生物化学

合集下载

生物化学技术

生物化学技术

生物化学技术生物化学技术是一种利用生物体的生化反应制备物质的技术。

生物化学技术涉及到许多方面,包括分子生物学、酶学、基因工程、蛋白质工程等。

本文将从生物化学技术的原理、应用以及未来发展等方面进行探讨。

一、生物化学技术的原理1.1分子生物学的基础分子生物学是生物化学技术的基础之一。

它研究生物体内分子的结构、功能和相互作用等方面。

在生物化学技术中,分子生物学的应用主要包括基因克隆、DNA测序、PCR等技术。

1.2酶学的原理酶是生物体内的一种特殊的蛋白质,具有催化反应的作用。

在生物化学技术中,酶学的原理主要包括酶的选择、酶的活性调控、酶促反应等方面。

1.3基因工程的原理基因工程是指将外源基因引入到宿主细胞中,使宿主细胞产生所需的蛋白质或其他产物的一种技术。

在生物化学技术中,基因工程的原理涉及到外源基因的选择、载体的构建、转染技术等方面。

1.4蛋白质工程的原理蛋白质工程是指通过改变蛋白质的氨基酸序列,从而改变蛋白质的结构和功能的一种技术。

在生物化学技术中,蛋白质工程的原理主要包括选择蛋白质的基因、构建蛋白质的三维结构、鉴定蛋白质的功能等方面。

二、生物化学技术的应用2.1生物医药领域生物化学技术在生物医药领域有着广泛的应用。

例如,基因工程药物、抗体药物、干细胞疗法等都是生物化学技术的应用。

在这些应用中,生物化学技术可以用来生产生物药物、筛选药物靶点、设计新型药物等。

2.2农业领域生物化学技术也在农业领域有着重要的应用。

例如,转基因作物、抗病虫害作物、抗逆作物等都是生物化学技术的应用。

在这些应用中,生物化学技术可以用来改良作物的性状、提高作物的产量、减少农药的使用等。

2.3环境保护领域生物化学技术也在环境保护领域有着重要的应用。

例如,生物降解技术、生物修复技术、生物检测技术等都是生物化学技术的应用。

在这些应用中,生物化学技术可以用来降解污染物、修复受污染土壤、检测环境中的污染物等。

2.4工业生产领域生物化学技术也在工业生产领域有着广泛的应用。

生物化学名词解释

生物化学名词解释

绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。

通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。

3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。

第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。

单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。

3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。

4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。

6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。

7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。

生物化学概述

生物化学概述
• 生物化学是生物学的分支学科
– 研究对象: 生物体
– 研究内容:
• 生命的物质组成和功能 • 物质代谢和能量代谢 • 遗传信息的传递与表达 • 细胞信号转导 • 分子生物学
– 研究对象:生物大分子(蛋白质、酶、核酸、多糖等)
– 研究内容:
• 生物大分子的结构与功能 • 遗传信息传递与表达 • 生物工程 • 生物化学和分子生物学是现代生物学的带头学科
二硫键是巯基的氧化形式,二硫键可加氢再还原为巯基 谷胱甘肽、巯基蛋白及巯基酶的活性基团是巯基,通过巯
基参与反应。
生物分子的常见基团
磷酸基
体内含磷酸基的化合物非常广泛 2分子磷酸可以脱水缩合为焦磷酸酐(亦称焦磷酸酯),如
ATP分子含有三个磷酸基,其中3个磷酸基之间含有2个磷酸酯 (酐)键,此键断开时可释放大量能量,因此称为高能键。 在细胞的很多代谢反应中,往往第一阶段的反应是使底物分 子活化,活化的常见反应是由ATP提供一个高能磷酸基团给被 活化的分子,如葡萄糖由ATP供能活化为葡萄糖-6-磷酸。
而特称为苷(旧称甙),淀粉、糖原等分子中的-C-O-C-称为糖苷键 苯环上连接羟基的化合物称为酚
生物分子的常见基团
醛基 酮基 羧基
羰基
>C=O称为羰基 羰基(酮基)在碳链中间的化合
物称为酮; 羰基在碳链末段,含-CHO的分子
称为醛 羰基在碳链末段,含-COOH的称
为羧酸 如果同时有2个羰基存在于苯环上
生物分子的常见基团
72
酯、Байду номын сангаас、酐
含氧酸与醇的脱水缩合产物称为酯。羧酸与-SH形成的硫酯(-SH与-OH 性质类似
含氧酸与含氧酸的脱水缩合产物称为酐
氨基中的氮原子电负性较强,可以 结合氢离子而成-NH3+、=NH2+, 因此,氨基和亚氨基是碱性基团

《生物化学》全套PPT课件

《生物化学》全套PPT课件
现状
生物化学已经成为生命科学领域的重要分支,与分子生物学、遗传学、细胞生 物学等学科相互渗透,共同揭示生命的奥秘。同时,生物化学在医学、农业、 工业等领域的应用也越来越广泛。
生物化学在医学领域重要性
A
疾病诊断
生物化学方法可用于检测血液中特定生物分子 的含量或结构异常,从而辅助疾病的诊断,如 血糖、血脂检测等。
脂类分类方法
根据化学结构和性质,脂类可分为简单脂质(如脂肪酸、甘油酯等 )和复合脂质(如磷脂、糖脂等)。
脂类在生物体内的分布
不同生物体内的脂类分布有差异,如动物体内主要储存甘油三酯, 而植物体内则以脂肪酸为主。
甘油三酯分解代谢过程剖析
01
甘油三酯的分解代谢途径
甘油三酯在体内主要通过脂肪酶的催化作用分解为甘油和脂肪酸,进而
药物研发
通过对生物体内代谢途径和药物作用机制 的研究,有助于设计和开发新的药物,提 高治疗效果和降低副作用。
B
C
营养与健康
生物化学在营养学领域的应用有助于了解食 物中营养成分的代谢和利用,为合理膳食和 营养补充提供科学依据。
遗传性疾病研究
生物化学方法可用于研究遗传性疾病的发病 机制和治疗方法,如基因疗法和干细胞疗法 等。
酶活性调节的方式
包括共价修饰、变构调节、酶原激活 和抑制剂作用等。
酶在医学领域应用实例分析
酶与疾病的关系
酶的异常与多种疾病的发生和发展密切相关,如酶缺陷病、代谢 性疾病等。
酶在疾病诊断中的应用
利用酶的特异性催化反应,开发酶学诊断方法,如酶活性测定、同 工酶分析等。
酶在疾病治疗中的应用
通过补充或抑制特定酶的活性,达到治疗疾病的目的,如酶替代疗 法、酶抑制剂疗法等。
进入血液循环被组织细胞摄取利用。

