2020-2021学年北京市东城区高一(上)期末数学试卷
2020-2021学年北京市101中学高一(上)期末数学试卷 (解析版)
2020-2021学年北京市101中学高一(上)期末数学试卷一、选择题(共10小题).1.已知函数f(x)=lg(4﹣x)的定义域为M,函数的定义域为N,则M∩N =()A.M B.N C.{4}D.∅2.sin2021°可化简为()A.sin41°B.﹣sin41°C.cos41°D.﹣cos41°3.向量“,不共线”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数y=sin(x+),x∈(﹣,]的值域为()A.B.C.D.5.已知偶函数f(x)在(﹣∞,0)上单调递减,若a=f(1),b=f(2),,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b6.甲、乙两人解关于x的方程:log2x+b+c log x2=0,甲写错了常数b,得到根为,;乙写错了常数c,得到根为,x=64.那么原方程的根正确的是()A.x=4B.x=3C.x=4或x=8D.x=2或x=3 7.已知2cos2α﹣3sin2α=1,α∈(﹣,﹣π),那么tanα的值为()A.2B.﹣2C.D.8.如图是函数y=sin x(0≤x≤π)的图象,A(x,y)是图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合).设线段AB的长为f(x),则函数f(x)的图象是()A.B.C.D.9.已知3sin(﹣α)﹣sin(π+α)=﹣,则cosα﹣sinα的取值可以为()A.B.C.D.10.如图,一个摩天轮的半径为10m,轮子的最低处距离地面2m.如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P(点P与摩天轮天轮中心O的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m的时间大约是()A.8分钟B.10分钟C.12分钟D.14分钟二、填空题(共6小题).11.已知向量=(1,﹣2),=(x,4),且∥,则实数x=.12.若角β与角的终边关于直线y=x对称,则角β的终边上的所有角的集合可以写为13.已知幂函数在(0,+∞)上单调递增,则实数m的值为14.在如图所示的方格纸中,向量,,的起点和终点均在格点(小正方形顶点)上,若与x+y(x,y为非零实数)共线,则的值为.15.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳的含量达到了危险状态,经抢修后恢复正常.排气4分钟后测得车库内一氧化碳浓度为64ppm(ppm为浓度单位,1ppm表示百万分之一),经检验知,该地下车库一氧化碳浓度y(ppm)与排气时间t (分钟)之间存在函数关系y=27﹣mt(m为常数).求得m=;若空气中一氧化碳浓度不高于0.5ppm为正常,那么至少需要排气分钟才能使这个地下车库中一氧化碳含量达到正常状态.16.已知△ABC,点P是平面上任意一点,且(λ,μ∈R),给出以下命题:①若,,则P为△ABC的内心;②若λ=μ=1,则直线AP经过△ABC的重心;③若λ+μ=1,且μ>0,则点P在线段BC上;④若λ+μ>1,则点P在△ABC外;⑤若0<λ+μ<1,则点P在△ABC内.其中真命题为.三、解答题(共4小题).17.已知函数.(1)求函数f(x)的值域:(2)若函数g(x)=log a x的图象与函数f(x)的图象有交点,请直接写出实数a的取值范围.18.已知关于x的方程的两根为sinθ和cosθ,.(1)求实数b的值;(2)求的值.19.已知函数,.(1)①直接写出函数f(x)的奇偶性;②写出函数f(x)的单调递增区间,并用定义证明;(2)计算:=;f(4)﹣5f(2)g(2)=;f(9)﹣5f(3)g(3)=;(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式,并加以证明.20.设A是由n个实数构成的一个有序数组,记作A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,i称为数组A的“元”a i的下标,如果数组S=(b1,b2,…,b m)(m≤n,m∈N+)中的每个“元”都是来自数组A中不同下标的“元”,则称S为A的“子数组”.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的“关系数”为C(A,B)=a1b1+a2b2+…+a n b n.(1)若,B=(b1,b2,b3,b4),且B中的任意两个“元”互不相等,B 的含有两个“元”的不同“子数组”共有p个,分别记为S1,S2,…,S p.①p=;②若b j∈N+,1≤b j≤101(j=1,2,3,4),记,求X的最大值与最小值;(2)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的“子数组”,求C(A,S)的最大值.参考答案一、选择题(共10小题).1.已知函数f(x)=lg(4﹣x)的定义域为M,函数的定义域为N,则M∩N =()A.M B.N C.{4}D.∅解:根据题意得,M={x|x<4},N{x|x≥4},∴M∩N=∅.故选:D.2.sin2021°可化简为()A.sin41°B.﹣sin41°C.cos41°D.﹣cos41°解:sin2021°=sin(360°×60﹣139°)=sin(﹣1390)=﹣sin139°=﹣sin41°.故选:B.3.向量“,不共线”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当向量“,不共线”时,由向量三角形性质得“”成立,即充分性成立,反之当向量“,方向相反时,满足“”,但此时两个向量共线,即必要性不成立,即向量“,不共线”是“”的充分不必要条件,故选:A.4.函数y=sin(x+),x∈(﹣,]的值域为()A.B.C.D.解:y=sin(x+)=cos x,因为x∈(﹣,],所以cos x∈[﹣,1],即函数的值域为[﹣,1].故选:B.5.已知偶函数f(x)在(﹣∞,0)上单调递减,若a=f(1),b=f(2),,则a,b,c的大小关系为()A.a>b>c B.a>c>b C.b>a>c D.c>a>b解:因为偶函数f(x)在(﹣∞,0)上单调递减,所以f(x)在(0,+∞)上单调递增,因为a=f(1),b=f(2),=f(),又2>1>>0,则b>a>c.故选:C.6.甲、乙两人解关于x的方程:log2x+b+c log x2=0,甲写错了常数b,得到根为,;乙写错了常数c,得到根为,x=64.那么原方程的根正确的是()A.x=4B.x=3C.x=4或x=8D.x=2或x=3解:原方程可变形为:,因为甲写错了常数b,得到根为,,所以,又因为乙写错了常数c,得到根为,x=64,所以,所以原方程为,解得log2x=2或3,所以x=4或8.故选:C.7.已知2cos2α﹣3sin2α=1,α∈(﹣,﹣π),那么tanα的值为()A.2B.﹣2C.D.解:因为2cos2α﹣3sin2α=2(1﹣sin2α)﹣3sin2α=1,可得sin2α=,cos2α=,因为α∈(﹣,﹣π),所以sinα=,cosα=﹣,可得tanα==﹣.故选:D.8.如图是函数y=sin x(0≤x≤π)的图象,A(x,y)是图象上任意一点,过点A作x轴的平行线,交其图象于另一点B(A,B可重合).设线段AB的长为f(x),则函数f(x)的图象是()A.B.C.D.解:当x=时,A,B两点重合,此时f(x)=0,故排除C,D;当x∈(0,)时,f(x)=π﹣2x是关于x的一次函数,其图象是一条线段,故选:A.9.已知3sin(﹣α)﹣sin(π+α)=﹣,则cosα﹣sinα的取值可以为()A.B.C.D.解:因为3sin(﹣α)﹣sin(π+α)=3cosα+sinα=﹣,所以,整理得,所以,①当时,,则②当cos时,,则故选:C.10.如图,一个摩天轮的半径为10m,轮子的最低处距离地面2m.如果此摩天轮按逆时针匀速转动,每30分钟转一圈,且当摩天轮上某人经过点P(点P与摩天轮天轮中心O的高度相同)时开始计时,在摩天轮转动的一圈内,此人相对于地面的高度不小于17m的时间大约是()A.8分钟B.10分钟C.12分钟D.14分钟解:由题意知,在t时摩天轮上某人所转过的角为t=t,所以在t时此人相对于地面的高度为h=10sin(t﹣)+12(t≥0);由10sin(t﹣)+12≥17,得sin(t﹣)≥,解得≤t﹣≤,即5≤t≤15;所以此人有10分钟相对于地面的高度不小于17 m.故选:B.二、填空题共6小题,每小题5分,共30分.11.已知向量=(1,﹣2),=(x,4),且∥,则实数x=﹣2.解:由已知,且,所以1×4﹣(﹣2)x=0,解得x=﹣2,故答案为:﹣212.若角β与角的终边关于直线y=x对称,则角β的终边上的所有角的集合可以写为{}.解:角α的取值集合是{α|α=2kπ+,k∈Z},角β与角的终边关于直线y=x对称,可得β=2kπ+﹣2×(﹣)=﹣+2kπ,k∈Z,可得角β的取值集合是{β|β=﹣+2kπ,k∈Z},故答案为:{β|β=﹣+2kπ,k∈Z}.13.已知幂函数在(0,+∞)上单调递增,则实数m的值为0解:由题意得:m﹣1=±1,解得:m=0或m=2,m=0时,f(x)=x2在(0,+∞)递增,符合题意,m=2时,f(x)=1,是常函数,不合题意,故答案为:0.14.在如图所示的方格纸中,向量,,的起点和终点均在格点(小正方形顶点)上,若与x+y(x,y为非零实数)共线,则的值为.解:设图中每个小正方形的边长为1,则=(2,1),=(﹣2,﹣2),=(1,﹣2),∴x+y=(2x﹣2y,x﹣2y),∵与x+y共线,∴﹣2(2x﹣2y)=x﹣2y,∴5x=6y,即=故答案为:15.某地下车库在排气扇发生故障的情况下,测得空气中一氧化碳的含量达到了危险状态,经抢修后恢复正常.排气4分钟后测得车库内一氧化碳浓度为64ppm(ppm为浓度单位,1ppm表示百万分之一),经检验知,该地下车库一氧化碳浓度y(ppm)与排气时间t (分钟)之间存在函数关系y=27﹣mt(m为常数).求得m=;若空气中一氧化碳浓度不高于0.5ppm为正常,那么至少需要排气32分钟才能使这个地下车库中一氧化碳含量达到正常状态.解:(1)∵函数y=27﹣mt(m为常数)经过点(4,64),∴64=27﹣4m,解得m=;(2)由(1)得y=,由,解得t≥32.故至少排气32分钟,这个地下车库中的一氧化碳含量才能达到正常状态.故答案为:(1);(2)32.16.已知△ABC,点P是平面上任意一点,且(λ,μ∈R),给出以下命题:①若,,则P为△ABC的内心;②若λ=μ=1,则直线AP经过△ABC的重心;③若λ+μ=1,且μ>0,则点P在线段BC上;④若λ+μ>1,则点P在△ABC外;⑤若0<λ+μ<1,则点P在△ABC内.其中真命题为②④.解:对于①,,此时P点在∠BAC平分线上,但未必在△ABC 的内心,则①错;对于②,由λ=μ=1知,AP=,由向量加法法则知APBC中点,AP经过△ABC的重心,则②对;对于③,λ+μ=1⇒λ=1﹣μ⇒=,当μ>1,P点在BC延长线上,不在BC边上,则③错;对于④,令t=λ+μ>1,=t,t>1,由向量加法法则知,P点在△ABC外,则④对;对于⑤,取λ═﹣1/4,μ=1/2,λ+μ=1/4,0<λ+μ<1,但P点在△ABC外,则⑤错;故答案为:②④.三、解答题共4小题,共50分.解答应写出文字说明、演算步骤或证明过程.17.已知函数.(1)求函数f(x)的值域:(2)若函数g(x)=log a x的图象与函数f(x)的图象有交点,请直接写出实数a的取值范围.解:(1)函数.则f(x)=,因为y=1﹣x在(﹣2,0)单调递减,可得f(x)值域为[1,3).(2)当0<a<1,当0<x≤2时,g(x)=log a x的图象与函数f(x)的图象恒有交点,当1<a时,当0<x≤2时,g(x)=log a x是单调递增函数,则log a2≥1,可得a≤2.则1<a≤2.故得实数a的取值范围是0<a<1或1<a≤2.18.已知关于x的方程的两根为sinθ和cosθ,.(1)求实数b的值;(2)求的值.解:(1)∵方程的两根为sinθ、cosθ,∴sinθ+cosθ=,sinθcosθ=>0,∵,∴θ+∈(,π),即sinθ+cosθ=sin(θ+)>0,∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+2×=,解得:b=(负值舍去),则b=;(2)∵(sinθ﹣cosθ)2=sin2θ+cos2θ﹣2sinθcosθ=1﹣2×=,∴sinθ﹣cosθ=,∵sinθ+cosθ=,∴===.19.已知函数,.(1)①直接写出函数f(x)的奇偶性;②写出函数f(x)的单调递增区间,并用定义证明;(2)计算:=0;f(4)﹣5f(2)g(2)=0;f(9)﹣5f(3)g(3)=0;(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式,并加以证明.解:(1)①函数f(x)为奇函数.②f(x)的单调递增区间为(﹣∞,0),(0,+∞),证明:任取x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=﹣=(﹣)(1+)因为x1,x2∈(0,+∞),且x1<x2,所以<,所以﹣<0,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以f(x)在(0,+∞)上单调递增,由奇函数的性质可得f(x)在(﹣∞,0)上单调递增,故(x)的单调递增区间为(﹣∞,0),(0,+∞).(2)经过代入计算可得=0,f(4)﹣5f(2)g(2)=0,f(9)﹣5f(3)g(3)=0.(3)由(2)中的各式概括出f(x)和g(x)对所有不等于0的实数x都成立的一个等式为f(x2)﹣5f(x)g(x)=0(x≠0),证明:f(x2)﹣5f(x)g(x)=0=﹣5••=﹣=0.20.设A是由n个实数构成的一个有序数组,记作A=(a1,a2,…,a i,…,a n).其中a i(i=1,2,…,n)称为数组A的“元”,i称为数组A的“元”a i的下标,如果数组S=(b1,b2,…,b m)(m≤n,m∈N+)中的每个“元”都是来自数组A中不同下标的“元”,则称S为A的“子数组”.定义两个数组A=(a1,a2,…,a n),B=(b1,b2,…,b n)的“关系数”为C(A,B)=a1b1+a2b2+…+a n b n.(1)若,B=(b1,b2,b3,b4),且B中的任意两个“元”互不相等,B 的含有两个“元”的不同“子数组”共有p个,分别记为S1,S2,…,S p.①p=6;②若b j∈N+,1≤b j≤101(j=1,2,3,4),记,求X的最大值与最小值;(2)若,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的“子数组”,求C(A,S)的最大值.解:(1)①根据“子数组”的定义可得,B的含有两个“元”的不同“子数组”有(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4)共6个,∴p=6;②不妨设b1<b2<b3<b4,=,∵1≤b j≤101(j=1,2,3,4),则当b1=1,b2=2,b3=100,b4=101时,X取得最大值为,当b1,b2,b3,b4是连续的四个整数时,X取得最小值为;(2)由B=(0,a,b,c),且a2+b2+c2=1可知,实数a,b,c具有对称性,故分为S中含0和不含0两种情况进行分类讨论,①当0是S中的“元”时,由于中的三个“元”都相等及B中三个“元”a,b,c的对称性,可只计算的最大值,∵a2+b2+c2=1,则(a+b)2≤2(a2+b2)≤2(a2+b2+c2)=2,可得,故当时a+b达到最大值,故;②当0不是S中的“元”时,,又a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,则,当且仅当时,取到最大值,故C(A,S)max=1,综上,C(A,S)max=1.。
2020-2021学年北京市东城区高一上学期期末物理模拟试卷解析版
OA 长度是 AB 长度的 4 倍。求:
(1)物体做匀加速运动的时间;
(2)物体全程平均速度的大小。
18.(10 分)跳伞运动员做低空跳伞表演,他从 224m 的高空离开飞机开始下落,最初未打 开降落伞,自由下落一段距离打开降落伞,运动员以 12.5m/s2 的加速度匀减速下降,为 了运动员的安全,要求运动员落地的速度不得超过 5m/s(g=10m/s2)。求: (1)运动员打开降落伞后做匀减速下降时,是处于超重状态还是失重状态,并说明原因;
A.量杯中的钢球受到一个力的作用 B.各容器中的钢球都受到两个力的作用 C.口大底小的普通茶杯的侧壁对钢球有弹力作用 D.口小底大的普通茶杯的侧壁对钢球有弹力作用 4.(3 分)如图所示是一沿笔直公路做匀加速直线运动的汽车的速度计.某同学在汽车中观 察速度计指针位置的变化,开始时指针指示在如图甲所示的位置,经过 7s 后指针如图乙, 下列说法正确的是( ) ①右速度计直接读出的是汽车运动的平均速率; ②右速度计直接读出的是汽车 7s 时的瞬时速率; ③汽车运动的加速度约为 5.7m/s2; ④汽车运动的加速度约为 1.6m/s2.
光滑的,各容器的底部均处于水平面内,下列说法中正确的是( )
A.量杯中的钢球受到一个力的作用
第 8 页 共 20 页
B.各容器中的钢球都受到两个力的作用 C.口大底小的普通茶杯的侧壁对钢球有弹力作用 D.口小底大的普通茶杯的侧壁对钢球有弹力作用 【解答】解:如果将各容器的侧壁搬离,我们可以知道钢球还能处于静止状态,所以各 容器的侧壁对钢球均无弹力作用,因此各容器中的钢球都受到两个力的作用,即重力与 水平底部的支持力,故 B 正确,A、C、D 错误。 故选:B。 4.(3 分)如图所示是一沿笔直公路做匀加速直线运动的汽车的速度计.某同学在汽车中观 察速度计指针位置的变化,开始时指针指示在如图甲所示的位置,经过 7s 后指针如图乙, 下列说法正确的是( ) ①右速度计直接读出的是汽车运动的平均速率; ②右速度计直接读出的是汽车 7s 时的瞬时速率; ③汽车运动的加速度约为 5.7m/s2; ④汽车运动的加速度约为 1.6m/s2.
