

六、区域抽样:区域抽样是将总体划分为若干个区域,然后随机选择其中的若干个区域作为样本进行研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

GDP,也就是国(地区)生产总值,是一个国家或地区的所有常住单位在一定时期所生产的全部最终产品和服务的价值总和。

正确理解GDP的定义,需要准确把握以下几方面的概念和容:(1)GDP核算遵循“在地原则”(2)GDP的生产者是“常住单位”(3)GDP以价值量形势表示(4)GDP核算的是“最终的”产品和服务。

2、GDP核算方法及积极作用3、GDP指标的局限性:(1)GDP不能反映经济发展的社会成本(2)GDP不能准确地反映一个国家财富的变化。

(3)GDP不能反映某些重要的非市场经营活动(4)GDP不能全面地反映人们的福利状况。

谈谈几种典型的抽样方法(案例)学院:经济学院班级: 08经41学号: 08084004:毛雪晨日期: 2011年10月20日摘要:本文以抽样方法为中心,主要阐述几种常见的抽样方法,如简单随机抽样,分层抽样,整群抽样,系统抽样以及配额抽样,探讨了各种抽样方法在实际生活的应用以及各自的优缺点等。

关键词:抽样调查,应用,缺点。

导语:抽样调查是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。

显然,抽样调查虽然是非全面调查,但它的目的却在于取得反映总体情况的信息资料,因而,也可起到全面调查的作用。

抽样调查是建立在随机原则基础上,从总体中抽取部分单位进行调查,并概率估计原理,应用所的资料对总体的数量特征进行推断的一种调查方法。

例如,从某地区全部职工当中随机抽取部分职工,以家庭为单位按月调查取得有关收入、支出等方面的资料,并依据这些资料推断出全区职工的收支情况,这就是一种抽样调查。

从调查方法上来看,它是属于一种非全面调查。

但又与一般调查不同,它不只停留于搜集资料和整理资料,而且还要对资料进行分析,并据以推断总体的数量特征,从而提高统计的认识能力。

因此,抽样调查的理论和方法在统计中占有很重要的地位。

下面介绍一下常用的抽样方法:一. 简单随机抽样一般,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体的个体被抽到的机会相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的具体作法有:直接抽选法,抽签法,随机数法。

直接抽选法例如某项调查采用抽样调查的方法对某市职工收入状况进行研究,该市有职工56,000名,抽取5,000名职工进行调查,他们的年平均收入为10,000元,据此推断全市职工年收入为8,000--12,000元之间。

抽签法又称“抓阄法”。

它是先将调查总体的每个单位编号,然后采用随机的方法任意抽取,直到抽足样本。

在这里选取一个案例说明,如要在10个人中选取3个人作为代表,先把总体中的10个个体编号,把写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取3次,就得到一个容量为3的样本。

这就是抽签法,与直接抽样法类似。

另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算当然,随机抽样也有不足之处,它只适用于总体单位数量有限的情况,否则编号工作繁重;对于复杂的总体,样本的代表性难以保证;不能利用总体的已知信息等。

在市场调研围有限,或调查对象情况不明,难以分类,或总体单位之间特性差异程度小时采用此法效果较好。

抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便。

如果标号的签搅拌得不均匀,会导致抽样不公平。

而随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型。

二. 分层抽样分层抽样又称分类抽样或类型抽样,是先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层进行单纯随机抽样,组成一个样本。

一般地,在抽样时,将总体分成互不交叉的层,然后按一定的比例,从各层次独立地抽取一定数量的个体,将各层次取出的个体合在一起作为样本。

分层抽样尽量利用事先掌握的信息,并充分考虑了保持样本结构和总体结构的一致性,这对提高样本的代表性是很重要的。

当总体是由差异明显的几部分组成时,往往选择分层抽样的方法。

其特点是将科学分组法与抽样法结合在一起,每个个体被抽到的概率都相等N/M。

分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。

下面是一个实例应用某公司要估计某地家用电器的潜在用户。

这种商品的消费同居民收入水平相关,因而以家庭年收入为分层基础。

假定某地居民为1,000,000户,已确定样本数为1,000户,家庭年收入分10,000元以下,10,000——30,000元;30,000——60,000元,60,000元以上四层,其中收入在10,000元以下家庭户为180,000户,收入在10,000——30,000元家庭户为350,000户,收入在30,000——60,000元家庭户为3000,000户,收入在60,000元以下家庭户为170,000户,应进行如下抽样:分层比例抽样示意图总体子样本样本分层抽样与简单随机抽样相比,往往选择分层抽样,因为它有显著的潜在统计效果。

也就是说,如果从相同的总体中抽取两个样本,一个是分层样本,另一个是简单随机抽样样本,那么相对来说,分层样本的误差更小些。

另一方面,如果目标是获得一个确定的抽样误差水平,那么更小的分层样本将达到这一目标。

总体中赖以进行分层的变量为分层变量,理想的分层变量是调查中要加以测量的变量或与其高度相关的变量。

分层的原则是增加层的同质性和层间的异质性。

常见的分层变量有性别、年龄、教育、职业等。

分层随机抽样在实际抽样调查中广泛使用,在同样样本容量的情况下,它比纯随机抽样的精度高,此外管理方便,费用少,效度高。

三. 系统抽样系统抽样也称为等距抽样、机械抽样、SYS抽样,它是首先将总体中各单位按一定顺序排列,根据样本容量要求确定抽选间隔,然后随机确定起点,每隔一定的间隔抽取一个单位的一种抽样方式。

