fluent学习心得
关于Fluent的学习体会1
学习体会从一开始接触到计算流体力学起,我感到了一股压力。
因为在图书馆中少有关于这一类的书籍,而且之前也没有关注过这一方面,所以一开始我就有点不知所措。
之后从图书馆借到一本关于此专业的书,由于过于的偏向于理论介绍,因此说实话根本就看不下去……期中,我还是粗浅的了解到了一些流体力学方面的知识(除了课上讲过的)。
《工程计算流体力学(Computation Fluid Dynamics for Engineers)》(唐森·萨波茨)。
看到最多的就是Navier—Stokes(NS方程组)方程组中的连续性方程。
“流体的属性会随着温度的变化而变化,因此连续性方程、动量方程与能量方程需耦合……”还有NS方程的积分形式,粘性应力张量形式,理想气体条件等等。
其中尤为偏微分方程居多,所以只是走马观花的浏览了一下,并没有真正深入的了解或者尝试去理解。
还有一些就是关于守恒方程的分类,对于不可压流动,NS方程是椭圆形。
“通过简单的旋转和拉伸变换,平面中的椭圆方程可以简化为拉普拉斯算子(……)”之类的,都比较的杂乱,没有一个简单的体系来支撑。
我觉得现在在理论学习方面遇到的最大问题就是不会把书上的知识串联起来,形成一个完整的知识体系,如果那样的话我觉得学习会比较的有兴趣。
在国庆之后到现在我还没有打开过这本书,我心里一直很纠结,而且说实话大三的专业课也不是很轻松的能够理解的……《FLUENT流体工程仿真计算实例与应用》(韩占忠等编)这本书是我从研究生那借到的,到现在还没还。
因为我觉得这本书比较贴近实际而且书中前几节的内容十分的详细,关于不同模型网格设计的每一个步骤都很详细,所以我可以花比较多的时间在这上面。
而且第一章的概论也比较的简洁,但其中也出现了很多的问题。
1.第一步在Gambit中TOOLS……设置网格的初步形状时,输入相应的数值后(apply),出现在Gambit工作面中的网格没有完全的显示,一开始不知道如何解决,因为教材中没有解决相应问题的提示,只能自己摸索。
fluent的一些学习心得
fluent的一些学习心得我是一位从事fluent数值模拟多年的员工,也学了一些相关方面的技能。
希望能借助这个平台,将我所学到的东西传播给大家。
这是我之前学习fluent软件的一些心得,希望对大家有帮助。
一、重复、模仿阶段(主要是看网上的教程)1)学习网格的概念,非结构网格和结构性网格的区别,流体域与固体域的耦合等。
2)学习网格的画法,熟练掌握画网格的流程以及需要注意的事项。
个人推荐结构性网格用icem-cfd软件,非结构网格用ansys meshing软件,有时也可以用混合网格组装的形式。
这两个软件适合入门,比较简单(如果几何结构比较复杂,多达十几种不同零件的话,可以学习fluent meshing这个软件,这个软件难度比较高!)。
前期看教程,不需要搞懂每一步是什么原因,我们要做的,是记住这些操作流程和模仿,并且尽量地做到熟练、熟练、熟练3)熟悉fluent的模拟流程。
前期我觉得学习画网格的时间应该占70%左右,其余时间熟悉fluent模拟操作。
二、思考每一步操作的原因这时,我们需要思考教程中的操作流程,为什么要那么操作,以及作者的思路是怎么样的。
这时可以将教程看两遍,甚至三遍,倍速播放,这时不需要模仿操作,只需要思考作者的操作原因就行,也不会花费较多的时间。
这时遇到想不通的问题,要多和师兄师姐沟通,多用度娘,要善于看软件的帮助文档,有时候看帮助文档的效果是最好的。
这一阶段是最耗时间的,也是最困难的部分。
三、归纳总结+重复练习FLUENT——udf实例文档下载可以将教程按照网格画法、模拟方法(流体、流固耦合还是多相耦合)、动网格和静网格的不同、常见的问题解决等方法归类,总结出每一类的相同点和不同点。
相同点很重要,每个项目都会用到,都是相通的。
不同点我们可以整理出来,因为每个项目都不一样,到时候现学就可以。
最重要的一点,就是要多见识不同的模拟,平常重复练习。
因为fluent软件一段时间不用,就可能全忘了,需要持续不断地学习。
fluent学习心得
v表示法线速度,KL是试验系数。可以是常数,也可是多项式,分段函数。 对于多项式,有公式: 。 对于热计算: ;其中系数h可为常数或函数。对多项式:
你可以作后处理。 6.22 多孔突变边界条件:
6.23 用户定义的风扇边界条件:你可以周期的产生截面文件,用于指定风扇的压 用于周期性地改变风扇的参数)。
输入:1,热力边界条件,2,壁面运动条件,3,剪切力条件(对于滑动壁),4, 件,7,辐射边界,8,分散相边界,9,多相边界。
定义热力边界:设计能量计算时,需要设定。有5中方法。1,固定热流密度,2, 辐射和对流的复合热交换。 对于双面壁,你可以选择是否两面是对称的。如果热壁面的厚度不为零,还需要输 部的热传导。(称为壳传导)在壁面面板的thermal页面输入参数。 1, 输入热流密度,默认值为0,2,指定壁面温度后,通过公式计算热流密度。3,对 数,利用公式计算热流密度。4,外部辐射,设定外部发射率和外部温度。5,辐射和 2, 薄壁的热阻:你需要输入薄壁的材料种类,壁厚,以及内部的热源强度。热阻的定 3, 两面壁的热力边界条件:1,如果定义为对偶壁面,则不需要其他的热力参数,( 2,非对偶的壁面,需要为两区域分别指定不同的参数(只能选定温度和热流密度 数。 4, 壁面中的壳传导:除了计算穿过壁面的热传导,也计算壁面内部的热传导(用于能量 制:1,用于3D,2,用于分离的解算器,3,不能用于非预混合燃烧,4,不能用于多相混合物 模型共同使用时,壳传导壁不能是半透明的。6,壳传导壁不能拆分或者合并,如果想 面进行操作,再对拆分或者合并后的壁面进行壳传导的计算。7,壳传导壁不能是已 热平衡报告中。 5,
