hfsss手机内置天线设计资料
HFSS的天线课程设计报告书
. .. . .图1:微带天线的结构一、 实验目的●利用电磁软件Ansoft HFSS 设计一款微带天线。
◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。
●在仿真实验的帮助下对各种微波元件有个具体形象的了解。
二、 实验原理1、微带天线简介微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。
微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。
图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。
与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相对介电常数r ε和损耗正切δtan 、介质层的长度LG 和宽度WG 。
图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的心线穿过参考地和介质层与辐射源相连接。
对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。
从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。
(a )俯视图 (b )侧视图图2 矩形微带贴片天线的俯视图和侧视图2、天线几何结构参数推导计算公式假设矩形贴片的有效长度设为e L ,则有2/g e L λ= 式中,g λ表示波导波长,有 e g ελλ/0= 式中,0λ表示自由空间波长,e ε表示有效介电常数,且21)121(2121-+-++=W h r r e εεε 式中,r ε表示介质的相对介电常数,h 表示介质层厚度,W 表示微带贴片的宽度。
HFSS仿真分析手机PIFA天线
第1节未开槽的手机平面倒F天线(PIFA)图1 手机PIFA天线的三维图1.1 建立模型天线的HFSS模型如表1及表2表1 手机PIFA天线三维体模型表2 手机PIFA天线的二维面模型在HFSS中建立新的工程,在HFSS>Solution Type中选择Driven Modal。
在Modeler>Units中选择mm。
(1)创建手机电路板gnd,设置为perfect E。
(a)由工具栏选择yz平面,点击Draw Rectangle ,输入顶点位置坐标,按回车键之后,输入矩形的尺寸。
选择,点击画图的窗口,将窗口中的矩形调整到合适大小。
双击中的rectangle1,将name栏的rectangle1改为名字gnd (b)为GroundPlane设置理想导体边界。
点击HFSS>Boundaries>Assign>Perf E在理想边界设置中,将理想边界命名为PerfE_gnd(2)创建天线底座,材料的相对介电常数为3.3。
(a)点击Box,起始点位置坐标(0mm,0mm,0mm.),长方体X,Y,Z三个方向的尺寸:dx=8mm,dy=30mm,dz=-28mm,在属性中将长方体改名chassis(如图2)。
图2 chasiss与gnd(b)将材料的相对介电常数设置为3.3。
双击chassis,进入Attribute界面,点击Material右侧的栏目选择Edit(如图3(a)),进入Self Definition界面(如图3(b)),点击Add Material进入View/Edit Material界面。
Material name设为plastic,点击确定,回到Self Definition界面,选择plastic,点击确定,回到Attribute界面,此时Material右侧栏目变为“plastic”,点击确定。
(a)(b)(c)图3 设置材料界面(3)创建Patch,设置为perfect E。
HFSS天线设计
Prad A Pin
增益:
天线的增益是表征将输入给它的功率按特定的方向辐射的能力。 定义在相同输入功率、相同距离的条件下,天线在最大辐射方向 上的功率密度与无方向性天线在此方向上的辐射功率密度的比值, 其表达式为:
也可定义交叉极化电平的增加增益的起伏方向图主瓣宽度的变化旁瓣电平的变化或回波损耗的变化等超过某一范围时所对应的频率变化范围为该天线的带带宽的定义方法没有最好的方法只有较为恰当的方法应该在特定的应用场合下对所需的天线特性参数加以同等重要的考虑用同时满足多项指标的频率范围来确定天线带宽
天线设计与优化 — 天线基础
E j E 0
内容提要
电基本振子的辐射场 天线的主要性能参数
方向图 辐射强度 方向性系数 效率 增益 输入阻抗 回波损耗
基本天线结构
方向图:
天线的辐射场在固定距离上 随球坐标系的角坐标(θ,ϕ) 分布的图形称为天线的辐射 方向图或辐射波瓣图,简称 方向图。 完整的天线方向图应该用如 所示的三维立体方向图表示, 但是由于三维空间立体方向 图绘制复杂,工程上常用主 瓣轴的剖面图来表示。
G AD
效率:
天线效率是表征天线将输入高频能量转换为无线电波能量的有效 程度,定义为天线的辐射功率与输入功率之比:
Prad A Pin
增益:
天线的增益是表征将输入给它的功率按特定的方向辐射的能力。 定义在相同输入功率、相同距离的条件下,天线在最大辐射方向 上的功率密度与无方向性天线在此方向上的辐射功率密度的比值, 其表达式为:
导线,导线上的电流处处等幅同相。 根据电流连续性原理,在电基本振子两端将同时积存大小相等、符号
利用HFSS设计平面等角螺旋天线
利用HFSS设计平面等角螺旋天线HFSS(高频结构模拟器)是一种电磁场仿真软件,广泛应用于无线通信、射频电子、天线设计等领域。
在设计平面等角螺旋天线时,可以使用HFSS来进行仿真、优化和分析。
下面将介绍利用HFSS设计平面等角螺旋天线的步骤和注意事项。
1.定义天线的几何结构:在HFSS中,首先需要定义天线的几何形状。
对于平面等角螺旋天线,可以使用直线段和弧段来描述螺旋的几何结构。
可以选择合适的参数,如螺旋半径、线宽和线距等,来定义螺旋天线的几何形状。
2. 设置边界条件和材料属性:在进行仿真之前,需要设置适当的边界条件和材料属性。
对于平面等角螺旋天线,一般使用PEC(Perfect Electric Conductor)作为边界条件,以确保电磁波在螺旋天线表面的反射和吸收很小。
此外,还需要为天线材料设置合适的电磁参数,如相对介电常数和损耗正切等。
3.设定频率范围和场激励:在HFSS中,可以设置所需的频率范围和场激励方式。
一般来说,平面等角螺旋天线用于宽频工作,因此可以选择一个合理的工作频率范围。
对于激励方式,可以选择点源激励,即在螺旋天线的发射端施加一个适当的电流源。
4. 进行电磁波分析:在设置好几何结构、边界条件、材料属性、频率范围和场激励之后,可以进行电磁波分析。
HFSS使用有限元方法来求解Maxwell方程组,得到电磁场分布、辐射特性等结果。
5.优化和调整参数:根据仿真结果,可以对平面等角螺旋天线的几何参数进行优化和调整。
例如,可以改变螺旋半径、线宽和线距,以优化天线的电磁性能,如增益、辐射方向性等。
6.分析和评估性能:经过优化和调整之后,可以再次进行电磁波分析,得到优化后的天线性能。
可以对比不同参数设置下的性能,如频率响应、辐射图案等,进行评估和选择最佳设计。
在设计平面等角螺旋天线时1.准确地定义几何参数:几何参数的准确定义对于仿真结果的准确性至关重要。
要仔细测量几何参数,并正确输入到HFSS中。
基于HFSS的天线设计教材
图1:微带天线的结构一、 实验目的●利用电磁软件Ansoft HFSS 设计一款微带天线。
◆微带天线要求:工作频率为2.5GHz ,带宽 (回波损耗S11<-10dB)大于5%。
●在仿真实验的帮助下对各种微波元件有个具体形象的了解。
二、 实验原理1、微带天线简介微带天线的概念首先是由Deschamps 于1953年提出来的,经过20年左右的发展,Munson 和Howell 于20世纪70年代初期制造出了实际的微带天线。
微带天线由于具有质量轻、体积小、易于制造等优点,现今已经广泛应用于个人无线通信中。
图1是一个简单的微带贴片天线的结构,由辐射源、介质层和参考地三部分组成。
与天线性能相关的参数包括辐射源的长度L 、辐射源的宽度W 、介质层的厚度h 、介质的相对介电常数r ε和损耗正切δtan 、介质层的长度LG 和宽度WG 。
图1所示的微带贴片天线是采用微带天线来馈电的,本次将要设计的矩形微带贴片天线采用的是同轴线馈电,也就是将同轴线街头的内心线穿过参考地和介质层与辐射源相连接。
对于矩形贴片微带天线,理论分析时可以采用传输线模型来分析其性能,矩形贴片微带天线的工作主模式是TM10模,意味着电场在长度L 方向上有2/g λ的改变,而在宽度W 方向上保持不变,如图2(a )所示,在长度L 方向上可以看做成有两个终端开路的缝隙辐射出电磁能量,在宽度W 方向的边缘处由于终端开路,所以电压值最大电流值最小。
从图2(b )可以看出,微带线边缘的电场可以分解成垂直于参考地的分量和平行于参考地的分量两部分,两个边缘的垂直电场分量大小相等、方向相反,平行电场分量大小相等,方向相反;因此,远区辐射电场垂直分量相互抵消,辐射电场平行于天线表面。
(a )俯视图 (b )侧视图图2 矩形微带贴片天线的俯视图和侧视图2、天线几何结构参数推导计算公式假设矩形贴片的有效长度设为e L ,则有2/g e L λ= 式中,g λ表示波导波长,有 e g ελλ/0= 式中,0λ表示自由空间波长,e ε表示有效介电常数,且21)121(2121-+-++=W h r r e εεε 式中,r ε表示介质的相对介电常数,h 表示介质层厚度,W 表示微带贴片的宽度。
基于HFSS的双频微带天线仿真及设计
基于HFSS的双频微带天线仿真及设计HFSS(High Frequency Structure Simulator)是一款广泛应用于天线设计领域的电磁仿真软件。
本文将基于HFSS进行双频微带天线的仿真和设计,包括仿真模型构建、参数设置、频率扫描、天线设计优化等内容。
以下是对于每个步骤的详细介绍。
首先,在HFSS软件中创建一个新的项目,然后选择"Design Type"为"Antenna"。