生物化学

生物化学

生物化学重点第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8种);②极性中性氨基酸(7种);③酸性氨基酸(Glu和Asp);④碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO-NH-)。

生物化学专业课程科目

生物化学专业课程科目

生物化学专业课程科目
1. 生物化学导论,这门课程通常介绍了生物化学的基本概念,包括生物大分子(蛋白质、核酸、多糖和脂质)的结构和功能,生物化学反应和代谢途径等内容。

2. 生物有机化学,这门课程侧重于生物分子的有机化学特性,包括蛋白质、核酸和酶的结构与功能、生物大分子的合成和分解等内容。

3. 生物物理化学,这门课程涉及生物分子的物理化学性质,如蛋白质的结构与功能、生物膜的性质和传递过程等。

4. 生物化学实验,这门课程通常包括实验室操作和技术,学生将学习如何处理生物样本、进行蛋白质纯化、测定酶活性等实验技术。

5. 生物化学方法学,这门课程介绍了生物化学研究中常用的方法和技术,如质谱分析、核磁共振、光谱学等。

6. 生物化学分子生物学,这门课程涵盖了生物分子的生物学功
能和调控机制,包括基因表达调控、蛋白质合成与修饰等内容。

7. 生物化学代谢途径,这门课程重点介绍了生物体内各种代谢
途径,如糖代谢、脂肪代谢、核酸代谢等。

以上列举的课程科目只是生物化学专业中的一部分,实际上还
有许多其他相关的课程,如生物化学工程、生物信息学、生物化学
毒理学等。

这些课程科目共同构成了生物化学专业的全面知识体系,为学生提供了丰富的学术素养和实践技能。

生物化学

生物化学

第一章.生物化学绪论1.生命的生物化学定义:生命系统包含储藏遗传信息的核酸和调节代谢的酶蛋白。

但是已知某种病毒生物却无核酸(朊病毒)。

2.生命(生物体)的基本特征:(1)细胞是生物的基本组成单位(病毒除外)。

( 2 ) 新陈代谢、生长和运动是生命的基本功能。

( 3 )生命通过繁殖而延续,DNA是生物遗传的基本物质。

(4)生物具有个体发育和系统进化的历史。

( 5 )生物对外界可产生应激反应和自我调节,对环境有适应性。

3.化学是在原子、分子水平上,研究物质的组成,结构、性质和变化规律的一门基础自然科学。

生物化学就是生命的化学。

4.生物化学:运用化学的原理和方法,研究生物体的物质组成和生命过程中的化学变化,进而深入揭示生命活动的化学本质的一门科学。

5.生命体的元素组成:在地球上存在的92种天然元素中,只有28种元素在生物体内被发现。

第一类元素:包括C、H、O和N四种元素,是组成生命体最基本的元素。

这四种元素约占了生物体总质量的99%以上。

第二类元素:包括S、P、Cl、Ca、K、Na和Mg。

这类元素也是组成生命体的基本元素。

第三类元素:包括Fe、Cu、Co、Mn和Zn。

是生物体内存在的主要少量元素。

第四类元素:包括Al、As、B、Br、Cr、F、Ga、I、Mo、Se、Si等。

偶然存在的元素。

6.生命分子是碳的化合物:生命有机体的化学是围绕着碳骨架组织起来的。

生物分子中共价连接的碳原子可以形成线状的、分支的或环状的结构。

7.生物(生命)分子是生物体和生命现象的结构基础和功能基础,是生物化学研究的基本对象。

生物分子的主要类型包括:多糖、聚脂、核酸和蛋白质等生物大分子。

维生素、辅酶、激素、核苷酸和氨基酸等小分子。

8 .生物大分子的结构与功能:研究生物分子的结构和功能之间的关系,代表了现代生物化学与分子生物学发展的方向。

9.生物化学的内容:静态生物化学:研究生物有机体的化学组成、结构、性质和功能。

动态生物化学:研究生命现象的物质代谢、能量代谢与代谢调节。

生物化学的概念

生物化学的概念

二、研究内容
1、生物体的化学成份和组成 大量元素:C、H、O、N四种,
根据元素分析 微量元素:Fe、Zn、Cu、Mg等。
生物体的化合物组成有:糖类、脂类、蛋白质、 核酸、维生素、激素、 水、无机盐等8类,。
2、结构和功能的关系 DNA
3、研究生物体内的代谢过程即新陈代谢 分解代谢
物质代谢: 合成代谢
汉斯·克雷勃斯(Hans A. Krebs)
1949 Pauling(美)指出 镰刀形红细胞性贫血是一 种分子病,并于1951年提 出蛋白质存在二级结构。 1954年获诺贝尔奖
李纳斯·鲍林(Linus Pauling)