周期边界条件:两种,一种允许压力损失,一种不允许。适用于模型中两个相对平面 不允许压力损失的情况:1,平移周期边界,边界和几何轴心平行,2,旋转周期, 也能输入压力升高)。注意:与边界相邻区域的单元不一定要求运动。你需要利用 大、最小和平均夹角。如果这些值之间的差异不能忽略的话,那么你的模型就不具有周期特性
Fluent心得
Fluent心得fluent经典问题及答疑1对于刚接触到fluent新手来说,面对铺天盖地的学习资料和令人难读的fluenthelp,如何学习才能在最短的时间内入门并掌握基本学习方法呢?(#61)2cfd计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。
(13楼)3在数值演示过程中,线性化后的目的就是什么?如何对排序区域展开线性化?线性化时通常采用哪些网格?如何对掌控方程展开线性?线性化常用的方法存有哪些?它们存有什么相同?(#80)4常见离散格式的性能的对比(稳定性、精度和经济性)(#62)5在利用非常有限体积法创建线性方程时,必须严格遵守哪几个基本原则?(#81)6流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?(#130)7可压缩流动和不容放大流动,在数值数学分析上各有何特点?为何不容放大流动在解时反而比可压缩流动存有更多的困难?(#55)8什么叫边界条件?有何物理意义?它与初始条件有什么关系?(#56)9在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则?10在数值排序中,略偏微分方程的双曲型方程、椭圆型方程、抛物型方程存有什么区别?(#143)11在网格分解成技术中,什么叫做贴体坐标系?什么叫做网格单一制求解?(#35)12在gambit的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系?13在gambit中表明的“check”主要通过哪几种去推论其网格的质量?及其在搞网格时大致注意到哪些细节?(#38)14画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?(#169)15对于自己的模型,大多数人存有这样的见解:我的模型如何去图画网格?用什么样的方法最简单?这样搞网格到底对不对?(#154)16在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?(#40)17依据实体在gambit建模之前精简时,必须遵从哪几个原则?(#170)18在设置gambit边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2d)?(#128)19为何在分割网格后,还要选定边界类型和区域类型?常用的边界类型和区域类型存有哪些?(#127)20何为流体区域(fluidzone)和固体区域(solidzone)?为什么要使用区域的概念?fluent是怎样使用区域的?(#41)21如何监控fluent的计算结果?如何推论排序与否发散?在fluent中发散准则就是如何定义的?分析排序收敛性的各控制参数,并表明如何挑选和设置这些参数?化解不发散问题通常的几个化解方法就是什么?(9楼)22什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?(7楼)23在fluent运转过程中,经常可以发生“turbulenceviscousrate”少于了极限值,此时例如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?(#28)24在fluent运行计算时,为什么有时候总是出现“reversedflow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?(#29)25冷却过程中经常碰到一个“棘手”问题就是排序后温度场没什么变化?即为燃烧问题,化解排序过程中燃烧的方法存有哪些?什么原因引发燃烧困难的问题?(#183)26什么叫问题的初始化?在fluent中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?(12楼)27什么叫做pdf方法?fluent中演示煤粉冷却的方法存有哪些?(#197)28在利用prepdf排序时发生不稳定性如何化解?即为均衡排序失利。
fluent读书感言
读书感言
我最近阅读了《FLUENT入门与进阶教程》这一本书,该书作者于勇,曾担任东北师范大学副教授,设计工程师,2010年被评为“全国劳动模范”。
《FLUENT入门与进阶教程》是一本介绍计算流体力学软件FLUEN'T应用方法的指导性教材。
全书主要内容包括FLUENT软件概述、流体力学与计算流体力学基础、流体流动的数值模拟、自然对流与辐射传热、离散相的数值模拟、多相流模型、燃烧的数值模拟一组分输运与化学反应模型、移动与变形区域中流动问题的模拟、FLUENT中常用的边界条件、用户自定义函数UDF、并行计算等。
其中,书中每个章节中的实例均有详细的说明与详尽的操作步骤,看书时,我们可以按照书中的提示与步骤操作即可完成一个具体问题的数值模拟与分析,进而逐步掌握利用FLUEN'T进行流体流动与传热数值模拟的基本方法和技巧。
《FLUENT入门与进阶教程》所选实例具有代表性,有一定的难度(例如飞行器外流与复杂旋风分离器内流的数值模拟),我可以通过这些实例的学习比较迅速掌握解决实际工程问题的思路与方法。
我觉得边看边操作的学习效果比较好,基本简单的操作比较好学,难点的需要好好琢磨。
而且我发现读书可以帮助我
们逐渐地超越自身,在精神上逐渐地从日常生活中突围,从而不断地走向开阔和“无限”。