接下来,根据双频微带天线的特点,构建天线的几何结构。
双频微带天线通常由一个辐射贴片和一个馈电贴片组成。
辐射贴片的几何结构决定了辐射频率,馈电贴片的几何结构决定了馈电频率。
根据具体的设计要求,可以选择矩形、圆形或其他形状的贴片。
在构建天线的几何结构后,需要设置天线的材料属性。
可以选择常见的介质材料,如FR-4、Rogers等,然后设置其相对介电常数和损耗因子。
这些参数对天线的性能有重要影响,需要根据具体的设计需求进行调整。
完成材料属性设置后,需要定义辐射贴片和馈电贴片的端口。
通常,辐射贴片和馈电贴片的接地为共地,但其余部分分开。
可以通过选择适当的面来定义每个端口。
然后,设置端口的激励类型和激励参数。
常见的激励类型有电流激励和电压激励,而激励参数包括频率、幅度和相位等。
在设置好端口后,可以进行频率扫描,以获取天线的频率响应。
可以选择在一定范围内进行频率扫描,也可以单独指定感兴趣的频率点。
通过分析结果可以得到辐射和馈电贴片的共振频率,以及频率响应的带宽等信息。
如果设计的频率不满足要求,可以对几何结构和材料参数进行调整,然后重新进行频率扫描。
当天线的频率响应满足要求后,可以进行天线设计的优化。
优化的目标通常包括增加天线的增益、改善天线的辐射效率、扩展天线的带宽等。
可以通过对辐射贴片的长度、宽度、形状等进行调整,或者对馈电贴片的长度和宽度进行调整。
优化过程中,可以通过设置参数范围和优化目标,使用HFSS内置的优化算法进行自动优化。
HFSS双频微带天线设计说明
一设计容简介双频工作是微带天线设计的重要课题之一,相关的设计包括使用多层金属片,具槽孔负载之矩形金属片,具矩形缺口的正方形金属片,具短金负载的金属片,倾斜槽孔耦合馈入的矩形金属片等。
其中,获得双频工作的一种最简单的方法是辐射贴片的长度对应一个频率谐振,其宽度对应另一个频率谐振,然后从对角线的一角馈电,就能使同一个辐射贴片工作于两个频率上。
其结构如图1所示。
图1故在这个设计中,L1是表示馈电点长度方向的x坐标的变量,其值为7mm,表示的中心频率为2.45GHZ,输入阻抗为50欧姆。
L2是表示馈电点的y坐标的变量,其值为10mm,表示的中心频率为1.7GHZ。
输入阻抗为50欧姆。
设计模型的中心在坐标原点上,辐射贴片的长度方向是沿着x轴方向,宽度方向是沿着y方向的。
介质基片的大小是辐射贴片的两倍,参考地面辐射贴片使用理想薄导体。
因为使用50欧姆的同轴线馈电,这里使用半径为0.6mm的材质为pec的圆柱体模型。
而与圆柱体相接的参考地面需挖出一个半径为1.5mm的圆孔,将其作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50欧姆。
HFSS仿真设计过程1.新建工程文件(1)运行HFSS并新建工程:双击快捷图标,启动HFSS软件。
新建一个工程文件,工程名为Dual_Patch.hfss文件。
(2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。
(3)设置模型长度:选择Modeler→Units选项设置为mm。
点击OK。
2.添加和定义设计变量在HF SS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。
在Name文本框中输入第一个变量名称H,在value文本框中输入该变量的初始值为1.6mm。
使用相同的方法,分别定义变量L0,W0,L1,length,L2。
其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。
(完整版)HFSS天线设计实例
HFSS 天线设计实例这是一种采用同轴线馈电的圆极化微带天线切角实现圆极化设计目标!(具体参数可能不精确,望大家谅解)主要讲解HFSS操作步骤!GPS微带天线:介质板:厚度:2mm,介电常数:2。
2,大小:100mm*100mm工作频率:1.59GHz,圆极化(左旋还是右旋这里不讲了哈),天线辐射在上半平面覆盖!50欧同轴线馈电,1、计算参数首先根据经验公式计算出天线的基本参数,便于下一步建立模型。
贴片单元长度、宽度(正方形贴片长宽相等)、馈电点位置,分离单元长度.下表是经HFSS分析后选择的一组参数:2、建立模型首先画出基板50mm*50mm*2mm 的基板起名为substrate介电常数设置为如图2。
2的,可以调整color颜色和transparent透明度便于观察按Ctrl+D可以快速的使模型全可见!按住Ctrl+Alt键,拖动鼠标可以使3D模型自由旋转同理,我们画贴片:1、在基板上画出边长65mm(假设用公式算出的是这么多)的正方形2、起名为patch,颜色选绿色,透明度设为0。
5画切角是比较麻烦的1、用画线条工具,画三线段,坐标分别是0。
5.0, 5。
0。
0, 0.0。