1953年 Watson(美)与 Crick(英)提出DNA分子的双 螺旋结构模型,1962年共获诺贝尔奖。
1972 Berg(美)在基因工 程基础研究方面作出了杰出 成果,获1980年诺贝尔奖。 1973 Cohen等(美)用核 Paul Berg 酸限制性内切酶EcoR1,首 次基因重组成功。
Herbert Boyer Stanley Cohen
2001 Venter(美)等报道完成了人类基因组草图测序。
生物化学的概念微生物的概念及分类与生物化学有关的专业生活中的生物化学生物化学的应用有关生物化学的论文我对生物化学的认识对生物化学的认识组成生物体的化学元素生物的概念
第一章 绪 论
第一节
概述
一、生物化学的概念:
简单地讲:就是生命的化学。 即它是以生物体为研究对象,用化学的方法和理论, 从分子水平来研究生物体的化学组成和生命过程中的 化学规律的一门学科。
我国生物化学的开拓者——吴宪教授
蛋白质研究领域内国际上最具有权威性的综 述性丛书《Advances in Protein Chemistry》第47卷(1995年)发表了美国 哈佛大学教授、蛋白质研究的老前辈J. T. Eddsall的文章“吴宪与第一个蛋白质变性 理论(1931)Hsien Wu and the first Theory of Protein Denaturation(1931)”, 对吴宪教授的学术成就给予了极高的评价。 该卷还重新刊登了吴宪教授六十四年前关于 蛋白质变性的论文。一篇在1931年发表的论 文居然在1995年仍然值得在第一流的丛书上 重新全文刊登,不能不说是国际科学界的一 件极为罕见的大事。

生物化学知识点总结

生物化学知识点总结

生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从分子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学。

其研究内容包括①生物体的化学组成,生物分子的结构、性质及功能②生物分子的分解与合成,反应过程中的能量变化③生物信息分子的合成及其调控,即遗传信息的贮存、传递和表达。

生物化学主要从分子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题(1)生物化学的发展史分为哪几个阶段?生物化学的发展主要包括三个阶段:①静态生物化学阶段(20世纪之前):是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成分以及生物体的排泄物和分泌物②动态生物化学阶段(20世纪初至20世纪中叶):是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段(20世纪中叶以后):这一阶段的主要研究工作是探讨各种生物大分子的结构与其功能之间的关系。

(2)组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素?组成生物体的元素共28种第一类元素包括C、H、O、N四中元素,是组成生命体的最基本元素。

第二类元素包括S、P、Cl、Ca、Na、Mg,加上C、H、O、N是组成生命体的基本元素。

第二章蛋白质1. 名词解释(1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高分子含氮化合物(2)氨基酸等电点:当氨基酸溶液在某一定pH时,是某特定氨基酸分子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极移动,此时溶液的pH即为该氨基酸的等电点(3)蛋白质等电点:当蛋白质溶液处于某一pH时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH称为蛋白质的等电点(4)N端与C端:N端(也称N末端)指多肽链中含有游离α-氨基的一端,C端(也称C 末端)指多肽链中含有α-羧基的一端(5)肽与肽键:肽键是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽(6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残余部分称为氨基酸残基(7)肽单元(肽单位):多肽链中从一个α-碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转(8)结构域:多肽链的二级或超二级结构基础上进一步绕曲折叠而形成的相对独立的三维实体称为结构域。

生物化学

生物化学

遗传信息的贮存、传 遗传信息的贮存、 代、表达 遗传的物质基础) (遗传的物质基础) 260nm 粘度↓ 粘度↓ Tm
α-螺旋和β-折叠结构比较 螺旋和β
区别点 形 氢 状 键 α-螺旋 螺旋状 链内,与长轴平行 链内, 较大 较大 0 .15nm 毛发角蛋白 β-折叠 锯齿状 链间,与长轴垂直 链间, 较小 较小 0.36nm 蚕丝蛋白
> 1056
个不同的氨基酸、 (* 由3个不同的氨基酸、核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目) 个不同的氨基酸 核苷酸和已糖分别通过肽键、磷酸二酯键所组成的寡聚体数目)
生物信息大分子的特点: 生物信息大分子的特点:
• • 质量一般在10 之间或以上。 质量一般在 4~106之间或以上。 由特殊的亚单位( 由特殊的亚单位(subunit)按一定的顺序、首 亚单位 )按一定的顺序、 尾连接形成的多聚物( 尾连接形成的多聚物(polymer)。 )。 亚单位在多聚物中的排列是有一定顺序(称为序 亚单位在多聚物中的排列是有一定顺序(称为序 )。序列决定着生物大分子的空 列,sequence)。序列决定着生物大分子的空 )。 立体)结构形式和功能, 间(立体)结构形式和功能,决定着生物大分子 的信息内容。 的信息内容。
3、重要性质:两性解离及带电状态判定;紫外吸收;沉淀;变性 、重要性质:两性解离及带电状态判定;紫外吸收;沉淀; 4、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析;分子筛 、分离纯化:超滤;盐析;电泳;亲和层析;离子交换层析; 5、结构与功能关系(举例) 、结构与功能关系(举例)
复习思考题
1.为什么说: 蛋白质是生命的物质基础” 1.为什么说:“蛋白质是生命的物质基础”? 为什么说 2.简述蛋白质α螺旋和β折叠的结构特点。 2.简述蛋白质α螺旋和β折叠的结构特点。 简述蛋白质 3.什么是Pr的一、二、三和四级结构,分别指出 3.什么是Pr的一、 什么是Pr的一 三和四级结构, 维持它们结构的化学键。 维持它们结构的化学键。 4.举例说明Pr结构与功能的关系。 4.举例说明Pr结构与功能的关系。 举例说明Pr结构与功能的关系 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 5.简述Pr变性、沉淀和凝固的定义及彼此之间的关系。 简述Pr变性 6.Pr定量测定的方法主要有哪些? 6.Pr定量测定的方法主要有哪些? 定量测定的方法主要有哪些