fluent课程设计心得与体会
fluent课程设计心得与体会一、课程目标知识目标:1. 让学生掌握本章节关键知识点,如词汇、语法结构,并能够熟练运用到日常交流中。
2. 通过课程学习,使学生对英语国家的文化、习俗有更深入的了解,提高跨文化交际能力。
技能目标:1. 培养学生流利、准确地运用英语进行口语表达的能力,提高听说水平。
2. 培养学生自主阅读和分析英文资料的能力,提升阅读理解水平。
情感态度价值观目标:1. 培养学生对英语学习的兴趣和热情,增强自信心,形成主动学习的良好习惯。
2. 培养学生的团队合作精神,学会倾听、尊重他人意见,提高人际交往能力。
课程性质:本课程以口语交流为主,注重实践性与应用性,结合课本内容,提高学生的英语实际运用能力。
学生特点:学生处于年级中高级阶段,具备一定的英语基础,求知欲强,喜欢互动、实践性强的课程。
教学要求:教师应注重启发式教学,创设情境,激发学生兴趣,引导学生主动参与,提高课堂互动性。
同时,关注学生个体差异,实施分层教学,使每个学生都能在课程中收获成长。
通过课程目标的实现,为学生后续英语学习打下坚实基础。
二、教学内容本章节教学内容围绕以下三个方面展开:1. 词汇与语法:选取课本相关章节的核心词汇和语法点,如动词时态、名词性从句等,通过实例讲解和练习,帮助学生熟练掌握并运用。
2. 口语交流:结合课本话题,设计情境对话和小组讨论,涵盖日常生活、学校活动等场景,提高学生的口语表达能力。
3. 文化背景:引入英语国家的文化、习俗等内容,让学生在了解文化背景的基础上,提高跨文化交际能力。
具体教学安排如下:1. 词汇与语法:共计4课时,分别讲解动词时态、名词性从句、形容词比较级和最高级等语法点,并配以相关词汇练习。
2. 口语交流:共计4课时,围绕课本话题,设计情境对话和小组讨论,引导学生运用所学词汇和语法进行口语表达。
3. 文化背景:共计2课时,通过讲解和讨论,让学生了解英语国家的文化、习俗,提高跨文化交际能力。
Fluent学习的总结
Fluent学习总结报告学号:班级:姓名:指导老师:前言FLUENT是世界上流行的商用CFD软件包,包括基于压力的分离求解器、基于压力的耦合求解器、基于密度的隐式求解器、基于密度的显示求解器。
它具有丰富的物理模型、先进的数值方法和强大的前后处理功能,可对高超音速流场、传热与相变、化学与相变、化学反应与燃烧、多相流、旋转机械、变/动网络、噪声、材料加工复杂激励等流动问题进行精确的模拟,具有较高的可信度,。
用户自定义函数也为改进和完善模型,处理个性化问题和给出更合理的边界条件提供了可能。
经过这一个学期对 Fluent的初步入门学习,我对其有了初步的了解,通过练习一些例子,掌握了用 Fluent 求解分析的大概步骤和对鼠标的操作,也大概清楚这些分析有什么用。
由于软件和指导资料几乎全部都是英文书写,还没能完全地理解软件上各个选项的意义和选项之间的联系,目前仅仅是照着实例练操作,要想解决实际问题还远远不够,不过孰能生巧,我相信经过大量的练习,思考,感悟,我一定可以熟练掌握并运用 Fluent。
本学习报告将从Fluent的应用总结分析和几个算例的操作来叙述。
fluent 简单操作指南1.读入文件file--read--case找到.msh文件打开2.网格检查grid-check网格检查会报告有关网格的任何错误,特别make sure最小体积不能使负值;3.平滑和交换网格grid-smooth/swap---点击smooth再点击swap,重复多次;4.确定长度单位grid-scale----在units conversion中的grid was created in中选择相应的单位,点击change length units给出相应的范围,点击scal,然后关闭;5.显示网格display--grid建立求解模型1.define-models-solver(求解器)2.设置湍流模型define-models-viscous3.选择能量方程define-models-energy4 设置流体物理属性define-materials,进行设置,然后点击change/create,弹出的对话框点NO。
Fluent软件学习心得与体会
入门阶段
1.学习专业知识,奠定基石
弄清楚了软件的用途以及安装方法之后,网格生成技巧和流体力学基础知识是学习该 软件的基础。做CFD模拟的人都知道,好的网格质量非常有利于得出正确的结论,对于复杂 的物理模型,好质量网格的生成可能要占整个计算的70%的时间,因此,网格生成技巧的学 习非常重要。 要做CFD模拟,一定的流体力学知识是基础,只有这样,才能正确构建求解思路并判断 结果的可信度,同时为数学模型的建立奠定基础。
提高阶段
1.参加讨论会和浏览各相关论坛,为我所用
有了算例基础之后,这个时候要尝试自己来计算问题和解决问题。在自己独立计算的 过程中,不可避免地会遇到不懂或者不会解决的问题,这个时候可以参加小范围的讨论,如 加入软件交流群或者向相关优秀论坛进行发帖请教。 每计算完一个算例,最好认真进行小结。在和同学一起讨论交流的时候,可以通过人
入门阶段
2.学习算例及帮助文件,事半功倍
和众多其它软件一样,帮助文件是最有效的文件之一。由于帮助文件是英文的,英语 基础差的话,看起来会很吃力,建议参照几本中文教材,对照教材中的算例进行练习,这样 可以达到事半功倍的效果。算例要一个一个地啃通,并且经常做笔记有利于积累和提高。 看了一定的算例之后,再回过头来看帮助文件,会觉得非常地轻松,保持一个愉快的 心态非常有助于对软件的学习。
家的操作和讲解,可以省去很多看冗长帮助文件的时间。讨论交流的氛围非常有利于软件的
学习,会议讨论的问题和解决方法最好记录备案,如形成会议纪要的形式,这样不但可以方 便自己的学习,对后来学习者也是一笔省时ቤተ መጻሕፍቲ ባይዱ力的巨大财富。
