量子力学课件(6)
合集下载
量子力学-第二版-周世勋PPT课件
量子力学
QQuuaannttuumm mmeecchhaanniissmm
宝鸡文理学院物理与信息技术系
1
《量子力学》教材与参考书
教材
《量子力学教程》周世勋编,高等教育出版社
参考书及学习网站
1.《 量 子 力 学 教 程 》 曾 谨 言 著 , ( 科 学 出 版 社,2003年第一版,普通高等教育十五国家级规划教 材)
一个开有小孔的封闭空腔 可看作是黑体。
波
3.的思想。
4.2.海森堡的矩阵力学:
5.在批判旧量子论的基础之上建立起来
6.3.狄拉克表述:
7.更为普遍的形式 10
§1.1经典物理学的困难
Chap.1.绪论 The birth of quantum mechanism
一.经典物理学的成功
十九世纪末期,物理学理论在当时看来己发展到相 当完善的阶段,其各个分支已经建立起系统的理论:
第六章 散射
Ch6. The general theory of scattering
第七章 自旋与全同粒子
Ch7. Spin and identity of particles
第一章 绪论
The birth of quantum mechanism
基本内容
Chap.1.绪论 The birth of quantum mechanism
1.1 经典物理学的困难
The difficult in classical physics
1.2 光的波粒二象性
The duality of light between wave and particle
1.3 微粒的波粒二象性
The duality of small particles between wave and particle
QQuuaannttuumm mmeecchhaanniissmm
宝鸡文理学院物理与信息技术系
1
《量子力学》教材与参考书
教材
《量子力学教程》周世勋编,高等教育出版社
参考书及学习网站
1.《 量 子 力 学 教 程 》 曾 谨 言 著 , ( 科 学 出 版 社,2003年第一版,普通高等教育十五国家级规划教 材)
一个开有小孔的封闭空腔 可看作是黑体。
波
3.的思想。
4.2.海森堡的矩阵力学:
5.在批判旧量子论的基础之上建立起来
6.3.狄拉克表述:
7.更为普遍的形式 10
§1.1经典物理学的困难
Chap.1.绪论 The birth of quantum mechanism
一.经典物理学的成功
十九世纪末期,物理学理论在当时看来己发展到相 当完善的阶段,其各个分支已经建立起系统的理论:
第六章 散射
Ch6. The general theory of scattering
第七章 自旋与全同粒子
Ch7. Spin and identity of particles
第一章 绪论
The birth of quantum mechanism
基本内容
Chap.1.绪论 The birth of quantum mechanism
1.1 经典物理学的困难
The difficult in classical physics
1.2 光的波粒二象性
The duality of light between wave and particle
1.3 微粒的波粒二象性
The duality of small particles between wave and particle
量子力学英文课件格里菲斯Chapter6
Writing n and En as power series in , we have
Here : En1 is the first-order correction to the nth eigenvalue, n1 is the first-order correction to the nth eigenfunction; En2 and n2 are the second-order corrections, and so on.
To first order (1),
To second order (2),
and so on. We’re done with , now — it was just a device to keep track of the different orders — so crank it up to 1.
The right side is a known function, so this amounts to an inhomogeneous differential equation for n1. Now, the unperturbed wave functions constitute a complete set, so n1 (like any other function) can be expressed as a linear combination of them:
but unless we are very lucky, we’re unlikely to be able to solve the Schrö dinger equation exactly, for this more complicated potential. Perturbation theory is a systematic procedure for obtaining approximate solutions to the perturbed problem by building on the known exact solutions to the unperturbed case.
