水吸收丙酮填料吸收塔课程设计报告
水吸收丙酮填料塔设计
摘要空气-丙酮混合气填料吸收塔设计任务为用水吸收丙酮常压填料塔,即在常压下,从含丙酮1.82%、相对湿度70%、温度35℃的混合气体中用25℃的吸收剂清水在填料吸收塔中吸收回收率为90%丙酮的单元操作。
设计主要包括设计方案的确定、填料选择、工艺计算等内容,其中整个工艺计算过程包括确定气液平衡关系、确定吸收剂用量及操作线方程、填料的选择、确定塔径及塔的流体力学性能计算、填料层高度计算、附属装置的选型以及管路及辅助设备的计算,在设计计算中采用物料衡算、亨利定律以及一些经验公式,该设计的成果有设计说明书和填料吸收塔的装配图及其附属装置图。
目录摘要 (I)水吸收丙酮填料塔设计 (1)第一章任务及操作条件 (1)第二章设计方案的确定 (2)2.1 设计方案的内容 (2)2.1.1 流程方案的确定 (2)2.1.2 设备方案的确定 (2)2.2 流程布置 (3)2.3 收剂的选择 (3)2.4 操作温度和压力的确定 (3)第三章填料的选择 (4)3.1填料的种类和类型 (4)3.1.1 颗粒填料 (4)3.1.2 规整填料 (4)3.2 填料类型的选择 (4)3.3填料规格的选择 (5)3.4填料材质的选择 (5)第四章工艺计算 (6)4.1 物料计算 (6)4.1.1 进塔混合气中各组分的量 (6)4.1.2 混合气进出塔的摩尔组成 (6)4.1.3 混合气进出塔摩尔比组成 (7)4.1.4 出塔混合气量 (7)4.2气液平衡关系 (7)L (7)4.3 吸收剂(水)的用量sX (8)4.4 塔底吸收液浓度14.5 操作线 (8)4.6 塔径计算 (8)4.6.1采用Eckert通用关联图法计算泛点气速u (8)F4.6.2 操作气速的确定 (9)4.6.3 塔径的计算 (9)4.6.4 核算操作气速 (10)4.6.5 核算径比 (10)4.6.6 喷淋密度校核 (10)4.6.7 单位填料程压降(pZ)的校核 (10)4.7 填料层高度的确定 (11)4.7.1 传质单元高度OGH计算 (11)4.7.2 计算YK a (13)4.7.3 计算OGH (13)4.7.4 传质单元数OGN计算 (13)4.7.5 填料层高度z的计算 (14)4.7.6填料塔附属高度的计算 (14)第五章填料吸收塔的附属设备 (15)5.1 填料支承板 (15)5.2 填料压板和床层限制板 (15)5.3 气体进出口装置和排液装置 (15)5.4分布点密度及布液孔数的计算 (15)5.5塔底液体保持管高度的计算 (16)第六章辅助设备的选型 (18)6.1管径的计算 (18)参考文献 (19)附录 (20)附表 (21)致谢 (24)水吸收丙酮填料塔设计第一章任务及操作条件混合气(空气、丙酮蒸汽)处理量:3m h2200/进塔混合气含丙酮 1.82%(体积分数);相对湿度:70%;温度:35℃;进塔吸收剂(清水)的温度25℃;丙酮回收率:90%;操作压强:常压操作。
填料塔清水吸收丙酮设计结果一览表
填料塔清水吸收丙酮设计结果一览表摘要:一、引言二、填料塔清水吸收丙酮设计概述三、设计结果一览表1.设计流量2.填料塔直径与高度3.填料层高度4.丙酮吸收液的喷淋密度5.液气比6.塔内压力分布7.温度分布8.设备材质与防腐措施四、设计结果的分析和讨论五、结论正文:一、引言本文主要介绍填料塔清水吸收丙酮的设计结果。
通过本设计,旨在实现对丙酮废气的有效处理,达到环保要求。
二、填料塔清水吸收丙酮设计概述填料塔清水吸收丙酮设计采用喷淋吸收剂的方法,将废气中的丙酮通过与吸收剂的接触,转化为无害物质。
设计过程中,主要考虑了流量、塔直径与高度、填料层高度、喷淋密度、液气比等因素,以保证系统的高效运行。
三、设计结果一览表1.设计流量:根据生产需要和处理能力,确定设计流量为10000m/h。
2.填料塔直径与高度:结合塔内流体动力学特性,确定填料塔直径为2m,高度为20m。
3.填料层高度:根据填料塔直径和高度,以及填料特性,确定填料层高度为15m。
4.丙酮吸收液的喷淋密度:为保证吸收效果,确定喷淋密度为1.5kg/m·s。
5.液气比:根据丙酮与吸收剂的化学反应特性,确定液气比为3:1。
6.塔内压力分布:设计压力分布为0.1MPa,以满足设备运行要求。
7.温度分布:为保证吸收剂的稳定性和吸收效果,设计温度分布为常温。
8.设备材质与防腐措施:设备主要材质采用不锈钢,以抵抗丙酮废气的腐蚀性。
同时,采取喷涂防腐漆等措施,提高设备的使用寿命。
四、设计结果的分析和讨论本次设计结果满足生产需要和环保要求。
在实际运行中,可通过调节喷淋密度、液气比等参数,进一步提高吸收效果。
此外,需定期检查设备运行情况,及时更换损坏的部件,保证设备的稳定运行。
五、结论本文详细介绍了填料塔清水吸收丙酮的设计结果。
水吸收丙酮吸收塔设计
目录目录 (I)摘要.............................................................. I II 第1章绪论.. (1)1.1吸收技术概况 (1)1.2吸收设备的发展 (1)1.3吸收在工业生产中的应用 (2)第2章设计方案 (3)2.1 吸收剂的选择 (3)2.2 吸收流程的选择 (3)2.3吸收塔设备及填料的选择 (4)2.4 吸收参数的选择 (5)第3章吸收塔的工艺计算 (6)3.1 基础物性数据 (6)3.1.1 液相物性数据 (6)3.1.2 气相物性数据 (6)3.1.3 气液相平衡数据 (6)3.2 物料衡算 (7)3.3 填料塔的工艺尺寸的计算 (7)3.3.1 塔径的计算 (7)3.3.2 填料塔填料层高度的计算 (9)3.4 塔附属高度的计算 (12)3.5 液体初始分布器和再分布器的选择与计算 (12)3.5.1 液体分布器 (12)3.5.2 液体再分布器 (12)3.5.3 塔底液体保持管高度 (13)3.6 其他附属塔内件选择的选择 (13)3.7 吸收塔的流体力学参数计算 (13)3.7.1 吸收塔的压力降 (13)3.7.2 吸收塔的泛点率 (14)3.7.3 气体动能因子 (14)3.8 附属设备的计算与选择 (15)3.8.1 离心泵的选择与计算 (15)3.8.2 吸收塔的主要接管尺寸的计算 (16)结论 (18)主要符号说明 (19)主要参考文献 (20)附录 (21)结束语 (23)教师评语 (24)摘要气液两相的分离是通过它们密切的接触进行的,在正常操作下,气相为连续相而液相为分散相,气相组成呈连续变化,气相中的成分逐渐被分离出来,属微分接触逆流操作过程。
填料塔具有较高的分离效率,因此根据丙酮和空气的物理性质和化学性质分析,应该采用填料塔来分离气相中的丙酮。
本次设计任务是针对二元物系的吸收问题进行分析、设计、计算、核算、绘图,是较完整的吸收设计过程,并通过对填料塔及其填料的计算,可以得出填料塔和填料及附属设备的各种设计参数。
水吸收丙酮填料吸收塔课程设计报告书