提高阶段
2.弄清原理,一通百通
在自己算算例的过程中,会遇到各种各样的问题,最常见的是网格质量的问题。 如何建立较好的网格质量模型,一是可以去图书馆查阅相关的书籍,二是可以去优秀 论坛和版主一起同步进行网格划分的练习。 原理的东西对于初学者相对较难,但是随着逐步学习的经验积累以及不断对该文献的 翻阅弄通,在逐步熟悉了原理之后,你会发现计算越来越简单,你的软件应用能力也会明显 越来越强。
fluent学习心得
1. 分离式求解器和耦合式求解器:都适用于从不可压到高速可压的很大范围的流动,总得来说,计算高速可压时,耦合式求解器更有优势;分离式求解器中有几个模型耦合式求解器中没有,如VOF,多项混合模型等。
2. 对于绝大多数问题,选择1st-Order Implicit就已经足够了。
精度要求高时,选择2st-Order Implicit.而Explicit选项只对耦合显式求解器有效。
3. 压力都是相对压力值,相对于参考压力而言。
对于不可压流动,若边界条件中不包含有压力边界条件时,用户应设置一个参考压力位置。
计算时,fluent强制这一点的相对压力值为0.4. 选择什么样的求解器后,再选择什么样的计算模型,即通知fluent是否考虑传热,流动是无粘、层流还是湍流,是否多相流,是否包含相变等。
默认情况,fluent只进行流场求解,不求解能量方程。
5. 多相流模型:其中vof模型通过单独的动量方程和处理穿过区域的每一流体的容积比来模拟两种或三种不能混合的流体。
6. 能量方程:选中表示计算过程中要考虑热交换。
对于一般流动,如水利工程及水力机械流场分析,可不考虑传热;气流模拟时,往往要考虑。
默认状态下,fluent在能量方程中忽略粘性生成热,而耦合式求解器包含有粘性生成热。
7. 粘性模型:inviscid无粘计算;Laminar模型,层流模型;k-epsilon(2 eqn)模型,目前常用模型。
8. 材料定义:比较简单9. 边界条件:见P210-21110. 给定湍流参数:在计算区域的进口、出口及远场边界,需给定输运的湍流参数。
Turbulence specification Method项目,意为让用户指定使用哪种模型来输入湍流参数。
用户可任选其一,然后按公式计算选定的湍流参数,并作为输入。
湍流强度,湍动能k,湍动耗散率e。
11. 常用的边界条件:压力进口:适用于可压和不可压流动,用于进口的压力一直但流量或速度未知的情况。
Fluent软件学习心得与体会
Fluent软件学习心得与体会Fluent软件学习心得与体会作为一名工科学生,学习和掌握流体力学相关的软件工具是非常重要的。
在这方面,ANSYS Fluent软件是被广泛使用的一款流体仿真软件,它具有强大的求解能力和友好的用户界面。
在我深入学习并应用这款软件的过程中,我积累了许多宝贵的心得体会,现在将和大家分享一下。
首先,我认为系统性学习和理解基本原理是掌握Fluent软件的关键。
在开始使用这款软件之前,我先通过翻阅相关的教材和视频教程了解了流体力学的基本理论和模型。
这让我对软件中的各项参数和模型有了更深刻的认识,并且使我能够更好地应用软件解决流体力学问题。
其次,Fluent软件的用户界面相对来说算是比较友好和直观的。
但在实际使用中,我发现了一些需要注意的地方。
首先是网格的设置,合理的网格划分对于数值模拟的结果准确性有着重要的影响。
我学会了在软件中使用不同的网格生成方法,并且根据具体的问题进行优化。
其次是模型选择和边界条件的设定。
在使用Fluent软件时,根据实际问题需求选择合适的模型,并设置合理的边界条件是非常重要的。
我在实践中不断尝试和调整,逐渐掌握了这些技巧。
另外,Fluent软件提供了丰富的后处理功能,能够对仿真结果进行多种可视化展示。
在我的学习过程中,我学会了使用软件中的不同后处理工具,如云图、曲线图、剖面图等,来直观地展示流场的各项参数。
这些可视化结果帮助我更深入地理解流体动力学的本质,并且能够有效地与实际问题进行对比,进一步提升仿真结果的准确性。
另外,Fluent软件不仅仅用于传统的流体动力学问题仿真,还可以用于多学科领域的耦合问题仿真。
例如,我曾经用Fluent软件进行了流体与固体的热传导耦合问题的仿真计算。
通过这个实践,我发现Fluent软件能够与其他ANSYS软件进行无缝的耦合,实现多学科问题的综合求解。
这为解决更加复杂的实际工程问题提供了很大的方便。
总的来说,学习和应用Fluent软件使我在流体力学领域的研究和实践中受益匪浅。
fluent使用总结(本站推荐)
fluent使用总结(本站推荐)第一篇:fluent使用总结(本站推荐)3.1计算流体力学基础与FLUENT软件介绍 3.1.1计算流体力学基础计算流体力学(Computational Fluid Dynamics,简称CFD)是利用数值方法通过计算机求解描述流体运动的数学方程,揭示流体运动的物理规律,研究定常流体运动的空间物理特性和非定常流体运动的时空物理特征的学科[}ss}。
其基本思想可以归纳为:把原来在时间域和空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关十这些离散点上场变量之间的关系的代数方程组,然后求解代数方程组获得场变量的近似值[f=}}l计算流体力学可以看作是在流动基本方程(质量守恒方程、动量守恒方程、能量守恒方程)控制下对流动的数值仿真。
通过这种数值仿真,可以得到流场内各个位置上的基本物理量(如速度、压力、温度和浓度等)的分布以及这些物理量随时间的变化规律。
还可计算出相关的其它物理量,如旋转式流体机械的转矩、水力损失和效率等。
此外,与CAD联合还可进行结构优化设计等。
过去,流体力学的研究主要有实验研究和理论分析两种方法。