大学物理课件-量子力学
(2)
1 2
(
x,
t
)e
i
px
dx
▲ 態疊加原理是粒子波動性體現,是量子力
學基本原理之一。
薛定諤
Erwin Schrodinger 奧地利人 1887-1961
創立量子力學
獲1933年諾貝爾 物理學獎
19.3
問題 提出
經薛典定粒諤子方程(SFchrodddt2r2inger equation)
三、波函數的要求 波函數的有限性: 根據波函數統計解釋,在空間任何有限體積
元中找到粒子的概率必須為有限值。
波函數的歸一性: 根據波函數統計解釋,在空間各點的概率總
和必須為1。 r, t 2 d 1
注意:若
2
A(r ) d A
則
1 A
A
(r )
2
d
1
1 ——歸一化因數
A
波函數的單值性:
其狀態用 2( x) 描述, 電子的概率分佈為P2 |Ψ2|2
雙縫 齊開時,電子可通過上縫也可通過下縫
通過上、下縫各有一定的概率
總的概率幅為 Ψ12 Ψ1 Ψ2
Ψ12 Ψ1 Ψ2
P12 |Ψ12 |2 |Ψ1 Ψ2 |2 |Ψ1|2 |Ψ2|2 P1 P2
即使只有一個電子,當雙縫齊開時,
▲ 在空間的某一點波函數模的平方和該點找到 粒子的幾率成正比。 波動性:某處明亮則某處光強大, 即 I 大 粒子性:某處明亮則某處光子多, 即 N大
光子數 N I A2
I大,光子出現概率大; I小,光子出現概率小。
2.數學表示 t 時刻,在
r
端點處單位體積中發現一個粒子
的概率,稱為概率密度。即
Ae
高等量子力学 课件
20
进而 对于任意的 fr(q) , 总可以进行如下的幺正变换:
(q) 是任意实函数. 于是上式成为:
21
因而, 只要选择 (q) 使得
就有 即 譬如:
(通过适当选择基矢的相因子)
22
于是, 对于任一依赖于坐标和动量的算符
有
小结 在坐标表象中,坐标算符和动量算符对态矢量的作 用, 对应于以下算符对波函数的作用:
15
形式上, 可以把(k), A(k, k)理解为下标连续改变的矩阵:
16
§1.3.4 坐标表象
1 基矢 以体系的Descartes直角坐标本征态为基矢的
表象称为坐标表象, 或Schrodinger表象.
选取全体Descartes直角坐标
为厄米
算符完备组, 可以证明, 其本征值有连续谱, 于是正交归
反之 i = Ui 上述即为矢量的表象变换.
11
二、算符的表象变换
设算符A在K表象、L表象中分别表示为{Aij}和{A}:
Aij = iAj , A = A.
于是, A = ij iiAjj
即
一化关系和完备性公式分别为:
17
2 态矢量|和坐标算符函数的表示
其中,
是
在 |q 上的本征值.
进而,
18
3 动量算符的表示
利用原理3, 即 Heisenberg 对易关系 有
我们知道 (x) 具有性质:
19
将 与 则知, 若
取如下形式
对比
可使上述等式恒成立. 其中 fr(q)是q的任意实函数.
第一章 Hilbert空间
§1.1 矢量空间
1 定义; 2 正交性和模; 3 基矢; 4 子空间
§1.2 线性算符
进而 对于任意的 fr(q) , 总可以进行如下的幺正变换:
(q) 是任意实函数. 于是上式成为:
21
因而, 只要选择 (q) 使得
就有 即 譬如:
(通过适当选择基矢的相因子)
22
于是, 对于任一依赖于坐标和动量的算符
有
小结 在坐标表象中,坐标算符和动量算符对态矢量的作 用, 对应于以下算符对波函数的作用:
15
形式上, 可以把(k), A(k, k)理解为下标连续改变的矩阵:
16
§1.3.4 坐标表象
1 基矢 以体系的Descartes直角坐标本征态为基矢的
表象称为坐标表象, 或Schrodinger表象.
选取全体Descartes直角坐标
为厄米
算符完备组, 可以证明, 其本征值有连续谱, 于是正交归
反之 i = Ui 上述即为矢量的表象变换.
11
二、算符的表象变换
设算符A在K表象、L表象中分别表示为{Aij}和{A}:
Aij = iAj , A = A.
于是, A = ij iiAjj
即
一化关系和完备性公式分别为:
17
2 态矢量|和坐标算符函数的表示
其中,
是
在 |q 上的本征值.
进而,
18
3 动量算符的表示
利用原理3, 即 Heisenberg 对易关系 有
我们知道 (x) 具有性质:
19
将 与 则知, 若
取如下形式
对比
可使上述等式恒成立. 其中 fr(q)是q的任意实函数.