是纯随机抽样的变种。

在系统抽样中,先将总体从1~N相继编号,并计算抽样距离K=N/n。

式中N为总体单位总数,n为样本容量。

然后在1~K中抽一随机数k1,作为样本的第一个单位,接着取k1+K,k1+2K……,直至抽够n个单位为止。

根据总体单位排列方法,系统抽样的单位排列可分为三类:按有关标志排队、按无关标志排队以及介于按有关标志排队和按无关标志排队之间的按自然状态排列。

按照具体实施等距抽样的作法,系统抽样可分为:直线系统抽样、对称系统抽样和循环系统抽样三种。

在定量抽样调查中,系统抽样常常代替简单随机抽样。

由于该抽样方法简单实用,所以应用普遍。

系统抽样得到的样本几乎与简单随机抽样得到的样本是相同的。

下面看一个例子,某产品的口味测试,需要运用等距抽样的方法从某校营销专业90名学生中抽选9名进行测试。

系统抽样方式也不是完美的,它相对于简单随机抽样方式最主要的优势就是经济性。

系统抽样方式比简单随机抽样更为简单,花的时间更少,并且花费也少。

使用系统抽样方式最大的缺陷在于总体单位的排列上。

一些总体单位数可能包含隐蔽的形态或者是“不合格样本”,调查者可能疏忽,把它们抽选为样本。

由此可见,只要抽样者对总体结构有一定了解时,充分利用已有信息对总体单位进行排队后再抽样,则可提高抽样效率。

四.整群抽样整群抽样又称聚类抽样。

是将总体中各单位归并成若干个互不交叉、互不重复的集合,称之为群;然后以群为抽样单位抽取样本的一种抽样方式。

应用整群抽样时,要求各群有较好的代表性,即群各单位的差异要大,群间差异要小。

整群抽样优点是实施方便、节省经费; 整群抽样的缺点是往往由于不同群之间的差异较大,由此而引起的抽样误差往往大于简单随机抽样。

整群抽样示意图总体分群R=130抽样 R=5样本例如,调查中学生患近视眼的情况,抽某一个班做统计;进行产品检验;每隔8h 抽1h 生产的全部产品进行检验等。

整群抽样与分层抽样在形式上有相似之处,但实际上差别很大。

分层抽样要求各层之间的差异很大,层个体或单元差异小,而整群抽样要求群与群之间的差异比较小,群个体或单元差异大;分层抽样的样本时从每个层抽取若干单元或个体构成,而整群抽样则是要么整群抽取,要么整群不被抽取。

以上抽样方法的抽样误差一般是:整群抽样 ≥简单随机抽样 ≥系统抽样 ≥分层抽样。

五.配额抽样:配额抽样也称“定额抽样”,是指调查人员将调查总体样本按一定标志分类或分层,确定各类(层)单位的样本数额,在配额任意抽选样本的抽样方式。

例如一在一项关于某品牌洗发水的消费者座谈会的研究抽样中,研究对象为18—40岁的女性。

已确定样本量为24人。

研究者选择“经济收入”和“发型”为控制特征;并要求高低收入者各占50%,烫、直发型各占50%。

根据上述要求一个配额抽样的控制表便可设计出来。

如下表:40%;文科学生和理科学生各占50%;一年级学生占40%,二年级、三年级、四年级学生分别占30%、20%和10%。

现要用定额抽样方法依上述三个变量抽取一个规模为100人的样本。

依据总体的构成和样本规模,我们可得到下列定额表:男生(60)女生(40)文科(30)理科(30)文科(20)理科(20)年级一二三四一二三四一二三四一二三四人数12 9 6 3 12 9 6 3 8 6 4 2 8 6 4 2配额抽样和分层随机抽样相比较,既有相似之处,也有很大区别。

配额抽样和分层随机抽样有相似的地方,都是事先对总体中所有单位按其属性、特征分类,这些属性、特征我们称之为“控制特性。

”例如市场调查中消费者的性别、年龄、收入、职业、文化程度等等。

然后,按各个控制特性,分配样本数额。

但它与分层抽样又有区别,分层抽样是按随机原则在层抽选样本,而配额抽样则是由调查人员在配额主观判断选定样本。

实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。

数学抽样在生活中发挥着重要的作用,在我国,抽样法已被广泛应用于生产技术及社会生活各个领域。

目前,国家统计调查制度中所包括的统计指标,依靠抽样方法取得的资料已达到三分之一左右。

在城乡住户调查、农产品调查、价格统计、市场调查等领域,应用抽样调查已取得很好的成果,在人口统计、社会统计、交通统计、商业统计等领域,抽样调查也正在发挥越来越重要的作用。

随着我国社会主义市场经济的发展,抽样调查的应用围将逐渐扩大,所发挥的作用也将越来越大。

相关文档
最新文档