实验研究主要以实验为研究手段,得到的结果真实可信,是理论分析和数值计算的基础,其重要性不容低估。
然}fu实验往往受到模型尺寸、流场扰动和测量精度等的限制,有时可能难以通过实验的方法得到理想的结果。
此外,实验往往经费投入较大、人力和物力耗费较大及周期较长;理论分析方法通常是利用简化的流动模型假设,给出所研究问题的解析解或简化方程。
然}fu随着时代的发展,这些方法已不能很好地满足复杂非线性流体运动规律的研究。
理论分析方法的优点是所得结果具有普遍适用性,各种影响因素清晰可见,是指导试验研究和验证新的数值计算方法的理论基础。
但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。
}fU对十非线性情况,只有少数流动才能得到解析结果。
Fluent学习总结
FLUENT学习总结1 概述:FLUENT是目前处于世界领先地位的商业CFD软件包之一,最初由FLUENT Inc.公司发行。
2006年2月ANSYS Inc.公司收购FLUENT Inc.公司后成为全球最大的CAE软件公司。
FLUENT是一个用于模拟和分析复杂几何区域内的流体流动与传热现象的专用软件。
FLUENT提供了灵活的网格特性,可以支持多种网格。
用户可以自由选择使用结构化或者非结构化网格来划分复杂的几何区域,例如针对二维问题支持三角形网格或四边形网格;针对三维问题支持四面体、六面体、棱锥、楔形、多面体网格;同时也支持混合网格。
用户可以利用FLUENT提供的网格自适应特性在求解过程中根据所获得的计算结果来优化网格。
FLUENT是使用C语言开发的,支持并行计算,支持UNIX和Windows等多种平台,采用用户/服务器的结构,能够在安装不同操作系统的工作站和服务器之间协同完成同一个任务。
FLUENT通过菜单界面与用户进行交互,用户可以通过多窗口的方式随时观察计算的进程和计算结果。
计算结果可以采用云图、等值线图、矢量图、剖面图、XY散点图、动画等多种方式显示、存贮和打印,也可以将计算结果保存为其他CFD软件、FEM软件或后处理软件所支持的格式。
FLUENT还提供了用户编程接口,用户可以在FLUENT的基础上定制、控制相关的输入输出,并进行二次开发。
1.1 FLUENT软件包的组成针对不同的计算对象,CFD软件都包含有3个主要功能部分:前处理、求解器、后处理。
其中前处理是指完成计算对象的建模、网格生成的程序;求解器是指求解控制方程的程序;后处理是指对计算结果进行显示、输出的程序。
FLUENT软件是基于CFD软件的思想设计的。
FLUENT软件包主要由GAMBIT、Tgrid、Filters、FLUENT几部分组成。
(1)前处理器。
包括GAMBIT、Tgrid和Fliters。
其中GAMBIT是由FLUENT Inc.公司自主开发的专用CFD前置处理器,用于模拟对象的几何建模以及网格生成。
FLUENT的学习总结
FLUENT软件的学习总结通过这段时间对FLUENT软件的学习,我发现这个软件有庞大的参数设置和边界条件设置,同时要应用好这个软件也需要扎实的流体力学、传热学、导热学等基础知识。
在逐步的学习和摸索的过程中我总结有以下几个核心问题需要面对和研究。
第一.GAMBIT软件中的边界设置错误问题当在gambit中进行边界条件的设置时,路面上方十米处设置辐射源时,只要选择RADIATOR在网格输出时就会出现错误的提示,如选择WALL来作为边界,或者选择其它项时则不会出现这种情况。
请教一些人后,有人认为是网格划分的问题,认为对于网格的划分,要求控制网格的密度,可以遵循从线到面的原则,不能将所有边的网格点都定死,必须有一些边不定义网格,如四边形区域,一般只定义相邻两个边的网格,但是我在重新划分后还是不能解决。
后来在gambit2.3.16版本下运行也出现同样的问题。
所以现在对辐射面还是暂时设定为WALL,这直接影响到在msh文件导入fluent 后的边界条件设置。
同时在导入FLUENT也会出现如下的错误提示。
第二.Fluent中辐射模型的选用FLUENT 中可以用5 种模型计算辐射换热问题。
这5 种模型分别是离散换热辐射模型(DTRM)、P-1 辐射模型、Rosseland 辐射模型、表面辐射(S2S)模型和离散坐标(DO)辐射模型。
这五种模型究竟哪一种最适合路面对空气辐射的情况,由于没找到相关的算例,只能预估选择模型,根据看一些辐射算例和相关论坛,总结出要从以下几个方面去考虑:(1)光学厚度:可以用光学厚度(optical thickness)作为选择辐射模型的一个指标,看到一些论坛上关于光学厚度选模型的文章,由于我的模型的介质是空气,而空气的光学厚度相对其他介质比较小,所以选用P-1 模型或DO 模型,DO 模型的计算范围更大,但是同时计算量也更大,对计算机要求更高。
(2)散射:P-1、Rosseland 和DO 模型均可以计算散射问题,而DTRM 模型则忽略了散射的影响。
Fluent学习总结
0 起因接触Fluent这款软件不到两年。
在此之前一直在使用CFX。
CFX的使用时间其实也不到三个月,伴随着项目的结束也自然的放下了。
再那之前,我甚至还不知道什么是CFX,什么是CFD。
研一的一整年基本上没去过实验室,整天就是在教室或寝室中度过,上课之余玩玩游戏,我以为研究生三年就会这么度过,日子过得很空虚。
我的真正导师并没有什么项目,说出来也许很好笑,在整个研一一年里,我都没有见过他,可以说是一个传奇中的人物,他将我委托给另外一个老师。
当时我不知道这些情况,是后来老师告诉我的我才明白。
先不讲这些无关的。
当时虽然每天上上课打打游戏,表面上看起来日子过得很惬意,其实玩过游戏的人都清楚,玩的时候感觉很过瘾,退出来感觉更无聊。
我当时也是那样,看到其他同学在学习之余跟着老师做项目,学习一些新的东西,其实心里也是蛮羡慕的。