2024北京东城区高三(上)期末数学试卷及答案
东城区2023—2024学年度第一学期期末统一检测高三数学参考答案及评分标准 2024.1一、选择题(共10小题,每小题4分,共40分)(1)C (2)D (3)C(4) D (5) B (6) A (7)C (8)B(9) A (10)D 二、填空题(共5小题,每小题5分,共25分)(11)()()0,11,∞+ (12) y = (13) π3(答案不唯一 ) (14)①2− ② (],1∞−- (15)②③三、解答题(共6小题,共85分)(16)(共14分)解:(Ⅰ)取11A C 中点G ,连接,FG AG . 在直三棱柱111ABC A B C −中,因为,,E F G 分别为1111,A C B B A C ,的中点,所以1111,AE B GF A A B ,111=2A GFB ,1112A A E B =. 所以GF AE ,GF AE =.所以四边形EFGA 为平行四边形,所以EF AG .又因为EF ⊄平面11ACC A ,AG ⊂平面11ACC A ,所以//EF 平面11ACC A . ................................6分 (Ⅱ)在直三棱柱111ABC A B C −中,1BB ⊥平面ABC .而BA ⊂平面ABC ,BC ⊂平面ABC ,所以1BB BA ⊥,1BB BC ⊥因为90ABC ∠=︒,BA BC ⊥,所以BA BC ,,1BB 两互相垂直.如图,建立空间直角坐标系B xyz −.则A (0,2,0),B (0,0,0),C (2,0,0),E (0,1,0),F(1,0,2). 设[]00,2Pm m ∈(0,,),, 则()0,2,AP m =−,()0,1,0BE =,()1,0,2BF = .设平面BEF 的一个法向量为(),,x y z =n ,所以0,0,BE BF n n ⎧⋅=⎪⎨⋅=⎪⎩即0,20.y x z =⎧⎨+=⎩设1z =−,则()2,0,1n =−设AP 与平面BEF 所成的角为θ, 则221sin cos ,552)AP m AP AP m nn n θ⋅−=〈〉===⋅−+(.解得21,1m m ==±.因为[]0,2m ∈,所以1m =.于是,1BP =...............................................................................14分(17)(本小题13分)解:(Ⅰ)在ABC △中,由余弦定理得222cos 2BC AB AC B BC AB+−=⋅又因为4BC =,AC =1AB =,所以cos B 2224112412+−==⨯⨯. 又()0,πB ∈,所以π3B ∠=. ......................................... (5)分 (II )选择条件①:π4ADB ∠=. 在ADB △中,由正弦定理 sin sin AD AB B ADB =∠,得=, 所以AD =所以sinsin()BAD B ADB∠=∠+∠sin cos cos sin B ADB B ADB =∠+∠12222=+⨯4=.所以1sin 2ABD S AB AD BAD ∆=⋅∠. 112=⨯38+= . ......................................................................13分选择条件③:由余弦定理 2222cos AD AB BD AB BD B =+−⋅,AB BD AD ++=得()2221BD BD BD =+−,解得 2BD =,所以11sin 122222ABD S AB BD B ∆=⋅=⨯⨯⨯=. ........................ ...............13分 (18)(本小题13分)解:(Ⅰ)由表格中的数据可知:2022年100名参加第一次考试的考生中有60名通过考试,所以估计考生第一次考试通过的概率为5310060=; 2023年100名参加第一次考试的考生中有50名通过考试,所以估计考生第一次考试通过的概率为2110050=; 从2022年、2023年第一次参加考试的考生中各随机抽取一位考生,这两位考生都通过考试的概率为1032153=⨯ . .......................................................4分 (Ⅱ)记“2022年考生在第i 次考试通过”为事件1,2,3)i A i =(,“小明2022年参加考试,他通过不超过两次考试该科目成绩合格”为事件A , 则1233707804(),(),().5100101005P A P A P A ===== 小明一次考试该科目成绩合格的概率13()5P A =, 小明两次考试该科目成绩合格的概率12377()151025P A A =−⨯=(), 所以小明不超过两次考试该科目成绩合格的概率1121123722()()()()52525P A P A A A P A P A A ==+=+= . ................................10分 (III )88. .................................................................................... .........13分(19)(本小题15分)解:(Ⅰ)由题意得 22222,a b c a c a c ⎧⎪⎨⎪=++=+−=⎩−解得2,1,c a b ⎧===⎪⎨⎪⎩所以椭圆C 的标准方程为2214x y +=. ............... ...............................................5分(Ⅱ)证明:由(Ⅰ)得,()2,0A −,()2,0B .设(),M m n ,则(),N m n −,且满足2244m n +=.因为E 为线段OM 的中点,所以,22m n E ⎛⎫ ⎪⎝⎭. 所以直线():24n AE y x m =++. 设()11,D x y , 由()222444n y x m x y ⎧=+⎪+⎨⎪+=⎩得 ()()222222441616440m n x n x n m ⎡⎤++++−+=⎣⎦. 因为2244m n +=,所以 ()22225(4)(2812)0m x m x m m ++−−++=. 所以212812225m m x m ++−=−+, 解得214625m m x m ++=+,则()1425n m y m +=+, 所以()2446,2525n m m m D m m +⎛⎫++ ⎪++⎝⎭. 因为G 为线段MB 的中点,所以2,22m n G +⎛⎫ ⎪⎝⎭. 所以直线GN 的方程为()32n y n x m m +=−−−, 代入D 点坐标,得左式=()()4332525n m n m n m m +++=++,右式=2346225n m m m m m ⎛⎫++− ⎪−+⎝⎭()3325n m m +=+. 所以左式=右式.所以,,D G N 三点共线..................................................... .......................15分 (20)(本小题15分)解:(Ⅰ)若1k =,则1()1x x f x e x −=−+, 所以22'()(1)x f x e x =−+, 所以022'(0)1(01)f e =−=+, 又因为001(0)201f e −=−=−+, 所以曲线()y f x =在(0,(0))f 处的切线方程为(2)(0)y x −−=−,即2y x =−. ............. .......................................................................6分 (Ⅱ)若12k ≤<,因为22'()(1)x f x ke x =−+, 设函数22()(1)=−+x g x ke x , 则34'()0(1)=−−<+xg x ke x ((0))x ∈+∞, 所以22'()(1)=−+x f x ke x 为(0)+∞,上的减函数. 当时12k ≤<时,022'(0)20(01)f ke k =−=−≤+, 11122221288'()01299(1)2f ke ke e =−=−<−<+,所以存在01(0,)2x ∈,使得0'()0=f x ,即02020(1)−=+x ke x .x所以当12k ≤<时,函数()y f x =在(0)+∞,上有极大值. 00001()1−==−+x x m f x ke x , 由2020(1)−=+x ke x ,得0200121(1)−=−++x m x x 200221(1)1x x =−−+++. 因为00x >,所以()010,11x ∈+. 得31−<<m . ..................................................15分(21)(本小题15分)解:(Ⅰ)由于数列23226A a a −:,,,,具有性质c P , 所以15264a a c +=−+==.由244a a +=以及42a =,得22a =.由334a a +=,得32a =. .....................4分 (Ⅱ)由于数列A 具有性质0P ,且12n a a a <<<,n 为奇数,令21n k =+,可得10k a +=,设12123210k k k k k a a a a a a a ++++<<<<=<<<<.由于当0(1)i j a a i j n >≤≤,,时,存在正整数k ,使得j i k a a a −=,所以324252212k k k k k k k k a a a a a a a a ++++++++−−−−,,,,这1k −项均为数列A 中的项, 且324252212210k k k k k k k k k a a a a a a a a a +++++++++<−<−<−<<−<,因此一定有3224235242122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,,即:3224325422122k k k k k k k k k k k k a a a a a a a a a a a a +++++++++++−=−=−=−=,,,,, 这说明:2321k k k a a a +++,,,为公差为2k a +的等差数列,再由数列A 具有性质0P ,以及10k a +=可得,数列A 为等差数列. ..................................................................9分(III )(1)当*42()n k k =+∈N 时,设122122+1222+3244+142:k k k k k k k k A a a a a a a a a a a −+++,,,,,,,,,,,. 由于此数列具有性质c P ,且满足2122k k a a m +++=, 由2122k k a a m +++=和2122k k a a c +++=得c m =±.① c m =时,不妨设12a a m +=,此时有:21a m a =−,411k a a +=,此时结论成立. ② c m =−时,同理可证. 所以结论成立.(2)当*4()n k k =∈N 时,不妨设01c m ==,. 反例如下:22122231122322212k k k k k k k k −−−+−−−+−−+,,,,,,,,,,,,.(3)当*23()n k k =+∈N 时,不妨设01c m ==,. 反例如下:112(1)(1)(1)(1)(1)1012(1)(1)k k k k k k k k +−−−⋅+−⋅−⋅−−−−⋅−,,,,,,,,,,1(1)(1)(1)k k k k −−⋅−⋅+,综上所述,*42()n k k =+∈N 符合题意. ...........................................15分.。
2023-2024学年北京市东城区高一上学期期末统一检测数学试卷+答案解析
2023-2024学年北京市东城区高一上学期期末统一检测数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合,,则()A. B. C. D.2.下列函数中,与是同一函数的是()A. B. C. D.3.下列函数在定义域内既是奇函数又是增函数的是()A. B. C. D.4.下列命题中正确的是()A.若,则B.若,则C.若,则D.若,则5.若,,则的值为()A. B. C. D.6.下列函数中,满足对任意的,,都有的是()A. B. C. D.7.已知,,,则A. B. C. D.8.“角与的终边关于直线对称”是“”的()A.充分必要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件9.某品牌可降解塑料袋经自然降解后残留量y与时间单位:年之间的关系为其中为初始量,k为降解系数.已知该品牌塑料袋2年后残留量为初始量的若该品牌塑料袋需要经过n年,使其残留量为初始量的,则n的值约为参考数据:,A.20B.16C.12D.710.已知是定义在上的偶函数,当时,的图象如图所示,则不等式的解集为()A. B.C. D.二、填空题:本题共6小题,每小题5分,共30分。
11.函数的定义域为__________.12.设,则的最小值为__________.13.已知,若,则__________.14.在平面直角坐标系中,角的终边不在坐标轴上,则使得成立的一个值为__________.15.已知函数,则_______________用“>”“<”“=”填空;的零点为__________.16.已知符号表示不超过x的最大整数,若函数,给出下列四个结论:①当时,;②为偶函数;③在单调递减;④若方程有且仅有3个根,则a的取值范围是其中所有正确结论的序号是__________.三、解答题:本题共5小题,共60分。
解答应写出文字说明,证明过程或演算步骤。
2020年高考真题山东卷数学试卷-学生用卷
2020年高考真题山东卷数学试卷-学生用卷一、选择题(本大题共8小题,每小题5分,共40分)1、【来源】 2020年高考真题山东卷第1题5分2020~2021学年10月北京丰台区北京市第十二中学高一上学期月考第3题5分2020~2021学年10月江苏苏州吴江区吴江高级中学高一上学期月考第2题5分2020~2021学年甘肃庆阳宁县高一上学期期末第1题5分设集合A={x|1⩽x⩽3},B={x|2<x<4},则A∪B=().A. {x|2<x⩽3}B. {x|2⩽x⩽3}C. {x|1⩽x<4}D. {x|1<x<4}2、【来源】 2020年高考真题山东卷第2题5分2020~2021学年山东济南市中区山东省实验中学(主校区)高二上学期开学考试第1题5分2−i=().1+2iA. 1B. −1C. iD. −i3、【来源】 2020年高考真题山东卷第3题5分2021年陕西西安雁塔区西安市第八十五中学高三二模理科第9题5分6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有().A. 120种B. 90种C. 60种D. 30种4、【来源】 2020年高考真题山东卷第4题5分2020~2021学年河南郑州中原区郑州市第一中学高三上学期期中文科第5题5分2020~2021学年12月吉林长春朝阳区东北师范大学附属中学高一下学期月考第8题4分2020~2021学年河南郑州中原区郑州市第一中学高三上学期期中理科第5题5分2020年高考真题海南卷第4题5分日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面,在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为().A. 20°B. 40°C. 50°D. 90°5、【来源】 2020年高考真题山东卷第5题5分2020年高考真题海南卷第5题5分某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是().A. 62% B. 56% C. 46% D. 42%6、【来源】 2020年高考真题山东卷第6题5分2020~2021学年江西南昌东湖区南昌市第二中学高一上学期期末第12题5分2020~2021学年10月江苏苏州姑苏区苏州市第一中学高三上学期月考第4题5分基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数,基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为().(ln2≈0.69)A. 1.2天B. 1.8天C. 2.5天D. 3.5天7、【来源】 2020年高考真题山东卷第7题5分2020~2021学年河南郑州中原区郑州市第一中学高三上学期期中理科第8题5分2020~2021学年上海徐汇区上海市南洋模范中学高三上学期期中第15题5分2020~2021学年陕西西安雁塔区西安高新第一中学高一下学期开学考试第7题5分2020~2021学年江西南昌东湖区南昌市第二中学高一上学期期末第8题5分已知P是边长为2的正六边形ABCDEF内的一点,则AP→⋅AB→的取值范围是().A. (−2,6)B. (−6,2)C. (−2,4)D. (−4,6)8、【来源】 2020年高考真题山东卷第8题5分2020~2021学年10月福建福州高三上学期月考A卷第8题5分2021年陕西西安碑林区西安交通大学附属中学高三零模理科第11题5分2020~2021学年广东深圳宝安区深圳市宝安区新安中学高一上学期期中(新安中学集团)第8题5分2020~2021学年10月北京东城区北京市第五十五中学高三上学期月考第9题4分若定义在R上的奇函数f(x)在(−∞,0)上单调递减,且f(2)=0,则满足xf(x−1)⩾0的x的取值范围是().A. [−1,1]∪[3,+∞)B. [−3,−1]∪[0,1]C. [−1,0]∪[1,+∞)D. [−1,0]∪[1,3]二、多选题(本大题共4小题,每小题5分,共20分)9、【来源】 2020年高考真题山东卷第9题5分2020~2021学年江苏扬州仪征市仪征中学高二上学期期中第9题5分2020~2021学年福建福州鼓楼区福建省福州第二中学高二上学期期中第12题5分2020年高考真题海南卷第10题5分2020~2021学年江苏扬州江都区江苏省江都中学高二上学期期中第9题5分已知曲线C:mx2+ny2=1().A. 若m>n>0,则C是椭圆,其焦点在y轴上B. 若m=n>0,则C是圆,其半径为√nxC. 若mn<0,则C是双曲线,其渐近线方程为y=±√−mnD. 若m=0,n>0,则C是两条直线10、【来源】 2020年高考真题山东卷第10题5分如图是函数y=sin(ωx+φ)的部分图象,则sin(ωx+φ)=().)A. sin(x+π3−2x)B. sin(π3)C. cos(2x+π6−2x)D. cos(5π611、【来源】 2020年高考真题山东卷第11题5分2020~2021学年12月江苏南京鼓楼区南京市第二十九中学高一上学期月考第9题5分2020~2021学年山东青岛崂山区青岛第二中学高一上学期期末模拟(四)第11题2020~2021学年10月江苏苏州工业园区苏州工业园区星海实验中学高二上学期月考第11题5分 2020年高考真题海南卷第12题5分已知a >0,b >0,且a +b =1,则( ).A. a 2+b 2⩾12B. 2a−b >12C. log 2a +log 2b ⩾−2D. √a +√b ⩽√212、【来源】 2020年高考真题山东卷第12题5分信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且P (X =i )=p i >0(i =1,2,…,n ),∑p i n i=1=1,定义X 的信息熵H (X )=−∑p i n i=1log 2p i .A. 若n =1,则H (X )=0B. 若n =2,则H (X )随着p 1的增大而增大C. 若p i =1n (i =1,2,⋯,n),则H (X )随着n 的增大而增大D. 若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m+1−j (j =1,2,…,m ),则H (X )⩽H (Y )三、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2020年高考真题山东卷第13题5分2020~2021学年陕西西安雁塔区西安电子科技大学附属中学高二上学期期中理科第13题5分 2019~2020学年重庆沙坪坝区重庆市南开中学高二下学期期末第14题5分2020~2021学年12月北京西城区北京师范大学附属实验中学高二上学期月考第13题5分 2020年高考真题海南卷第14题5分斜率为√3的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=.14、【来源】 2020年高考真题山东卷第14题5分2020年高考真题海南卷第15题5分2020年高考真题海南卷第14题5分将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为.15、【来源】 2020年高考真题山东卷第15题5分2020年高考真题海南卷第16题5分2021年广东广州荔湾区广州市真光中学高三上学期高考模拟第15题5分某中学开展劳动实习,学生加工制作零件,零件的截面如图所示,O为圆孔及轮廓圆弧AB所在圆的圆心,A是圆弧AB与直线AG的切点,B是圆弧AB与直线BC的切点,四边形DEFG为矩形,BC⊥DG,垂足为C,tan∠ODC=3,BH//DG,EF=12cm,DE=2cm,A到直线DE和EF的距离均5为7cm,圆孔半径为1cm,则图中阴影部分的面积为cm2.16、【来源】 2020年高考真题山东卷第16题5分2020~2021学年江苏苏州姑苏区苏州第三中学高三上学期开学考试第16题5分2020~2021学年山东枣庄高二上学期期中第15题已知直四棱柱ABCD−A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,√5为半径的球面与侧面BCC1B1的交线长为.