02、移动三角形,选中polyline1,选菜旦里edit\Arrange\move,先确定坐标原点或任一点为基准点,将三角形移动到左上角和贴片边沿齐平.3、复制三角形,选中polyline1,选菜单里edit\arrange\duplicate\around axis,相对坐标轴复制,角度换成180,然后在右下角就出现了相对称的另一个三角形.4、从patch上切掉对角上的分离单元polyline1和polyline1_1:选中patch、polyline1和polyline1_1,选菜单里3D modeler\Boolean\Subtract把polyline1和polyline1_1从patch上切掉最后剩下先在介质板底面画一个100mm*100mm的正方形作为导电地板。
利用HFSS设计平面等角螺旋天线概要
利用HFSS设计平面等角螺旋天线杜起飞北京理工大学电子工程系 100081摘要:本文介绍了一种双臂平面等角螺旋天线的设计过程,利用ANSOFT HFSS 对其结构进行了建模和仿真,工作频率为0.4GHz~3GHz,电压驻波比VSWR<2.0,增益Gain>5.0dB。
关键词:HFSS、等角螺旋天线、宽带匹配1. 引言天线的增益、输入阻抗、方向图等电特性参数在一个较宽的频段内保持不变或变化较小的天线称为宽频带天线。
一般情况下,天线性能参数是随频率变化的。
有一类天线,它们的方向图和阻抗在相当宽的频带范围内与频率无关,这就是所谓的非频变天线。
本文所研究的是平面等角螺旋天线,它有很宽的工作频带,具有很好的应用前景,同时也是其它等角螺旋天线研究的基础。
2. 利用HFSS设计平面等角螺旋天线平面等角螺旋天线在ANSOFT HFSS中的模型如图1所示。
它主要由平面螺旋辐射器、馈电电路板、普通反射腔和异形反射腔四部分组成。
2.1 平面等角螺旋天线图1 平面等角螺旋天线在HFSS中的模型图2 自补形平面等角螺旋天线平面等角螺旋天线如图2所示,金属臂的四条边缘均为平面等角螺旋线。
边缘1的方程为边缘1旋转角δρ1=ρ0eaφ,边缘2相对于a(φ−δ)ρ=ρe20,故其方程为。
天线另一臂的边缘应使结构对称,即一臂旋转半圈将于另一臂重合,因而有ρ3=ρ0ea(φ−π)和ρ4=ρ0ea(φ−δ−π)。
图中的结构是自补形,因而δ=π/2。
自补形平面等角螺旋天线两臂的四条边缘曲线为:⎧ρ1=ρ0eaφ⎪π⎪ρ=ρea(φ−2⎪2 (1) 0⎨a(φ−π)⎪ρ3=ρ0e⎪πa(φ−π−)2⎪⎩ρ4=ρ0e- 74 - Ansoft2004对于自补形结构,方向图的对称性最好。
由于平面等角螺旋天线的表面边缘仅由角度描述,因而满足非频变天线对形状的所有要求。
2.2 馈电电路板由于平面等角螺旋天线是平衡对称结构,其馈电系统也应采用平衡馈电方式。
基于HFSS的天线设计流程
基于HFSS的天线设计流程HFSS(High Frequency Structure Simulator)是一种用于高频电磁场仿真的软件工具,常用于天线设计领域。
以下是基于HFSS的天线设计流程,详述了设计前的准备、模型建立、仿真和优化等关键步骤。
一、设计准备1.需求分析:明确天线设计的要求,如频率范围、增益、方向性等。
2.材料选择:根据设计要求选择合适的材料,如介电常数、磁导率等。
二、模型建立1.创建天线几何体:使用HFSS的建模工具,绘制天线的几何形状,如导线、片状、贴片等。
2.导入材料参数:为天线几何体设置材料参数,指定介电常数和磁导率等参数。
3.锁定边界条件:确定边界条件,如天线周围是否存在接地平面或闭合结构等。
三、仿真设置1.电磁辐射频率范围:设定天线的工作频率范围。
2.网格划分:对天线模型进行网格划分,使得模型细节得到准确表达。
3.求解器设置:选择合适的求解器类型和参数,如自适应网格细化程度、计算精度等。
4.激励方式:选择天线的激励方式,如电流激励、电压激励等,设定激励位置和幅度。
四、仿真分析1.获取S参数:运行仿真分析,获得天线的S参数,即反射系数和传输系数。
2.方向图:计算天线的方向图,分析天线的辐射花样和辐射功率密度。
3.阻抗匹配:根据S参数结果,优化天线的匹配网络,以提高天线的输入阻抗匹配度。
五、优化设计1.参数化:对天线的关键参数进行参数化设置,方便后续的优化建模。
2.参数扫描分析:对参数进行范围扫描分析,观察参数变化对天线性能的影响。
3.优化算法:根据优化目标,选择合适的优化算法,如遗传算法、粒子群算法等。
4.优化迭代:根据优化算法计算出新的参数组合,重新运行仿真,比较新的性能结果。
5.反馈分析:根据优化结果进行反馈分析,调整参数范围,直至达到设计要求。
六、仿真验证1.原型制作:根据优化结果,制作实际天线样机。
2.测量验证:通过测试设备对样机进行测量,比较测量结果与仿真结果的一致性。
HFSS 天线设计讲义
0
/100
/10
Problem Scale
Use a Quasi-Static Solver (OVERLAP)
Use a FEM Full-Wave Solver
Simulation Structures
W=44mil t = 1mil
1.增加Sweep變數。
3.按下增加。 出現訊息
4.按下確定。 出現訊息
2.設定要sweep的起始 結束 間隔。 5.按下確定。
使用變數sweep 開始分析
1.開始分析。
使用變數sweep 看分析結果
1. 3.選擇看sweep結果。
2.