目录目录 (I)第1章概述 (1)1.1吸收塔的概述 (1)1.2吸收设备的发展 (1)1.3吸收过程在工业生产上应用 (2)第2章设计方案 (3)2.1设计任务 (3)2.2吸收剂的选择 (4)2.3吸收流程的确定 (5)2.4吸收塔设备的选择 (6)2.5吸收塔填料的选择 (7)第3章吸收塔的工艺计算 (11)3.1基础物性数据 (11)3.1.1液相物性数据 (11)3.1.2气相物性数据 (12)3.1.3气液相平衡数据 (12)3.2物料衡算 (12)3.3填料塔的工艺尺寸的计算 (14)3.3.1塔径的计算 (14)3.3.2填料层高度计算 (15)3.4填料层压降的计算zz (17)第4章塔内件及附属设备的计算 (18)4.1液体分布器的计算 (18)4.2选用DN 2.5Φ32无缝钢管 (18)4.2.1填料塔附属高度的计算 (19)4.3填料支撑板 (20)4.4填料压紧装置 (21)4.5气进出管的选择 (21)4.6液体除雾器 (22)4.7筒体和封头的设计 (23)4.8手孔的设计 (25)4.9法兰的设计 (25)第5章设计总结 (27)符号说明 (29)参考文献: (32)致谢 (33)第1章概述1.1吸收塔的概述气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
实际生产中,吸收过程所用的吸收剂常需回收利用。
故一般来说,完整的吸收过程应包括吸收和解吸两部分。
在设计上应将两部分综合考虑,才能得到较为理想的设计结果。
作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。
丙酮和水吸收塔化工原理课程设计
丙酮和水吸收塔化工原理-从结构、工艺过程和应用角度深度探讨丙酮和水吸收塔是一种常用的化工设备,广泛应用于化工、医药、食品等领域,具有吸收、分离、净化等功能。
本文将从结构、工艺过程和应用角度深度探讨丙酮和水吸收塔化工原理。
一、丙酮和水吸收塔结构丙酮和水吸收塔主要由塔壳、填料层、进料管道、排气管道、循环泵和控制系统组成。
塔壳一般为不锈钢或碳钢材质,填料层可以是泡沫塑料、陶粒或塑料制品。
进料管道和排气管道负责分别导入和排出气体。
循环泵则起到循环液体的作用,控制系统用于调节塔内气体温度和流速等参数。
二、丙酮和水吸收塔工艺过程丙酮和水吸收塔的工艺过程可以分为四个步骤:吸附、溶解、反应和分离。
1. 吸附当气体进入丙酮和水吸收塔时,它们就开始接触填料上涂有吸收剂的表面。
此时,气体中的废气开始与吸收剂发生接触,废气中的污染物开始逐渐被吸收剂吸附。
2. 溶解在吸附的基础上,当气体与吸收剂发生接触时,吸附剂会逐渐溶解。
目的是使废气在吸收剂中形成分子内的显著降解和溶解,在这一步骤中,需要预先调节液体和气体的比例,温度和压力等参数以确保溶解的发生。
3. 反应在液池中发生吸收剂与废气中污染物之间化学反应,使废气中的污染物逐渐被分解降解,从而减轻对环境负担。
4. 分离在经过吸附、溶解和反应之后,液池中的吸收剂会变得过度饱和。
这时,液池内的液体会通过流量调节阀流入分离器,使污染物与吸收剂分离。
而气体则经过排气管道排出丙酮和水吸收塔。
三、丙酮和水吸收塔应用丙酮和水吸收塔具有广泛的应用领域,如环境保护、化工生产、医药生产和食品加工等。
例如,在环境保护领域,丙酮和水吸收塔主要应用于废气处理。
在化工生产中,丙酮和水吸收塔主要用于去除废气中的有机气体,减轻对环境的污染。
在医药生产和食品加工领域,丙酮和水吸收塔则主要用于去除废气中的异味、二氧化碳等有害气体,提高晶体产品的纯度和质量。
综上所述,丙酮和水吸收塔化工原理是一种重要的工艺和设备,具有吸收、分离、净化等多种功能。
清水吸收丙酮填料塔的设计完整版
清水吸收丙酮填料塔的设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《化工原理》课程设计清水吸收丙酮填料塔的设计学院医药化工学院专业高分子材料与工程班级高分子材料与工程13(1)班姓名李凯杰学号 xx指导教师严明芳、龙春霞年月日设计书任务(一)设计题目试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为___4000____m3/h。
进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。
采用25℃清水进行吸收,要求:丙酮的回收率达到___95%___(二)操作条件(1)操作压力 kPa(2)操作温度 25℃(3)吸收剂用量为最小用量的倍数自己确定(4)塔型与填料自选,物性查阅相关手册。
(三)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图;(7)其他填料塔附件的选择;(8)塔的总高度计算;(9)泵和风机的计算和选型;(10)吸收塔接管尺寸计算;(11)设计参数一览表;(12)绘制生产工艺流程图(A3号图纸);(13)绘制吸收塔设计条件图(A3号图纸);(14)对设计过程的评述和有关问题的讨论。
目录前言吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
在化工生产中主要用于原料气的净化,有用组分的回收等。
?填料塔是气液呈连续性接触的气液传质设备。
塔的底部有支撑板用来支撑填料,并允许气液通过。
支撑板上的填料有整砌和乱堆两种方式。
填料层的上方有液体分布装置,从而使液体均匀喷洒于填料层上。
?本次化工原理课程设计的目的是根据设计要求采用填料吸收塔的方法处理含有丙酮的混合物,使其达到排放标准。
在设计中,主要以清水吸收混合气中的丙酮,在给定的操作条件下对填料吸收塔进行物料衡算。
用水吸收丙酮课程设计
用水吸收丙酮课程设计一、教学目标本节课的教学目标是让学生掌握用水吸收丙酮的基本原理和实验操作方法。
知识目标包括了解丙酮的物理性质和溶解性,理解用水吸收丙酮的原理;技能目标包括学会正确操作实验设备,能够独立完成用水吸收丙酮的实验;情感态度价值观目标包括培养学生的实验兴趣,增强学生的环保意识。
二、教学内容本节课的教学内容主要包括丙酮的物理性质和溶解性、用水吸收丙酮的原理、实验操作方法等。
首先,介绍丙酮的基本性质,如密度、沸点等,并通过实例说明丙酮的溶解性。
然后,讲解用水吸收丙酮的原理,包括吸收过程的化学反应和影响因素。
最后,详细介绍用水吸收丙酮的实验操作步骤,如实验设备的准备、实验操作注意事项等。
三、教学方法为了提高学生的学习兴趣和主动性,本节课采用多种教学方法。
首先,采用讲授法,为学生讲解丙酮的物理性质和溶解性、用水吸收丙酮的原理等基本知识。
其次,通过讨论法,引导学生探讨用水吸收丙酮的实验操作方法,提高学生的思考能力。
此外,还采用实验法,让学生亲自动手进行实验,增强学生的实践能力。
最后,利用多媒体资料,为学生展示用水吸收丙酮的实验过程,丰富学生的学习体验。
四、教学资源本节课的教学资源包括教材、实验设备、多媒体资料等。
教材为学生提供丙酮的物理性质和溶解性、用水吸收丙酮的原理等基本知识,实验设备让学生亲身体验用水吸收丙酮的实验过程,多媒体资料为学生展示实验过程,帮助学生更好地理解实验原理和操作方法。
这些教学资源共同支持教学内容的实施,丰富学生的学习体验。
五、教学评估本节课的评估方式包括平时表现、作业和实验报告。
平时表现主要评估学生在课堂上的参与程度、提问和回答问题的积极性等。