四、解答题(本大题共6小题,共70分)17、【来源】 2020年高考真题山东卷第17题10分2020年高考真题海南卷第17题10分2020年高考真题湖南卷第17题10分在①ac=√3,②csinA=3,③c=√3b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC.它的内角A,B,C的对边分别为a,b,c,且sinA=√3sinB,C=π,?6注:如果选择多个条件分别解答,按第一个解答计分.18、【来源】 2020年高考真题山东卷第18题12分2020~2021学年11月江苏苏州姑苏区苏州市第一中学高三上学期月考第20题12分已知公比大于1的等比数列{a n}满足a2+a4=20,a3=8.(1) 求{a n}的通项公式.(2) 记b m为{a n}在区间(0,m](m∈N∗)中的项的个数,求数列{b m}的前100项和S100.19、【来源】 2020年高考真题山东卷第19题12分2020年高考真题海南卷第19题12分为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1) 估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率.(2) 根据所给数据,完成下面的2×2列联表:(3) 根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.20、【来源】 2020年高考真题山东卷第20题12分2020~2021学年9月上海浦东新区华东师范大学第二附属中学高三上学期月考第17题2020年高考真题海南卷第20题12分如图,四棱锥P−ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1) 证明:l⊥平面PDC.(2) 已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21、【来源】 2020年高考真题山东卷2020年高考真题山东卷第21题12分2020年高考真题海南卷第22题12分2020~2021学年陕西西安莲湖区西安市第一中学高二下学期期中理科第21题10分已知函数f(x)=ae x−1−lnx+lna.(1) 当a=e时,求曲线y=f(x)在点(1,f(1))处的切线与两坐标轴围成的三角形的面积.(2) 若f(x)⩾1,求a的取值范围.22、【来源】 2020年高考真题山东卷第22题12分已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为√22,且过点A(2,1).(1) 求C的方程.(2) 点M,N在C上,且AM⊥AN,AD⊥MN,D为垂足.证明:存在定点Q,使得|DQ|为定值.1 、【答案】 C;2 、【答案】 D;3 、【答案】 C;4 、【答案】 B;5 、【答案】 C;6 、【答案】 B;7 、【答案】 A;8 、【答案】 D;9 、【答案】 A;C;D;10 、【答案】 B;C;11 、【答案】 A;B;D;12 、【答案】 A;C;13 、【答案】163;14 、【答案】3n2−2n;15 、【答案】52π+4;16 、【答案】√22π;17 、【答案】选择①,c=1;选择②,c=2√3;选择③,不存在,证明见解析.;18 、【答案】 (1) a n=2n.;(2) S100=480.;19 、【答案】 (1) 1625.;(2);(3) 有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.;20 、【答案】 (1) 证明见解析.;(2) √63.;21 、【答案】 (1) 2e−1;(2) [1,+∞);22 、【答案】 (1) x26+y23=1.;(2) 存在点Q(43,13),使得|DQ|为定值23√2.证明见解析.;第11页,共11页。
北京市东城区2019-2020学年高一上学期期末考试数学试卷Word版含解析
北京市东城区2019-2020学年上学期期末考试高一数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合M={x∈R|x2+2x=0},N={2,0},则M∩N=()A.{0} B.{2} C.∅D.{﹣2,0,2}2.若一个扇形的弧长是3,半径是2,则该扇形的圆心角为()A.B.C.6 D.73.设x∈R,向量=(3,x),=(﹣1,1),若⊥,则||=()A.6 B.4 C.D.34.二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a﹣b=()A.﹣2 B.﹣1 C.1 D.35.设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①与;②与;③与;④与.其中可作为该平面其他向量基底的是()A.①②B.①③C.①④D.③④6.已知函数f(x)=|x﹣1|,则与y=f(x)相等的函数是()A.g(x)=x﹣1 B.C.D.5,则()7.已知,,c=log3A.c>b>a B.b>c>a C.a>b>c D.c>a>b8.已知函数,若g(x)=f(x)﹣m为奇函数,则实数m的值为()A.﹣3 B.﹣2 C.2 D.39.某商场在2017年元旦开展“购物折上折”活动,商场内所有商品先按标价打八折,折后价格每满500元再减100元,如某商品标价1500元,则购买该商品的实际付款额为1500×0.8﹣200=1000元.设购买某商品的实际折扣率=,某人欲购买标价为2700元的商品,那么他可以享受的实际折扣率约为( ) A .55% B .65% C .75% D .80%10.将函数的图象上所有点向左平行移动个单位长度,得到函数g (x )的图象,则g (x )图象的一条对称轴的方程是( )A .B .C .D .11.若函数y=f (x )的定义域为{x|﹣2≤x ≤3,且x ≠2},值域为{y|﹣1≤y ≤2,且y ≠0},则y=f (x )的图象可能是( )A .B .C .D .12.关于x 的方程(a >0,且a ≠1)解的个数是( )A .2B .1C .0D .不确定的二、填空题:本题共6小题,每小题4分,共24分.13.函数的定义域为 .14.已知角α为第四象限角,且,则sin α= ;tan (π﹣α)= .15.已知9a =3,lnx=a ,则x= .16.已知向量||=2,||=3,|+|=,那么|﹣|= .17.已知,且满足,则sin αcos α= ;sin α﹣cos α= .18.已知函数若存在x 1,x 2∈R ,x 1≠x 2,使f (x 1)=f (x 2)成立,则实数a 的取值范围是 .三、解答题:本大题共4个小题,40分,解答应写出文字说明,证明过程或演算步骤.19.已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.(Ⅰ)求A∪B;(Ⅱ)若C中恰有五个元素,求整数a的值;(Ⅲ)若A∩C=∅,求实数a的取值范围.20.已知函数与g(x)=cos(2x+φ),它们的图象有一个横坐标为的交点.(Ⅰ)求φ的值;(Ⅱ)将f(x)图象上所有点的横坐标变为原来的倍,得到h(x)的图象,若h (x)的最小正周期为π,求ω的值和h(x)的单调递增区间.21.已知函数f(x)=kx2+2x为奇函数,函数g(x)=a f(x)﹣1(a>0,且a≠1).(Ⅰ)求实数k的值;(Ⅱ)求g(x)在[﹣1,2]上的最小值.22.已知函数f(x),定义(Ⅰ)写出函数F(2x﹣1)的解析式;(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;(Ⅲ)当时,求h(x)=cosx•F(x+sinx)的零点个数和值域.北京市东城区2019-2020学年上学期期末考试高一数学试卷参考答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合M={x∈R|x2+2x=0},N={2,0},则M∩N=()A.{0} B.{2} C.∅D.{﹣2,0,2}【考点】交集及其运算.【分析】由题意求出集合M,由交集的运算求出M∩N.【解答】解:由题意知,M={x∈R|x2+2x=0}={﹣2,0},又N={2,0},则M∩N={0},故选A.2.若一个扇形的弧长是3,半径是2,则该扇形的圆心角为()A.B.C.6 D.7【考点】弧长公式.【分析】由已知利用弧长公式即可计算得解.【解答】解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,由已知可得:l=3,r=2,则由l=rα,可得:α==.故选:B.3.设x∈R,向量=(3,x),=(﹣1,1),若⊥,则||=()A.6 B.4 C.D.3【考点】平面向量的坐标运算.【分析】由⊥,求出x=3,从而=(3,3),由此能求出||.【解答】解:∵x∈R,向量=(3,x),=(﹣1,1),⊥,∴=﹣3+x=0,解得x=3,∴=(3,3),∴||==3.故选:C.4.二次函数f(x)=ax2+bx+1的最小值为f(1)=0,则a﹣b=()A.﹣2 B.﹣1 C.1 D.3【考点】二次函数的性质.【分析】根据二次函数的性质即可求出a,b的值,问题得以解决.【解答】解:二次函数f(x)=ax2+bx+1的最小值为f(1)=0,∴=1,且a>0,∴b=﹣2a,∴f(1)=a+b+1=0,解得a=1,b=﹣2,∴a﹣b=3,故选:D5.设点O是平行四边形ABCD两条对角线的交点,给出下列向量组:①与;②与;③与;④与.其中可作为该平面其他向量基底的是()A.①②B.①③C.①④D.③④【考点】平面向量的基本定理及其意义.【分析】要向量组可作为这个平行四边形所在平面表示它的所有向量的基底,这两个向量必不共线(平行),画出图形,利用图象分析向量之间是否共线后,可得答案.【解答】解:如下图所示:①与不共线,故①可作为这个平行四边形所在平面表示它的所有向量的基底;②与共线,故②不可作为这个平行四边形所在平面表示它的所有向量的基底;③与不共线,故③可作为这个平行四边形所在平面表示它的所有向量的基底;④与共线,故④不可作为这个平行四边形所在平面表示它的所有向量的基底;故选:B.6.已知函数f(x)=|x﹣1|,则与y=f(x)相等的函数是()A.g(x)=x﹣1 B.C.D.【考点】判断两个函数是否为同一函数.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是相等函数.【解答】解:对于A,函数g(x)=x﹣1(x∈R),与函数f(x)=|x﹣1|(x∈R)的对应关系不同,不是相等函数;对于B,函数h(x)==|x﹣1|(x≠1),与函数f(x)=|x﹣1|(x∈R)的定义域不同,不是相等函数;对于C,函数s(x)==x﹣1(x≥1),与函数f(x)=|x﹣1|(x∈R)的定义域不同,对应关系不同,不是相等函数;对于D,函数t(x)==|x﹣1|(x∈R),与函数f(x)=|x﹣1|(x∈R)的定义域相同,对应关系也相同,是相等函数.故选:D.7.已知,,c=log35,则()A.c>b>a B.b>c>a C.a>b>c D.c>a>b【考点】对数值大小的比较.【分析】利用对数的运算性质及其对数函数的单调性即可得出.【解答】解: =,1<=log34<log35=c,∴c>b>a.故选:A.8.已知函数,若g(x)=f(x)﹣m为奇函数,则实数m的值为()A.﹣3 B.﹣2 C.2 D.3【考点】函数奇偶性的判断.【分析】由函数的奇偶性易得g(﹣x)+g(x)=0,即2+﹣m+2﹣﹣m=0,解m的方程可得.【解答】解:∵函数,g(x)=f(x)﹣m为奇函数,∴g(﹣x)+g(x)=0,即2+﹣m+2﹣﹣m=0,∴m=2.故选C.9.某商场在2017年元旦开展“购物折上折”活动,商场内所有商品先按标价打八折,折后价格每满500元再减100元,如某商品标价1500元,则购买该商品的实际付款额为1500×0.8﹣200=1000元.设购买某商品的实际折扣率=,某人欲购买标价为2700元的商品,那么他可以享受的实际折扣率约为()A.55% B.65% C.75% D.80%【考点】根据实际问题选择函数类型.【分析】由已知中的折扣办法,将2700代入计算实际付款额可得实际折扣率.【解答】解:当购买标价为2700元的商品时,产品的八折后价格为:2700×0.8=2160,故实际付款:2160﹣400=1760,故购买某商品的实际折扣率为:≈65%,故选:B10.将函数的图象上所有点向左平行移动个单位长度,得到函数g(x)的图象,则g(x)图象的一条对称轴的方程是()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.【解答】解:将函数=cosx的图象上所有点向左平行移动个单位长度,得到函数g(x)=cos(x+)的图象,令x+=kπ,求得x=kπ﹣,k∈Z,则g(x)图象的一条对称轴的方程为x=,故选:D.11.若函数y=f(x)的定义域为{x|﹣2≤x≤3,且x≠2},值域为{y|﹣1≤y≤2,且y≠0},则y=f(x)的图象可能是()A.B.C.D.【考点】函数的图象.【分析】根据函数的定义域和值域以及与函数图象之间的关系分别进行判断即可.【解答】解:A.当x=3时,y=0,∴A错误.B.函数的定义域和值域都满足条件,∴B正确.C.由函数的图象可知,在图象中出现了有2个函数值y和x对应的图象,∴C错误.D.函数值域中有两个值不存在,∴函数的值域不满足条件,∴D错误.故选:B.12.关于x的方程(a>0,且a≠1)解的个数是()A.2 B.1 C.0 D.不确定的【考点】根的存在性及根的个数判断.【分析】由题意a x=﹣x2+2x+a,﹣x2+2x+a>0,令f(x)=a x,g(x)=﹣x2+2x+a,分类讨论,即可得出结论.【解答】解:由题意a x=﹣x2+2x+a,﹣x2+2x+a>0.令f(x)=a x,g(x)=﹣x2+2x+a,(1)当a>1时,f(x)=a x在(﹣∞,+∞)上单调递增,且f(0)=1,f(1)=a,g(x)=﹣x2+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,在[0,1]上,f(x)<g(x),∵g(x)在x<0及x>1时分别有一个零点,而f(x)恒大于零,∴f(x)与g(x)的图象在x<0及x>1时分别有一个交点,∴方程有两个解;(2)当a<1时,f(x)=a x在(﹣∞,+∞)上单调递减,且f(0)=1,f(1)=a,g(x)=﹣x2+2x+a在[0,1]上单调递增,在[1,+∞)上单调递减,且g(0)=a,g(1)=1+a,f(0)>g(0),f(1)<g(1),∴在(0,1)上f(x)与g(x)有一个交点,又g(x)在x>1时有一个零点,而f(x)恒大于零,∴f(x)与g(x)的图象在x>1时还有一个交点,∴方程有两个解.综上所述,方程有两个解.故选:A.二、填空题:本题共6小题,每小题4分,共24分.13.函数的定义域为(﹣∞,3] .【考点】函数的定义域及其求法.【分析】根据二次根式被开方数大于或等于0,列出不等式求出解集即可.【解答】解:函数,∴3﹣x≥0,解得x≤3,∴函数y的定义域是(﹣∞,3].故答案为:(﹣∞,3]14.已知角α为第四象限角,且,则sinα= ﹣;tan(π﹣α)= 2.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系、诱导公式,求得sinα和tan(π﹣α)的值.【解答】解:∵角α为第四象限角,且,则sinα=﹣=﹣,tan(π﹣α)=﹣tanα=﹣=2,故答案为:﹣;2.15.已知9a=3,lnx=a,则x= .【考点】对数的运算性质.【分析】由指数的运算性质化简等式右边,等式两边化为同底数的对数后可得x的值.【解答】解:由9a=3,∴32a=3,∴2a=1,∴a=,∴lnx==ln,∴x=故答案为:16.已知向量||=2,||=3,|+|=,那么|﹣|= .【考点】平面向量数量积的运算.【分析】首先由已知求出两个向量的数量积,然后求出|﹣|的平方,再开方求值.【解答】解:||=2,||=3,|+|=,所以|+|2=||2+||2+2=7,所以=﹣3,所以|﹣|2==4+9+6=19,那么|﹣|=;故答案为:.17.已知,且满足,则sinαcosα= ;sinα﹣cosα= ﹣.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系,直接由条件求得sinαcosα的值,可得α∈(π,),再根据sinα﹣cosα=﹣,计算求得结果.【解答】解:∵,且满足,∴+==8,∴sinαcosα=,∴sinα<0,cosα<0,且sinα<cosα.∴sinα﹣cosα=﹣=﹣=﹣=﹣,故答案为:;﹣.18.已知函数若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则实数a的取值范围是(﹣∞,).【考点】分段函数的应用.【分析】当x≥0时,2x﹣1≥0,故若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则当x<0时,存在不小于0的函数值,进而得到答案.【解答】解:当x≥0时,2x﹣1≥0,当x<0时,若a=0,则f(x)=2恒成立,满足条件;若a>0,则f(x)<2﹣3a,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则2﹣3a>0,即a∈(0,);若a>0,则f(x)<2﹣3a,若存在x1,x2∈R,x1≠x2,使f(x1)=f(x2)成立,则2﹣3a>0,即a∈(0,);若a<0,则f(x)>2﹣3a,满足条件,综上可得:a∈(﹣∞,);故答案为:(﹣∞,)三、解答题:本大题共4个小题,40分,解答应写出文字说明,证明过程或演算步骤.19.已知全集U=R,集合A={x∈R|2x﹣3≥0},B={x|1<x<2},C={x∈N|1≤x<a}.(Ⅰ)求A∪B;(Ⅱ)若C中恰有五个元素,求整数a的值;(Ⅲ)若A∩C=∅,求实数a的取值范围.【考点】交、并、补集的混合运算.【分析】(Ⅰ)根据交集的定义计算即可,(Ⅱ)根据集合的元素特征,即可求出,(Ⅲ)根据交集的定义即可求出【解答】解:(Ⅰ)集合A={x∈R|2x﹣3≥0}=[,+∞),B={x|1<x<2}=(1,2),∴A∪B=(1,+∞),(Ⅱ)∵C={x∈N|1≤x<a},C中恰有五个元素,则整数a的值为6,(Ⅲ)∵C={x∈N|1≤x<a}=[1,a),A∩C=∅,∴1≤a≤220.已知函数与g(x)=cos(2x+φ),它们的图象有一个横坐标为的交点.(Ⅰ)求φ的值;(Ⅱ)将f(x)图象上所有点的横坐标变为原来的倍,得到h(x)的图象,若h (x)的最小正周期为π,求ω的值和h(x)的单调递增区间.【考点】函数y=Asin(ωx+φ)的图象变换;正弦函数的图象;余弦函数的图象.【分析】(Ⅰ)根据f()=g(),求得φ的值.(Ⅱ)利用函数y=Asin(ωx+φ)的图象变换规律,得到h(x)的解析式,再根据正弦函数的单调性求得h(x)的增区间.【解答】解:(Ⅰ)∵函数与g(x)=cos(2x+φ),它们的图象有一个横坐标为的交点,∴sin﹣=cos(+φ),即 cos(+φ)=0,∴+φ=,∴φ=.(Ⅱ)将函数的图象上所有点的横坐标变为原来的倍,得到h(x)=sin(ωx)﹣的图象,若h(x)的最小正周期为=π,∴ω=2,h(x)=sin(2x)﹣.令2kπ﹣≤2x≤2kπ+,求得kπ﹣≤x≤kπ+,可得h(x)的增区间为[kπ﹣,kπ+],k∈Z.21.已知函数f(x)=kx2+2x为奇函数,函数g(x)=a f(x)﹣1(a>0,且a≠1).(Ⅰ)求实数k的值;(Ⅱ)求g(x)在[﹣1,2]上的最小值.【考点】函数奇偶性的判断;函数的最值及其几何意义.【分析】(Ⅰ)函数f(x)=kx2+2x为奇函数,f(﹣x)=﹣f(x),即kx2﹣2x=﹣kx2﹣2x,即可求实数k的值;(Ⅱ)g(x)=a2x﹣1,分类讨论,求g(x)在[﹣1,2]上的最小值.【解答】解:(Ⅰ)∵函数f(x)=kx2+2x为奇函数,∴f(﹣x)=﹣f(x),即kx2﹣2x=﹣kx2﹣2x,∴k=0;(Ⅱ)g(x)=a2x﹣1,0<a<1,函数g(x)在[﹣1,2]上单调递减,x=2时g(x)在[﹣1,2]上的最小值为a4﹣1;a>1,函数g(x)在[﹣1,2]上单调递增,x=﹣1时g(x)在[﹣1,2]上的最小值为a﹣2﹣1.22.已知函数f(x),定义(Ⅰ)写出函数F(2x﹣1)的解析式;(Ⅱ)若F(|x﹣a|)+F(2x﹣1)=0,求实数a的值;(Ⅲ)当时,求h(x)=cosx•F(x+sinx)的零点个数和值域.【考点】分段函数的应用;函数解析式的求解及常用方法.【分析】(Ⅰ)由新定义,讨论2x﹣1>x,2x﹣1=x,2x﹣1<x,解不等式即可得到所求函数F (2x﹣1);(Ⅱ)讨论x>1,x=1,x<1,由F(2x﹣1),求得F(|x﹣a|),运用恒成立思想,即可得到a的值;(Ⅲ)由h(x)=0可得cosx=0或F(x+sinx)=0,结合新定义和三角函数的图象与性质,可得零点个数;由x+sinx>x,x+sinx=x,x+sinx<x,化简h(x),分别求得值域,即可得到所求h(x)在时的值域.【解答】解:(Ⅰ)定义,当2x﹣1>x,可得x>1,则F(2x﹣1)=1;当2x﹣1=x,可得x=1,则F(2x﹣1)=0;当2x﹣1<x,可得x<1,则F(2x﹣1)=﹣1;可得F(2x﹣1)=;(Ⅱ)当x>1时,F(2x﹣1)=1,F(|x﹣a|)=﹣1,即有|x﹣a|<x恒成立,即为a2≤2ax在x>1恒成立,即有a2≤2a,解得0≤a≤2;当x=1时,F(2x﹣1)=0,F(|x﹣a|)=0,可得|1﹣a|=1,解得a=0或2;当x<1时,F(2x﹣1)=﹣1,F(|x﹣a|)=1,即有|x﹣a|>x恒成立,即为a2≥2ax在x<1恒成立,即有a2≥2a,解得a≥2或a≤0;则a的值为0或2;(Ⅲ)当时,h(x)=cosx•F(x+sinx)=0,可得cosx=0或F(x+sinx)=0,即有x=;x+sinx=x,即sinx=0,解得x=π,则h(x)的零点个数为2;当x+sinx>x,即≤x<π时,h(x)=cosx∈(﹣1,];当x+sinx=x,即x=π时,h(x)=0;当x+sinx<x,即π<x≤时,h(x)=﹣cosx∈[,1).综上可得,h(x)的值域为(﹣1,1).。
2020-2021学年高一上学期期末考试数学卷及答案
