中考数学试题2008年广东湛江市

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湛江市2008年初中毕业生水平考试
数 学 试 题
说明:1.本试卷满分150分,考试时间90分钟.
2.本试卷共4页,共5大题.
3.答题前,请认真阅读答题卡上的“注意事项”,然后按要求将答案写在答题卡相
应的位置上.
4.请考生保持答题卡的整洁,考试结束,将试卷和答题卡一并交回. 注意:在答题卡上作图必须用黑色字迹的钢笔或签字笔.
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只 有一项是符合题目要求的.
1. 在2-、0、1、3这四个数中比0小的数是( )
A.2-
B.0
C.1 D .3
2. 人的大脑每天能记录大约8600万条信息,数据8600用科学计数法表示为( )
A . 40.8610⨯
B . 28.610⨯
C . 38.610⨯
D . 28610⨯
3. 不等式组1
3
x x >-⎧⎨
<⎩的解集为( )
A.1x >-
B.3x <
C.13x -<< D .无解
4. ⊙O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( )
A . 相交
B . 相切
C . 相离
D . 无法确定 5. 下面的图形中,是中心对称图形的是( )
A .
B .
C .
D .
6. 下列计算中,正确的是( )
A . 22-=-
B .=
C . 325a a a ⋅=
D . 2
2x x x -=
7. 从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是
1
2
,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 8. 函数1
2
y x =
-的自变量x 的取值范围是( ) A . 2x = B . 2x ≠ C . 2x ≠- D . 2x >
9.数据2,7,3,7,5,3,7的众数是()
A.2B.3C.5D.7
10.将如图1所示的Rt△ABC绕直角边BC旋转一周,所得几何体的左视图是()
11
.已知三角形的面积一定,则它底边a上的高
h与底边a之间的函数关系的图象大致是()
B.
C. D .
12.如图2所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()
A.2008B.2009C.2010D.2011
二、填空题:本大题共6小题,每小题4分,共24分.
13.湛江市某天的最高气温是27℃,最低气温是17℃,那么当天的温差是℃.14.分解因式:2
22
a ab
-=.
15.圆柱的底面周长为2π,高为3,则圆柱侧面展开图的面积是.
16.如图3所示,请写出能判定CE∥AB的一个条件.
17.图4
若宇宙中有一块陨石落在地球上,则它落在海洋中的概率是.
18.将正整数按如图5所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示实数9,则表示实数17的有序实数对是.
A B
E
图2
C
A
B
┅┅
三、解答题:本大题共5小题,每小题7分,共35分. 19. 计算:(1-)2008-(
π-3)0+4.
20. 某足球比赛的计分规则为胜一场得3分,平一场得
1分,负一场得0分.一个队踢14场
球负5场共得19分,问这个队胜了几场?
21. 有五张除字不同其余都相同的卡片分别放在甲、乙两盒子中,已知甲盒子有三张,分
别写有“北”、“京”、“奥”字样,乙盒子有两张,分别写有“运”、“会”字样,若依次从甲乙两盒子中各取一张卡片,求能拼成“奥运”两字的概率.
22. 如图6所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A
的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高. (精确到0.1米) (供选用的数据:sin 400.64≈,cos 400.77≈,tan 40≈
23. 如图7所示,已知等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC 与BD 相交于点O .请
在图中找出一对全等的三角形,并加以证明.
四、解答题:本大题共3小题,每小题10分,共30分.
24. 为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.
(1) 指出这个问题中的总体.
(2) 求竞赛成绩在79.5~89.5这一小组的频率.
(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
25. 如图9所示,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、
BC . (1)求证:∠ACO =∠BCD .
(2)若E B =8cm ,CD =24cm ,求⊙O 的直径.
26. 某农户种植一种经济作物,总用水量y (米3
)与种植时间x (天)之间的函数关系
式如图10所示.
(1)第20天的总用水量为多少米3