作业主要评估学生对课堂知识的掌握情况,包括丙酮的物理性质和溶解性、用水吸收丙酮的原理等。
实验报告主要评估学生实验操作的规范性、实验数据的准确性和对实验结果的分析能力。
这些评估方式客观、公正,能够全面反映学生的学习成果。
六、教学安排本节课的教学安排如下:共45分钟,第1-15分钟讲解丙酮的物理性质和溶解性,第16-30分钟讲解用水吸收丙酮的原理,第31-40分钟进行实验操作,第41-45分钟进行总结和答疑。
清水吸收丙酮填料塔的设计
《化工原理》课程设计清水吸收丙酮填料塔的设计学院医药化工学院专业高分子材料与工程班级高分子材料与工程13(1)班姓名李凯杰学号 xx指导教师严明芳、龙春霞年月日设计书任务(一)设计题目试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为___4000____m3/h。
进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。
采用25℃清水进行吸收,要求:丙酮的回收率达到___95%___(二)操作条件(1)操作压力101.6 kPa(2)操作温度25℃(3)吸收剂用量为最小用量的倍数自己确定(4)塔型与填料自选,物性查阅相关手册。
(三)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图;(7)其他填料塔附件的选择;(8)塔的总高度计算;(9)泵和风机的计算和选型;(10)吸收塔接管尺寸计算;(11)设计参数一览表;(12)绘制生产工艺流程图(A3号图纸);(13)绘制吸收塔设计条件图(A3号图纸);(14)对设计过程的评述和有关问题的讨论。
目录前言 (1)第1章填料塔主体设计方案的确定 (2)1.1 装置流程的确定 (2)1.2 吸收剂的选择 (2)1.3 操作温度与压力的确定 (2)1.4 填料的类型与选择 (2)第2章基础物性数据与物料衡算 (2)2.1 基础物性衡算 (3)2.1.1 液相物性数据 (3)2.1.2 气相物性数据 (3)2.1.3 气液相平衡数据 (4)2.2 物料衡算 (4)第3章填料塔的工艺尺寸计算 (5)3.1 塔径的计算 (5)3.2 泛点率的校核 (6)3.3 填料规格校核 (7)3.4 液体喷淋密度校核 (7)3.5 填料塔填料高度的计算 (7)3.5.1 传质单元数的计算 (7)3.5.2 传质单元高度的计算 (8)3.5.3 填料层高度的计算 (9)3.6 填料塔附属高度的计算 (10)3.7 填料层压降的计算 (10)第4章填料塔附件的选择与计算 (11)4.1 液体分布器简要设计 (11)4.1.1 液体分布器的选型 (11)4.1.2 分布点密度计算 (11)4.1.3 布液计算 (12)4.2 液体收集及分布装置 (12)4.3 气体分布装置 (13)4.4 除沫装置 (14)4.5 填料支承及压紧装置 (14)4.5.1 填料支承装置 (14)4.5.2 填料限定装置 (14)4.6 裙座 (14)4.7 人孔 (15)第5章填料塔的流体力学参数计算 (15)5.1 吸收塔主要接管的计算 (15)5.1.1 液体进料管的计算 (15)5.1.2 气体进料管的计算 (16)5.2 离心泵和风机的计算与选型 (16)5.2.1 离心泵的计算与选型 (16)5.2.2 风机的计算与选取 (18)设计参数一览表 (20)对设计过程的评述和有关问题的讨论 (24)参考文献 (25)前言吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
环境工程原理课程设计 丙酮吸收填料塔
环境工程原理课程设计题目水吸收丙酮填料塔设计学院专业班级学生姓名学生学号指导教师2014年6月16日目录第一章设计任务书 (3)1.1 设计题目 (3)1.2 设计任务及操作条件 (3)1.3 设计内容 (3)1.4 设计要求 (3)第二章设计方案的确定 (4)2.1 设计方案的内容 (4)2.1.1 流程方案的确定 (4)2.1.2 设备方案的确定 (4)2.2 填料的选择 (5)第三章吸收塔的工艺计算 (6)3.1 基础物性数据 (6)3.1.1 液相物性数据 (6)3.1.2 气相物性数据 (6)3.1.3气液平衡相数据 (7)3.2 物料衡算 (7)3.3 填料塔塔径的计算 (8)3.3.1 泛点气速的计算 (8)3.3.2 塔径的计算及校核 (9)3.4.1 气相总传质单元数的计算 (10)3.4.2 气相总传质单元高度的计算 (10)3.5 填料塔流体力学校核 (12)3.5.1 气体通过填料塔的压降 (12)3.5.2 泛点率 (13)3.5.3 气体动能因子 (13)第四章塔内辅助设备的选择和计算 (13)4.1 液体分布器 (13)4.2 填料塔附属高度 (14)4.3 填料支承装置 (15)4.4 填料压紧装置 (15)4.5 液体进、出口管 (15)4.6 液体除雾器 (16)4.7 筒体和封头 (17)4.8 手孔 (17)4.9 法兰 (17)4.10 裙座 (19)第五章设计计算结果总汇表 (20)第六章课程设计总结 (23)参考文献 (24)附录 (25)第一章设计任务书1.1 设计题目水吸收丙酮填料塔设计1.2 设计任务及操作条件(1)气体处理量:1820 m3/h(2)进塔混合气含丙酮5%(V ol),进塔温度35℃(3)进塔吸收剂(清水)温度:25℃,吸收剂的用量为最小用量的1.3倍(4)丙酮回收率:90%(5)操作压力:常压(6)每天工作24小时,一年300天1.3 设计内容(1)确定吸收流程(2)物料衡算,确定塔顶塔底的气液流量和组成(3)选择填料、计算塔径、填料层高度、填料分层、塔高(4)流体力学特性校核:液气速度求取、喷淋密度校核、填料层压降计算(5)附属装置的选择与确定:液体喷淋装置、液体再分布器、气体进出口及液体进出口装置、栅板1.4 设计要求(1)设计说明书内容①目录和设计任务书②流程及流程说明③设计计算及结果总汇表④对设计成果的评价及讨论⑤参考文献(2)绘制填料塔设计图第二章设计方案的确定2.1 设计方案的内容2.1.1 流程方案的确定本工艺采用清水吸收丙酮,为易溶气体的吸收过程,由于逆流操作传质推动力大,传质速率快,分离效率高,吸收剂利用率高,故选用逆流操作,即气体自塔低进入由塔顶排出,液体自塔顶进入由塔底排出。
水吸收丙酮填料塔设计
摘要空气-丙酮混合气填料吸收塔设计任务为用水吸收丙酮常压填料塔,即在常压下,从含丙酮1.82%、相对湿度70%、温度35℃的混合气体中用25℃的吸收剂清水在填料吸收塔中吸收回收率为90%丙酮的单元操作。
设计主要包括设计方案的确定、填料选择、工艺计算等内容,其中整个工艺计算过程包括确定气液平衡关系、确定吸收剂用量及操作线方程、填料的选择、确定塔径及塔的流体力学性能计算、填料层高度计算、附属装置的选型以及管路及辅助设备的计算,在设计计算中采用物料衡算、亨利定律以及一些经验公式,该设计的成果有设计说明书和填料吸收塔的装配图及其附属装置图。