第一章 Hilbert空间
§1.1 矢量空间
1 定义; 2 正交性和模; 3 基矢; 4 子空间
§1.2 线性算符
中科大量子力学课件
弹性散射:若在散射过程中,入射粒子和靶 粒子的内部状态都不发生变化,则称弹性散 射,否则称为非弹性散射。
入射粒子流密度N :单位时间内通过与入射
粒子运动方向垂直的单位面积的入射粒子数, 用于描述入射粒子流强度的物理量,故又称 为入射粒子流强度。 散射截面:
一 散射截面 (续2)
设单位时间内散射到(,)方向面积元ds
(r, ) Rl (r)Pl (cos )
(3-2)
l
Rl r为待定的径向波函数,每个特解称为一
个分波,Rl (r)Pl (cos ) 称为第 l 个分波,通常称
l 0,1,2,3, 的分波分别为s, p, d, f…分波
(3-2)代入(3-1),得径向方程
1 r2
d dr
r
2
dRl dr
(12)
比较(1)式与(12),得到
q( ,) | f ( ,) |2
(13)
二、散射振幅 (续7)
由此可知,若知道了 f (,) ,即可求得 q( ,), f (,) 称为散射振幅。所以,对于能量给定的入
射粒子,速率 v 给定,于是,入射粒子流密度
N v 给定,只要知道了散射振幅 f (,),也就能 求出微分散射截面。 f (,) 的具体形式通过求
上(立体角d内)的粒子数为dn,显然
dn ds d r2
dn N
综合之,则有: dn Nd
或 dn q( , )Nd
(1)
比例系数q(,)的性质:
q(,)与入射粒子和靶粒子(散射场)的
性质,它们之间的相互作用,以及入射粒子
的动能有关,是, 的函数
一 散射截面 (续3)
q(,)具有面积的量纲
(8)
此方程类似一维波动方程。我们知道,对于
入射粒子流密度N :单位时间内通过与入射
粒子运动方向垂直的单位面积的入射粒子数, 用于描述入射粒子流强度的物理量,故又称 为入射粒子流强度。 散射截面:
一 散射截面 (续2)
设单位时间内散射到(,)方向面积元ds
(r, ) Rl (r)Pl (cos )
(3-2)
l
Rl r为待定的径向波函数,每个特解称为一
个分波,Rl (r)Pl (cos ) 称为第 l 个分波,通常称
l 0,1,2,3, 的分波分别为s, p, d, f…分波
(3-2)代入(3-1),得径向方程
1 r2
d dr
r
2
dRl dr
(12)
比较(1)式与(12),得到
q( ,) | f ( ,) |2
(13)
二、散射振幅 (续7)
由此可知,若知道了 f (,) ,即可求得 q( ,), f (,) 称为散射振幅。所以,对于能量给定的入
射粒子,速率 v 给定,于是,入射粒子流密度
N v 给定,只要知道了散射振幅 f (,),也就能 求出微分散射截面。 f (,) 的具体形式通过求
上(立体角d内)的粒子数为dn,显然
dn ds d r2
dn N
综合之,则有: dn Nd
或 dn q( , )Nd
(1)
比例系数q(,)的性质:
q(,)与入射粒子和靶粒子(散射场)的
性质,它们之间的相互作用,以及入射粒子
的动能有关,是, 的函数
一 散射截面 (续3)
q(,)具有面积的量纲
(8)
此方程类似一维波动方程。我们知道,对于
量子力学课件(6)( 一维方势垒、隧道效应)
利用STM可以分辨表面上原子 的台阶、平台和原子阵列。可 以直接绘出表面的三维图象
探针
空气隙
样品 STM工作示意图
§8 一维方势垒 隧道效应
第二章 薛定谔方程
使人类第一次能够实时地观测到单个原子在物 质表面上的排列状态以及与表面电子行为有关的性 质。在表面科学、材料科学和生命科学等领域中有 着重大的意义和广阔的应用前景。
求出解的形式画于图中。
量子力学结果分析: (1)E>V0情况 在经典力学中,该情况的粒子 可以越过势垒运动到x>a区域,而 在量子力学中有一部分被反弹回去, I 即粒子具有波动性的具体体现。 (2)E<V0情况