生物化学

生物化学

什么是生物化学生物学的分支学科。

它是研究生命物质的化学组成、结构及生命过程中各种化学变化的科学。

生物化学若以不同的生物为对象,可分为动物生化、植物生化、微生物生化、昆虫生化等。

若以生物体的不同组织或过程为研究对象,则可分为肌肉生化、神经生化、免疫生化、生物力能学等。

因研究的物质不同,又可分为蛋白质化学、核酸化学、酶学等分支。

研究各种天然物质的化学称为生物有机化学。

研究各种无机物的生物功能的学科则称为生物无机化学或无机生物化学。

60年代以来,生物化学与其他学科融合产生了一些边缘学科如生化药理学、古生物化学、化学生态学等;或按应用领域不同,分为医学生化、农业生化、工业生化、营养生化等。

生物化学发展简史生物化学这一名词的出现大约在19世纪末、20世纪初,但它的起源可追溯得更远,其早期的历史是生理学和化学的早期历史的一部分。

例如18世纪80年代,A.-L.拉瓦锡证明呼吸与燃烧一样是氧化作用,几乎同时科学家又发现光合作用本质上是动物呼吸的逆过程。

又如1828年F.沃勒首次在实验室中合成了一种有机物──尿素,打破了有机物只能靠生物产生的观点,给“生机论”以重大打击。

1860年L.巴斯德证明发酵是由微生物引起的,但他认为必需有活的酵母才能引起发酵。

1897年毕希纳兄弟发现酵母的无细胞抽提液可进行发酵,证明没有活细胞也可进行如发酵这样复杂的生命活动,终于推翻了“生机论”。

生物化学的发展大体可分为3个阶段。

第一阶段从19世纪末到20世纪30年代,主要是静态的描述性阶段,对生物体各种组成成分进行分离、纯化、结构测定、合成及理化性质的研究。

其中E.菲舍尔测定了很多糖和氨基酸的结构,确定了糖的构型,并指出蛋白质是肽键连接的。

1926年J.B.萨姆纳制得了脲酶结晶,并证明它是蛋白质。

此后四、五年间J.H.诺思罗普等人连续结晶了几种水解蛋白质的酶,指出它们都无例外地是蛋白质,确立了酶是蛋白质这一概念。

通过食物的分析和营养的研究发现了一系列维生素,并阐明了它们的结构。

生物化学名词解释

生物化学名词解释

生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。

2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。

3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。

4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。

一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。

2、单糖:凡不能被水解成更小分子的糖称为单糖。

3、多糖:由许多单糖分子缩合而成的长链结构。

4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。

5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。

6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。

7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。

8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。

9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。

10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。

11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。

12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。

13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。

14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。

二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。

生物化学(PDF)版

生物化学(PDF)版

生物化学(PDF)版
生物化学是研究生物体内化学过程和物质转化的分支学科。

它涉及了生物学和化学两个领域,主要关注生物体内的分子结构、生物体内化学反应的动力学和机制,以及生物体内的代谢过程。

以下是生物化学的主要内容:
1.生物分子结构:生物化学研究生物体内多种生物分子的结构、组成和性质,包括蛋白质、核酸、碳水化合物和脂质等。

2.酶和酶动力学:酶是生物体内的催化剂,生物化学研究酶的结构和功能,以及酶对生物化学反应速率的影响。

3.代谢途径:生物体内的代谢途径是生物化学的重要研究内容,包括碳水化合物的糖酵解、脂肪酸的氧化和合成、蛋白质的合成和降解等。

4.能量代谢:生物体内的能量转化是生命活动的重要过程,生物化学研究生物体内能量产生和转化的机制,如细胞呼吸和光合作用等。

5.信号转导:生物体内的信号分子参与了各种生物过程的调控,生物化学研究信号分子的合成、传递和识别机制。

6.生物化学技术:生物化学也涉及了多种实验和技术方法,包括蛋白质纯化、基因克隆、核酸测序和基因组学等。

总之,生物化学研究了生物体内的化学反应、分子结构和代谢过程,对于理解生物体的功能和调控机制是至关重要的。

生物化学ppt课件

生物化学ppt课件
同学们好!
现在开始上课!
生物化学
生物化学
第一章 蛋白质化学 第二章 酶化学 第三章 维生素与辅酶 第四章 生物氧化 第五章 糖代谢 第六章 脂代谢 第七章 核酸的生物化学 第八章 蛋白质代谢 第九章 代谢的调节控制
绪论
▪ 生物化学的概念 ▪ 生物化学研究的主要内容 ▪ 生物化学的研究对象 ▪ 生物化学与其他学科的关系 ▪ 生物化学的发展简史 ▪ 生物化学学习方法及参考用书
2 研究它们在生物体内的化学变化及与外界进行 物质和能量交换的规律,即物质代谢和能量代谢 --动态生物化学
3 研究这些物质的结构、代谢和生物功能与复杂 的生命现象之间的关系--功能生物化学
4 生物体遗传信息的传递、表达及代谢调节
三、生物化学的研究对象
1、以所研究的生物对象之不同 动物--动物生物化学 植物--植物生物化学 微生物--微生物生物化学
(一) 学习方法
• 在理解的基础上掌握生物化学的基本原理 • 注重生物化学理论研究的思路和方法 • 结合专业实际或生活实际理解所学知识 • 强化实验技能学习及实际操作能力锻炼 • 善于总结思考并勤于练习
(二)教材及参考书
教材: 金凤燮,生物化学,中国轻工出版社,2005年
参考书:
1.魏述众:生物化学,中国轻工出版社 2.王镜岩等编:生物化学(上、下),人民教育出版社 3.聂剑初等:生物化学简明教程,高教出版社 4. Biochemistry. Worthpublishers.Inc. 5.沈仁权,生物化学教程,高等教育出版社 6.大连轻工业学院主编:生物化学(工业发酵专业用)轻 工出版社85年出版 7.郑集等:普通生物化学(第三版),高教出版社,1998 年出版
生理机能的协调关系,从而对一定的 生理机能给以化学解释。