目录摘要............................................................ I 水吸收丙酮填料塔设计. (1)第一章任务及操作条件 (1)第二章设计方案的确定 (2)2.1 设计方案的内容 (2)2.1.1 流程方案的确定 (2)2.1.2 设备方案的确定 (2)2.2 流程布置 (3)2.3 收剂的选择 (3)2.4 操作温度和压力的确定 (3)第三章填料的选择 (4)3.1填料的种类和类型 (4)3.1.1 颗粒填料 (4)3.1.2 规整填料 (4)3.2 填料类型的选择 (4)3.3填料规格的选择 (5)3.4填料材质的选择 (5)第四章工艺计算 (6)4.1 物料计算 (6)4.1.1 进塔混合气中各组分的量 (6)4.1.2 混合气进出塔的摩尔组成 (6)4.1.3 混合气进出塔摩尔比组成 (7)4.1.4 出塔混合气量 (7)4.2气液平衡关系 (7)L (7)4.3 吸收剂(水)的用量sX (8)4.4 塔底吸收液浓度14.5 操作线 (8)4.6 塔径计算 (8)4.6.1采用Eckert通用关联图法计算泛点气速u (8)F4.6.2 操作气速的确定 (9)4.6.3 塔径的计算 (9)4.6.4 核算操作气速 (10)4.6.5 核算径比 (10)4.6.6 喷淋密度校核 (10)4.6.7 单位填料程压降(pZ)的校核 (10)4.7 填料层高度的确定 (11)4.7.1 传质单元高度OGH计算 (11)4.7.2 计算YK a (13)4.7.3 计算OGH (13)4.7.4 传质单元数OGN计算 (13)4.7.5 填料层高度z的计算 (14)4.7.6填料塔附属高度的计算 (14)第五章填料吸收塔的附属设备 (15)5.1 填料支承板 (15)5.2 填料压板和床层限制板 (15)5.3 气体进出口装置和排液装置 (15)5.4分布点密度及布液孔数的计算 (15)5.5塔底液体保持管高度的计算 (16)第六章辅助设备的选型 (18)6.1管径的计算 (18)参考文献 (19)附录 (20)附表 (21)致谢 (24)水吸收丙酮填料塔设计第一章任务及操作条件混合气(空气、丙酮蒸汽)处理量:3m h2200/进塔混合气含丙酮 1.82%(体积分数);相对湿度:70%;温度:35℃;进塔吸收剂(清水)的温度25℃;丙酮回收率:90%;操作压强:常压操作。
水吸收丙酮课程设计—化工原理课程设计报告书
化工原理课程设计报告书设计题目:水吸收丙酮填料塔的设计姓名:王XX学号:XXXXXXX专业:制药工程班级:20XX(1)班指导老师:XXX日期:20XX 年1 月目录1设计方案简介 (2)1.1设计方案的确定 (2)1.2填料的选择 (2)2工艺计算 (2)2.1 基础物性数据 (2)2.1.1 (2)2.1.2气相物性的数据 (2)2.1.3气液相平衡数据 (3)2.1.4 物料衡算 (3)2.2 填料塔的工艺尺寸的计算 (4)2.2.1 塔径的计算 (4)2.2.2 填料层高度计算 (6)2.2.3 填料层压降计算 (8)2.2.4 液体分布器简要设计 (8)3.设备的计算及选型 (10)3.1 填料支承设备 (10)3.2填料压紧装置 (10)3.3液体收集再分布装置 (10)3.4气体和液体的进出口装置 (10)4.设计参数一览表 (11)5.设计评述 (12)6.参考文献 (12)设计内容及目的:本次试验所设计的内容为一填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为2800m 3/h 。
进口混合气中含丙酮蒸汽8%(V/V);混合气进料温度为35℃,采用清水进行吸收。
[要求]:丙酮的回收率达到96%;[操作条件]:操作压力为常压,操作温度为25℃。
1设计方案简介1.1设计方案的确定用水吸收丙酮属中等溶解度的吸收过程,为提高传质效率,选用逆流吸收流程。
因用水作为吸收剂,且丙酮不作为产品,故采用纯溶剂。
1.2填料的选择对于水吸收丙酮的过程,操作温度及操作压力较低,工业上通常选用塑料散装填料。
在塑料散装填料中,塑料阶梯环填料的综合性能较好,故此选用DN38聚丙烯阶梯环填料。
2工艺计算2.1 基础物性数据2.1.1液相物性的数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。
由手册查得,25℃时水的有关物性数据如下:密度为 ρL=997.1 kg/m3粘度为 μL=0.0008937 Pa·s=3.2173kg/(m·h)表面张力为σL=71.97 dyn/cm=932731 kg/h2丙酮在水中的扩散系数为 DL=1.327×10-9m2/s=4.776×10-6m2/h(依 D=0D μμ00T T 计算,查《化工原理》教材)2.1.2气相物性的数据进塔混合气体温度为35℃混合气体的平均摩尔质量为MVm=ΣyiMi=0.08×58.08+0.92×29=31.33g/mol混合气体的平均密度为混合气体的粘度可近似取为空气的粘度,查手册得35℃空气的粘度为μV=1.88 ×10-5Pa•s=0.068kg/(m•h)查手册得丙酮在空气中的扩散系数为h m s cm D V /038.0/106.022== (依2/3000))((T T P P D D =计算,其中293K 时,100kPa 时丙酮在空气中扩散系数为1×s m /1025-,查《化工原理》教材)2.1.3气液相平衡数据当x<0.01,t=15~45℃时,丙酮-水体系的亨利系数可用式:T E 2040171.9lg -=计算E=211.5kPa相平衡常数为m=E/P=211.5/101.3=2.09溶解度系数为262.002.185.2111.997=⨯==s LEM H ρ)/(3m kPa kmol ⋅2.1.4 物料衡算进塔气相摩尔比为1110.080.0870110.08y Y y ===--出塔气相摩尔比为21(1)0.0870(10.96)0.00348Y Y φA =-=-=3 / K 239 . 1 15 . 308 314 . 8 33 .31. 325 . 101 m g RT PM m m V V = ⨯ ⨯ = = ρ进塔惰性气相流量为2800273(10.08)101.93/22.427335V kmol h =⨯-=+该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即2121min /)(X m Y Y Y VL --= 对于纯溶剂吸收过程,进塔液相组成为 02=Xmin 0.08700.00348() 2.010.0870/2.090L V -==-取操作液气比为min )(8.1V L V L = 1.8 2.01 3.62L V =⨯=3.62101.93368.99/L kmol h =⨯=)()(2121X X L Y Y V -=-1101.93(0.08700.00348)0.023368.99X -==2.2 填料塔的工艺尺寸的计算2.2.1 塔径的计算采用Eckert 通用关联图计算泛点气速气相质量流量为2800 1.2393469V ω=⨯=kg/h液相质量流量可近似按纯水的流量计算,即368.9918.026649L ω=⨯=kg/hEckert 