V
隧道效应
V0
II
III
o
a
x
在经典力学中,该情况的粒子将完全被势垒挡回, 在x<0的区域内运动;而在量子力学中结果却完全不同 ,此时,虽然粒子被势垒反射回来,但它们仍有粒子穿 透势垒运动到势垒里面去,所以我们将这种量子力学特 有的现象称“隧道效应”。
§8 一维方势垒 隧道效应 X=a处, 2 (a) 3 (a)
第二章 薛定谔方程
可得
于是
d 3 ( x) d 2 ( x) |x a |x a dx dx ik1 k2 ik1a k2a A2 e A3 2k2 ik1 k2 ik1a k2a ' A2 e A3 2k 2 2 2 k1 k2 ik1a ' A1 [ sh(k2 a)]e A3 2ik1k2 2 2 k1 k2 ik1a ' A1 A1 [ch(k2 a) sh(k2 a)]e A3 2ik1k2
§8 一维方势垒 隧道效应
第二章 薛定谔方程
探针
空气隙
样品 STM工作示意图
§8 一维方势垒 隧道效应
第二章 薛定谔方程
使人类第一次能够实时地观测到单个原子在物 质表面上的排列状态以及与表面电子行为有关的性 质。在表面科学、材料科学和生命科学等领域中有 着重大的意义和广阔的应用前景。
求出解的形式画于图中。
量子力学结果分析: (1)E>V0情况 在经典力学中,该情况的粒子 可以越过势垒运动到x>a区域,而 在量子力学中有一部分被反弹回去, I 即粒子具有波动性的具体体现。 (2)E<V0情况
V
隧道效应
V0
II
III
o
a
x
在经典力学中,该情况的粒子将完全被势垒挡回, 在x<0的区域内运动;而在量子力学中结果却完全不同 ,此时,虽然粒子被势垒反射回来,但它们仍有粒子穿 透势垒运动到势垒里面去,所以我们将这种量子力学特 有的现象称“隧道效应”。
§8 一维方势垒 隧道效应 X=a处, 2 (a) 3 (a)
第二章 薛定谔方程
可得
于是
d 3 ( x) d 2 ( x) |x a |x a dx dx ik1 k2 ik1a k2a A2 e A3 2k2 ik1 k2 ik1a k2a ' A2 e A3 2k 2 2 2 k1 k2 ik1a ' A1 [ sh(k2 a)]e A3 2ik1k2 2 2 k1 k2 ik1a ' A1 A1 [ch(k2 a) sh(k2 a)]e A3 2ik1k2
§8 一维方势垒 隧道效应
第二章 薛定谔方程
量子力学--定态薛定谔方程 ppt课件
此波函数与时间t的关系是正弦型的,其角频率ω=2πE/h。 由de Broglie关系可知: E 就是体系处于波函数Ψ(r,t)所描写 的状态时的能量。也就是说,此时体系能量有确定的值,所以这 种状态称为定态,波函数Ψ(r,t)称为定态波函数。
空间波函数ψ(r)由方程
2 2 [ V ] (r ) E (r ) 2
* n
推论
x 常量 p 0
4. 能量本征函数是完备的正交归一系 可以证明(以后证明)
* m (r) n (r)dr mn
正交归一性
薛定鄂方程的通解可以用定态波函数的叠加表示为
( x, t ) cn n ( x, t ) cneiE t / n ( x)
PPT课件 4
(三)求解定态问题的步骤
讨论定态问题就是要求出体系可能有的定态波函数 Ψ(r,t)和在这些态中的能量 E。其具体步骤如下:
2 2 [ V ] ( r ) E ( r ) 2
(1)列出定态 Schrodinger方程 (2)根据波函数三个标准 条件求解能量 E 的 本征值问题,得: (3)写出定态波函数即得 到对应第 n 个本征值 En 的定态波函数
令:
( r , t ) ( r ) f ( t )
两边同除 (r ) f (t )
等式两边是相互无 关的物理量,故应 等于与 t, r 无关 的常数
d 2 2 i ( r ) f ( t ) f ( t )[ V ] ( r ) dt 2 2 1 d 1 2 i f (t ) V ] ( r ) E [ f ( t ) dt ( r ) 2