什么是生物化学

什么是生物化学

什么是生物化学
生物化学是一门研究生物体内化学反应、物质代谢、分子结构与功能的学科。

它在很大程度上依赖于化学、生物学和物理学的原理和方法,旨在揭示生物体生命过程中的化学本质。

生物化学在生物医药、农业、食品科学等领域具有重要意义。

生物化学的研究对象包括蛋白质、核酸、多糖和脂质等生物大分子,以及小分子代谢物和信号分子。

研究者通过分析这些分子的结构、性质、合成与降解途径,探讨它们在生物体生长、发育、繁殖、适应环境等方面的作用。

此外,生物化学家还关注生物体内的酶促反应、膜转运、信号传导等过程,以揭示生命现象背后的化学机制。

生物化学的发展推动了生物科学的研究进展,为人类认识生命本质提供了重要线索。

随着技术的不断创新,生物化学在基因编辑、生物制药、生物能源等领域发挥着越来越重要的作用。

在我国,生物化学研究得到了高度重视,成为国家科技创新和国际竞争力的重要组成部分。

生物化学的研究成果不仅丰富了自然科学的知识体系,还为人类社会带来了实实在在的利益。

例如,通过研究生物化学,科学家们开发出了许多新型药物,有效治疗了许多疾病;生物化学技术在农业领域的应用,提高了作物产量和品质,有助于解决全球粮食安全问题;在环境保护方面,生物化学方法为治理污染提供了新途径。

总之,生物化学在促进人类文明发展和提高人民生活质量方面发挥着不可替
代的作用。

生物化学概述

生物化学概述

生物化学概述
生物化学是研究生物体的化学成分、化学结构、化学反应和化学过程的科学。

它是化学和生物学的交叉学科,通过研究生物体中的化学反应和分子机制来探索生命的本质。

生物化学的研究内容包括以下几个方面:
生物分子的组成
生物体主要由四种生物大分子构成,包括蛋白质、核酸、多糖和脂质。

蛋白质是由氨基酸组成的长链状分子,核酸则是由核苷酸组成的双链分子。

多糖主要有淀粉和纤维素等,而脂质则是生物体内重要的疏水性分子。

生物分子的结构和功能
不同的生物分子具有不同的结构和功能。

例如,蛋白质通过其特定的氨基酸序列和三维结构来实现其特定的功能,如酶的催化作
用和细胞信号传导等。

核酸则通过遗传密码和基因表达来控制生物
体的遗传信息传递。

代谢反应和能量转化
生物体通过代谢反应获取能量并实现物质的合成和降解。

例如,光合作用是植物利用光能合成有机物的重要反应,而细胞呼吸则是
生物体利用有机物氧化释放能量的过程。

信号传导和调控
生物体内的化学信号传递和调控是生命活动的重要组成部分。

细胞表面受体和信号转导通路参与了细胞对外界刺激的感知和响应,从而调控生物体的生理功能。

生物技术和药物研发
生物化学在生物技术和药物研发领域具有广泛的应用。

通过理
解生物分子的结构和功能,可以设计新的药物分子和开发生物技术
产品,以满足医药和工业上的需求。

生物化学是解析和理解生命现象的强有力的工具,它在许多领域都有重要的应用价值。

它不仅有助于推动基础研究的进展,也为科学家们探索新的解决方案和创新提供了支持。

生物化学

生物化学

第一章蛋白质的结构与功能名词解释1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。

2.蛋白质的等电点:蛋白质分子净电荷为零时溶液的pH值称为该蛋白质的等电点。

3.模体:在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,具有特殊功能,称为模体。

4.蛋白质变性:在某些物理和化学因素作用下,蛋白质特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。

5.电泳:指带电荷的溶质或粒子在电场中向着与其本身所带电荷相反的电极移动的现象。

问答题1. 举例说明蛋白质一级结构与功能的关系1)一级结构是空间结构的基础例:经变性后又复性的核糖核酸酶分子中二硫键的配对方式与天然分子相同。

说明蛋白质一级结构是其高级结构形成的基础和决定性的因素。

2)一级结构与功能(1)一级结构相似的多肽或蛋白质,其空间结构、功能亦相似。

如哺乳动物的胰岛素分子等。

(2)有些蛋白质分子中起关键作用的氨基酸残基缺失或被替代都会影响空间构象及生理功能。

如镰刀型血红蛋白贫血病。

2.蛋白质的α—螺旋结构有何特点?①以肽键平面为单位,右手螺旋;②每螺旋圈3.6个氨基酸残基,螺距0.54nm ;③氢键保持螺旋结构的稳定,氢键的方向与螺旋长轴基本平行;④氨基酸侧链伸向螺旋外侧,并影响α螺旋的形成和稳定。