通用关联图的横坐标为0.50.566491.239()()0.073469997.1L V V L ωρωρ==图一填料塔泛点和压降的通用关联图(引自《化工原理》教材) 查图一得 17.02.02=L LV F F g u μρρψφ 查表1170-=m F φ 0.20.20.170.179.81997.1 2.842/1701 1.2390.8937LF F V L g u m s ρϕψρμ⨯⨯===⨯⨯⨯ 取 0.70.7 2.842 1.989/F u u m s ==⨯=由 442800/36000.73.14 1.989s V D m u π⨯===⨯ 圆整塔径,取D=0.7m泛点率校核: 22800/3600 2.02/0.7850.7u m s ==⨯2.14100%75.30%2.842F u u =⨯=(在允许范围内) 填料规格校核:70018.42838D d ==> 液体喷淋密度校核:取最小润湿速率为()h m m L w ⋅=/08.03min查表3/5.1322m m a t =h m m a L U t w ⋅=⨯==23min min /6.105.13208.0)( min 26649/997.117.330.7850.7U U ==>⨯ 经以上校核可知,填料塔直径选用D=700m 合理。
水吸收丙酮填料塔的设计
水吸收丙酮填料塔的设计《化工原理》课程设计水吸收丙酮填料塔的设计学院医药化工学院专业化学工程与工艺班级姓名学号指导教师2012年 1 月 1 日设计任务水吸收丙酮填料塔的设计(一)设计题目试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为____1600_____m3/h。
进口混合气中含丙酮蒸汽__10%_______(体积百分数);混合气进料温度为35℃。
采用清水进行吸收。
要求:②出塔气体中丙酮气流量为入塔丙酮流量的__1/90______。
②丙酮的回收率达到________。
(二)操作条件(1)操作压力常压(2)操作温度25℃(3)吸收剂用量为最小用量的倍数自己确定(三)填料类型填料类型与规格自选。
(四)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图(7)吸收塔接管尺寸计算;(8)设计参数一览表;(9)绘制生产工艺流程图(A3号图纸);(10)绘制吸收塔设计条件图(A3号图纸);(11)对设计过程的评述和有关问题的讨论。
设计任务二目录1. 设计方案简介……………………………………………………………………11.1设计方案的确定 (1)1.2填料的选择 (3)2. 工艺计算…………………………………………………………………………42.1 基础物性数据 (4)液相物性的数据 (4)气相物性的数据 (5)气液相平衡数据 (5)物料衡算 (5)2.2 填料塔的工艺尺寸的计算 (6)塔径的计算 (6)填料层高度计算 (8)填料层压降计算 (11)液体分布器简要设计 (11)3. 辅助设备的计算及选型 (12)3.1 填料支承设备 (12)3.2填料压紧装置………………………………………………………………133.3液体再分布装置 (13)4. 设计一览表……………………………………………………………………145. 后记………………………………………………………………………………156. 参考文献…………………………………………………………………………15 7. 主要符号说明……………………………………………………………………16 8. 附图(工艺流程简图、主体设备设计条件图)1.设计方案简介塔设备在化工、石油化工、生物化工、医药、食品等生产过程中广泛应用的汽液传质设备[1]。
水吸收丙酮的填料塔设计
江苏大学京江学院填料吸收塔课程设计说明书专业班级姓名班级序号指导老师日期成绩目录前言 (2)水吸收丙酮填料塔设计 (2)一任务及操作条件 (2)二吸收工艺流程的确定 (2)三物料计算 (3)四热量衡算 (4)五气液平衡曲线 (5)六吸收剂(水)的用量Ls (5)七塔底吸收液浓度X1 (6)八操作线 (6)九塔径计算 (6)十填料层高度计算 (9)十一填科层压降计算 (13)十二填料吸收塔的附属设备 (13)十三课程设计总结 (15)十四主要符号说明 (16)十五参考文献 (17)十六附图 (18)前言塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。
根据塔内气液接触部件的形式,可以分为填料塔和板式塔。
板式塔属于逐级接触逆流操作,填料塔属于微分接触操作。
工业上对塔设备的主要要求:(1)生产能力大(2)分离效率高(3)操作弹性大(4)气体阻力小结构简单、设备取材面广等。
塔型的合理选择是做好塔设备设计的首要环节,选择时应考虑物料的性质、操作的条件、塔设备的性能以及塔设备的制造、安装、运转和维修等方面的因素。
板式塔的研究起步较早,具有结构简单、造价较低、适应性强、易于放大等特点。
填料塔由填料、塔内件及筒体构成。
填料分规整填料和散装填料两大类。
塔内件有不同形式的液体分布装置、填料固定装置或填料压紧装置、填料支承装置、液体收集再分布装置及气体分布装置等。
与板式塔相比,新型的填料塔性能具有如下特点:生产能力大、分离效率高、压力降小、操作弹性大、持液量小等优点。
水吸收丙酮填料塔设计一任务及操作条件①混合气(空气、丙酮蒸汽)处理量:80003/m h。
②进塔混合气含丙酮15%(体积分数);相对湿度:70%;温度:25℃;③进塔吸收剂(清水)的温度25℃;④丙酮回收率:95%;⑤操作压力为常压。
二吸收工艺流程的确定采用常规逆流操作流程.流程如下。
三 物料计算(l). 进塔混合气中各组分的量近似取塔平均操作压强为101.3kPa ,故: 混合气量= 8000(273/273+25)×122.4= 327.18kmol /h 混合气中丙酮量=327.18×0.15=49.08 kmol /h = 49.08×327.18=16058kg /h查附录,25℃饱和水蒸气压强为3168.4Pa ,则相对湿度为70%的混合 气中含水蒸气量=4.31687.0103.1017.04.31683⨯⨯⨯-=0.0224 kmol (水气)/ kmol (空气十丙酮)混合气中水蒸气含量=0224.010224.018.327+⨯=7.17kmol /h (《化工单元操作及设备》P18916-23)=7.17×18=129.03kg /h混合气中空气量=327.18-49.08-7.17=270.93kmol /h=270.93×29=7856.97kg /h(2).混合气进出塔的(物质的量)成 1y =0.15,则2y =)95.01(08.4917.793.270)95.01(08.49-⨯++-⨯=0.0087(3).混合气进出塔(物质的量比)组成 若将空气与水蒸气视为惰气,则 惰气量=270.93十7.17=278.1kmol /h =7856.93+129.03=7985.96kg /hY 1=1.27808.49=0.176kmol(丙酮)/kmol(惰气) Y 2=1.278)95.01(08.49-=0.0088kmol(丙酮)/kmol(惰气)(4).出塔混合气量出塔混合气量=278.1+49.08×0.05=280.55kmol/h =7985.96+16058×0.05=8788.86kg/h 四 热量衡算热量衡算为计算液相温度的变化以判明是否为等温吸收过程。