2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。
答案:A={(-∞,1]}。
B={2}。
A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。
答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。
3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。
答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。
答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。
答案:选项A是正确的。
因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。
6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。
答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。
根据题意,πrl=6π,所以l=6/r。
而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。
将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。
我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。
答案:点P的坐标为(1,2)。
因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。
2022-2023学年北京市东城区高一(下)期末数学试卷【答案版】
2022-2023学年北京市东城区高一(下)期末数学试卷一、选择题共10小题,每小题3分,共30分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知向量a →=(m ,1),b →=(﹣1,2).若a →∥b →,则m =( ) A .2B .1C .﹣1D .−122.复数z 满足i •z =1﹣2i ,则z =( ) A .2﹣iB .﹣2﹣iC .1+2iD .1﹣2i3.某中学为了解在校高中学生的身高情况,在高中三个年级各随机抽取了10%的学生,并分别计算了三个年级抽取学生的平均身高,数据如表:则该校高中学生的平均身高可估计为( ) A .3.6x +3.4y +3.0z B .x+y+z 2 C .0.36x +0.34y +0.30zD .x+y+z34.已知圆锥SO 的轴截面是一个边长为2的等边三角形,则圆锥SO 的体积为( ) A .2πB .√3πC .πD .√33π 5.设a ,b 为实数,若a+i b−2i=1+i ,则( )A .a =1,b =﹣1B .a =5,b =3C .a =1,b =2D .a =1,b =36.将函数y =cos x ﹣sin x 的图象向左平移π2个单位,所得图象的函数解析式为( ) A .y =−√2sinx B .y =√2cosx C .y =﹣sin x ﹣cos xD .y =cos x +sin x7.已知长方形墙ACFE 把地面上B ,D 两点隔开,该墙与地面垂直,长10米,高3米.已测得AB =6米,BC =8米.现欲通过计算,能唯一求得B ,D 两点之间的距离,需要进一步测量的几何量可以为( )A .点D 到AC 的距离B .CD 长度和DF 长度C .∠ACB 和∠ADCD .CD 长度和∠ACD8.设a →,b →为非零向量,|a →|=|b →|,则“a →,b →夹角为钝角”是“|a →+b →|<√2|a →|”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.如图,直三棱柱ABC ﹣A 1B 1C 1中,AB ⊥BC ,AA 1=AB ,P 为棱A 1B 1的中点,Q 为线段A 1C 上的动点.以下结论中正确的是( )A .存在点Q ,使BQ ∥ACB .不存在点Q ,使BQ ⊥B 1C 1C .对任意点Q ,都有BQ ⊥AB 1D .存在点Q ,使BQ ∥平面PCC 110.如图,质点P 在以坐标原点O 为圆心,半径为1的圆上逆时针做匀速圆周运动,P 的角速度大小为2rad /s ,起点P 0为射线y =﹣x (x ≥0)与⊙O 的交点.则当0≤t ≤12时,动点P 的纵坐标y 关于t (单位:s )的函数的单调递增区间是( )A .[0,π2]B .[7π8,11π8] C .[11π8,15π8] D .[3π4,11π4] 二、填空题共5小题,每小题4分,共20分。
北京市2020-2021学年高一上学期期末数学试题汇编:函数选择题 (答案详解)
2021北京高一数学上学期期末汇编:函数选择题一.选择题(共23小题)1.(2020秋•昌平区期末)下列函数中,既是奇函数又在上是增函数的是 A .B .C .D .2.(2020秋•通州区期末)函数且在上单调递减,则实数的取值范围是 A .B .C .D .3.(2020秋•西城区校级期末)函数的图象是 A .B .C .D .4.(2020秋•通州区期末)如果是定义在上的函数,使得对任意的,均有,则称该函数是“函数”.若函数是“函数”,则实数的取值范围是 A .,,B .,,C .,D .,5.(2020秋•朝阳区期末)下列函数中,既是奇函数又在区间上单调递增的是 A .B .C .D .6.(2020秋•西城区期末)函数的定义域是 A .B .C .,,D .,,7.(2020秋•石景山区期末)下列函数中,在区间上为减函数的是 A .B .C .D .(0,)+∞()()2xf x -=3()f x x =()f x lgx=1()f x x=,0()(03,0x a x f x a a x x ⎧=>⎨->⎩…1)a ≠R a ()(1,)+∞(0,1)1[,1)31(0,]3|(1)|y lg x =-()()f x R x R ∈()()f x f x -≠-()y f x =X -sin cos y x x a =++X -a ()(-∞1)(1-⋃)+∞(-∞2)(2-⋃)+∞[1-1][2-2](0,1)()sin y x=y =3y x =-y lgx=11y lgx x =+-()(0,)+∞(1,)+∞(01)(1⋃)+∞[01)(1⋃)+∞(1,1)-()11y x=-2x y =(1)y ln x =+2xy -=8.(2020秋•朝阳区期末)已知函数可表示为 1234则下列结论正确的是 A .(4)B .的值域是,2,3,C .的值域是,D .在区间,上单调递增9.(2020秋•东城区期末)已知为奇函数,且当时,,则的值为 A .B .C .D .10.(2020秋•海淀区期末)下列函数中,是奇函数且在区间上单调递减的是 A .B .C .D .11.(2020秋•丰台区期末)下列函数是奇函数的是 A .B .C .D .12.(2020秋•西城区校级期末)以下函数既是偶函数又在上单调递减的是 A .B .C .D .13.(2020秋•石景山区期末)已知函数是奇函数,且当时,,则 A .B .0C .1D .214.某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后与的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是 ()y f x =()x02x <<24x < (46)x < (68)x ……y()(f f )3=()f x {14}()f x [14]()f x [48]()f x 0x >()2f x x =-1()2f -()52-32-3252(0,)+∞()2y x=-12y x=1y x -=3y x =()()2xf x =2()log f x x=2()f x x =3()f x x =(0,)+∞()4()f x x =()f x =1()(2xf x =12()log ||f x x =()f x 0x >21()f x x x=+(1)(f -=)2-y x y x ()A .①③B .①④C .②③D .②④15.(2020秋•石景山区期末)如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,是圆锥形漏斗中液面下落的高度,则与下落时间(分)的函数关系表示的图象只可能是 A .B .C .D .16.(2020秋•海淀区校级期末)如图是函数的图象,是图象上任意一点,过点作轴的平行线,交其图象于另一点,可重合).设线段的长为,则函数的图象是 A .B.H H t ()sin (0)y x x π=……(,)A x y A x (B A B AB ()f x ()f x ()C .D .17.(2020秋•昌平区期末)已知函数.若存在实数,,使得函数在区间上的值域为,则实数的取值范围为 A .,B .C .,D .18.(2020秋•西城区校级期末)已知函数的定义域是,满足(2)且对于定义域内任意,都有成立,那么(2)(4)的值为 A .1B .2C .3D .419.(2020秋•通州区期末)已知函数,则 A .是奇函数,且在上单调递增B .是奇函数,且在上单调递减C .是偶函数,且在上单调递增D .是偶函数,且在上单调递减20.(2020秋•大兴区期末)下列函数中,值域为区间,的是 A .B .C .D .21.(2020秋•大兴区期末)已知函数是上的减函数,则的范围是 A .B .,C .D .,22.(2020秋•海淀区校级期末)已知偶函数在上单调递减,若(1),(2),,则,,的大小关系为 A .B .C .D .23.(2020秋•东城区期末)若函数是上的减函数,,则下列不等式一定成立的是 A .(a )B .C .(a )D .2()f x x k =-m n ()fxk ()(1-0](1,)-+∞(2-0](2,)-+∞()f x (0,)+∞f 1=x y ()()()f xy f x f y =+f f +()()(1)(1)f x ln x ln x =++-()(f x )(0,1)(0,1)(0,1)(0,1)[2)+∞()2()2f x x =()21x f x =+()||2f x x =+1()f x x x=+5,1()1,1ax x f x x x+⎧⎪=⎨>⎪⎩…R a ()(,0)-∞[4-)+∞(,4)-∞-[4-0)()f x (,0)-∞a f =b f =1()2c f =-a b c ()a b c >>a c b >>b a c >>c a b>>()f x R 0a >()2()f a f <1()()f a f a<f (2)f a <2()(1)f a f a <-2021北京高一数学上学期期末汇编:函数选择题参考答案一.选择题(共23小题)1.【分析】由基本初等函数的性质逐一判断即可.【解答】解:对于,为非奇非偶函数,不符合题意;对于,为奇函数,且在上是增函数,符合题意;对于,为非奇非偶函数,不符合题意;对于,为奇函数,在上是减函数,不符合题意.故选:.【点评】本题主要考查函数奇偶性与单调性的判断,熟练掌握基本初等函数的性质是解题的关键,属于基础题.2.【分析】根据分段函数的单调性建立不等式关系进行求解即可.【解答】解:若函数在上为减函数,则满足,即,得,故选:.【点评】本题主要考查函数单调性的应用,结合分段函数的单调性的性质建立不等式关系是解决本题的关键,是基础题.3.【分析】求出函数的定义域,利用定义域进行排除即可.【解答】解:由得,即函数的定义域为,排除,,,故选:.【点评】本题主要考查函数图象的识别和判断,利用定义域是否满足,结合排除法是解决本题的关键,是基础题.4.【分析】根据题意,设,则有,结合“函数”的定义可得方程无解,结合余弦函数的性质分析可得答案.【解答】解:根据题意,设,则,则,若函数是“函数”,即无解,A ()2x f x -=B 3()f x x =RC ()f x lgx =D 1()f x x=(0,)+∞B R 00130a a a <<⎧⎨-⎩ (01)13a a <<⎧⎪⎨⎪⎩ (103)a <…D 10x ->1x >(1,)+∞A B D C ()sin cos f x x x a =++()()2cos 2f x f x x a +-=+X -()()2cos 20f x f x x a +-=+=()sin cos f x x x a =++()sin()cos()sin cos f x x x a x x a -=-+-+=-++()()2cos 2f x f x x a +-=+()y f x =X -()()2cos 20f x f x x a +-=+=又由,,必有或,即的取值范围为,,,故选:.【点评】本题考查函数的奇偶性的性质以及应用,关键是理解“函数”的含义,属于基础题.5.【分析】分别判断函数的奇偶性和单调性是否满足即可.【解答】解:.是奇函数,当时,函数为增函数,满足条件.函数的定义域为,,关于原点不对称,函数为非奇非偶函数,不满足条件..当时,函数为减函数,不满足条件..函数的定义域为,关于原点不对称,函数为非奇非偶函数,不满足条件.故选:.【点评】本题主要考查函数奇偶性和单调性的判断,结合函数奇偶性和单调性的性质是解决本题的关键,是基础题.6.【分析】根据函数成立的条件建立不等式关系进行求解即可.【解答】解:要使函数有意义,则,即,即函数的定义域为,,,故选:.【点评】本题主要考查函数定义域的求解,结合函数成立的条件建立不等式关系是解决本题的关键,是基础题.7.【分析】可看出前三个选项的函数在上都是增函数,从而只能选.【解答】解:,和在上都为增函数,在上是减函数.故选:.【点评】本题考查了反比例函数、指数函数和对数函数的单调性,考查了计算能力,属于基础题.8.【分析】根据表格,结合函数定义域和值域的性质分别进行判断即可.【解答】解:由题意知(4),得(4)(3),故错误,函数的值域为,2,3,,故正确,错误,在定义域上不单调,故错误,故选:.【点评】本题主要考查函数定义域和值域的判断,结合函数定义域和值域的关系是解决本题的关键,是基础题.cos [1x ∈-1]1a <-1a >a (-∞1)(1-⋃)+∞A X -A sin y x =01x <<B [0)+∞C 01x <<D (0,)+∞A 010x x >⎧⎨-≠⎩01x x >⎧⎨≠⎩(01)(1⋃)+∞C (1,1)-D 11y x=-2x y =(1)y ln x =+(1,1)-2x y -=(1,1)-D f 3=(f f )f =2=A {14}B C ()f x D B9.【分析】根据题意,由函数的解析式求出的值,结合函数的奇偶性计算可得答案.【解答】解:根据题意,当时,,则,又由为奇函数,则,故选:.【点评】本题考查函数奇偶性的性质以及应用,涉及函数值的计算,属于基础题.10.【分析】根据函数奇偶性和单调性的性质是否满足进行判断即可.【解答】解:.函数为偶函数,不满足条件..函数的定义域为,,为非奇非偶函数,不满足条件..函数为奇函数,且当时,为减函数,满足条件..函数为奇函数,当时为增函数,不满足条件.故选:.【点评】本题主要考查函数奇偶性和单调性的判断,结合函数的性质是解决本题的关键,是基础题.11.【分析】根据题意,依次分析选项函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于,,是指数函数,不是奇函数,不符合题意,对于,,是对数函数,不是奇函数,不符合题意,对于,,是二次函数,是偶函数,不是奇函数,不符合题意,对于,,是奇函数,符合题意,故选:.【点评】本题考查函数的奇偶性的判断,注意常见函数的奇偶性,属于基础题.12.【分析】根据常见函数的奇偶性和单调性判断即可.【解答】解:对于,函数在递增,不合题意;对于,函数不是偶函数,不合题意;对于,函数不是偶函数,不合题意;对于,函数既是偶函数又在上单调递减,符合题意;故选:.【点评】本题考查了函数的单调性和奇偶性问题,是一道基础题.1(2f 0x >()2f x x =-113(2222f =-=-()f x 113()()222f f -=-=C A B [0)+∞C 0x >1y x=D 0x >C A ()2x f x =B 2()log f x x =C 2()f x x =D 3()f x x =D A (0,)+∞B C D (0,)+∞D13.【分析】由奇函数定义得,(1),根据的解析式,求出(1),从而得到.【解答】解:是定义在上的奇函数,,(1),又当时,,(1),,故选:.【点评】本题考查函数的奇偶性及运用,主要是奇函数的定义及运用,解题时要注意自变量的范围,正确应用解析式求函数值,本题属于基础题.14.【分析】解题的关键是理解图象表示的实际意义,进而得解.【解答】解:由图可知,点纵坐标的相反数表示的是成本,直线的斜率表示的是票价,故图(2)降低了成本,但票价保持不变,即②对;图(3)成本保持不变,但提高了票价,即③对;故选:.【点评】本题考查读图识图能力,考查分析能力,属于基础题.15.【分析】利用特殊值法,圆柱液面上升速度是常量,表示圆锥漏斗中液体单位时间内落下的体积相同,当时间取1.5分钟时,液面下降高度与漏斗高度的比较.【解答】解:由于所给的圆锥形漏斗上口大于下口,当时间取时,漏斗中液面下落的高度不会达到漏斗高度的,对比四个选项的图象可得结果.故选:.【点评】本题考查函数图象,还可以正面分析得出结论:圆柱液面上升速度是常量,则(这里的是漏斗中剩下液体的体积)与成正比(一次项),根据圆锥体积公式兀,可以得出中,为正数,另外,与成反比,可以得出^中,为正数.所以选择第二个答案.16.【分析】根据线段的长和之间的关系,通过取特殊点及某一段上的的值,得出相应的函数值,从而判断出正确选项即可.【解答】解:当时,,两点重合,此时,故排除,;当时,是关于的一次函数,其图象是一条线段,故选:.【点评】考查导函数的图象与图象变化,以及识图能力,体现了数形结合的思想,属基础题.(1)f f -=-0x >f (1)f -()f x R ()()f x f x ∴-=-(1)f f -=-0x >21()f x x x=+f ∴2112=+=(1)2f ∴-=-A A C 1212t 12B V V t 13V =2r h 2H at bt =+a t r H at =2bt +b AB x x 2x π=A B ()0f x =C D (0,2x π∈()2f x x π=-x A17.【分析】求出函数在定义域上单调递增,由此建立方程的两个不相等的非负实数根,再由,求出的范围.【解答】解:由函数,可知函数在区间上单调递增,要使得函数在区间上的值域为,只需,即,的两个不相等的非负实数根,所以,解得,即实数的取值范围为,,故选:.【点评】本题考查了二次函数的性质,涉及到一元二次方程的实数根的问题,考查了学生的运算能力,属于中档题.18.【分析】由(4)(2)(2)(2),可得(4),从而得到所求.【解答】解:(4)(2)(2)(2),(4).(2)(4),故选:.【点评】本题考查抽象函数的应用,求出(4),是解题的关键,是基础题.19.【分析】由已知结合函数奇偶性定义及复合函数的单调性进行检验即可判断.【解答】解:,则,故为偶函数,当时,单调递减,故选:.【点评】本题主要考查了函数奇偶性及单调性的判断,属于基础题.()f x f f ⎧=⎪⎨=⎪⎩220x x k --=124400k x x k =+>⎧⎨=-⎩V …k 2()f x x k =-()f x ()f x f f ⎧=⎪⎨=⎪⎩m k n k ⎧-=⎪⎨-=⎪⎩220x x k --=124400k x x k =+>⎧⎨=-⎩V …10k -<…k (1-0]A f (22)f f =⨯=f +2f =f 2=f (22)f f =⨯=f +2f =f ∴2=f ∴f +123=+=C f 2=2()(1)(1)(1)f x ln x ln x ln x =++-=-()()f x f x -=()f x 01x <<2()(1)f x ln x =-D20.【分析】由题意,求出各个函数的值域,可得结论.【解答】解:由与,故它的值域为,,故错误;由于,故它的值域为,故错误;由于,故它的值域为,,故正确;由于,当时,,当 时,,故它的值域为,,,故错误,故选:.【点评】本题主要考查求函数的值域,属于基础题.21.【分析】根据题意,由函数的单调性的定义可得,解之即可得答案.【解答】解:因为函数是上的减函数,所以,解得,即的取值范围为,.故选:.【点评】本题考查分段函数的单调性,属于基础题.22.【分析】根据函数奇偶性和单调性之间的关系,即可得到结论.【解答】解:因为偶函数在上单调递减,所以在上单调递增,因为(1),(2),,又,则.故选:.【点评】本题主要考查函数奇偶性与单调性的综合,考查利用函数的性质比较函数值的大小,属于基础题.23.【分析】可取,从而可判断出选项,都错误;可得出,根据是上的减函数可得出(a ),从而判断错误,这样只能选.【解答】解:时,,,,都错误;2()20f x x =…[0)+∞A ()21011x f x =+>+=(1,)+∞B ()||22f x x =+…[2)+∞C 1()f x x x=+0x >()2f x …0x <()2f x -…[2)(+∞-∞⋃2]D C 051a a <⎧⎨+⎩…5,1()1,1ax x f x x x+⎧⎪=⎨>⎪⎩…R 051a a <⎧⎨+⎩…40a -<…a [4-0)D ()f x (,0)-∞()f x (0,)+∞a f =b f =11()(22c f f =-=12102>>>b a c >>C 1a =A B 2a a <()f x R f (2)f a >C D 1a =21,a a a a==∴21()(),()()f a f a f a f a==A ∴B,,是上的减函数,(a ),即错误;,,且是上的减函数,,即正确.故选:.【点评】本题考查了举反例说明不等式不成立的方法,减函数的定义,配方法的运用,考查了计算能力,属于基础题.0a > 2a a <()f x R f ∴(2)f a >C 22213(1)1()024a a a a a --=-+=-+>21a a ∴>-()f x R 2()(1)f a f a ∴<-D D。
2023年北京市东城区高三上期末数学试卷(含答案)
0
1
P( = 3) = 0.43 = 0.064.