08年4月的一天,老师(不是我的导师,是带我的那位老师)突然打电话让我去他办公室,想和我谈谈。
我当时心情有点紧张还有点期盼。
不到半个小时,我来到老师的办公室,老师五十多岁了,挺和蔼可亲的,几句话就让我放松下来了,然后他问我:“你这三年有什么打算?”。
我当时不知道如何回答,想了半天,说了一句:“老师,我不想像现在这样整天混下去了”。
老师说:“你该进实验室了!”。
那时候不像现在实验室的电脑多得找不到人使用,其实那时电脑还是勉强够研二研三的使用。
第二天,我去了实验室,看了下具体情况,由于我本人性格比较内向,不善于与别人交流,所以看到实验室的位置不够后,连老师的正牌研一的学生都没有位子,我觉得我还是等两个月后研三的毕业了腾出地方了再进实验室了。
其实老师和我谈话的时候问了一下我的基础怎么样,还说实验室现在基本上搞的都是流体,问我有没有兴趣往流体方向发展。
我现在都记不大清楚当初是怎么回答的了,大概意思好像是没问题。
我这个人平时喜欢挑战,可能是无知者无畏吧,当时我对流体模拟是什么都不知道,连流体力学都没有接触过。
有关FluentVOF学习的一点体会
有关FluentVOF学习的一点体会对于VOF学习的几点体会1、对于网格的选择尽量选择四边形或六面体网格,而不用三角形或四面体网格,以简化多相流问题。
2、对于VOF公式的选择Geo-Reconstruct:是目前最精确的界面跟踪方法,是对大多数瞬态VOF计算所推荐使用的方法。
Donor-Acceptor:在网格中包含很多扭曲的六面体单元,可用该公式代替Geo-Reconstruct。
Euler-Explicit:可解决Donor-Acceptor公式仅对四边形、六面体网格有效的问题,可用于三角形或四面体网格计算;也可以用于Geo-Reconstruct不能给出满意结果的情形。
注意:Geo-Reconstruct和Donor-Acceptor,必须保证在区域内没有双边壁面。
3、对于VOF模型相的定义原则上可以根据个人的喜好定义。
如果其中有一相是可压缩的,为了提高解的稳定性,应指定该相为主相。
注意:在VOF模型中,只能有一相是可压缩的。
4、关于表面张力和壁面粘附对于网格的选择:在表面张力有重大影响的计算区域内应使用四边形或六边形网格。
在打开Wall Adhesion后,在wall边界条件下指定接触角为每一对相。
(接触角定义:当系统达到平衡时,在气、液、固三相交界处,气-液界面和固-液界面之间的夹角。
实际反映的是液体表面张力与液-固界面张力间的夹角。
)提高解的收敛性:对于涉及到表面张力的计算,建议在Multiphase Model panel 中为Body Force Formulation 打开Implicit Body Force。
这样做由于压力梯度和动量方程中表面张力的部分平衡,从而提高解的收敛性。
5、关于运算环境的设置对于VOF计算,应当选择Specified Operating Density,并且在Operating Density 下为最轻相设置密度。
这样做排除了水力静压的积累,提高了round-off精度为动量平衡。
FLUENT的学习总结
FLUENT软件的学习总结通过这段时间对FLUENT软件的学习,我发现这个软件有庞大的参数设置和边界条件设置,同时要应用好这个软件也需要扎实的流体力学、传热学、导热学等基础知识。
在逐步的学习和摸索的过程中我总结有以下几个核心问题需要面对和研究。
第一.GAMBIT软件中的边界设置错误问题当在gambit中进行边界条件的设置时,路面上方十米处设置辐射源时,只要选择RADIATOR在网格输出时就会出现错误的提示,如选择WALL来作为边界,或者选择其它项时则不会出现这种情况。
请教一些人后,有人认为是网格划分的问题,认为对于网格的划分,要求控制网格的密度,可以遵循从线到面的原则,不能将所有边的网格点都定死,必须有一些边不定义网格,如四边形区域,一般只定义相邻两个边的网格,但是我在重新划分后还是不能解决。
后来在gambit2.3.16版本下运行也出现同样的问题。
所以现在对辐射面还是暂时设定为WALL,这直接影响到在msh文件导入fluent 后的边界条件设置。
同时在导入FLUENT也会出现如下的错误提示。
第二.Fluent中辐射模型的选用FLUENT 中可以用5 种模型计算辐射换热问题。
这5 种模型分别是离散换热辐射模型(DTRM)、P-1 辐射模型、Rosseland 辐射模型、表面辐射(S2S)模型和离散坐标(DO)辐射模型。
这五种模型究竟哪一种最适合路面对空气辐射的情况,由于没找到相关的算例,只能预估选择模型,根据看一些辐射算例和相关论坛,总结出要从以下几个方面去考虑:(1)光学厚度:可以用光学厚度(optical thickness)作为选择辐射模型的一个指标,看到一些论坛上关于光学厚度选模型的文章,由于我的模型的介质是空气,而空气的光学厚度相对其他介质比较小,所以选用P-1 模型或DO 模型,DO 模型的计算范围更大,但是同时计算量也更大,对计算机要求更高。
(2)散射:P-1、Rosseland 和DO 模型均可以计算散射问题,而DTRM 模型则忽略了散射的影响。
FLUENT学习经验总结(狠珍贵,学长传授)
1对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUENT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?答:学习任何一个软件,对于每一个人来说,都存在入门的时期。
认真勤学是必须的,什么是最好的学习方法,我也不能妄加定论,在此,我愿意将我三年前入门FLUENT心得介绍一下,希望能给学习FLUENT的新手一点帮助。