丙酮填料吸收塔课程设计
丙酮填料吸收塔课程设计一、课程目标知识目标:1. 学生能理解丙酮填料吸收塔的基本原理,掌握吸收塔的构造和功能。
2. 学生能掌握丙酮在吸收塔中的传质、传热过程,并了解影响吸收效率的主要因素。
3. 学生能运用相关理论知识,分析丙酮填料吸收塔的操作参数,对其进行优化。
技能目标:1. 学生具备设计丙酮填料吸收塔实验方案的能力,能进行实验操作,并对实验数据进行处理和分析。
2. 学生能运用计算机软件对丙酮填料吸收塔进行模拟和优化,提高解决实际问题的能力。
情感态度价值观目标:1. 学生通过本课程的学习,培养对化学工程学科的兴趣,激发学习热情。
2. 学生能认识到丙酮填料吸收塔在化工生产中的应用价值,增强社会责任感和环保意识。
3. 学生通过小组合作、讨论交流,培养团队协作精神,提高沟通能力和解决问题的能力。
课程性质:本课程为化学工程学科的专业课程,旨在让学生掌握丙酮填料吸收塔的原理和操作,提高实验技能和实际应用能力。
学生特点:学生为高年级本科生,具备一定的化学基础和工程知识,具有较强的逻辑思维和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,强调实验操作和实际应用,提高学生的综合能力。
通过课程目标分解,确保学生能够达到预期的学习成果,为后续教学设计和评估提供依据。
二、教学内容1. 丙酮填料吸收塔的基本原理:包括吸收塔的结构、填料的类型及特点、气液两相间的传质和传热过程。
相关教材章节:第三章“吸收与吸附”,第5节“填料塔吸收”。
2. 影响丙酮填料吸收塔效率的因素:分析温度、压力、气体流速、液体流速等操作参数对吸收效率的影响。
相关教材章节:第三章“吸收与吸附”,第6节“影响吸收效率的因素”。
3. 丙酮填料吸收塔的设计与优化:介绍实验方案设计、操作参数优化方法,以及计算机模拟在吸收塔设计中的应用。
相关教材章节:第四章“化工塔设备”,第2节“填料塔的设计与优化”。
4. 实验操作与数据处理:包括实验操作步骤、注意事项以及实验数据的收集、处理和分析方法。
清水吸收丙酮填料塔的设计完整版
清水吸收丙酮填料塔的设计HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】《化工原理》课程设计清水吸收丙酮填料塔的设计学院医药化工学院专业高分子材料与工程班级高分子材料与工程13(1)班姓名李凯杰学号 xx指导教师严明芳、龙春霞年月日设计书任务(一)设计题目试设计一座填料吸收塔,用于脱除空气中的丙酮蒸汽。
混合气体处理量为___4000____m3/h。
进口混合气中含丙酮蒸汽__6%__(体积百分数);混合气进料温度为35℃。
采用25℃清水进行吸收,要求:丙酮的回收率达到___95%___(二)操作条件(1)操作压力 kPa(2)操作温度 25℃(3)吸收剂用量为最小用量的倍数自己确定(4)塔型与填料自选,物性查阅相关手册。
(三)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图;(7)其他填料塔附件的选择;(8)塔的总高度计算;(9)泵和风机的计算和选型;(10)吸收塔接管尺寸计算;(11)设计参数一览表;(12)绘制生产工艺流程图(A3号图纸);(13)绘制吸收塔设计条件图(A3号图纸);(14)对设计过程的评述和有关问题的讨论。
目录前言吸收是利用混合气体中各组分在液体中的溶解度的差异来分离气态均相混合物的一种单元操作。
在化工生产中主要用于原料气的净化,有用组分的回收等。
?填料塔是气液呈连续性接触的气液传质设备。
塔的底部有支撑板用来支撑填料,并允许气液通过。
支撑板上的填料有整砌和乱堆两种方式。
填料层的上方有液体分布装置,从而使液体均匀喷洒于填料层上。
?本次化工原理课程设计的目的是根据设计要求采用填料吸收塔的方法处理含有丙酮的混合物,使其达到排放标准。
在设计中,主要以清水吸收混合气中的丙酮,在给定的操作条件下对填料吸收塔进行物料衡算。
化工原理课程设计 水吸收丙酮填料塔设计
目录概述 (2)一设计任务及操作条件 (2)二设计方案的确定 (3)三物料计算 (3)四热量衡算 (4)五气液平衡曲线 (5)六吸收剂(水)的用量Ls (6) (6)七塔底吸收液浓度X1八操作线 (6)九塔径计算 (6)十填料层高度计算 (9)十一填科层压降计算 (13)十二填料吸收塔的附属设备 (13)十三填料塔的设计结果概要 (15)十四主要符号说明 (16)十五参考文献 (17)十六课程设计总结 (18)1概述在化工、炼油、医药、食品及环境保护等工业部门,塔设备是一种重要的单元操作设备。
其作用实现气—液相或液—液相之间的充分接触,从而达到相际间进行传质及传热的过程。
它广泛用于蒸馏、吸收、萃取、等单元操作,随着石油、化工的迅速发展,塔设备的合理造型设计将越来越受到关注和重视。
塔设备有板式塔和填料塔两种形式,下面我们就填料塔展开叙述。
填料塔的基本特点是结构简单,压力降小,传质效率高,便于采用耐腐蚀材料制造等,对于热敏性及容易发泡的物料,更显出其优越性。
过去,填料塔多推荐用于0.6∽0.7m以下的塔径。
近年来,随着高效新型填料和其他高性能塔内件的开发,以及人们对填料流体力学、放大效应及传质机理的深入研究,使填料塔技术得到了迅速发展。
气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用气体混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
板式塔和填料塔都可用于吸收过程,此次设计用填料塔作为吸收的主设备。
水吸收丙酮填料塔设计2一设计任务和操作条件○1混合气(空气、丙酮蒸气)处理量1500m³∕h;○2进塔混合气含丙酮体积分数1.82%;相对湿度70%;温度35℃;○3进塔吸收剂(清水)的温度为25℃;○4丙酮回收率90%;○5操作压力为常压。
二设计方案的确定(1)吸收工艺流程采用常规逆流操作流程.流程如下:流程说明:混合气体进入吸收塔,与水逆流接触后,得到净化气排放;吸收丙酮后的水,经取样计算其组分的量,若其值符合国家废水排放标准,则直接排入地沟,若不符合,待处理之后再排入地沟。
水吸收丙酮填料塔设计(化工课程设计)
化工设计任务书(一)设计题目:水吸收丙酮填料塔设计(二)设计任务及操作条件(二)设计任务及操作条件1)气体处理量2200Nm3 /h 2)进塔气体含丙酮1.82%(V ol),相对湿度70%,湿度35。
C 3)进塔吸收剂(清水)的温度水洗)进塔吸收剂(清水)的温度 25。