使用變數sweep 看分析結果(2)
1.選擇要看的sweep結果。
2.只對port分析打勾。
1.分析。
3.開始分析。
Analysis Wave port at First
2.場形完整且連續 可進行完整分析。
1.看場形。
Boundary Radiation
減少運算時間 縮小體積 需在最大的Box增加 Radiation Boundary
Deembed
藍色箭頭 表示Deembed的位置。
圓心
半徑 (R1) 高度 命名:barrel trace1 barrel trace2
操作流程---(6)連通柱繪圖
連通柱焊墊繪圖:
1設定材質
L=800mil R2=50mil R1 = 20mil
2.結構繪圖
圓心
R3=30mil
半徑 (R3)
高度 命名:Pad1 圓心 半徑 (R3) 高度 命名:Pad2
操作流程---(2)繪圖功能
基于HFSS矩形微带天线仿真与设计
基于HFSS矩形微带天线仿真与设计HFSS(高频结构模拟软件)是一种专业的电磁场仿真软件,可以用于电磁场分析和天线设计。
在通信领域,天线设计是非常重要的工作,而微带天线是一种常用的天线结构之一。
本文将基于HFSS软件对矩形微带天线进行仿真与设计,以探讨其性能和特点。
矩形微带天线是一种常见的微带天线结构,其结构简单、制作方便,并且在通信系统中有着广泛的应用。
矩形微带天线的主要结构是由金属贴片和衬底组成,金属贴片通常被设计成矩形或正方形,可以直接在PCB(Printed Circuit Board)板上加工制作。
由于其结构简单并且性能良好,所以矩形微带天线备受研究者的关注。
在HFSS软件中进行微带天线的仿真与设计,需要按照以下步骤进行:1. 建立仿真模型:首先需要建立微带天线的三维模型,包括金属贴片和衬底。
在HFSS软件中,可以通过绘制结构、设置材料参数、定义边界条件等步骤来完成模型的建立。
2. 定义仿真参数:在建立好仿真模型后,需要定义仿真的频率范围、激励方式、网格密度等参数,以确保仿真的准确性和有效性。
3. 进行仿真分析:在设置好仿真参数后,可以进行频域分析或时域分析,得到微带天线的S参数、辐射场分布等重要信息,从而评估微带天线的性能。
4. 优化设计:根据仿真结果,可以对微带天线的结构参数进行调整和优化,以获得更好的性能指标,比如增益、带宽、驻波比等。
通过以上步骤,可以在HFSS软件中对矩形微带天线进行全面的仿真与设计,为微带天线的工程应用提供良好的设计基础和技术支持。
接下来,将从两个方面对基于HFSS的矩形微带天线仿真与设计进行详细介绍。
第一、HFSS仿真分析在HFSS软件中对矩形微带天线进行仿真分析,主要是评估其性能指标和辐射特性。
常见的性能指标包括带宽、增益、辐射方向图、驻波比等。
对于微带天线的带宽来说,是一个很重要的性能指标。
带宽的宽窄直接关系到天线的频率覆盖范围,在通信系统中有着重要的应用。
HFSS双频微带天线设计说明
HFSS双频微带天线设计说明⼀设计容简介双频⼯作是微带天线设计的重要课题之⼀,相关的设计包括使⽤多层⾦属⽚,具槽孔负载之矩形⾦属⽚,具矩形缺⼝的正⽅形⾦属⽚,具短⾦负载的⾦属⽚,倾斜槽孔耦合馈⼊的矩形⾦属⽚等。
其中,获得双频⼯作的⼀种最简单的⽅法是辐射贴⽚的长度对应⼀个频率谐振,其宽度对应另⼀个频率谐振,然后从对⾓线的⼀⾓馈电,就能使同⼀个辐射贴⽚⼯作于两个频率上。
其结构如图1所⽰。
图1故在这个设计中,L1是表⽰馈电点长度⽅向的x坐标的变量,其值为7mm,表⽰的中⼼频率为2.45GHZ,输⼊阻抗为50欧姆。
L2是表⽰馈电点的y坐标的变量,其值为10mm,表⽰的中⼼频率为1.7GHZ。
输⼊阻抗为50欧姆。
设计模型的中⼼在坐标原点上,辐射贴⽚的长度⽅向是沿着x轴⽅向,宽度⽅向是沿着y⽅向的。
介质基⽚的⼤⼩是辐射贴⽚的两倍,参考地⾯辐射贴⽚使⽤理想薄导体。
因为使⽤50欧姆的同轴线馈电,这⾥使⽤半径为0.6mm的材质为pec的圆柱体模型。
⽽与圆柱体相接的参考地⾯需挖出⼀个半径为1.5mm的圆孔,将其作为信号输⼊输出端⼝,该端⼝的激励⽅式设置为集总端⼝激励,端⼝归⼀化阻抗为50欧姆。
HFSS仿真设计过程1.新建⼯程⽂件(1)运⾏HFSS并新建⼯程:双击快捷图标,启动HFSS软件。
新建⼀个⼯程⽂件,⼯程名为Dual_Patch.hfss⽂件。
(2)设置求解类型:选择hfss→Solution Type,选中Driven Modal,然后点击OK。
(3)设置模型长度:选择Modeler→Units选项设置为mm。
点击OK。
2.添加和定义设计变量在HF SS →Design Propertied 命令,打开设计属性对话框,然后单击对话框。
在Name⽂本框中输⼊第⼀个变量名称H,在value⽂本框中输⼊该变量的初始值为1.6mm。
使⽤相同的⽅法,分别定义变量L0,W0,L1,length,L2。
其初始值分别为28mm,37.26mm,7mm,30mm,10mm点击确定。
HFSS天线设计流程
2. 设置求解类型
模式驱动求解—— Driven Modal • 以模式为基础计算S参数,根据各模式场的入射功率和反射功率来计算S参数矩阵的解,多数情况都可以使用模式驱动求解类型。