2
3
P
0.216
0.432
0.288
0.064
E = 0 0.216 + 1 0.432 + 2 0.288 + 3 0.064 = 1.2 .
(Ⅲ)c<b<a.
…………………10 分 …………………13 分
(19)(共 14 分)
2a + 2b = 6,
G
F
平面 PAB 平面 BEFG = BG , 所以 EF // BG. 所以四边形 BEFG 是平行四边形.
A B
E
D C
所以 FG = BE = 1 AD. 2
所以 F 为 PD 的中点. (II)选条件①: AD ⊥ PB .
因为底面 ABCD 为正方形, 所以 AD ⊥ AB . 又 AD ⊥ PB , AB PB = B , 所以 AD ⊥ 平面 PAB . 所以 AD ⊥ PA .
A 的长度为 2 的子列有 3 个, A 的长度为 4 的子列有1个,
所以 T ( A) = 6 .
…………………5 分
(Ⅱ)T ( A) = T ( A) = T ( A) .
理由如下:
若 m1 ,m2 , ,mk−1,mk 是 A:a1 ,a2 , ,an 的一个子列, 则 mk ,mk−1 , ,m2,m1 为 A :an ,an−1 , ,a1 的一个子列. 若 m1 ,m2 , ,mk−1,mk 与 n1 ,n2 , ,nk−1,nk 是 A:a1 ,a2 , ,an 的两个不同子列, 则 mk ,mk−1 , ,m2,m1 与 nk ,nk−1 , ,n2,n1 也是 A :an ,an−1 , ,a1 的两个不同子列. 所以 T ( A) T ( A) . 同理 T ( A) T ( A) , 所以T ( A) = T ( A) .
北京市2020-2021学年高三上学期期末数学试题汇编:平面解析几何
2021北京高三数学上学期期末汇编:平面解析几何一.选择题(共18小题)1.(2020秋•倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A .22144x y -=B .22144y x -=C .2214y x -=D .2214x y -=2.(2020秋•朝阳区期末)已知双曲线2222:1(0,0)x y C a b a b -=>>的左焦点为F ,右顶点为A ,过F 作C 的一条渐近线的垂线FD ,D 为垂足.若||||DF DA =,则C 的离心率为( )A .B .2C D3.(2020秋•丰台区期末)若关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解,则(a = )A .2BC .1D .24.(2020秋•昌平区期末)已知抛物线24y x =上一点P 到焦点F 的距离为5,那么点P 到y 轴的距离是( ) A .2B .3C .4D .55.(2020秋•东城区期末)与圆22(1)5x y +-=相切于点(2,2)的直线的斜率为( ) A .2-B .12-C .12D .26.(2020秋•石景山区期末)若抛物线24y x =上的点A 到焦点的距离为10,则点A 到y 轴的距离是( ) A .6B .7C .8D .97.(2020秋•海淀区期末)抛物线2y x =的准线方程是( ) A .12x =-B .14x =-C .12y =-D .14y =-8.(2020秋•通州区期末)抛物线24y x =的准线方程是( ) A .2x =-B .1x =-C .1x =D .2x =9.(2020秋•通州区期末)如图是等轴双曲线形拱桥,现拱顶离水面5m ,水面宽30AB m =.若水面下降5m ,则水面宽是( )(结果精确到0.1)m 1.41≈ 2.24 2.65)A .43.8mB .44.8mC .52.3mD .53.0m10.(2020秋•西城区期末)已知半径为2的圆经过点(1,0),其圆心到直线34120x y -+=的距离的最小值为( )A .0B .1C .2D .311.(2020秋•西城区期末)已知双曲线22221x y a b -=的焦距等于实轴长的2倍,则其渐近线的方程为( )A .y =B .2y x =±C .y =D .12y x =±12.(2020秋•朝阳区期末)设抛物线2:4C y x =的焦点为F ,准线l 与x 轴的交点为M ,P 是C 上一点.若||4PF =,则||(PM = )A B .5C .D .13.(2020秋•石景山区期末)直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是( ) A .相切B .相交C .相离D .不确定14.(2020秋•东城区期末)已知抛物线22(0)y px p =>的焦点F 到准线的距离为2,过焦点F 的直线与抛物线交于A ,B 两点,且||3||AF FB =,则点A 到y 轴的距离为( )A .5B .4C .3D .215.(2020秋•海淀区期末)已知直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,若//l AB ,则实数a 的值为( ) A .1B .1-C .2D .2-16.(2020秋•昌平区期末)已知直线1y kx =+与圆2240x x y -+=相交于M ,N 两点,且||23MN ,那么实数k 的取值范围是( ) A .143k --B .403kC .0k 或43k -D .403k -17.(2020秋•朝阳区期末)在平面直角坐标系xOy 中,已知直线(0)y mx m =>与曲线3y x =从左至右依次交于A ,B ,C 三点.若直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=,则实数k 的取值范围是( )A .(2,2)-B .[-C .(-∞,2)(2-⋃,)+∞D .(,[22,)-∞-+∞18.(2020秋•海淀区期末)如图所示,在圆锥内放入两个球1O ,2O ,它们都与圆锥相切(即与圆锥的每条母线相切),切点圆(图中粗线所示)分别为1C ,2.C 这两个球都与平面α相切,切点分别为1F ,2F ,丹德林()G Dandelin ⋅利用这个模型证明了平面α与圆锥侧面的交线为椭圆,1F ,2F 为此椭圆的两个焦点,这两个球也称为Dandelin 双球.若圆锥的母线与它的轴的夹角为30︒,1C ,2C 的半径分别为1,4,点M 为2C 上的一个定点,点P 为椭圆上的一个动点,则从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是( )A .6B .8C .D .二.填空题(共10小题)19.(2020秋•东城区期末)已知双曲线2222:1(0,0)x y M a b a b-=>>,ABC ∆为等边三角形.若点A 在y 轴上,点B ,C 在双曲线M 上,且双曲线M 的实轴为ABC ∆的中位线,则双曲线M 的离心率为 .20.(2020秋•海淀区校级期末)已知F 是双曲线22:18y C x -=的右焦点,P 是双曲线C 上的点,A .①若点P 在双曲线右支上,则||||AP PF +的最小值为 ; ②若点P 在双曲线左支上,则||||AP PF +的最小值为 .21.(2020秋•通州区期末)在平面直角坐标系中,O 为坐标原点,点A 的坐标为(4,0),若以线段OA 为直径的圆与直线2y x =在第一象限交于点B ,则直线AB 的方程是 .22.(2020秋•顺义区期末)设抛物线2y mx =的焦点为(1,0)F ,则m = ;若点A 在抛物线上,且||3AF =,则点A 的坐标为 .23.(2020秋•房山区期末)在平面直角坐标系xOy 中,直线l 过抛物线24y x =的焦点F ,且与该抛物线相交于A ,B 两点.若直线l 的倾斜角为45︒,则OAB ∆的面积为 .24.(2020秋•石景山区期末)已知双曲线的两个焦点为(3,0)-,(3,0),一个顶点是,则C 的标准方程为 ;C 的焦点到其渐近线的距离是 .25.(2020秋•海淀区期末)已知双曲线2212y x -=的左、右焦点分别为1F ,2F ,点(3,4)M -,则双曲线的渐近线方程为 ;12||||MF MF -= .26.(2020秋•昌平区期末)已知双曲线2221(0)9x y a a -=>的离心率是54,则双曲线的右焦点坐标为 .27.(2020秋•顺义区期末)已知椭圆22:1168x y C +=的左、右焦点分别为1F ,2F ,直线(44)x m m =-<<与椭圆C 相交于点A ,B .给出下列三个命题:①存在唯一一个m ,使得△12AF F 为等腰直角三角形; ②存在唯一一个m ,使得1ABF ∆为等腰直角三角形; ③存在m ,使1ABF ∆的周长最大. 其中,所有真命题的序号为 .28.(2020秋•丰台区期末)已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为12y x =,那么该双曲线的离心率为 .三.解答题(共9小题)29.(2020秋•海淀区校级期末)已知椭圆2222:1(0)x y C a b a b +=>>,且经过点.(Ⅰ)求椭圆C 的方程;(Ⅰ)已知O 为坐标原点,A ,B 为椭圆C 上两点,若0OA AB ⋅=,且||3||2AB OA =,求OAB ∆的面积. 30.(2020秋•通州区期末)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为点A ,B ,且||4AB =,椭圆C 离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)过椭圆C 的右焦点,且斜率不为0的直线l 交椭圆C 于M ,N 两点,直线AM ,BN 的交于点Q ,求证:点Q 在直线4x =上.31.(2020秋•顺义区期末)已知椭圆2222:1(0)x y C a b a b +=>>经过点(0,1)M 和1)2N .(Ⅰ)求椭圆C 的方程;(Ⅰ)若直线:l y kx m =+与椭圆C 交于A ,B 两点,且坐标原点O 到直线l .求证:以AB 为直径的圆经过点O .32.(2020秋•丰台区期末)已知椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点.(Ⅰ)求椭圆W 的方程;(Ⅰ)直线AB 与x 轴交于点(,0)M m ,过点M 作不垂直于坐标轴且与AB 不重合的直线l ,l 与椭圆W 交于C ,D 两点,直线AC ,BD 分别交直线x m =于P ,Q 两点,求证:||||PM MQ 为定值.33.(2020秋•石景山区期末)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e ,且经过点(0,1)D .(Ⅰ)求椭圆C 的方程;(Ⅰ)已知点(1,0)A -和点(4,0)B -,过点B 的动直线l 交椭圆C 于M ,N 两点(M 在N 左侧),试讨论BAM ∠与OAN ∠的大小关系,并说明理由.34.(2020秋•东城区期末)已知椭圆2222:1(0)x y C a b a b +=>>过点(2,0)A -,(2,0)B ,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设直线l 与椭圆C 有且仅有一个公共点E ,且与x 轴交于点(G E ,G 不重合),ET x ⊥轴,垂足为T .求证:||||||||TA GA TB GB =.35.(2020秋•海淀区期末)已知椭圆2222:1(0)x y W a b a b +=>>,且经过点C .(Ⅰ)求椭圆W 的方程及其长轴长;(Ⅰ)A ,B 分别为椭圆W 的左、右顶点,点D 在椭圆W 上,且位于x 轴下方,直线CD 交x 轴于点Q .若ACQ ∆的面积比BDQ ∆的面积大D 的坐标.36.(2020秋•房山区期末)已知椭圆2222:1(0)x y G a b a b +=>>,且过(0,1)点.(Ⅰ)求椭圆G 的方程;(Ⅰ)设不过原点O 且斜率为13的直线l 与椭圆G 交于不同的两点C ,D ,线段CD 的中点为M ,直线OM 与椭圆G 交于E ,F ,证明:||||||||MC MD ME MF ⋅=⋅.37.(2020秋•昌平区期末)已知椭圆2222:1(0)x y C a b a b +=>>的长轴长为4,且离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅰ)设过点(1,0)F 且斜率为k 的直线l 与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点D ,判断||||AB DF 是否为定值?如果是定值,请求出此定值;如果不是定值,请说明理由.2021北京高三数学上学期期末汇编:平面解析几何参考答案一.选择题(共18小题)1.【分析】由顶点坐标可知双曲线的焦点在y 轴上,再根据双曲线的几何性质,列得关于a 、b 、c 的方程组,解之即可.【解答】解:由题意知,双曲线的焦点在y轴上,且222222a b a a b c ⎧+=⎪=⎨⎪+=⎩,解得2a =,2b =,c =所以双曲线的标准方程为22144y x -=.故选:B .【点评】本题考查双曲线标准方程的求法,熟练掌握a 、b 、c 的含义与关系是解题的关键,考查学生的运算求解能力,属于基础题.2.【分析】过点D 作DC AF ⊥于点C ,易知C 为AF 的中点,从而有||2a cCF +=,由点到直线的距离公式可知||DF b =,再由||||cos ||||DF CF AFD OF DF ∠==,代入相关数据,进行运算即可. 【解答】解:过点D 作DC AF ⊥于点C ,||||DF DA =,∴点C 为AF 的中点,1||||22a cCF AF +∴==, 而点(,0)F c -到渐近线b y x a =-的距离为||||bc DF b ==, ||||cos ||||DF CF AFD OF DF ∴∠==,即2a cbc b +=,222()22()c a c b c a ∴+==-,即2220c ac a --=,2c a ∴=或c a =-(舍),∴离心率2ce a==. 故选:B .【点评】本题考查双曲线的几何性质,主要包含渐近线、离心率,考查学生的数形结合思想、逻辑推理能力和运算能力,属于基础题.3.【分析】由方程组无解得到直线4210x y ++=与直线210x ay ++=平行,再由直线与直线平行的性质能求出a . 【解答】解:关于x ,y 的方程组4210()210x y a R x ay ++=⎧∈⎨++=⎩无解, ∴直线4210x y ++=与直线210x ay ++=平行, ∴21421a =≠, 解得1a =. 故选:C .【点评】本题考查实数值的求法,考查直线与直线平行的性质等基础知识,考查运算求解能力,是基础题. 4.【分析】由抛物线的方程即可求出p 的值,再由抛物线的定义即可求解. 【解答】解:由抛物线的方程可得:2p =,又由抛物线的定义可知点P 到F 的距离等于点P 到抛物线的准线的距离, 则点P 到y 轴的距离为||5142pPF -=-=, 故选:C .【点评】本题考查了抛物线的方程以及定义,属于基础题.5.【分析】根据题意,求出圆的圆心坐标,设圆心为C ,切点(2,2)为P ,求出PC 的斜率,由切线的性质分析可得答案.【解答】解:根据题意,圆22(1)5x y +-=,其圆心为(0,1),设圆心为C ,切点(2,2)为P , 则211202PC K -==-, 则切线的斜率2k =-, 故选:A .【点评】本题考查直线与圆的位置关系,涉及切线的性质,属于基础题. 6.【分析】求出抛物线的准线方程,利用抛物线的定义转化求解即可.【解答】解:抛物线24y x =的准线方程为:1x =-,抛物线24y x =上的点A 到焦点的距离为10,可得9A x =,则A 到y 轴的距离是:9. 故选:D .【点评】本题考查抛物线的简单性质的应用,考查计算能力.7.【分析】抛物线2y x =的焦点在x 轴上,且开口向右,21p =,由此可得抛物线2y x =的准线方程. 【解答】解:抛物线2y x =的焦点在x 轴上,且开口向右,21p =,∴124p =, ∴抛物线2y x =的准线方程为14x =-. 故选:B .【点评】本题考查抛物线的标准方程,考查抛物线的几何性质,定型与定位是关键. 8.【分析】直接利用抛物线方程,求解准线方程即可. 【解答】解:抛物线24y x =的准线方程是1x =-, 故选:B .【点评】本题考查抛物线的简单性质的应用,准线方程的求法,是基础题.9.【分析】建立平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>,写出点A 的坐标,并将其代入方程,求得t 的值,再令30y =-,解出x 的值即可. 【解答】解:建立如图所示的平面直角坐标系,设等轴双曲线的方程为22(0)y x t t -=>, 拱顶离水面5m ,水面宽30AB m =,∴点A 为(15,5)-,将其代入22y x t -=得,22(5)(15)t --=, 解得400t =, 22400y x ∴-=,设水面下降5m 后,水面宽为CD ,此时点C 和D 的纵坐标均为30-,把30y =-代入22400y x -=,有2900400x -=,解得x =±44.8CD m ∴=≈.故选:B .【点评】本题考查等轴双曲线的概念,双曲线方程的应用,考查学生将所学知识运用于实际的能力,属于基础题.10.【分析】求出(1,0)到直线的距离,结合圆的半径,判断求解即可. 【解答】解:点(1,0)到直线34120x y -+=3=,因为半径为2的圆经过点(1,0),所以圆心到直线34120x y -+=的距离的最小值为:321-=. 故选:B .【点评】本题考查直线与圆的位置关系的应用,点到直线的距离的应用,是基础题. 11.【分析】利用双曲线方程列出方程,推出a ,b 的关系,即可得到渐近线方程.【解答】解:双曲线22221x y a b -=的焦距等于实轴长的2倍,b =,其渐近线的方程为:y =. 故选:A .【点评】本题考查双曲线的简单性质的应用,渐近线方程的求法,是基础题. 12.【分析】根据条件求出P 的纵坐标,进而求解结论.【解答】解:P 是C 上一点.且||4PF =,413P PD x x ∴==+⇒=代入24y x =得212Py =,PM ∴===故选:C .【点评】本题考查抛物线的性质以及计算能力,属于基础题.13.【分析】由直线l 过定点圆C 的圆心,可知直线与圆相交. 【解答】解:直线:1l y kx =+过点(0,1)P , 而(0,1)P 是圆22:(1)4C x y +-=的圆心,∴直线:1l y kx =+与圆22:(1)4C x y +-=的位置关系是相交.故选:B .【点评】本题考查直线与圆位置关系的应用,是基础题.14.【分析】根据题意得到p 的值,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C ,再利用三角形相似得到BC 和AC 的关系,从而得到BF ,AF ,CF 的关系,求出4AD =,即可得到答案.【解答】解:焦点F 到准线的距离为2p =,过点A 作AD 垂直于准线l 于点D ,过点B 作BE 垂直于l 于点E ,延长AB 交l 于点C , 则BCE ACD ∆∆∽, 所以13BC BE BF AC AD AF ===, 记BC x =,则3AC x =, 因为||3||AF FB =, 所以1142BF AB x ==,332AF BF x ==, 因为32CF BC BF x =+=,F 为AC 的中点, 所以24AD FG ==, 即点A 到y 轴的距离为432p-=. 故选:C .【点评】本题考查了抛物线性质的应用,涉及了抛物线定义的理解和应用,在涉及抛物线上的点到焦点距离的问题时,一般会转化为到准线的距离开解决.15.【分析】由题意利用斜率公式,两直线平行的性质,求得a 的值. 【解答】解:直线:20l x ay ++=,点(1,1)A --和点(2,2)B ,∴直线AB 的斜率为21121+=+, 若//l AB ,则11a-=,求得1a =-, 故选:B .