III 0
从物理考虑,粒子不能透过无穷高的势壁。 根据波函数的统计解释,要求在阱壁上和阱壁 外波函数为零,特别是 ψ(-a) = ψ(a) = 0。
量子力学课件(完整版)
Light beam
metal
electric current
11
能量量子化的假设
造成以上难题的原因是经典物理学认为 能量永远是连续的。
如果能量是量子化的,即原子吸收或发 射电磁波,只能以“量子”的方式进行, 那末上述问题都能得到很好的解释。
12
能量量子化概念对难题的解释
原子寿命 ①原子中的电子只能处于一系列分立的能级之中。
18
当 kT hc(高频区)
E(, T)
2hc2 5
e hc
kT
Wein公式
当 kT hc(低频区)
E(, T)
2c 4
kT
Rayleigh–Jeans公式
19
能量量子化概念对难题的解释
对光电效应的解释
如果电子处于分立能级且入射光的能 量也是量子化的,那么只有当光子的能 量(E =hυ)大于电子的能级差,即E =hυ > En-Em时,光电子才会产生。如 果入射光的强度足够强,但频率υ足够 小,光电子是无法产生的。
2 , k 2 / ,
得到 d 2 0,所以,t x(t)
dk 2 m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
2
这面临着两个问题:
1、信号电磁波所覆盖的区域包括大量的 元件,每个元件的工作状态有随机性,但 器件的响应具有统计性;
量子力学课件完整版(适合初学者)
2
利用
得到
E h , p k , h / 2 , 2 , k 2 / ,
d 2 2 0, 所以,t x(t ) dk m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
37
参考书目
曾谨言《量子力学》,科学出版社 周世勋《量子力学教程》,高等教育出版 社
38
量子力学 第二章 波函数及薛定谔方程
39
2.1 波函数及其统计解释
40
一、自由粒子的波函数
自由粒子指的是不受外力作用,静止或匀速运动 的质点。因此,其能量E 和动量 p pe 都是常量。 根据德布罗意波粒二象性的假设,自由粒子的频 率和波长分别为
4
1.1 经典物理学的困难
5
19世纪末,物理学界建立了牛顿力 学、电动力学、热力学与统计物理, 统称为经典物理学。其中的两个结论 为 1、能量永远是连续的。 2、电磁波(包括光)是这样产生的: 带电体做加速运动时,会向外辐射电 磁波。
6
经典物理学的成就
牛顿力学-支配天体和力学对象的运动; 杨氏衍射实验-确定了光的波动性; Maxwell方程组的建立-把光和电磁现象建立在 牢固的基础上; 统计力学的建立。
46
3、概率波
粒子的波动性可以用波函数来表示, 其中,振幅 ( x, y, z) | ( x, y, z) | ei ( x, y,z ) 表示波动在空间一点(x,y,z)上的强弱。 | ( x, y, z) |2 应该表示粒子出现在点 所以, (x,y,z)附近的概率大小的一个量。 因此,粒子的波函数又称为概率波。
利用
得到
E h , p k , h / 2 , 2 , k 2 / ,
d 2 2 0, 所以,t x(t ) dk m
物质波包的观点夸大了波动性的一面,抹杀 了粒子性的一面,与实际不符。
45
(2)第二种解释:认为粒子的衍射行为是大 量粒子相互作用或疏密分布而产生的行为。 然而,电子衍射实验表明,就衍射效果 而言, 弱电子密度+长时间=强电子密度+短时间 由此表明,对实物粒子而言,波动性体 现在粒子在空间的位置是不确定的,它是以 一定的概率存在于空间的某个位置。
37
参考书目
曾谨言《量子力学》,科学出版社 周世勋《量子力学教程》,高等教育出版 社
38
量子力学 第二章 波函数及薛定谔方程
39
2.1 波函数及其统计解释