(2)当x ≥20时,求y 与x 之间的函数关系式.
(3)种植时间为多少天时,总用水量达到7000米3

图8
图10
天)
五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 先观察下列等式,然后用你发现的规律解答下列问题.
11
1122=-⨯ 111
2323=-⨯ 111
3434
=-⨯ ┅┅ (1) 计算
111111223344556
++++=⨯⨯⨯⨯⨯ . (2)探究
1111......122334(1)
n n ++++=⨯⨯⨯+ .(用含有n 的式子表示) (3)若 1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为17
35
,求n 的值.
28. 如图11所示,已知抛物线2
1y x =-与x 轴交于A 、B 两点,与y 轴交于点C . (1)求A 、B 、C 三点的坐标.
(2)过点A 作AP ∥CB 交抛物线于点P ,求四边形ACBP
(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ⊥x 轴
于点G ,使以A 、M 、G 三点为顶点的三角形与∆PCA 相似. 若存在,请求出M 点的坐标;否则,请说明理由.
湛江市2008年初中毕业水平考试
数学试题参考答案及评分标准
一、选择题:本大题共12小题,每小题3分,共36分.
1. A 2. C 3. C 4. A 5. D 6. C 7. B 8. B 9. D 10. A 11 D 12. C
二、填空题:本大题共6小题,每小题4分,共24分.
13. 10 14.2()a a b - 15. 6π 16.∠DCE =∠A 或∠ECB =∠B 或∠A +∠ACE =180︒ 17. 0.71 18.(6,5)
三、解答题:本大题共5小题,每小题7分,共35分. 19. 解:原式=112-+ ·········································································· (4分)
= 2 ················································································ (7分)
20. 解:设这个队胜了x 场,依题意得:
3(145)19x x +--= ·
································································ (4分) 解得:5x = ············································································· (6分)
答:这个队胜了5场. ·································································· (7分)
21.
························ (4分)
从表中可以看出,依次从甲乙两盒子中各取一张卡片,可能出现的结果.
有6个,它们出现的可能性相等,其中能拼成“奥运”两字的结果有1个. ···· (5分)
所以能拼成“奥运”两字的概率为
1
6. ··············································· (7分) 22. 解:在Rt △ADE 中,tan ∠ADE =DE AE
············· (2分) ∵DE =10,∠ADE =40︒
∴AE =DE tan ∠ADE =10tan 40︒≈100.84⨯=8.4 (4分) ∴AB =AE +EB =AE +DC =8.4 1.59.9+= ················· (6分) 答:旗杆AB 的高为9.9米. ····························· (7分)
23. 解:∆ABC ≌∆DCB ··································· (2分) 证明:∵在等腰梯形ABCD 中,AD ∥BC ,AB =DC ∴∠ABC
=∠DCB ························
· (4分) 在∆ABC 与∆DCB 中
AB DC ABC DCB BC CB =⎧⎪
∠=∠⎨⎪=⎩
∴∆ABC ≌∆DCB ··················································· (7分)(注:答案不唯一) 四、解答题:本大题共3小题,每小题10分,共30分.
24. 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩. ··················· (2分)
(2)
1515
0.256912151860
==++++ ·
··············································· (5分) 答:竞赛成绩在79.5~89.5这一小组的频率为0.25. ························ (6分)
(3)9
200030069121518
⨯=++++ ·
·············································· (9分) 答:估计全校约有300人获得奖励. ············································· (10分)
25. 证明:(1)∵AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于E ,
∴CE =ED , CB DB = ·························· (2分) ∴∠BCD =∠BAC ································· (3分) ∵O A =O C ∴∠O AC =∠O CA
∴∠AC O=∠BCD ·································· (5分) (2)设⊙O 的半径为Rcm ,则O E =O B -EB =R -8
CE =
21CD =2
1
⨯24=12 ······························ (6分) 在Rt ∆CE O 中,由勾股定理可得
O C 2
=O E 2
+CE 2
即R 2
= (R -8)2
+122
···································· (8分) 解得 R=13 ∴2R=2⨯13=26 答:⊙O 的直径为26cm . ························································· (10分)
59.5
49.5
79.5 89.5 69.5 人数
99.5
成绩
∴y 与x 之间的函数关系式为:y=300x -5000 ···································· (7分)
(3)当y =7000时
有7000=300x -5000 解得x =40
答 :种植时间为40天时,总用水量达到7000米3 ································ (10分) 五、解答题:本大题共2小题,其中第27题12分,28题13分,共25分. 27. 解:(1)
5
6 ··················································································· (3分) (2)1
+n n
··················································································· (6分)
(3)
1111......133557(21)(21)
n n ++++⨯⨯⨯-+ =
)7151(21)5131(21)311(21-+-+-+ ┄ +)121121(21+--n n =)1211(21+-n =12+n n ···························································· (9分) 由12+n n =35
17 解得17=n ············································· (11分) 经检验17=n 是方程的根,∴17=n ············································ (12分)
28.解:(1)令0y =,得210x -= 解得1x =±
令0x =,得1y =-
∴ A (1,0)- B (1,0) C (0,1)- ···(2分)
(2)∵O A =O B =O C =1 ∴∠BAC =∠AC O=∠BC O=45
∵A P ∥CB , ∴∠P AB =45
过点P 作P E ⊥x 轴于E ,则∆A P E 为等腰直角三角形
令O E =a ,则P E =1a + ∴P (,1)a a +
∵点P 在抛物线2
1y x =-上 ∴211a a +=- 解得12a =,21a =-(不合题意,舍去)
∴P E =3 ···························································································· 4分)
∴四边形ACB P 的面积S =
12AB •O C +1
2AB •P E =11
2123422
⨯⨯+⨯⨯= ······································ 6分) (3). 假设存在
∵∠P AB =∠BAC =45 ∴P A ⊥AC
∵MG ⊥x 轴于点G , ∴∠MG A =∠P AC =90 在Rt △A O C 中,O A =O C =1 ∴AC
在Rt △P AE 中,AE =P E =3 ∴A
P= ················································ 7分) 设M 点的横坐标为m ,则M 2
(,1)m m - ①点M 在y 轴左侧时,则1m <- (ⅰ) 当∆A MG ∽∆P CA 时,有
AG PA =MG
CA
∵A G=1m --,MG=21m -
2= 解得11m =-(舍去) 22
3
m =
(舍去) (ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MG
PA

2= 解得:1m =-(舍去) 22m =-
∴M (2,3)- ·········································································· (10分)
② 点M 在y 轴右侧时,则1m > (ⅰ) 当∆A MG ∽∆P CA 时有
AG PA =MG
CA
∵A G=1m +,MG=21m -

2= 解得11m =-(舍去) 243
m =
∴M 47
(,)39
(ⅱ) 当∆M A G ∽∆P CA 时有AG CA =MG
PA

2= 解得:11m =-(舍去) 24m = ∴M (4,15)
∴存在点M ,使以A 、M 、G 三点为顶点的三角形与∆P CA 相似
M 点的坐标为(2,3)-,47(,)39
,(4,15) ·································· (13分)
说明:以上各题如有其他解(证)法,请酌情给分。

相关文档
最新文档