【点评】本题主要考查斜率公式,两直线平行的性质,属于基础题.16.【分析】当弦长||MN =利用弦长公式求得弦心距1d =,故当||23MN ,则1d ,由此求得k 的范围.【解答】解:当弦长||MN =1d = 若||23MN ,则1d ,即圆心(2,0)到直线20kx y -+=的距离1d =,求得4[3k ∈-,0],故选:D .【点评】本题主要考查直线和圆的位置关系,点到直线的距离公式、弦长公式的应用,属于基础题.17.【分析】根据奇函数对称性得出A ,C 关于原点对称,于是||1PB =,从而直线l 与单位圆有交点,根据点到直线的距离公式列出不等式求出k 的范围. 【解答】解:3()f x x =和y mx =都是奇函数,B ∴为原点,且A ,C 两点关于原点对称.∴原点O 为线段AC 的中点, ∴2PA PC PB +=,直线:30()l kx y k R -+=∈上存在点P 满足||2PA PC +=, |||2|2||2PA PC PB PB ∴+===,||1PB ∴=.即P 为单位圆221x y +=上的点.∴直线:3l y kx =+与单位圆有交点, ∴1,解得22k 或22k -.故选:D .【点评】本题考查了函数图象与方程的关系,考查直线与圆的位置关系,属于中档题.18.【分析】在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R ,连接1O Q ,11O F ,1PO ,1PF ,2O R ,利用△1O PF ≅△1O PQ 全等,得到1PF PQ =,当点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和最小时,即当P 为直线VM 与椭圆的交点时,求解即可得到答案.【解答】解:如图所示,在椭圆上任取一点P ,连接VP 交1C 于Q ,交2C 于点R , 连接1O Q ,11O F ,1PO ,1PF ,2O R ,在△1O PF 与△1O PQ 中,111O Q O F r ==,其中1r 为球1O 半径, 1190O QP O FP ∠=∠=︒,1O P 为公共边,所以△11O PF ≅△1O PQ ,所以1PF PQ =, 设P 沿圆锥表面到达M 的路径长为d , 则1PF d PQ d PQ PR QR +=++=,当且仅当P 为直线VM 与椭圆的交点时取等号,21416tan 30tan 30O R O Q QR VR VQ -=-=-===︒︒,故从点P 沿圆锥表面到达点M 的路线长与线段1PF 的长之和的最小值是6. 故选:A .【点评】本题以Dandelin 双球作为几何背景考查了椭圆知识的综合应用,涉及了两条线段距离之和最小的求解,解题的关键是确定当P 为直线VM 与椭圆的交点时取得最值. 二.填空题(共10小题)19.【分析】易知,等边ABC ∆的边长为4a ,不妨取点B 为(2)a ,将其代入双曲线的方程可得a b =,再由e =【解答】解:双曲线M 的实轴为ABC ∆的中位线,∴等边ABC ∆的边长为4a ,假设点B 在第一象限,则点B 的坐标为(2)a ,将其代入双曲线M 的方程有,2222431a a a b-=,∴1ab =,离心率e ==.【点评】本题考查双曲线的几何性质,包含a 、b 、c 的含义与关系,离心率,考查学生的逻辑推理能力和运算求解能力,属于基础题.20.【分析】由题意知,(3,0)F ,①当A ,P ,F 按此顺序三点共线时,||||AP PF +取得最小值;②设双曲线的左焦点为F ',由双曲线的定义可知,||||2PF PF '=+,当A ,P ,F '按此顺序三点共线时,||||AP PF +取得最小值.【解答】解:由题意知,(3,0)F ,①||||||9AP PF AF +=,当且仅当A ,P ,F 按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为9;②设双曲线的左焦点为(3,0)F '-,由双曲线的定义知,||||22PF PF a'-==,所以||||||||2||2211AP PF AP PF AF ''+=+++==,当且仅当A ,P ,F '按此顺序三点共线时,等号成立,所以||||AP PF +的最小值为11. 故答案为:9;11.【点评】本题考查双曲线的定义与几何性质,考查数形结合思想、逻辑推理能力和运算能力,属于基础题. 21.【分析】求出OA 的中点即为圆心,求出||OA 即为圆的半径,得到圆的方程与直线2y x =联立,求出点B 的坐标,即可得到直线AB 的方程.【解答】解:因为O 为坐标原点,点A 的坐标为(4,0), 所以OA 的中点坐标为(2,0),且||4OA =,所以以线段OA 为直径的圆的圆心为(2,0),半径2r =, 所以圆的方程为22(2)4x y -+=,联立方程22(2)42x y y x ⎧-+=⎨=⎩,解得00x y =⎧⎨=⎩或4585x y ⎧=⎪⎪⎨⎪=⎪⎩,因为点B 在第一象限,所以48(,)55B ,又(4,0)A ,所以直线AB 的方程为8050(4)445y x --=--,即240x y +-=. 故答案为:240x y +-=.【点评】本题考查了直线方程的求解,涉及了圆的标准方程的求解、直线与圆交点的求解,属于中档题. 22.【分析】利用抛物线的焦点坐标,求解m 即可;利用抛物线的定义,转化求解A 的坐标. 【解答】解:抛物线2y mx =的焦点为(1,0)F , 可得14m=,解得4m =; 点A 在抛物线24y x =上,且||3AF =,设点A 的横坐标为x ,则13x +=,2x =, 把2x =代入抛物线方程,可得A的纵坐标为:±所以(2,A ±. 故答案为:4;(2,±.【点评】本题考查抛物线的简单性质的应用,抛物线的定义的应用,是基础题.23.【分析】由抛物线的方程可得焦点的坐标及准线方程,由题意设直线l 的方程与抛物线联立求出两根之和,由抛物线的性质可得到焦点的距离等于到准线的距离可得弦长||AB 的值,求出原点到直线的距离,代入面积公式可得面积的值.【解答】解:抛物线24y x =的焦点(1,0)F ,准线方程为1x =- 由题意设直线l 的斜率1y x =-,设1(A x ,1)y ,2(B x ,2)y , 联立214y x y x=-⎧⎨=⎩,整理可得:2610x x -+=,可得126x x +=,所以弦长12||628AB x x p =++=+=, 原点O 到直线l的距离d =,所以11||822AOB S AB d ∆=⋅==故答案为:【点评】本题考查求抛物线的性质及点到直线的距离公式和三角形的面积公式,属于中档题.24.【分析】设双曲线方程为22221(0,0)x y a b a b-=>>,则2a =,3c =,由此能求出C 的方程,再求焦点到其渐近线的距离即可.【解答】解:双曲线C 的两个焦点为(3,0)-,(3,0),一个顶点是0),∴设双曲线方程为22221(0,0)x y a b a b-=>>,且a ,3c =,2963b ∴=-=,C ∴的方程为:22163x y -=.故其渐近线为y =,即0x ±=,C ∴的焦点到其渐近线的距离为:d ==故答案为:22163x y -=【点评】本题考查双曲线的方程的求法,是基础题,解题时要认真审题,注意双曲线性质的合理运用.25.【分析】利用双曲线方程直接求解渐近线方程;求出焦点坐标,然后利用双曲线的定义求解即可得到12||||MF MF -.【解答】解:双曲线2212y x -=的渐近线方程为:y =,双曲线的焦点坐标(,0),M 在双曲线上,所以12||||22MF MF a -=-=-,故答案为:y =;2-.【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线方程的求法,定义的应用,是基础题. 26.【分析】利用离心率求出a ,然后求解双曲线的焦点坐标.【解答】解:双曲线2221(0)9x y a a -=>的离心率是54,54=,解得4a =,则5c =, 所以双曲线的右焦点坐标为(5,0). 故答案为:(5,0).【点评】本题考查双曲线的简单性质的应用,焦点坐标的求法,是基础题.27.【分析】当0m =时,12F AF ∠最大,求出△12AF F 为等腰直角三角形即可判断①;求出1ABF ∆为等腰直角三角形时,m 的值,即可判断②;利用椭圆定义可得1ABF 的周长最大值,结合m 的取值范围即可判断③.【解答】解:由方程知4a =,b =c ,当0m =时,12F AF ∠最大,此时122145AF F AF F ∠=∠=︒,所以12F AF ∠的最大值为90︒, 又12AF AF =,所以△12AF F 为等腰直角三角形,即存在唯一一个0m =,使得△12AF F 为等腰直角三角形,故①正确;当0m =时,1245AF F ∠=︒,由椭圆的对称性可得121245BF F AF F ∠=∠=︒,11AF BF =, 所以190AF B ∠=︒,此时1ABF ∆为等腰直角三角形,当0m ≠时,若1ABF ∆为等腰直角三角形,则4m -<<-,此时点A 的坐标为(,m m --,代椭圆方程,解得(4,m =--,故当0m =或1ABF ∆为等腰直角三角形,故②错误; 由椭圆的定义得,1ABF ∆的周长11||||||AB AF BF =++ 2222||(2||)(2|)4||||||AB a AF a BEF a AB AF BF =+-+-=+--,因为22||||||AF BF AB +,所以22||||||0AB AF BF --,当AB 过点2F 时取等号,所以1122||||||4||||||4AB AF BF a AB AF BF a ++=+--,即直线x m =过椭圆的右焦点2F 时,1ABF ∆的周长最大,此时直线AB 的方程为x m c ===44m -<<, 所以存在m ,使1ABF ∆的周长最大,故③正确. 故答案为:①③.【点评】本题主要考查椭圆的性质,考查数形结合的解题思想,考查分析问题与求解问题的能力,是中档题.28.【分析】由题意可得12b a =,即224a b =,结合222a b c +=,可得2254c a =,开方可得c e a=的值.【解答】解:由题意可得双曲线的渐近线方程为by x a =±,故可得12b a =,即224a b =,又222a bc +=,故2224a a c +=,2254c a =,解得c e a ==【点评】本题考查双曲线的简单性质,涉及离心率的求解,属中档题. 三.解答题(共9小题) 29.【分析】(Ⅰ,且经过点,列方程组,解得a ,b ,c ,进而可得答案. (Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y ,联立直线AB 与椭圆的方程,得224()4x kx m ++=,由△0>,得2241k m +>,结合韦达定理可得12x x +,12x x ,由0OA AB ⋅=,推出OA AB ⊥,进而设直线OA 的方程为1y x k=-,联立直线AB 的方程得1y ,1x ,代入椭圆的方程可得22224(1)4k m k +=+,再计算222222144(1)||(41)(4)k k AB k k +=++,2224(1)||4k OA k +=+,进而可得22222||369||(41)4AB k OA k ==+,解得214k =,进而可得OAB ∆的面积213||||||24S OA AB OA ==,即可得出答案. 【解答】解:(Ⅰ)由题意可得222221314c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得2a =,1b =,c =,∴椭圆方程为2214x y +=.(Ⅰ)设直线AB 的方程为y kx m =+,1(A x ,1)y ,2(B x ,2)y , 联立y kx m =+与2244x y +=,得224()4x kx m ++=, 222(41)8440k x kmx m ∴+++-=,∴△22222(8)4(41)(44)16(41)0km k m k m =-+-=+->,即2241k m +>,则122841kmx x k -+=+,21224441m x x k -=+,因为0OA AB ⋅=,所以OA AB ⊥,设直线OA 的方程为1y x k =-,联立直线AB 的方程得121m y k =+,1121kmx ky k -=-=+, 代入221144x y +=,所以222()4()411km m k k -+=++,化简得22224(1)4k m k +=+,所以2222222222224(1)(41)(4)4(1)94141444k k k k k k m k k k k +++-++-=+-==+++,所以||AB =, 所以2222222222216(1)(41)144(1)||(41)(41)(4)k k m k k AB k k k ++-+==+++, 所以2222222112224(1)||()(1)()114m m k OA ky y k k k k +=-+=+==+++, 所以22222||369||(41)4AB k OA k ==+, 得22216(41)k k =+,解得214k =, 此时222224(1)2541417k m k k +==<++,满足△0>, 由22214(1)4(1)204||141744k OA k ++===++, 所以OAB ∆的面积2113315||||||||||222417S OA AB OA OA OA ==⨯==. 【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 30.【分析】(Ⅰ)根据题意列方程组,得a ,b ,进而可得椭圆的方程.(Ⅰ)分两种情况①若直线l 的斜率不存在时,②若直线l 的斜率存在时,直线AM ,BN 的交于点Q ,是否早定直线4x =上.【解答】解:(Ⅰ)因为||4AB =,椭圆C 离心率为12, 所以22224,1,2.a c a abc =⎧⎪⎪=⎨⎪=+⎪⎩解得24a =,23b =.所以椭圆C 的方程是22143x y +=.(Ⅰ)①若直线l 的斜率不存在时,如图,因为椭圆C 的右焦点为(1,0),所以直线l 的方程是1x =.所以点M 的坐标是3(1,)2,点N 的坐标是3(1,)2-.所以直线AM 的方程是1(2)2y x =+,直线BN 的方程是3(2)2y x =-.所以直线AM ,BN 的交点Q 的坐标是(4,3).所以点(4,3)在直线4x =上.②若直线l 的斜率存在时,如图.设斜率为k . 所以直线l 的方程为(1)y k x =-.联立方程组22(1),1,43y k x x y =-⎧⎪⎨+=⎪⎩消去y ,整理得2222(34)84120k x k x k +-+-=, 显然△0>.不妨设1(M x ,1)y ,2(N x ,2)y ,所以2122834k x x k +=+,212241234k x x k-⋅=+. 所以直线AM 的方程是11(2)2y y x x =++.令4x =,得1162y y x =+.直线BN 的方程是22(2)2y y x x =--.令4x =,得2222y y x =-. 所以12121212121212626(1)2(1)6(1)(2)2(2)(1)2222(2)(2)y y k x k x k x x k x x x x x x x x -----+--=-=+-+-+- 1212122112126(1)(2)2(2)(1)2[3(22)(22)]k x x k x x k x x x x x x x x ---+-=--+--+- 12122[25()8]k x x x x =-++22222(412)582[8]3434k k k k k -⨯=-+++22228244024322()034k k k k k --++==+.所以点Q 在直线4x =上.【点评】本题考查椭圆的方程,直线与椭圆的相交问题,解题中需要一定的计算能力,属于中档题. 31.【分析】(Ⅰ)根据题意可得所以1b =,22311a b +=,解得2a =,进而可得椭圆的方程. (Ⅰ)联立直线l 与椭圆的方程可得关于x 的一元二次方程,设1(A x ,1)y ,2(B x ,2)y ,由韦达定理得12x x +,12x x ,由点到直线的距离公式可得原点O 到直线l的距离d ==,解得2254(1)m k =+,计算1212OA OB x x y y ⋅=+为0,即可得出结论.【解答】解:(Ⅰ)因为椭圆经过点(0,1),所以1b =,又因为椭圆经过点1)2,所以23114a +=,解得2a =,所以椭圆的方程为2214x y +=,(Ⅰ)证明:由2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得222(14)8440k x kmx m +++-=, 由题意,△22222(8)4(14)(44)1616640km k m k m =-+-=-++>,即22140k m +->, 设1(A x ,1)y ,2(B x ,2)y ,所以122841kmx x k +=-+,21224441m x x k -=+,因为原点O 到直线l,所以d ==即2254(1)m k =+,因为12121212()()OA OB x x y y x x kx m kx m ⋅=+=+++22222121222448(1)()(1)4141m kmk x x km x x m k km m k k -=++++=+-+++222544041m k k --==+,所以OA OB ⊥.因此以AB 为直径的圆过原点O .【点评】本题考查椭圆的方程,直线与椭圆的相交问题,定点问题,解题中需要一定的计算能力,属于中档题. 32.【分析】(Ⅰ)把点A ,B 的坐标代入椭圆方程,求出a ,b 的值,即可得到椭圆W 的方程;(Ⅰ)先求出m 的值,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,与椭圆方程联立,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理得到22121222121212,1313k k x x x x k k -+=-=++,再求出点P ,Q 的纵坐标,得到||||PM MQ 的表达式,把上式代入化简,即可得到||||PM MQ 为定值1. 【解答】解:(Ⅰ)由椭圆2222:1(0)x y W a b a b +=>>过(0,2)A ,(3,1)B --两点,得2b =,29114a +=,所以212a =.所以椭圆W 的方程为221124x y +=.(Ⅰ)(0,2)A ,(3,1)B --,∴直线AB 的方程为:2y x =+,令0y =得:2m =-,设直线l 的方程为(2)(0y k x k =+≠,1)k ≠,由22(2),1124y k x x y =+⎧⎪⎨+=⎪⎩得2222(13)1212120k x k x k +++-=,且△0>,设1(C x ,1)y ,2(D x ,2)y ,则22121222121212,1313k k x x x x k k -+=-=++, 记直线AC 的方程为1122y y x x --=,令2x =-,得P 点的纵坐标11(22)(2)P k x y x -+=,记直线BD 的方程为2211(3)3y y x x ++=++, 令2x =-,得Q 点的纵坐标22(1)(2)3Q k x y x -+=+,112122122212212121212112221221(22)(2)2(3)(2)||||||||(1)(2)||(2)31212122412224()1221313||||1212221312122(13)|| 1.12122(13)PQ k x y x x x PM k x MQ y x x x k k x x x x x x k k k x x x x k k k x k k x -+++===-+++--⨯+⨯++++++++==-+++-++==-++ 所以||||PM MQ 为定值1. 【点评】本题主要考查了椭圆的标准方程,考查了直线与椭圆的定义,考查了学生的计算能力,是中档题. 33.