终端驱动求解—— Driven Terminal • 以终端为基础计算多导体传输线端口的S参数;此时,根据传输线终端的电压和电流来计算S参数矩阵的解。eγ1l1Biblioteka ,0,0 [eγl]
=
0,
e
γ
2l2
,0
0,0,
eγ 3l3
[Sdeembed ] = [eγl ][S ][eγl ]
5.设置激励方式——波端口激励(5)
波端口大小
• 波端口四周默认的边界条件是理想导体边界 • 对于波导或同轴线这类横截面闭合的器件,端口截面四周
理想匹配层 VS 辐射边界条件 • 理想匹配层因为能够完全吸收入射的电磁波,零反射,因此计算结果更精确。 • 理想匹配层表面可以距离辐射体更近,差不多λ/8即可,而辐射边界表面和辐射体之间的距离一般需要大于λ/4 • 同一个问题,使用理想匹配层仿真速度要比辐射边界条件慢
4. 设置边界条件—天线设计中常用边界条件(3)
有限导体边界——Finite Conductivity • 实际天线结构的导体部分,通常都是使用良导体,如金属铜。使用有限导体边界,可以 实现把一个平面的边界条件设置为金属铝、金属铜等良导体。
4. 设置边界条件—天线设计中常用边界条件(2)
辐射边界条件——Radiation • 在使用HFSS进行天线设计时,必须定义辐射边界条件或者理想匹配层用以模拟开放的自由空间;设计中只有定义了辐射边 界条件或者理想匹配层之后,软件才会分析计算天线的远区场。 • 辐射边界条件也称为吸收边界条件(Absorbing Boundary Condition,简称ABC),用于模拟开放的自由空间;系统在辐射边界 处吸收了电磁波,本质上可以把边界看成是延伸到空间无限远处。 • 辐射边界条件是自由空间的近似,这种近似的准确程度取决于波的传播方向与辐射边界之间的角度,以及辐射源与边界之间 的距离。辐射边界和辐射物体表面的距离一般不小于λ/4
2024版HFSS天线仿真实例系列教程1
导出报告
将仿真结果和优化过程导出为报告,供后续分析 和参考。
27
07
总结与展望
2024/1/29
28
教程内容回顾
2024/1/29
HFSS天线仿真基本原理
介绍了高频结构仿真(HFSS)的基本原理及其在天线设计中的应用。
天线设计基础
详细阐述了天线设计的基本概念,如辐射、方向性、增益等,以及常 见的天线类型和性能指标。
03
优化设计
根据分析结果,对天线设计进行优 化,如调整振子长度、改变馈电结
构等,以提高天线性能。
2024/1/29
02
结果分析
对仿真结果进行分析,包括S参数 曲线、辐射方向图、增益等性能指
标的评估。
04
再次仿真验证
对优化后的设计进行再次仿真验证, 确保性能达到预期要求。
19
05 微带天线仿真实例
2024/1/29
• 天线参数:描述天线性能的主要参数有方向图、增益、输入阻抗、驻波比、极化等。这些参数可以通过仿真或 测量得到,用于评估天线的性能优劣。
• 仿真模型:在天线仿真中,需要建立天线的三维模型并设置相应的边界条件和激励源。模型的准确性直接影响 到仿真结果的可靠性。因此,在建立模型时需要充分考虑天线的实际结构和工作环境。
求解参数设置
包括频率范围、收敛精度、最大迭代次数 等参数的设置。
B
C
自适应网格划分
根据模型复杂度和求解精度要求,自动调整 网格大小和密度。
并行计算支持
利用多核处理器或集群计算资源,加速求解 过程。
D
2024/1/29
11
03 天线设计原理及性能指标
2024/1/29
12
基于HFSS的偶极子天线设计与仿真
基于HFSS的偶极子天线设计与仿真偶极子天线是一种常见的无线通信天线,具有简单的结构和较高的工作频率范围。
在HFSS(High Frequency Structure Simulator)软件中,可以进行偶极子天线的设计和仿真,以评估其性能和优化设计。
首先,设计偶极子天线需要确定工作频率范围和天线结构。
根据通信系统的需求,可以选择工作频率范围,例如2.4GHz或5.8GHz,以及天线结构,例如半波长偶极子天线、全波长偶极子天线等。
这些参数决定了天线的尺寸和形状。
其次,使用HFSS软件创建一个新项目,并绘制天线的几何结构。
可以使用绘制工具(例如直线、圆弧)绘制偶极子天线的导线元件,以及其他必要的辅助结构(例如基板、地面平面)。
确保导线元件合适地分布在基板上,并具有所需的长度和间距。
在绘制完成后,为偶极子天线和辅助结构分配材料属性。
可以选择适当的材料,例如导电性能好的金属材料作为导线元件,介电常数合适的绝缘材料作为基板。
通过指定材料的属性,可以准确地模拟天线的电磁特性。
接下来,设置仿真参数,例如频率范围、网格分辨率等。
确保仿真参数能够覆盖所需的工作频率范围,并设置适当的网格分辨率以获得更准确的结果。
然后,进行天线的仿真分析。
使用HFSS软件的求解器进行电磁场的求解,并得到天线的电磁特性,例如S参数、辐射图案、增益等。
通过观察仿真结果,可以评估天线的性能,并进行设计优化。
根据仿真结果,可以进行天线的优化设计。
例如,可以调整导线长度和间距以改变天线的共振频率和阻抗匹配。