由于当时我需要学习FLUENT来做毕业设计,老师给了我一本书,韩占忠的《FLUENT流体工程仿真计算实例与应用》,当然,学这本书之前必须要有两个条件,第一,具有流体力学的基础,第二,有FLUENT 安装软件可以应用。
然后就照着书上二维的计算例子,一个例子,一个步骤地去学习,然后学习三维,再针对具体你所遇到的项目进行针对性的计算。
不能急于求成,从前处理器GAMBIT,到通过FLUENT进行仿真,再到后处理,如TECPLOT,进行循序渐进的学习,坚持,效果是非常显著的。
如果身边有懂得FLUENT的老师,那么遇到问题向老师请教是最有效的方法,碰到不懂的问题也可以上网或者查找相关书籍来得到答案。
另外我还有本《计算流体动力学分析》王福军的,两者结合起来学习效果更好。
2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。
A.理想流体(Ideal Fluid)和粘性流体(Viscous Fluid):流体在静止时虽不能承受切应力,但在运动时,对相邻的两层流体间的相对运动,即相对滑动速度却是有抵抗的,这种抵抗力称为粘性应力。
流体所具备的这种抵抗两层流体相对滑动速度,或普遍说来抵抗变形的性质称为粘性。
粘性的大小依赖于流体的性质,并显著地随温度变化。
实验表明,粘性应力的大小与粘性及相对速度成正比。
当流体的粘性较小(实际上最重要的流体如空气、水等的粘性都是很小的),运动的相对速度也不大时,所产生的粘性应力比起其他类型的力如惯性力可忽略不计。
Fluent-学习心得
Fluent 学习心得仅仅就我接触过得谈谈对fluent的认识,并说说哪些用户适合用,哪些不适合fluent对我来说最麻烦的不在里面的设置,因为我本身解决的就是高速流动可压缩N-S方程,而且本人也是学力学的,诸如边界条件设置等概念还是非常清楚的同时我接触的流场模拟,都不会有很特别的介质,所以设置起来很简单。
对我来说,颇费周折的是gambit做图和生成网格,并不是我不会,而是gambit对作图要求的条件很苛刻,也就是说,稍有不甚,就前功尽弃,当然对于计算流场很简单的用户,这不是问题。
有时候好几天生成不了的图形,突然就搞定了,逐渐我也总结了一点经验,就是要注意一些小的拐角地方的图形,有时候做布尔运算在图形吻合的地方,容易产生一些小的面最终将导致无法在此生成网格,fluent里面的计算方法是有限体积法,而且我觉得它在计算过程中为了加快收敛速度,采取了交错网格,这样,计算精度就不会很高。
同时由于非结构网格,肯定会导致计算精度的下降,所以我一贯来认为在fluent里面选取复杂的粘性模型和高精度的格式没有任何意义,除非你的网格做的非常好。
而且fluent5.5以前的版本(包括5。
5),其物理模型,(比如粘性流体的几个模型)都是预先设定的,所以,对于那些做探索性或者检验新方法而进行的模拟,就不适合用。
同时gambit做网格,对于粘性流体,特别是计算湍流尺度,或者做热流计算来说其网格精度一般是不可能满足的,除非是很小的计算区域。
所以,用fluent做的比较复杂一点的流场(除了经典的几个基本流场)其计算所得热流,湍流,以及用雷诺应力模拟的粘性都不可能是准确的,这在物理上和计算方法已经给fluent判了死刑,有时候看到很多这样讨论的文章,觉得大家应该从物理和力学的本质上考虑问题。
但是,fluent往往能计算出量级差不多的结果,我曾经做了一个复杂的飞行器热流计算,高超音速流场,得到的壁面热流,居然在量级上是吻合的,但是,从计算热流需要的壁面网格精度来判断,gambit所做的网格比起壁面网格所满足的尺寸的要大了至少2个数量级,我到现在还不明白fluent是怎么搞的。
fluent总结
解决问题的步骤确定所解决问题的特征之后,你需要以下几个基本的步骤来解决问题:1.创建网格.2.运行合适的解算器:2D、3D、2DDP、3DDP。
3.输入网格4.检查网格5.选择解的格式6.选择需要解的基本方程:层流还是湍流(无粘)、化学组分还是化学反应、热传导模型等7.确定所需要的附加模型:风扇,热交换,多孔介质等。
8..指定材料物理性质8.指定边界条件9.调节解的控制参数10.初始化流场11.计算解12.检查结果13.保存结果14.必要的话,细化网格,改变数值和物理模型。
在所有计算机操作系统上FLUENT都包含这两个解算器。
大多数情况下,单精度解算器高效准确,但是对于某些问题使用双精度解算器更合适。
下面举几个例子:如果几何图形长度尺度相差太多(比如细长管道),描述节点坐标时单精度网格计算就不合适了;如果几何图形是由很多层小直径管道包围而成(比如:汽车的集管)平均压力不大,但是局部区域压力却可能相当大(因为你只能设定一个全局参考压力位置),此时采用双精度解算器来计算压差就很有必要了。
对于包括很大热传导比率和(或)高比率网格的成对问题,如果使用单精度解算器便无法有效实现边界信息的传递,从而导致收敛性和(或)精度下降coupled是耦合的意思,指同能量方程一起求解,而segrated是动量方程、压力方程和能量方程分开单独求解,迭代求解。
一般能用耦合的时候尽量用,精度高。
而分段并行求解一般精度低。
GAMBIT 专用的CFD前置处理器(几何/网格生成)Fluent4.5 基于结构化网格的通用CFD求解器Fluent6.0 基于非结构化网格的通用CFD求解器Fidap 基于有限元方法的通用CFD求解器Polyflow 针对粘弹性流动的专用CFD求解器Mixsim 针对搅拌混合问题的专用CFD软件Icepak 专用的热控分析CFD软件捕捉坐标网格线相交点功能。
Snap:FLUENT求解器设置主要包括:1、压力-速度耦合方程格式选择2、对流插值 3、梯度插值 4、压力插值下面对这几种设置做详细说明。
Fluent软件学习心得与体会
以方便地进行数据交 = 换1 1 . 因为n e 软件强大的数值模拟功能, t u l l 越来越多的研究