【分析】(Ⅰ)利用已知条件求出b ,结合离心率求解a ,即可得到椭圆方程.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,求出M ,N 的坐标,然后求解AM AN k k +.的表达式,推出结果即可.【解答】解:(Ⅰ)由已知1b =,c e a = 又222a b c =+,解得2a =,1b =.所以椭圆C 的方程为2214x y +=.(Ⅰ)依题意设直线l 的方程为(4)y k x =+,设1(M x ,1)y ,2(N x ,2)y .联立221,4(4),x y y k x ⎧+=⎪⎨⎪=+⎩消去y ,得2222(41)326440k x k x k +++-=,则△216(112)0k =->,解得k <.(*) 则21223241k x x k -+=+,212264441k x x k -=+.若11x =-,则1y =,k =(*)式矛盾,所以11x ≠-. 同理21x ≠-.所以直线AM 和AN 的斜率存在,分别设为AM k 和AN k . 因为121211AM AN y yk k x x +=+++ 121212(4)(4)3321111k x k x k kk x x x x ++=+=++++++ 12121212123(2)3(2)22(1)(1)1k x x k x x k k x x x x x x ++++=+=++++++ 222222323(2)1426443211414k k k k k k k k -++=+--++++ 223(242)20363k k k k -+=+=-, 所以AM AN k k =-. 所以BAM OAN ∠=∠.【点评】本题考查椭圆的简单性质,以及椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是中档题.34.【分析】(Ⅰ)由题意及a ,b ,c 之间的关系求出a ,b 的值,进而求出椭圆的方程;(Ⅰ)由题意开始直线l 的方程,与椭圆联立,由判别式为0求出参数之间的关系,设G ,E 的坐标,由题意可得G ,E 用直线的参数表示的坐标,进而求出||||TA TB 与||||GA GB 的表示,可证得||||||||TA GA TB GB =.【解答】解:(Ⅰ)由题意可得222212a c e a a b c=⎧⎪⎪==⎨⎪=+⎪⎩,解得:24a =,23b =,所以椭圆的方程为:22143x y +=;(Ⅰ)由题意可得直线l 的斜率存在且不为0,设直线l 的方程为:(0)y kx m m =+≠,22143y kx m x y =+⎧⎪⎨+=⎪⎩,整理可得:222(34)84120k x kmx m +++-=, 由题意可得△0=,即22226416(34)(3)0k m k m -+-=,解得:2234m k =+ 设1(G x ,0),0(E x ,0)y 则1m x k =-,024434km kx k m-==-+, 因为ET x ⊥轴,所以4(kT m-,0), 4|2||||42||2|4|||24||2||2()|k TA k m m k m k TB m k m k m -+-+-===++--, 又因为|2||||2||||2||2|m GA m k k m GB m k k-+-==++, 所以可证:||||||||TA GA TB GB =. 【点评】本题考查求椭圆的方程及直线与椭圆相切的性质,及证明的方法,属于中档题. 35.【分析】(Ⅰ)由已知点,椭圆的离心率以及a ,b ,c 的关系式即可求解;(Ⅰ)根据已知条件推出OD 与BC 平行,设出点D 的坐标,利用平行关系以及点D 在椭圆上联立方程即可求解. 【解答】解:(Ⅰ)由已知可得:22222431c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得4a =,2b =,c =故椭圆的方程为:221164x y +=,且长轴长为28a =;(Ⅰ)因为点D 在x 轴下方,所以点Q 在线段AB (不包括端点)上, 由(Ⅰ)可知(4,0)A -,(4,0)B ,所以AOC ∆的面积为142⨯=因为ACQ ∆的面积比BDQ ∆的面积大所以点Q 在线段OB (不包括端点)上,且OCQ ∆的面积等于BDQ ∆的面积, 所以OCB ∆的面积等于BCD ∆的面积, 所以//OD BC , 设(,)D m n ,0n <,则n m ==, 因为点D 在椭圆W 上,所以221164m n +=,解得2m =,n = 所以点D的坐标为(2,.【点评】本题考查了椭圆的方程以及直线与椭圆的位置关系的应用,涉及到三角形面积问题,考查了学生的运算能力,属于中档题. 36.【分析】()I利用离心率为3,且过(0,1)点,列出方程组求解a ,b ,得到椭圆方程. ()II 设直线l 的方程为:1(0)3y x m m =+≠,由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=,通过△0>,推出m 的范围,设1(C x ,1)y ,2(D x ,2)y ,利用韦达定理,求直线OM 的方程,与椭圆联立,求解E 、F ,利用弦长公式,计算证明即可.【解答】()I解:根据题意:2222311c a a b a c b b c ⎧=⎪⎧=⎪⎪⎪=-⇒=⋯⋯⋯⋯⋯⋯⋯⋯⋯⎨⎨⎪⎪==⎩⎪⎪⎩(4分)所以椭圆G 的方程为2219x y +=.⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)()II 证明:设直线l 的方程为:1(0)3y x m m =+≠⋯⋯⋯⋯⋯⋯⋯⋯⋯(6分)由221913x y y x m⎧+=⎪⎪⎨⎪=+⎪⎩消去y 得:2219()903x x m ++-=⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)即2226990x mx m ++-=,需△22368(99)0m m =-->即202m <<⋯⋯⋯⋯⋯⋯⋯⋯⋯(8分) 设1(C x ,1)y ,2(D x ,2)y ,CD 中点0(M x ,0)y ,则123x x m +=-,2129(1)2x x m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(9分)12000311,2232x x x m y x m m +==-=+=⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分) 那么直线OM 的方程为:00y y x x =即13y x =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(11分)由22191232x x y y x y ⎧⎧=+=⎪⎪⎪⎪⇒⎨⎨⎪⎪=-=⎪⎪⎩⎩, 不妨令(E F ⋯⋯⋯⋯⋯⋯⋯⋯⋯(12分) 那么221212111||||||(1)[()4]449MC MD CD x x x x ⋅==++-2259[(3)4(1)]182m m =--⋅-25(2)2m =-⋯⋯⋯⋯⋯⋯⋯⋯⋯(13分)||||ME MF ⋅=25(2)2m -⋯⋯⋯⋯⋯⋯⋯⋯⋯(14分)所以||||||||MC MD ME MF ⋅=⋅.【点评】本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力,是难题. 37.【分析】(Ⅰ)依题意长轴长为4,且离心率为12.求出a ,c ,然后求解b ,得到椭圆方程. ()II 直线:(1)l y k x =-,代入椭圆方程,利用韦达定理以及弦长公式求出||AB ,求出AB 中点坐标,通过(1)当0k =时,所以||4||AB DF =.(2)当0k ≠时,线段AB 的垂直平分线方程求出D ,得到||DF ,然后转化求解即可、【解答】解:(Ⅰ)依题意24a =,2a =,离心率为12,1c =,则23b =,(4分) 故椭圆C 的方程为22143x y +=.(5分) ||()||AB II DF 是定值.(6分) 理由如下:由已知得直线:(1)l y k x =-,(7分)代入椭圆方程22143x y +=,消去y 得2222(43)84120k x k x k +-+-=,(8分) 所以△22222(8)4(43)(412)1441440k k k k =--+-=+>,(9分)设1(A x ,1)y ,2(B x ,2)y 则2122843k x x k +=+,212241243k x x k -=+,(10分)所以2222221211212||()()(1)[()4]AB x x y y k x x x x =-+-=++-。
2023-2024学年北京市东城区高三(上)期末数学试卷【答案版】
2023-2024学年北京市东城区高三(上)期末数学试卷一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知全集U ={x |0<x <4},集合A ={x |0<x <2},则∁U A =( ) A .{x |2<x <4}B .{x |2<x ≤4}C .{x |2≤x <4}D .{x |2≤x ≤4}2.设复数z 满足(1+i )z =i ,则z 的共轭复数z =( ) A .12+12iB .12−12iC .−12+12iD .−12−12i3.(x +1x)5的展开式中,x 的系数为( )A .1B .5C .10D .204.设等比数列{a n }的各项均为正数,S n 为其前n 项和,若a 1=2,a 2a 3a 4=a 9,则S 3=( ) A .6B .8C .12D .145.已知非零向量a →,b →满足|a →|=|b →|,且a →•b →=0,对任意实数λ,μ,下列结论正确的是( ) A .(λa →−μb →)•(λa →−μb →)=0 B .(λa →−μb →)•(μa →+λb →)=0 C .(λa →−μb →)•(λa →+μb →)=0D .(λa →+μb →)•(μa →+λb →)=06.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,AB =2,E ,F 分别是DD 1,BB 1的中点.用过点F 且平行于平面ABE 的平面去截正方体,得到的截面图形的面积为( )A .2√5B .√6C .√5D .√527.已知a >0,b >0,则“a 12>b 12”是“12a<12b”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.一粒子在平面上运动的轨迹为抛物线的一部分,在该平面上建立直角坐标系后,该粒子的运动轨迹如图所示.在t =0时刻,粒子从点A (0,1)出发,沿着轨迹曲线运动到B (1,﹣1),再沿着轨迹曲线途经A 点运动到C (﹣1,﹣1),之后便沿着轨迹曲线在B ,C 两点之间循环往复运动.设该粒子在t 时刻的位置对应点P (x ,y ),则坐标x ,y 随时间t (t ≥0)变化的图象可能是( )A .B .C .D .9.已知线段AB 的长度为10,M 是线段AB 上的动点(不与端点重合).点N 在圆心为M ,半径为MA 的圆上,且B ,M ,N 不共线,则△BMN 的面积的最大值为( ) A .252B .254C .25√32D .25√3410.设函数f(x)=cosx +√cos2x ,对于下列四个判断: ①函数f (x )的一个周期为π; ②函数f (x )的值域是[−√22,2];③函数f (x )的图象上存在点P (x ,y ),使得其到点(1,0)的距离为√22;④当x ∈[−π4,π4]时,函数f (x )的图象与直线y =2有且仅有一个公共点.正确的判断是( ) A .①B .②C .③D .④二、填空题共5小题,每小题5分,共25分。
北京市2020-2021学年高一数学上学期期末考试试题(含解析)
北京市东城区2020-2021学年高一数学上学期期末考试试题(含解析)一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x33.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.6.(5分)下列各式正确的是()A.B.C.D.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是.12.(5分)sin的值为.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为.(写出符合条件的一个函数即可)14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有.(注:请写出所有正确结论的序号)四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).2020-2021学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、单项选择题:共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)设集合M={0},N={﹣1,0,1},那么下列结论正确的是()A.M=∅B.M∈N C.M⫋N D.N⫋M【分析】利用集合与集合的关系直接求解.【解答】解:∵集合M={0},N={﹣1,0,1},∴M⫋N.故选:C.【点评】本题考查集合的关系的判断,考查交集、并集、子集定义等基础知识,考查运算求解能力,是基础题.2.(5分)下列函数为偶函数的是()A.y=|x| B.y=lnx C.y=e x D.y=x3【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=|x|,是偶函数,符合题意;对于B,y=lnx,是对数函数,不是偶函数,不符合题意;对于C,y=e x,是指数函数,不是偶函数,不符合题意;对于D,y=x3,是幂函数,不是偶函数,不符合题意;故选:A.【点评】本题考查函数的奇偶性的判断,关键是掌握常见函数的奇偶性,属于基础题.3.(5分)已知函数y=sin x在区间M上单调递增,那么区间M可以是()A.(0,2π)B.(0,π)C.D.【分析】直接利用函数的单调性和子区间之间的关系求出结果.【解答】解:根据函数y=sin x的单调递增区间:[](k∈Z),当k=0时,单调增区间为[],由于为[]的子区间,故选:D.【点评】本题考查的知识要点:函数的单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.4.(5分)命题”∀x∈A,2x∈B”的否定为()A.∃x∈A,2x∉B B.∃x∉A,2x∈B C.∀x∈A,2x∉B D.∀x∉A,2x∈B 【分析】根据含有量词的命题的否定即可得到结论.【解答】解:命题为全称命题,则命题”∀x∈A,2x∈B”的否定为∃x∈A,2x∉B,故选:A.【点评】本题主要考查含有量词的命题的否定,比较基础.5.(5分)若a>b,则下列不等式一定成立的是()A.a2>b2B.2a>2b C.a D.【分析】直接利用不等式的应用和函数的单调性的应用求出结果.【解答】解:由于a>b,且a和b的正负号不确定,所以选项ACD都不正确.对于选项:B由于函数y=2x为单调递增函数,且a>b,故正确故选:B.【点评】本题考查的知识要点:函数的单调性的应用,不等式的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.6.(5分)下列各式正确的是()A.B.C.D.【分析】利用正弦函数、余弦函数、正切函数的单调性和诱导公式直接求解.【解答】解:在A中,sin>0>sin=﹣sin,故A错误;在B中,<cos,故B正确;在C中,>,故C错误;在D中,>cos=sin,故D错误.故选:B.【点评】本题考查命题真假的判断,考查正弦函数、余弦函数、正切函数的单调性和诱导公式等基础知识,考查运算求解能力,是基础题.7.(5分)“a,b为正实数”是“a+b>2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】可以取特殊值讨论充要性.【解答】解:若a,b为正实数,取a=1,b=1,则a+b=2,则“a,b为正实数”是“a+b>2”的不充分条件;若a+b>2,取a=1,b=0,则b不是正实数,则“a+b>2”是“a,b为正实数''的不必要条件;则“a,b为正实数”是“a+b>2”的既不充分也不必要条件,故选:D.【点评】本题考查命题充要性,以及不等式,属于基础题.8.(5分)大西洋鲑鱼每年都要逆流而上3000英里游回它们出生的地方产卵繁殖.研究鲑鱼的科学家发现鲑鱼的游速v(单位:m/s)可以表示为v=,其中O表示鲑鱼的耗氧量的单位数.则该鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为()A.8100 B.900 C.81 D.9【分析】由题意令V=2m/s,0m/s,则可求出耗氧量,求出之比.【解答】解:鲑鱼游速为2m/s时的耗氧量为:令v=2=,即,即,即o=8100,鲑鱼静止时耗氧量为:令v=0=,即,即o'=100,故鲑鱼游速为2m/s时的耗氧量与静止时耗氧量的比值为,故选:C.【点评】本题考查对数求值,属于中档题.二、多项选择题:本大题共2小题,每小题5分,共10分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得2分,有选错的得0分.9.(5分)关于函数f(x)=1+cos x,x∈(,2π)的图象与直线y=t(t为常数)的交点情况,下列说法正确的是()A.当t<0或t≥2时,有0个交点B.当t=0或时,有1个交点C.当时,有2个交点D.当0<t<2时,有2个交点【分析】直接利用函数的图象和函数的性质及参数的范围求出函数的交点的情况,进一步确定结果.【解答】解:根据函数的解析式画出函数的图象:①对于选项A:当t<0或t≥2时,有0个交点,故正确.②对于选项B:当t=0或时,有1个交点,故正确.③对于选项C:当t=时,只有一个交点,故错误.④对于选项D:当,只有一个交点,故错误.故选:AB.【点评】本题考查的知识要点:函数的图象的应用,利用函数的图象求参数的取值范围,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.10.(5分)已知函数f(x)=4|x|+x2+a,下列命题正确的有()A.对于任意实数a,f(x)为偶函数B.对于任意实数a,f(x)>0C.存在实数a,f(x)在(﹣∞,﹣1)上单调递减D.存在实数a,使得关于x的不等式f(x)≥5的解集为(﹣∞,﹣1]∪[1,+∞)【分析】直接利用函数的对称性和函数的单调性的应用求出结果.【解答】解:函数f(x)=4|x|+x2+a,①对于选项A:由于x∈R,且f(﹣x)=f(x),故函数f(x)为偶函数.故选项A正确.②对于选项B:由于x2≥0,所以,故4|x|+x2≥1所以当x=0时a=﹣2时,f(x)<0,故选项B错误.③对于选项C:由于函数f(x)的图象关于y轴对称,在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故f(x)在(﹣∞,﹣1)上单调递减,故选项C正确.④对于选项D:由于函数的图象关于y轴对称,且在x>0时,函数为单调递增函数,在x<0时,函数为单调递减函数,故存在实数a=0时,当x∈(﹣∞,﹣1]∪[1,+∞)时,不等式成立,故选项D正确.故选:ACD.【点评】本题考查的知识要点:函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.三、填空题:共6小题,每小题5分,共30分.11.(5分)函数f(x)=ln(1﹣x2)的定义域是(﹣1,1).【分析】解不等式1﹣x2>0即可.【解答】解:令1﹣x2>0,解得﹣1<x<1,即函数的定义域为(﹣1,1).故答案为:(﹣1,1).【点评】本题考查函数定义域的求法及不等式的求解,属于基础题.12.