4.蛋白质变性的机制、对理化性质的影响。

在某些物理和化学因素作用下,其特定的空间构象被破坏,变成无序的空间结构,导致其理化性质改变和生物活性丧失。

如加热、乙醇等有机溶剂、强酸、强碱、重金属离子及生物碱试剂等,本质为破坏非共价键和二硫键,不改变蛋白质的一级结构。

举例:临床医学上,变性因素常被应用来消毒及灭菌。

此外, 防止蛋白质变性也是有效保存蛋白质制剂(如疫苗等)的必要条件。

第二章核酸的结构与功能名词解释1 、DNA变性:在某些理化因素作用下,DNA双链解开成两条单链的过程叫DNA 的变性。

《生物化学》课程大纲

《生物化学》课程大纲

06 基因表达调控与疾病关系
基因表达概述及基本过程
基因表达的定义和意义
基因表达是指基因转录和翻译产生蛋白质的过程,对于生物体的生长、发育和适应 环境具有重要意义。
基因表达的基本过程
包括转录、翻译和蛋白质加工等步骤,其中转录是指DNA模板链在RNA聚合酶的作 用下合成RNA的过程,翻译是指mRNA在核糖体上合成蛋白质的过程,蛋白质加工 包括修饰、折叠和定位等步骤。
基因表达异常与疾病关系
基因表达异常的定义和类型
基因表达异常是指基因在转录或翻译过程中出现异常,导致蛋白质合成量或功能异常的现象。基因表达异 常可分为转录水平异常和翻译水平异常两种类型。
基因表达异常与疾病的关系
基因表达异常与多种疾病的发生和发展密切相关,如癌症、神经退行性疾病、自身免疫性疾病等。这些疾 病往往伴随着特定基因的异常表达,导致细胞增殖、分化、凋亡等生物学过程出现异常。因此,研究基因 表达异常与疾病的关系对于疾病的预防、诊断和治疗具有重要意义。
酶动力学原理及应用
米氏方程
01
介绍米氏方程的推导过程及其意义,解释米氏常数Km和Vmax
的含义及其在酶动力学研究中的应用。
酶促反应的影响因素
02
阐述温度、pH值、底物浓度、酶抑制剂和激活剂等对酶促反应
的影响及其机制。
酶动力学在医学中的应用
03
举例说明酶动力学在疾病诊断、药物设计和治疗等领域的应用。
3
蛋白质一级结构与功能的关系 一级结构是蛋白质空间构象和生物功能的基础。
蛋白质高级结构
01
02
03
蛋白质二级结构
指蛋白质分子中局部主链 的空间结构,包括α-螺旋、 β-折叠、β-转角和无规卷 曲等。

生物化学简介

生物化学简介

生物化学简介生物化学是研究生物体内分子组成、结构与功能之间关系的学科,它致力于揭示生命现象的化学基础以及生物分子的相互作用。

通过对生物分子的研究,生物化学为我们解开了许多生命奥秘,为生物医学、农业科学和环境保护等领域的发展做出了重要贡献。

一、生物分子的组成和结构生物分子是构成生命体的基本单位。

它们包括蛋白质、核酸、碳水化合物和脂质等多种类别。

蛋白质是生物体内最为重要的有机分子之一,它们由氨基酸组成,通过肽键相连形成多肽链或蛋白质。

核酸则是存储和传递遗传信息的分子,包括DNA和RNA。

碳水化合物是生物体内能量的主要来源,同时也具有结构性作用。

脂质是构成细胞膜的主要成分,同时还参与了许多生物过程。

二、生物分子的功能生物分子在生命过程中具有多种复杂的功能。

蛋白质能够参与到生命体的几乎所有生物过程中,如酶催化反应、结构支持、传递信号等。

核酸则通过DNA复制和转录过程,参与到遗传信息的传递和表达中。

碳水化合物作为能量储存和供应的分子,在细胞呼吸和光合作用等过程中发挥重要作用。

脂质不仅构成了细胞膜的基本骨架,还参与到细胞信号传导和物质转运等过程中。

三、生物化学与生命现象的关联生物化学研究揭示了生命现象的化学基础和分子机制。

通过研究生物分子的结构和功能,我们可以深入了解生命体的生长、发展和繁殖过程。

例如,生物化学研究发现了DNA的双螺旋结构,揭示了DNA复制和遗传信息传递的分子机制,为遗传学的发展奠定了基础。

此外,生物化学还揭示了许多疾病的发生发展机制,为药物设计和治疗提供了理论依据。

四、生物化学的应用领域生物化学的研究成果为许多领域提供了理论和技术支持。

在生物医学领域,生物化学为疾病诊断和治疗提供了重要依据,如药物研发、基因工程和诊断试剂的制备等。

在农业科学领域,生物化学的进展促进了作物良种的选育和育种技术的改进,提高了农作物产量和质量。

另外,生物化学的研究也使得环境科学得以发展,为环境污染治理和新能源的开发做出贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章蛋白质1.蛋白质组成:氨基酸{广义上是指分子中既有氨基又有羧基的化合物}2.氨基酸结构通式分为左旋和右旋. ?天然氨基酸为每种氨基酸都有D型和L型(组成蛋白质氨基酸,除甘氨酸外)两种异构体.按R基极性分:非极性氨基酸和极性氨基酸(非解离的极性氨基酸,酸性氨基酸,碱性氨基酸) 3.氨基酸的理化性质:等电点PI{在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为两性离子,呈电中性。

此时溶液的pH值称为该氨基酸的等电点。

}应用:若PI=5,放入PH=6的溶液,向哪极移动?4.肽键: 是由一个氨基酸的α-羧基与另一个氨基酸的α-氨基脱水缩合而形成的共价键。

5.蛋白质结构(1)一级结构是指多肽链中氨基酸序列。

形成一级结构的化学键:肽键(主要化学键),二硫键.(2)二级结构是指组成蛋白质的肽链的主链的空间结构,也就是肽链主链骨架原子的相对空间位置,不涉及氨基酸残基侧链的构象。