生开始学习这个软件.但是由于研究生三年学习时间有限, 其帮助文 件就有几千页, 很多研究生在众多参考书和文献中,
Fu n 求解是 f et 】et u i n 的核 乙 部分, 数值方法是 有 基于 限体积法.它的求解步骤大致如下: 翰入网 格并检查网 格 选择求解器 Z (D或3 ) D 选择求解方程: 层流或者湍流, 化学组分成 者化学反应, 传热模型等. 确定流体的材料属性 确定边界类型及边界条件 计算中控制参数的设置 流场的初始化 求解计算 保存结果及后处理
收稿日 期:2 0 一在8 0 79
借助 处 能, 后 理功 还可以 态 流动 动 模型 效果, 地 直观 了 解C D的 F 计算结果. 2 月 e 软件的 · u t n 安装 F E T软件的安装,需要安装的软件:E ce, U L N xe d
G b ,le t安装顺序: m t a i Fu o n 首先安装E ce , xe 再装G b d n l t a i
万方数据
第1期
杨 鹏等:基于八 S S平合的搭接接头工作应力及应力集中系数的研究 NY 四,提高阶段
21 2Biblioteka 成后, 你可以分别双击F U Nr C nb n 6文件夹 L E , , t妞, 饮8 N I
下的G b 和F et的图 来运行 m t a i ln u 标, 它们. 一般情况 下,
X Y散点图
的首选. 但是, a i gmb 适合于简单 t 模型的 建立, 复杂模 对于 型, 采用P' u 等软件进行建模, 模型建 成 可以 r g 复杂 模完 后, 导入 gnb 软件再进行网 各 可以 ali t 1划分.网 分完 格划 成
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 分离式求解器和耦合式求解器:都适用于从不可压到高速可压的很大范围的流动,总得来说,计算高速可压时,耦合式求解器更有优势;分离式求解器中有几个模型耦合式求解器中没有,如VOF,多项混合模型等。
2. 对于绝大多数问题,选择1st-Order Implicit就已经足够了。
精度要求高时,选择2st-Order Implicit.而Explicit选项只对耦合显式求解器有效。
3. 压力都是相对压力值,相对于参考压力而言。
对于不可压流动,若边界条件中不包含有压力边界条件时,用户应设置一个参考压力位置。
计算时,fluent强制这一点的相对压力值为0.
4. 选择什么样的求解器后,再选择什么样的计算模型,即通知fluent是否考虑传热,流动是无粘、层流还是湍流,是否多相流,是否包含相变等。
默认情况,fluent只进行流场求解,不求解能量方程。
5. 多相流模型:其中vof模型通过单独的动量方程和处理穿过区域的每一流体的容积比来模拟两种或三种不能混合的流体。
6. 能量方程:选中表示计算过程中要考虑热交换。
对于一般流动,如水利工程及水力机械流场分析,可不考虑传热;气流模拟时,往往要考虑。
默认状态下,fluent在能量方程中忽略粘性生成热,而耦合式求解器包含有粘性生成热。
7. 粘性模型:inviscid无粘计算;Laminar模型,层流模型;k-epsilon(2 eqn)模型,目前常用模型。
8. 材料定义:比较简单
9. 边界条件:见P210-211
10. 给定湍流参数:在计算区域的进口、出口及远场边界,需给定输运的湍流参数。
Turbulence specification Method项目,意为让用户指定使用哪种模型来输入湍流参数。
用户可任选其一,然后按公式计算选定的湍流参数,并作为输入。
湍流强度,湍动能k,湍动耗散率e。
11. 常用的边界条件:
压力进口:适用于可压和不可压流动,用于进口的压力一直但流量或速度未知的情况。
Fluent 中各种压力都是相对压力值。
速度入口:用于不可压流,如果用于可压流可能导致非物理结果。
质量进口:规定进口的质量。
压力出口:需要在出口边界处设置静压。
静压只用于亚音速流动。
在fluent求解时,当压力出口边界上流动反向时,就是用这组回流条件。
出口回流有三种方式:垂直与边界,给定方向矢量,来自相邻单元。
出流:用于模拟求解前流速和压力未知的出口边界。
适用于出流面上的流动情况由区域内外推得到,且对上游没影响。
不用于可压流动,也不能与压力进口边界条件一起是用。
压力远场:只适用于可压气体流动,气体的密度通过理想气体定律来计算。
12. 设置求解控制参数:为了更好的控制求解过程,需要在求解器中进行某些设置,内容包括选择离散格式、设置欠松弛因子、初始化场变量及激活监视变量等。
Fluent允许用户对流项选择不同的离散格式。
默认情况下,当是用分离式求解器时,所有方程中的对流相一阶迎风格式离散;耦合式求解时,二阶精度格式,其他仍一阶。
对于2D三角形和3D四面体网格,注意要是用二阶精度格式。
一般,一阶容易收敛,精度差。
欠松弛因子:为了加速收敛,在迭代10次左右后,检查残差是增加还是减小,若增大,则减小欠松弛因子的值;反之,增大它。
Pressure-velocity coupling:包含压力速度耦合方式的列表。
该项只在分离式求解器中出现。
可选SIMPLE、SIMPLEC、PISO。
多数选择simplec,piso算法主要用于瞬态问题的模拟,
特别是希望使用大的时间步长的情况。
Courant Number;设置网格的Courant数,用于控制耦合求解时的时间步长。
对于耦合显示求解器,该数值不要过大,一般<2。
隐式求解器,可取较大值,一般取5,有时20,甚至100,也可收敛。
13. 设置监视参数,一般残差监视。
14. 初始化流场的解:向fluent提供流场的解的初始猜测值。
15. 流畅迭代计算,稳态问题求解和非稳态问题求解。