(5分)sin的值为﹣.【分析】原式中的角度变形后,利用诱导公式化简,计算即可得到结果.【解答】解:sin=sin(2π﹣)=﹣sin=﹣.故答案为:﹣【点评】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.13.(5分)函数f(x)的值域为(0,+∞),且在定义域内单调递减,则符合要求的函数f (x)可以为f(x)=.(写出符合条件的一个函数即可)【分析】由函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,即是符合要求的一个函数.【解答】解:∵函数f(x)=()x的值域为(0,+∞),且在定义域R内单调递减,∴函数f(x)=()x即是符合要求的一个函数,故答案为:f(x)=()x.【点评】本题主要考查了指数函数的单调性和值域,是基础题.14.(5分)在国庆70周年庆典活动中,东城区教育系统近2000名师生参与了国庆中心区合唱、27方阵群众游行、联欢晚会及7万只气球保障等多项重点任务.设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.请用上述集合之间的运算来表示:①既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B;②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.【分析】①利用交集定义直接求解.②利用并集定义直接求解.【解答】解:①设A={x|x是参与国庆中心区合唱的学校},B={x|x是参与27方阵群众游行的学校},C={x|x是参与国庆联欢晚会的学校}.既参与国庆中心区合唱又参与27方阵群众游行的学校的集合为A∩B.故答案为:A∩B.②至少参与国庆中心区合唱与国庆联欢晚会中一项的学校的集合为A∪C.故答案为:A∪C.【点评】本题考查并集、交集的求法,考查并集、交集定义等基础知识,考查运算求解能力,是基础题.15.(5分)已知函数f(x)=则f(﹣2)=;若f(t)=1,则实数t=0或1 .【分析】结合已知函数解析式,把x=﹣2代入即可求解f(﹣2),结合已知函数解析式及f(t)=1,对t进行分类讨论分别求解.【解答】解:f(x)=则f(﹣2)=2﹣2=,∵f(t)=1,①当t≥1时,可得=1,即t=1,②当t<1时,可得2t=1,即t=0,综上可得t=0或t=1.故答案为:;0或1【点评】本题考查了求分段函数的函数值的问题,解题时应对自变量进行分析,是基础题.16.(5分)某池塘中原有一块浮草,浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t﹣1(a>0且a≠1),它的图象如图所示,给出以下命题:①池塘中原有浮草的面积是0.5平方米;②第8个月浮草的面积超过60平方米;③浮草每月增加的面积都相等;④若浮草面积达到10平方米,20平方米,30平方米所经过的时间分别为t1,t2,t3,则2t2>t1+t3.其中正确命题的序号有①②④.(注:请写出所有正确结论的序号)【分析】直接利用函数的图象求出函数的解析式,进一步利用函数的额关系式再利用函数的性质的应用求出结果.【解答】解:浮草蔓延后的面积y(平方米)与时间t(月)之间的函数关系式是y=a t ﹣1(a>0且a≠1),函数的图象经过(2,2)所以2=a2﹣1,解得a=2.①当x=0时y=,故选项A正确.②当第8个月时,y=28﹣1=27=128>60,故②正确.③当t=1时,y=1,增加0.5,当t=2时,y=2,增加1,故每月的增加不相等,故③错误.④根据函数的解析式,解得t1=log210+1,同理t2=log220+1,t3=log230+1,所以2t2=2log220+2=log2400+2>t1+t2=log2300+2,所以则2t2>t1+t3.故④正确.故答案为:①②④.【点评】本题考查的知识要点:函数的性质的应用,定义性函数的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.四、解答题:共5小题,共70分.解答应写出文字说明,演算步骤或证明过程.17.(12分)已知集合A={x|x2+3x+2<0},全集U=R.(1)求∁U A;(2)设B={x|m﹣1≤x≤m},若B⊆∁U A,求m的取值范围.【分析】(1)根据题意,求出集合A,进而由补集的性质分析可得答案;(2)根据题意,结合集合间的关系分析可得答案.【解答】解:(1)根据题意,因为A={x|x2+3x+2<0}={x|﹣2<x<﹣1}.因为全集U=R,所以∁U A={x|x≤﹣2或x≥﹣1},(2)根据题意,∁U A={x|x≤﹣2或x≥﹣1},若B⊆∁U A,当m﹣1≥﹣1或m≤﹣2,即m≥0或m≤﹣2,所以m的取值范围为(﹣∞,﹣2]∪[0,+∞).【点评】本题考查集合的补集运算,涉及集合的子集关系,属于基础题.18.(13分)已知函数,f(0)=.(1)求f(x)的解析式和最小正周期;(2)求f(x)在区间[0,2π]上的最大值和最小值.【分析】(1)利用函数值,转化求解函数的解析式,推出函数的周期;(2)利用函数的自变量的范围,求出相位的范围,然后求解正弦函数的最值.【解答】解:(1)因为,所以.又因为φ∈,所以φ=.所以.所以f(x)最的小正周期.(2)因为x∈[0,2π],所以.当,即时,f(x)有最大值2,当,即x=2π时,f(x)有最小值.【点评】本题考查函数的周期以及函数的最值的求法,考查转化思想以及计算能力,是中档题.19.(14分)在平面直角坐标系xOy中,角α,β的顶点与坐标原点O重合,始边为x轴的非负半轴,终边分别与单位圆交于A,B两点,A,B两点的纵坐标分别为.(1)求tanβ的值;(2)求的值.【分析】(1)由题意利用任意角的三角函数的定义,同角三角函数的基本关系,求得tanβ的值.(2)由题意利用诱导公式、同角三角函数的基本关系,求得要求式子的值.【解答】解:(1)因为β的终边与单位圆交于点B,B点的纵坐标为,所以.因为,所以.所以.(2)因为α的终边与单位圆交于点A,A点的纵坐标为,所以.因为,所以,故===.【点评】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系、诱导公式,属于基础题.20.(16分)已知函数f(x)=.(1)判断f(x)的奇偶性并证明;(2)判断f(x)的单调性并说明理由;(3)若f(ax﹣1)+f(2﹣x)>0对任意a∈(﹣∞,2]恒成立,求x的取值范围.【分析】(1)定义域为R,然后求出f(﹣x),得f(﹣x)=﹣f(x),所以为奇函数;(2)直接由指数函数的单调性可判断函数f(x)的单调性;(3)不等式变形,由奇函数的性质得出ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立,令关于a的函数g(a)=xa+1﹣x>0在(﹣∞,2]上恒成立,g(a)一定单调递减,所以满足则只需解出x的范围.【解答】解:(1)f(x)为奇函数.因为f(x)定义域为R,,所以f(﹣x)=﹣f(x).所以f(x)为奇函数;(2)在(﹣∞,+∞)是增函数.因为y=3x在(﹣∞,+∞)是增函数,且y=3﹣x在(﹣∞,+∞)是减函数,所以在(﹣∞,+∞)是增函数,(3)由(1)(2)知f(x)为奇函数且f(x)(﹣∞,+∞)是增函数.又因为f(ax﹣1)+f(2﹣x)>0,所以f(ax﹣1)>﹣f(2﹣x)=f(x﹣2).所以ax﹣1>x﹣2对任意a∈(﹣∞,2]恒成立.令g(a)=xa+(1﹣x),a∈(﹣∞,2].则只需,解得所以﹣1<x≤0.所以x的取值范围为(﹣1,0].【点评】考查函数的奇函数的判断即函数的单调性,使用中档题.21.(15分)对于集合A,定义函数f A(x)=对于两个集合A,B,定义运算A*B={x|f A(x)•f B(x)=﹣1}.(1)若A={1,2,3},B={2,3,4,5},写出f A(1)与f B(1)的值,并求出A*B;(2)证明:f A*B(x)=f A(x)•f B(x);(3)证明:*运算具有交换律和结合律,即A*B=B*A,(A*B)*C=A*(B*C).【分析】(1)由新定义的元素即可求出f A(1)与f B(1)的值,再分情况求出A*B;(2)对x是否属于集合A,B分情况讨论,即可证明出f A*B(x)=f A(x)•f B(x);(3)利用(2)的结论即可证明出*运算具有交换律和结合律.【解答】解:(1)∵A={1,2,3},B={2,3,4,5},∴f A(1)=﹣1,f B(1)=1,∴A*B={1,4,5};(2)①当x∈A且x∈B时,f A(x)=f B(x)=﹣1,所以x∉A*B.所以f A*B(x)=1,所以f A*B(x)=f A(x)•f B(x),②当x∈A且x∉B时,f A(x)=﹣1,f B(x)=1,所以x∈A*B.所以f A*B(x)=﹣1,所以f A*B(x)=f A(x)•f B(x),③当x∉A且x∈B时,f A(x)=1,f B(x)=﹣1.所以x∈A*B.所以f A*B(x)=﹣1.所以f A*B(x)=f A(x)•f B(x).④当x∉A且x∉B时,f A(x)=f B(x)=1.所以x∉A*B.所以f A*B(x)=1.所以f A*B(x)=f A(x)•f B(x).综上,f A*B(x)=f A(x)•f B(x);(3)因为A*B={x|f A(x)•f B(x)=﹣1},B*A={x|f B(x)•f A(x)=﹣1}={x|f A(x)•f B(x)=﹣1},所以A*B=B*A.因为(A*B)*C={x|f A*B(x)•f C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},A*(B*C)={x|f A(x)•f B*C(x)=﹣1}={x|f A(x)•f B(x)•f C(x)=﹣1},所以(A*B)*C=A*(B*C).【点评】本题主要考查了集合的基本运算,考查了新定义问题,是中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年北京市东城区高一(上)期末数学试卷一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(4分)已知集合{1A =-,0,1},集合2{|1}B x N x =∈=,那么(A B = )A .{1}B .{0,1}C .{1-,1}D .{1-,0,1}2.(4分)已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52-B .32-C .32D .523.(4分)若扇形的半径为1,周长为π,则该扇形的圆心角为( ) A .πB .1π-C .2π-D .12π-4.(4分)下列命题为真命题的是( ) A .若a b >,则22a b > B .若0a b >>,则22ac bc > C .若a b <,0c >,则ac bc >D .若0a b <<,0c >,则c ca b> 5.(4分)已知tan 1α=-,则222sin 3cos (αα-= ) A .74-B .12-C .12D .346.(4分)若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()f a f <(a ) B .1()()f a f a<C .f (a )(2)f a <D .2()(1)f a f a <-7.(4分)已知2log 3a =,4log 5b =,8log 7c =,则( ) A .a b c <<B .c a b <<C .c b a <<D .b c a <<8.(4分)“απβ=+,Z ∈”是“tan tan αβ=”成立的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件9.(4分)如图所示,单位圆上一定点A 与坐标原点重合.若单位圆从原点出发沿x 轴正向滚动一周,则A 点形成的轨迹为( )A .B .C .D .10.(4分)已知函数()af x x x=+,给出下列结论: ①a R ∀∈,()f x 是奇函数;②a R ∃∈,()f x 不是奇函数;③a R ∀∈,方程()f x x =-有实根;④a R ∃∈,方程()f x x =-有实根. 其中,所有正确结论的序号是( ) A .①③B .①④C .①②④D .②③④二、填空题:共5小题,每小题4分,共20分。
11.(4分)函数2()xf x -=的定义域为. 12.(4分)已知函数()f x 是指数函数,若(1)4(3)f f =,则(2)f - (3)f -.(用“>”“ <”“ =”填空)13.(4分)在平面直角坐标系xOy 中,角α以Ox 为始边,它的终边与单位圆交于第一象限内的点12(,)13P m ,则tan α= .保持角α始边位置不变,将其终边逆时针旋转2π得到角β,则cos β= .14.(4分)已知偶函数2()f x x bx c =++,写出一组使得()2f x 恒成立的b ,c 的取值:b = ,c = .15.(4分)某地原有一座外形近似为长方体且底面面积为150平方米的蓄水池,受地形所限,底面长和宽都不超过18米.现将该蓄水池在原有占地面积和高度不变的条件下,重建为两个相连的小蓄水池,其底面由两个长方形组成(如图所示).若池壁的重建价格为每平方米300元,池底重建价格每平方米80元,那么要使重建价最低,蓄水池的长和宽分别为 , .三、解答题:共5小题,共40分。
解答应写出文字说明,演算步骤或证明过程。
16.(7分)设全集U R =,集合2{|20}A x x x =-<,{|10}B x R ax =∈->. (Ⅰ)当1a =时,求A B ,UA ;(Ⅱ)若UB A ⊆,求a 的取值范围.17.(7分)已知函数211,2()2(1),2x f x x log x x ⎧+<⎪=-⎨⎪-⎩.(Ⅰ)求(f f (3))的值并直接写出()f x 的零点;(Ⅱ)用定义证明()f x 在区间(,2)-∞上为减函数.18.(9分)已知函数()sin()f x x ωϕ=+,其中0,(0,)2πωϕ>∈.从条件①、条件②、条件③这三个条件中选择两个作为已知条件,求: (Ⅰ)()f x 的单调递增区间;(Ⅱ)()f x 在区间[0,]2π的最大值和最小值.条件①:函数()f x 最小正周期为π; 条件②:函数()f x 图象关于点(,0)6π-对称;条件③:函数()f x 图象关于12x π=对称.19.(9分)已知函数1()21xf x a =-+是奇函数. (Ⅰ)求a 的值;(Ⅱ)判断()f x 的单调性;(只需写出结论)(Ⅲ)若不等式2()()0f x x f x m -++<恒成立,求m 的取值范围.20.(8分)中国茶文化博大精深.小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是1θ,环境温度是0θ,则经过时间t (单位:分)后物体温度θ将满足:010()t e θθθθ-=+-⋅,其中为正的常数.小明与同学一起通过多次测量求平均值的方法得到200ml 初始温度为98C ︒的水在19C ︒室温中温度下降到相应温度所需时间如表所示:(Ⅰ)请依照牛顿冷却模型写出冷却时间t (单位:分)关于冷却后水温θ(单位:C)︒的函数关系,并选取一组数据求出相应的值(精确到0.01).(Ⅱ)“碧螺春”用75C ︒左右的水冲泡可使茶汤清澈明亮,口感最佳.在(Ⅰ)的条件下,200ml 水煮沸后在19C ︒室温下为获得最佳口感大约冷却 分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.(A)5(B)7(C)10(参考数据:79 4.369ln=ln=,56 4.025) ln=,71 4.263ln=,66 4.190ln=,61 4.1112020-2021学年北京市东城区高一(上)期末数学试卷参考答案与试题解析一、选择题:共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.(4分)已知集合{1A =-,0,1},集合2{|1}B x N x =∈=,那么(A B = )A .{1}B .{0,1}C .{1-,1}D .{1-,0,1}【解答】解:{1A =-,0,1},{1}B =,{1}AB ∴=.故选:A .2.(4分)已知()f x 为奇函数,且当0x >时,()2f x x =-,则1()2f -的值为( )A .52-B .32-C .32D .52【解答】解:根据题意,当0x >时,()2f x x =-, 则113()2222f =-=-,又由()f x 为奇函数,则113()()222f f -=-=,故选:C .3.(4分)若扇形的半径为1,周长为π,则该扇形的圆心角为( ) A .πB .1π-C .2π-D .12π-【解答】解:扇形的半径为1,周长为π, 所以扇形的弧长为2π-, 扇形弧长所对的圆心角为221ππ-=-.故选:C .4.(4分)下列命题为真命题的是( ) A .若a b >,则22a b > B .若0a b >>,则22ac bc > C .若a b <,0c >,则ac bc >D .若0a b <<,0c >,则c ca b> 【解答】解:A .由a b >,取1a =,1b =-,则22a b >不成立,故A 是假命题;B .当0c =时,22ac bc >不成立,故B 是假命题;C .由a b <,0c >,取1a =,2b =,1c =,则ac bc >不成立,故C 是假命题;D .由0a b <<,可知11a b >,又0c >,∴c ca b>,故D 是真命题. 故选:D .5.(4分)已知tan 1α=-,则222sin 3cos (αα-= ) A .74-B .12-C .12D .34【解答】解:因为tan 1α=-,则222222222232321312sin 3cos 1(1)12sin cos tan sin cos tan αααααααα--⨯--====-++-+. 故选:B .6.(4分)若函数()f x 是R 上的减函数,0a >,则下列不等式一定成立的是( ) A .2()f a f <(a ) B .1()()f a f a<C .f (a )(2)f a <D .2()(1)f a f a <-【解答】解:1a =时,21,a a a a==, ∴21()(),()()f a f a f a f a==,A ∴,B 都错误;0a >,2a a <,()f x 是R 上的减函数,f ∴(a )(2)f a >,即C 错误;22213(1)1()024a a a a a --=-+=-+>,21a a ∴>-,且()f x 是R 上的减函数,2()(1)f a f a ∴<-,即D 正确. 故选:D .7.(4分)已知2log 3a =,4log 5b =,8log 7c =,则( ) A .a b c <<B .c a b <<C .c b a <<D .b c a <<【解答】解:22log 3log 21>=,1a ∴>, 44log 5log 41>=,1b ∴>,又222554223239log 9log 51555log log log a b log log log ====>=,a b ∴>, 888log 1log 7log 81<<=,01c ∴<<,c b a ∴<<,故选:C .8.(4分)“απβ=+,Z ∈”是“tan tan αβ=”成立的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【解答】【解答】解: “()Z απβ=+∈”推不出“tan tan αβ=”, 例如当2a ππ=+,Z ∈时,tan α和tan β不存在,“tan tan αβ=” ⇒ “()Z απβ=+∈”,∴ “()Z απβ=+∈”是“tan tan αβ=”成立的必要而不充分条件.故选:B .9.(4分)如图所示,单位圆上一定点A 与坐标原点重合.若单位圆从原点出发沿x 轴正向滚动一周,则A 点形成的轨迹为( )A .B .。