C水洗4)丙酮吸收率95% 5)操作压强:常压)操作压强:常压(三)设备内容(三)设备内容1.设计方案的确定及流程说明.设计方案的确定及流程说明2.填料塔的塔径、塔高及填料层压降的计算3.填料塔附属结构的选型及设计.填料塔附属结构的选型及设计4.塔的机械强度校核.塔的机械强度校核5.设计结果列表或设计一览表.设计结果列表或设计一览表6.填料塔的装配图.填料塔的装配图7.对设计结果的自我评价、总结与说明(四) 设计主要参考书设计主要参考书[1] 柴诚敬等,化工原理课程设计,天津科学技术出版社[2] 潘国昌等,化工设备设计,清华大学出版社[3] 顾芳珍,化工设备设计基础,天津大学出版社,1997 [4] 化工设备设计中心站,材料与零部件,上海科学技术出版社,1982 [5] 化学工业部化工设计公司主编,化工工艺算图第一册第一册 常用物料物性数据,化学工业出版社,1982 [6] 机械设计手册,化学工业出版社,1982 [7] 茅晓东,典型化工设备机械设计指导,华东理工大学出版社,1995 [8] 刁玉玮,化工设备机械基础,大连理工大学出版社[9] 贺匡国,简明化工设备设计手册,化工出版社[10] GB150-89 钢制压力容器(全国压力容器标准委员会)学苑出版社学苑出版社f s3101.329.531.168/8.314308mm V V PM kg m RT r ´===´混合气体的粘度可近似取为空气的粘度,由化工原理(上册)附录五查得30℃空气的粘度为℃空气的粘度为51.89100.068/()v Pa s kg m h m -=´×=× 查手册并计算得丙酮在空气中的扩散系数为315222211233114.3610()0.1330.048/()A BV A B T M MD m s m h p v v -´+===+V D ————扩散系数,2/m s ;P ————总压强,Pa ;T ————温度,K ;,A B M M ————分别为AB 两种物质的摩尔质量,kg/kmol ;,A Bu u ————分别为A ,B 两物质的分子体积,3/m kmol3.气液相平衡数据气液相平衡数据化工单元操作设计手册化工单元操作设计手册((化学工业部化学工程设计技术中心站主编)表2--1查得常压下25℃时丙酮在水中的亨利系数为℃时丙酮在水中的亨利系数为[ 4 ] [ 4 ] 211.5E kPa =相平衡常数为相平衡常数为211.532.088101.3E m P ===溶解度系数:溶解度系数:L S H EM r ==3997.080.262/(.)211.518.02kmol kPa m =´(四)物料衡算(四)物料衡算进塔气相摩尔比为进塔气相摩尔比为 10.0185Y =出塔气相摩尔比为出塔气相摩尔比为21(1)0.0185(10.95)0.000925A Y Y j =-=´-=Aj ——丙酮的回收率(95%)进塔惰性气体流量为进塔惰性气体流量为()22001 1.82%96.43/22.4V kmol h =´-= 该吸收过程属低浓度吸收,该吸收过程属低浓度吸收,平衡关系为直线,平衡关系为直线,平衡关系为直线,最小液气比可按下式计算,最小液气比可按下式计算,最小液气比可按下式计算,即即12min 12/Y Y L V Y m X -æö=ç÷-èø 对于纯溶剂吸收过程,进塔液相组成为2min 00.01850.000925 1.9840.0185/2.088X L V =-æö==ç÷èø由题意知,操作液气比为由题意知,操作液气比为 min12121 1.5 1.5 1.984 2.97396.43 2.973286.67/()()96.430.0185-0.0009250.00689286.67L L V V L kmol h V Y Y L X X X ()æö==´=ç÷èø=´=-=-==35℃进塔气体体积流量Vs=V 0 00308.15.=2200=2481.9273.15P TP T ´ M 3/h(五)填料塔的工艺尺寸的计算(五)填料塔的工艺尺寸的计算1.塔径计算塔径计算采用Eckert 通用关联图计算泛点气速。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录目录 (I)第1章概述 (1)1.1吸收塔的概述 (1)1.2吸收设备的发展 (1)1.3吸收过程在工业生产上应用 (2)第2章设计方案 (3)2.1设计任务 (3)2.2吸收剂的选择 (3)2.3吸收流程的确定 (4)2.4吸收塔设备的选择 (5)2.5吸收塔填料的选择 (5)第3章吸收塔的工艺计算 (9)3.1基础物性数据 (9)3.1.1液相物性数据 (9)3.1.2气相物性数据 (9)3.1.3气液相平衡数据 (9)3.2物料衡算 (10)3.3填料塔的工艺尺寸的计算 (11)3.3.1塔径的计算 (11)3.3.2填料层高度计算 (12)3.4填料层压降的计算zz (14)第4章塔内件及附属设备的计算 (15)4.1液体分布器的计算 (15)4.2选用DN 2.5Φ32无缝钢管 (15)4.2.1填料塔附属高度的计算 (16)4.3填料支撑板 (16)4.4填料压紧装置 (17)4.5气进出管的选择 (17)4.6液体除雾器 (18)4.7筒体和封头的设计 (19)4.8手孔的设计 (20)4.9法兰的设计 (20)第5章设计总结 (23)符号说明 (25)参考文献: (27)致谢 (28)第1章概述1.1吸收塔的概述气体吸收过程是化工生产中常用的气体混合物的分离操作,其基本原理是利用混合物中各组分在特定的液体吸收剂中的溶解度不同,实现各组分分离的单元操作。
实际生产中,吸收过程所用的吸收剂常需回收利用。
故一般来说,完整的吸收过程应包括吸收和解吸两部分。
在设计上应将两部分综合考虑,才能得到较为理想的设计结果。
作为吸收过程的工艺设计,其一般性问题是在给定混合气体处理量、混合气体组成、温度、压力以及分离要求的条件下,完成以下工作:(1)根据给定的分离任务,确定吸收方案;(2)根据流程进行过程的物料和热量衡算,确定工艺参数;(3)依据物料及热量衡算进行过程的设备选型或设备设计;(4)绘制工艺流程图及主要设备的工艺条件图;(5)编写工艺设计说明书。
1.2吸收设备的发展吸收操作主要在填料塔和板式塔中进行,尤以填料塔的应用较为广泛。
塔填料的研究与应用已取得长足的发展:鲍尔环、阶梯环、金属环矩鞍等的出现标志散装填料朝高通量、高效率、低阻力方向发展有新的突破;规整填料在工业装置大型化和要求高分离效率的情况下倍受重视,已成为塔填料的重要品种。
填料塔仍处于发展之中,今后的研究方向主要是提高传质效率,同时考虑填料的强度、操作性能及使用上的通用因素并综合环型、鞍型及规整填料的优点开发构型优越、堆积接触方式合理、流体在整个床层均匀分布的新型填料。
目前看来,填料的材质以陶瓷、金属、塑料为主,为满足化工生产温度和耐腐蚀要求,已开发了氟塑料制成的填料。
填料塔的发展,与塔填料的开发研究是分不开的。
除了提高原有填料的流体力学与传质性能外,还开发了效率高、放大效应小的新型填料。
加上塔填料本身具有压降小、持液量小、耐腐蚀、操作稳定、弹性大等优点,使填料塔开发研究达到了新的台阶。
1.3吸收过程在工业生产上应用化工生产中吸收操作广泛应用于混合气体的分离:(1)净化或精制气体,混合气体中去除杂质。
如用K2CO3水溶液脱除合成气中的CO2,丙酮脱除石油裂解气中的乙炔等。
(2)制取某种气体的液态产品。
如用水吸收氯化氢气体制取盐酸。
(3)混合气体以回收所需组分。