也可以通过修改基板尺寸和形状,进一步改善天线性能。
在进行优化设计时,可以使用HFSS软件的参数化设计功能,通过自动改变参数值进行批量仿真分析,以便更高效地寻找最优解。
最后,根据优化设计的结果,可以制作并测试实际的偶极子天线样品,以验证仿真结果的准确性。
根据测试结果,可以对天线进行细微调整,以进一步优化性能。
总之,HFSS是一款强大的工具,可用于设计和仿真偶极子天线。
hfss天线课程设计
hfss天线课程设计一、课程目标知识目标:1. 学生能理解并掌握HFSS软件的基本操作和天线设计原理;2. 学生能描述不同类型天线(如偶极子天线、螺旋天线等)的电磁特性;3. 学生能运用HFSS软件进行天线参数的仿真分析,如阻抗匹配、辐射图等。
技能目标:1. 学生能运用HFSS软件进行天线模型的构建和仿真实验;2. 学生能通过HFSS软件分析并优化天线设计,提高天线性能;3. 学生能运用所学知识解决实际问题,具备一定的创新设计能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对天线及电磁场领域的好奇心和兴趣;2. 学生能够认识到天线技术在通信、导航等国家重要领域的作用,增强国家使命感;3. 学生通过团队协作完成课程项目,培养沟通、合作和团队精神。
课程性质:本课程为实践性较强的课程,以HFSS软件为工具,结合课本知识,培养学生的实际操作能力和创新能力。
学生特点:学生具备一定的电磁场理论知识和计算机操作能力,对实际应用有较高的兴趣。
教学要求:教师需引导学生运用所学知识进行实际操作,注重培养学生的动手能力和解决问题的能力。
在教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。
通过课程学习,使学生能够将理论知识与实际应用相结合,提高综合素养。
二、教学内容本课程教学内容主要包括以下几部分:1. HFSS软件基本操作与界面介绍:使学生熟悉软件环境,掌握基本操作方法。
- 教材章节:第1章 HFSS软件概述与安装2. 天线设计原理及分类:介绍天线基本理论,分析各类天线的特点。
- 教材章节:第2章 天线原理与分类3. 天线仿真参数分析:学习天线性能参数,如阻抗匹配、辐射图等。
- 教材章节:第3章 天线性能参数4. HFSS天线建模与仿真:实际操作,构建天线模型,进行仿真实验。
- 教材章节:第4章 HFSS天线建模与仿真5. 天线优化与改进:学习优化方法,提高天线性能。
- 教材章节:第5章 天线优化与改进6. 课程项目实践:分组进行天线设计项目,培养团队协作和创新能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
內置平面Monopole出現的現 實意義
• 多模手機對多頻段天 線的要求 • Monopole的大頻寬和 高增益,足以應付3G 時代跨越2GHz的幾百 兆頻寬需求。 • 內置平面Monopole結 構靈活,易於與當今 多變的手機結構相配 合
Feed Strip 天線低頻部分
塑膠支架 38X6X4
手機內置式天線設計
天線基本概念
• Return Loss(回波損耗S11)
天線原理
• Directionality(方向性係數)
天線輻射方向性參數。天線據此可分全向(omnidirectional)和定向(directional)。
• Gain(增益)
天線增益定義為規定方向的天線輻射強度和參考天線之比。
PIFA需要的空間和其它條件
• PIFA需要的空間大小視乎頻段和射頻性能的需求。
雙頻(GSM/DCS):600 mm ×7~8mm 三頻(GSM/DCS/PCS):700 mm 2×7~8mm 滿足以上需求則GSM頻段一般可能達-1~0dBi, DCS/PCS則0~1dBi。 • 天線正下方一般避免安放器件,尤其是Speaker和 Vibrator • 電池儘量遠離天線。一般至少5mm以上。 • 天線同側後蓋上不用導電漆噴塗,謹慎使用電鍍裝飾。
EIRP = transmitter power + antenna gain – cable loss
Power Setting 100 mW 50 mW 30 mW 20 mW 15 mW 5 mW 1 mW dBm 20 dBm 17 dBm 15 dBm 13 dBm 12 dBm 7 dBm 0 dBm Gain@ 6 dBi Patch 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi 6 dBi EIRP 26 dBm 23 dBm 21 dBm 19 dBm 18 dBm 13 dBm 6 dBm
• Efficiency(效率)
Gain=Directionality × Efficiency
Efficiency=Output Power/Input Power
天線原理
• Polarization(極化)
天線遠場處電向量軌跡。分線極化、圓極化、橢圓極化。 一般手機外置(stubby)天線在H面接近線極化,PIFA和Monopole極 化複雜。 基站入射波為線極化,方向與地面垂直。
2