维系二级结构的主要化学键:氢键主要形式: β-折叠 , β-转角 ,无规卷曲 ,α-螺旋 (连续排列的肽平面旋转形成面螺旋.右手螺旋.酰胺平面与螺旋的长轴平行,一个AA0.15nm,每3.6个为一圈(0.54nm).在同一肽链内相邻的螺圈之间形成氢键,氢键的取向几乎与中心轴平行.AA的侧链伸向螺旋外侧.AA 的R基可以影响螺旋的形成)(3)蛋白质的三级结构是指在二级结构、超二级结构、结构域的基础上,多肽链再进一步折叠盘绕成更复杂的空间结构。

包括主链和侧链上所有原子在三维空间的分布。

蛋白质三级结构的形成和稳定主要靠弱的相互作用力或称非共价键、次级键,主要有氢键、范德华力、疏水作用和盐键(又称离子键)等。

(4) 蛋白质的亚基聚合成大分子蛋白质的方式称为蛋白质的四级结构。

各亚基间的结合力主要是氢键和离子键等非共价键。

6.蛋白质的变性: 在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

变性的本质:破坏非共价键,不改变蛋白质的一级结构。

第三章核酸1.核酸的组成:部分水解成核苷酸.核苷酸部分水解成核苷和磷酸.核苷可以水解称戊糖和含氮碱基.是生物体的基本组成,携带和传递遗传信息。

2.DNA与RNA区别{分子组成,分布,生理学功能}DNA 脱氧核糖核苷组成:D-2-脱氧核糖,碱基(AGCT),脱氧核糖核苷分布:90%以上分布于细胞核,其余分布于核外如线粒体,叶绿体,质粒等。

生理学意义:携带遗传信息,决定细胞和个体的基因型。

RNA 核糖核酸组成:D-核糖,碱基(AGCU),核糖核苷分布:90%分布细胞质,10%分布胞核生理学意义:参与细胞内DNA遗传信息的表达。

某些病毒RNA也可作为遗传信息的载体。

3.核苷是戊糖和含氮碱生成的糖苷. 糖苷键:核糖与碱基之间的C-N键.4.核酸的一级结构: 核酸中核苷酸的连接方式和排列顺序。

读向: 碱基序列从左到右表示5'—3',由3'-5’磷酸二酯键连接。

若两链反向平行,则需注明每条链的走向。

5.DNA的二级结构DNA双螺旋结构要点:①DNA分子由两条方向相反的平行多核苷酸链构成,一条链的5'末端与另一条的3'末端相对,两条链的糖-磷酸交替排列形成的主链沿共同的螺旋轴扭曲成右手螺旋.②两条链上的碱基均在主链内侧,一条链上的A一定与另一条链上的T配对,G一定与C配对.氢键维持双链横向稳定性.③成对碱基大致处于同一平面,该平面与螺旋轴基本垂直.碱基堆积力维持双链纵向稳定性。

④由于碱基对排列的方向性,使得碱基对占据的空间是不对称的,因此,在双螺旋的表面形成大小两个凹槽,分别称为大沟和小沟,二者交替出现.⑤大多数天然DNA属双链DNA. ⑥双链DNA分子主链上的化学键受碱基配对等因素影响旋转受到限制,是DNA分子比较刚硬,呈比较伸展的结构.但一些化学键亦可在一定范围内旋转,使DNA分子有一定的柔韧性.生物学意义(百度):1、DNA是主要的遗传物质,DNA双螺旋结构使其具有稳定的结构。

2、在DNA的复制过程中,DNA双螺旋结构中的每条可以作为模版,复制的子代DNA分子中,含有亲代DNA分子中的一条链,也就是半保留复制,保证复制的准确性。

3、在基因的表达过程中,DNA解旋酶作用下,一条链做模板,转绿成mRNA后,有利于DNA分子恢复到双链结构,也保证DNA的稳定性6.RNA种类及生物学作用:核蛋白体rRNA,核蛋白体组分;信使mRNA,蛋白质合成模板;转运tRNA,转运氨基酸;核内不均一RNA,成熟mRNA的前体;核内小SnRNA,参与hnRNA的剪接,转运;核仁小SnoRNA,rRNA的加工,修饰;胞浆小scRNA,蛋白质内质网定位合成的信号识别体的组分.7.核酸的性质(均不涉及共价键)紫外吸收性质:碱基具有共轭双键强烈吸收260-290nm波段紫外光,最大吸收峰在260nm附近. 变性:在某些理化因素作用下,核酸的双螺旋结构破坏,氢键断裂,变成单链,并不涉及共价键的断裂。

不涉及一级结构.{DNA变性本质是双键间氢键的断裂}溶解温度:Tm.紫外吸收的增加量达最大增量的一半时的温度.复性:在适当条件下,变性DNA的两条互补链可恢复天然的双螺旋构象.退火:热变性的DNA经缓慢冷却后即可复性.减色效应:复性后,核酸的紫外吸收降低.增色效应:DNA变性时其溶液紫外吸收增高30%-40%的现象。