如用汽油处理焦炉气以回收其中的芳烃。
(4)工业废气处理。
工业生产中所排放的废气中常含有丙酮,NO,NO2,HF等有害组分,组成一般很低,但若直接排入大气,则对人体和自然环境危害都很大。
因此排放之前必须加以处理,选用碱性吸收剂吸收这些有害的气体是环保工程中最长采用的方法之一。
第2章设计方案2.1设计任务完成填料吸收塔的工艺设计及有关附属设备的设计和选用,绘制填料塔系统带控制点的工艺流程图及填料塔的设计条件图,编写设计说明书。
2.2吸收剂的选择吸收剂的对吸收操作过程的经济性由十分重要的影响,因此对于吸收操作,选择适宜的吸收剂具有十分重要的意义。
一般情况下,选择吸收剂,着重考虑以下方面:(1)对溶质的溶解度大所选的吸收剂对溶质的溶解度大,则单位的吸收剂能够溶解较多的溶质,在一定的处理量和分离要求条件下,吸收剂的用量小,可以有效地减少吸收剂的循环量。
另一方面,在同样的吸收剂用量下液相的传质推动力大可以提高吸收效率,减小塔设备的尺寸。
(2)对溶质有较高的选择性对溶质有较高的选择性即要求选用的吸收剂应对溶质有较大的溶解度;而对其他组分则溶解度要小或基本不溶。
这样,不但可以减小惰性气体组分的损失,而且可以提高解吸后溶质气体的纯度。
(3)不易挥发吸收剂在操作条件下应具有较低的蒸气压,以避免吸收过程中吸收剂的损失提高吸收过程的经济性。
(4)再生性能好由于在吸收剂再生过程中一般要对其进行升温或气提等处理,能量消耗较大。
因而,吸收剂再生性能的好坏对吸收过程能耗的影响极大。
选用具有良好再生性能的吸收剂往往能有效地降低过程的能量消耗。
(5)粘度和其他物性吸收剂在操作条件下的粘度越低,其在塔内的流动性越好,有助于传质速率和传热速率的提高。
此外,所选的吸收剂还应尽可能满足无毒性、无腐蚀性、不易燃易暴、不发泡、冰点低,价廉易得以及化学性质稳定的要求,如表2. 1表2. 1物理吸收剂和化学吸收剂的特性物理吸收剂化学吸收剂吸收容量(溶解度)正比于溶质分压吸收热效应很小(近于等温)常用降压闪蒸解吸溶质含量高而净化度要求不太高的场合对设备腐蚀性小,不易变质吸收容量对溶质分压不太敏感吸收热效应显著用低压蒸汽气提解吸溶质含量不高而净化度要求很高的场合对设备腐蚀性大,易变质结合以上吸收剂选择原则和考虑经济最优原则,本设计采用水作为吸收剂:丙酮在水中的溶解度大、吸收推动力大、溶剂用量小、设备尺寸也小;水的价格低廉,本设计题目要求吸收剂用水。
2.3吸收流程的确定工业上有多种吸收流程,从所选吸收剂的种类看,有用一种吸收剂的一步吸收流程和用两种吸收剂的两步吸收流程;从所用的塔设备数量看,有单塔吸收流程和多塔吸收流程;从塔内气液两相的流向可分为逆流吸收流程,并流吸收流程等基本流程。
此外,还有特定条件下的部分溶剂循环过程。
(1)一步吸收流程和两步吸收流程一步吸收流程一般用于混合气体溶质浓度较低,同时过程的分离要求不高,选用一种吸收剂即可完成吸收任务的情况。
若混合气体中溶质浓度较高且吸收要求也高,难以用一步吸收达到吸收要求或者虽能达到吸收要求,但过程的操作费用较高,从经济性的角度分析不够适宜时,可以采用两步吸收流程。
(2)单塔吸收流程和多塔吸收流程单塔吸收流程式吸收过程中的常用流程,如过程无特别需要,则一般采用单塔吸收流程。
若过程的分离要求较高,使用单塔操作时,所需要的塔体过高,或采用两步吸收流程时,则需要采用多塔流程。
(3)逆流吸收与并流吸收吸收塔或再生塔内气液相可以逆流操作也可以并流操作,由于逆流操作具有传质推动力大,分离效率高的显著优点,工业上如无特别需要,一般均采用逆流吸收流程。
(4)部分溶剂循环吸收流程由于填料塔的分离效率受填料层上的液体喷淋量影响较大,挡液相喷淋量过小时,将降低填料塔的分离效率。
因此当塔的液相负荷过小而难以充分润湿填料表面时,可以采用部分溶剂循环吸收流程,以提高液相喷林量,改善塔的操作条件。
结合设计要求和以上流程选择原则,在本设计中选择单塔逆流的操作流程:吸收推动力大;吸收任务不大。
2.4吸收塔设备的选择对于吸收过程,一般具有操作液气比大的特点,因而更适应于填料塔。
此外,填料塔阻力小、效率高、有利于过程节能。
所以对于吸收过程来说,以采用吸收塔的多。
本设计中丙酮气体在水中的溶解度比较大,吸收效率高,设计题目也要求采用填料塔,所以本设计选用填料塔作为气液传质设。
2.5吸收塔填料的选择(1)填料种类的选择填料种类的选择要考虑分离工艺的要求,通常考虑以下几个方面。
①传质效率即分离效率,它有两种表示方法:一是以理论级进行计算的表示方法,以每个理论级当量的填料层高度表示,即HETP值;另一是以传质速率进行计算的表示方法,以每个传质单元相当的填料层高度表示,即HTU值。
在满足工艺要求的前提下,应选用传质效率高,即HETP(或HTU)值低的填料。
对于常用的工业填料,其HETP(或HTU)值可由有关手册或文献中查到,也可以通过一些经验公式来估算。
②通量在相同的液体负荷下,填料的泛点气速愈高或气相动能因子愈大,则通量愈大,它的处理能力也愈大。
因此,在选择填料种类时,在保证具有较高传质效率的前提下,应选择具有较高泛点气速或气相动能因子的填料。
对于大多数常用填料,其泛点气速或气相动能因子可在有关手册或文献中查到,也可由一些经验式来估算。
③填料层的压降填料层的压降是填料的主要应用性能,压降越低,动力消耗越低,操作费用越小。
选择低压降的填料对热敏性物系的分离尤为重要。
比较填料层的压降尤两种方法:一是比较填料层单位高度的压降/p z∆;另一是比较填料层单位传质效率的比压降/Tp N∆。
填料层的压降可用经验公式计算,亦可从有关图标中查出。
④填料的操作性能填料的操作性能主要指操作弹性,抗污堵性及抗热敏性等。
所选填料应具有较大的操作弹性,以保证塔内气液负荷发生波动时维持操作稳定。
(2)填料规格的分类①散装填料规格的分类散装填料的规格通常是指填料的公尺直径。
工业塔常用的散装填料主要有16ND、25ND、38ND、50ND、76ND等几种规格。
同类填料,尺寸越小,分离效率越高;但阻力增加,通量减小,填料费用也增加很多。
而大尺寸的填料应用于小直径塔中,又会产生液体分布不良及严重的壁流,使塔的分离效率降低。
因此,对塔径与填料尺寸的比值要有一定的规定,如表2. 2表2. 2常用填料的塔径与填料公称直径比值D/d的推荐值填料种类D/d的推荐值拉西环鞍环鲍尔环阶梯环环矩鞍D/d≥20~25 D/d≥15D/d≥10~15 D/d>8D/d>8②规整填料规格的分类工业上常用规整填料的型号和规格的表示方法很多,国内习惯用比表面积表示,主要有125,150,250,350,500,700等几种规格,同种类型的规整填料,其表面积越大,传质效率越高,但阻力增加,通量减小,填料费用也明显增加。
选用时应从分离要求,通量要求,场地条件,物料性质及设备投资,操作费用等方面综合考虑,使所选填料既能满足工艺要求,又具有经济合理性。
应予指出,一座填料塔可以选用同种类型,同一规格的填料,也可选用同种类型,不通规格的填料;可以选用同种类型的填料,也可以选用不同类型的填料,有的塔段可选用规整填料,而有的塔段可选用散装填料。
一的原则来选择填料的规格。
③填料材质的分类设计时应灵活掌握,根据技术经济统工业上,填料的材质分为陶瓷,金属和塑料三大类。