天線饋點和接地的擺放 (紅色為饋點,藍色為接地)
手機結構vs PIFA天線(翻蓋 或滑蓋)(一)
• 翻蓋手機合 蓋狀態,天 線表現與直 板機無異。 • 開蓋狀態, 上下蓋PCB 都為地,天 線由在地頂 端變為處於 地中央。
手機結構vs PIFA天線(翻蓋 或滑蓋)(二)
• 右二圖為合、開兩 種狀態下天線S11 參數的Smith圓圖。 右上圖為合蓋,右 下為開蓋。 • 由右圖可見兩種狀 態下天線工作狀態 發生較大變化。通 常低頻諧振降低。
3. Stamping + Support + Pogo pin (正、反)
Stamping熱熔到Support上,連接用Pogo Pin。
正向使用Pogo Pin一般適合於帶support的結構,反向使用都可以。
• • • •
FPC FPC + Support + FPC連接器 FPC + Support + Pogo pin (正、反) Housing表面電鍍
XY平面為H面,YZ面E1面,XZ面E2面。
Z
基站
Y X
天線原理
• 一個理論上的各向同 性(Isotropic)天線 有全立體角相等的方 向分佈。 • 該天線可作為其它天 線的參照。
側視 (垂直方向圖)
頂視 (平面方向圖)
天線原理-偶極天線
• 偶極天線方向圖側視
看來Isotropic方向圖垂直 方向收到“擠壓”,水 準方向則擴大了覆蓋範 圍。
側視 (垂直方向圖)
垂直波束
dipole (with Gain)
• 增益越高,垂直方向 波束越窄,水準方向 覆蓋和定向
• 右上圖為一高增益全 向天線。垂直方向波 束窄,陰影為天線不 能覆蓋範圍。水準方 向則覆蓋面積很大。 • 右下圖顯示方向圖被 “擠壓”向一個方向, 輻射能量在一定角度 分佈較大。而背面能 量分佈少。
• 以上二圖分別為直板(左)、翻蓋(右)@1GHz時的增 益方向圖。 • 由於翻蓋打開,增益比直板狀態增大了。直板狀態全向性 好,翻蓋狀態則背向增益變小。
PIFA的局限
• PIFA脫胎於帶短路微帶天線,有帶寬窄的先天缺 點。 • PIFA增益偏低。 • 結構單調,不易與當今靈活多變的手機結構相適 應。 • 面對3G和多模手機的要求,一個手機的天線(組) 必須同時面對900(800)MHz、1700MHz~ 2200MHz如此寬廣電磁波譜的要求。PIFA顯得力 不從心。
Beamwidth
Area of poor coverage directly under the antenna
Side View (Vertical Pattern)
Top View (Horizontal Pattern)
• EIRP(Effective Isotropic Radiated Power)
內置Helix
類似外置Helix內藏於手機殼內 • 金屬線Helix嵌入塑膠內模,軸線平行於PCB平面, 豎直裝載於PCB頂端。 • 金屬線Helix嵌入塑膠內模,軸線平行於PCB平面, 平行裝載於PCB頂端。 以上實際RF效果均不夠理想。一般輻射效率在20%。 優點在於可以利用以往的外置天線手機主機板設計, 稍加修改快速設計出一款內置天線手機。
PCB 天線高頻部分
從右圖可見 • 該種 monopole保 持了低頻 (1GHz)工 作頻帶。 • 高頻則可有 著與中心頻 率比值20% 以上、寬達 幾百兆工作 頻寬。
右圖為該天線 模型在 1.8GHz頻 率下的增益 方向圖。 • 最大增益~ 4dBi。 • 全向性可控 制
內置Planar Monopole vs手機 結構設計 • 內置Planar Monopole天線可以比同樣工作 頻率的PIFA小。 • Monopole必須懸空,平面結構下不能有 PCB的Ground。 • Monopole只需要一個Feed Point和PCB上 的Pad相連。
內置天線分類
• PIFA Planar Inverted F Antenna • Internal Planar Monopole 內置平面單極天線 • Internal Helix 內置螺旋天線
手機結構vs PIFA天線(直板 機)(一)
• 典型PIFA形 式,GSM/DCS (/PCS) • 位於手機頂部 • 面向Z軸正向, 與電池同側。
手機結構vs PIFA天線(直板 機)(二)
short pin
w=15~25
Feed pin
L=35~40
Antenna
H=6~8
Ground
手機結構vs PIFA天線(直板 機)(三) • PIFA最重要的三個參數 W,L,H,其中H和天線諧振頻率的頻寬密 切相關。W、L決定天線最低頻率。 • 手機PCB的尺寸對PIFA有很大影響 • Shielding Case對天線的影響 • 手機電池芯對PIFA影響強烈。
內置天線結構種類
天線 Pogo Pin 天線 Pogo Pin
PCB
正向使用Pogo Pin的
PCB
反向使用Pogo Pin的
1. Stamping
Stamping熱熔到Housing內側,Stamping伸出spring與手機PCB連接
2. Stamping + Support
Stamping熱熔到Support上,連接用spring