第六章酶1.酶的特点:生物催化剂{高效性,专一性,调节性,对环境因素敏感}2.全酶:缀合蛋白质(由氨基酸残基组分,金属离子,有机小分子等化学成分)脱辅酶:全酶中的蛋白质部分. 辅因子:非蛋白质部分全酶=脱辅酶+辅因子3.酶专一性假说(P149)如何解释酶专一性?①锁与钥匙假说:认为酶表面具有特定形状,像一把锁,底物分子或底物分子的一部分像钥匙那样,专一地插入酶的特定部分,底物分子与酶分子在结构上具有紧密的互补关系.局限性在于不能解释酶如何能同时催化可逆反应的正逆反应.②诱导契合假说:酶分子的结构并非底物分子正好互补,党酶分子结合底物分子时,在底物分子的诱导下,酶的构象发生变化,成为能与底物分子密切契合的构象,从而催化底物的反应. 4.(理解)酶的活性中心:酶的活性部位.在整个酶分子中,只有一小部分区域的氨基酸残基与对底物的结合有催化作用,这些特异的氨基酸残基比较集中的区域. 如何形成的?(理解) 5.米氏方程:描述了反应速率与底物浓度之间的关系米氏常数:酶的特征性常数.当反应速率为最大反应速率一半时,底物的浓度.Km表示酶对底物的亲和力大小.6.影响酶促反应速率的因素:pH的影响,温度的影响,激活剂的影响,抑制剂的影响抑制剂分为:不可逆抑制剂和可逆抑制剂(竞争性抑制剂,非竞争性抑制剂,反竞争性抑制剂) 7.别构酶:具有别构调控作用的酶.别构效应:酶的调节部位可与某些化合物可逆的非共价结合,使酶发生结构的改变,进而改变酶的催化活性.8.酶原的激活: 某种物质作用于酶原使之转变为有活性的酶的过程.(酶原,不具备活性的酶的前体)第八章新陈代谢总论与生物氧化(不作为重点)1.生物氧化:有机物在生物体内氧的作用下,生成二氧化碳和水并释放能量的过程.特点: (1)生物氧化在常温、常压、接近中性的pH和多水环境中进行的,是在一系列酶、辅酶和中间传递体的作用下逐步进行的;(2)能量是逐步释放的,并以ATP的形式捕获能量.(3)CO2的生成时有机酸脱羧生成的,由于脱羧基位置不同,又有α-脱羧和β-脱羧之分.(4)水的生成是代谢物脱下氢经一系列的传递体与氧结合而生成的.(5)有严格的细胞定位.真核生物在线粒体中.在不含线粒体的元和细胞中,如细菌细胞在细胞膜上.2.呼吸链:代谢物上的氢原子被脱氢酶激活脱落后,经一系列的传递体,最后传递给被激活的氧分子,并与之结合生成水的全部体系.组成:①烟酰胺脱氢酶类(NAD+、NADP+为辅酶)②黄素脱氢酶类(以FMN、FAD为辅基)传递电子和H③铁-硫蛋白类传递电子④辅酶Q传递电子和H⑤细胞色素类传递电子顺序: 呼吸链中传递体的顺序基本是按照氧化还原电位进行排列。

3.氧化磷酸化作用:生物体通过生物氧化所产生的能量,除一部分用以维持体温外,大部分可以通过磷酸酸化作用转移至高能磷酸化合物ATP中,此种伴随放能的氧化作用而进行的磷酸化作用.(或伴随着放能的氧化作用而进行的磷酸化作用.)4.胞液中NADH的跨膜运转转运到线粒体(因为生物氧化发生在线粒体),才能通过呼吸链产生能量.两种穿梭方式:甘油-α-磷酸甘油穿梭系统:1.5个ATP(知道) 苹果酸穿梭系统:2.5个ATP第九章糖代谢1.糖酵解:1mol葡萄糖变成2mol丙酮酸(或乳酸)并伴随ATP生成的过程.限速酶:果糖磷酸激酶(最关键),己糖激酶,丙酮激酶.反应全过程中有三步不可逆的反应2.三羧酸循环:乙酰CoA的乙酰基部分是在有氧条件下通过一种循环被彻底氧化为CO2和H2O 的.这种循环开始于乙酰CoA与草酰乙酸缩合生成3个羧基的柠檬酸.限速酶:丙酮酸脱氢酶系,柠檬酸合成酶,异柠檬酸脱氢酶, α-酮戊二酸脱氢酶ATP产生方式:底物磷酸化,电子传递磷酸化 (1mol生成32molATP)3.糖异生作用:许多非糖物质如甘油,丙酮酸,乳酸以及某些氨基酸等能在肝中转变为葡萄糖.与糖酵解的区别:三步不同,需要绕过.P257(1)反应途径不同:糖酵解是葡萄糖降解为非糖物质的过程.糖异生是非糖物质转化为葡萄糖的过程.(2)反应场所不同:糖酵解在所有的细胞内都可以发生.糖异生只发生在肝脏或肾脏中.(3)能量消耗不同:糖酵解是产能过程.糖异生是耗能过程.第十三章 DNA的生物合成1.半保留复制: DNA在复制时,两条链解开分别作为模板,在DNA聚合酶的催化下按碱基互补的原则合成两条与模板链互补的新链,以组成新的DNA分子。

这样新形成的两个DNA分子与亲代DNA分子的碱基顺序完全一样。

由于子代DNA分子中一条链来自亲代,另一条链是新合成的,这种复制方式称为半保留复制。

2.原核生物DNA复制过程(1)复制的起始{解旋解链(拓扑异构酶,解链酶),形成复制叉;引发体组装}(2)复制的延长{①聚合子代DNA(DNA聚合酶)若在原核生物中,参与DNA复制延长的是DNA聚合酶Ⅲ;而在真核生物中,是DNA聚合酶α(延长随从链)和δ(延长领头链)。

②引发体的移动}(3)复制的终止{①去除引物(DNA聚合酶Ⅰ)(真核生物,RNA引物的去除,由一种特殊的核酸酶来水解,而冈崎片段仍由DNA聚合酶来延长。

),填补缺口②连接冈崎片段(DNA连接酶)}原料:①DNA聚合酶(DNA聚合反应,以四种dNTP作为底物,反应需要接受模板的指导,反应需要引物,DNA的生长方向为5’-3’,产物DNA性质与模板相同)?几种活性:5’-3’聚合酶活性及两种外切酶活性具有校正功能②DNA连接酶(可催化两段DNA片段之间磷酸二酯键的形成,而使两段DNA连接起来。

相关文档
最新文档