40
一、自由粒子的波函数
自由粒子指的是不受外力作用,静止或匀速运动 的质点。因此,其能量E 和动量 p pe 都是常量。 根据德布罗意波粒二象性的假设,自由粒子的频 率和波长分别为
4
1.1 经典物理学的困难
5
19世纪末,物理学界建立了牛顿力 学、电动力学、热力学与统计物理, 统称为经典物理学。其中的两个结论 为 1、能量永远是连续的。 2、电磁波(包括光)是这样产生的: 带电体做加速运动时,会向外辐射电 磁波。
6
经典物理学的成就
牛顿力学-支配天体和力学对象的运动; 杨氏衍射实验-确定了光的波动性; Maxwell方程组的建立-把光和电磁现象建立在 牢固的基础上; 统计力学的建立。
46
3、概率波
粒子的波动性可以用波函数来表示, 其中,振幅 ( x, y, z) | ( x, y, z) | ei ( x, y,z ) 表示波动在空间一点(x,y,z)上的强弱。 | ( x, y, z) |2 应该表示粒子出现在点 所以, (x,y,z)附近的概率大小的一个量。 因此,粒子的波函数又称为概率波。
量子力学对原子核外电子运动状态的描述课件高二化学选择性必修
二、量子力学对原子核外电子运动状态的描述 原子轨道示意图:
二、量子力学对原子核外电子运动状态的描述
d 轨道(l = 2, m = +2, +1, 0, -1, -2) m 五种取值, 空间五种取向, 五条等价(简并) d 轨道。
二、量子力学对原子核外电子运动状态的描述
f 轨道 ( l = 3, m = +3, +2, +1, 0, -1, -2, -3 ) m 七种取值, 空间七种取向, 七条等价(简并) f 轨道。
用方框表示一个原子轨道,用箭头“↑”或“↓”来区别自旋状态不同的电子。钠三、基态子的核外电子排布构造原理
为了使整个原子体系的能量最低,随着原子 序数的递增,基态原子的"外层电子"按照箭头的 方向依次排布在各原子轨道上∶ 1s、2s、2p、3s、3p、4s、3d、4p、5s、4d、 5p、 6s……
电子填满了一个能级,开始填入下一个能级。
三、基态原子的核外电子排布
写出Mn元素(25号)基态原子的电子排布式和轨道表示式。
1s22s22p63s23p63d54s2
电子按构造原理顺序在原子轨道上排布,但书写电子排布式 或轨道表示式时,应按电子层数由小到大的顺序书写。
排布顺序:1s 2s 2p 3s 3p 4s 3d 4p 书写顺序:1s 2s 2p 3s 3p 3d 4s 4p
三、基态原子的核外电子排布
K2 2
1s
Na
L 8 2 222
2s
2p
M1 1
3s
3p
原则二:泡利不相容原理
一个原子轨道中最多只能容纳两个电子,且这两个 电子的自旋状态不同。
3d
↑↑
He ↑↓
量子力学+周世勋(全套课件)
BCS理论
阐述BCS理论的基本思想, 即电子通过交换声子形成 库珀对,从而实现超导。
高温超导
介绍高温超导材料的研究 进展和机制探讨。
量子计算机原理简介
量子比特
阐述量子比特的概念及其与经典比特的区别,介绍量子态的叠加和 纠缠等特性。
量子门操作
介绍常见的量子门操作(如X门、Z门、Hadamard门等),以及它 们对量子态的变换作用。
Born近似方法
Born近似原理
在散射过程中,当入射粒子与靶粒子的 相互作用较弱时,可以采用Born近似方 法求解散射问题。该方法将散射振幅表 示为入射波函数与散射势的乘积的积分 形式。
VS
Born近似应用
适用于处理弱相互作用下的散射问题,如 低能电子与原子的散射、中子与原子核的 散射等。通过Born近似方法,可以得到 散射振幅的解析表达式,进而求得散射截 面和微分截面等物理量。
能级与波函数的关系
无限深势阱中的能级是离散的,波函数与能级之间存在对应关系。
粒子在阱中的运动规律
粒子在无限深势阱中做简谐振动,振动频率与能级差有关。
一维方势阱
1 2
方势阱中的波函数
描述粒子在一维方势阱中的空间分布概率。
能级与波函数的关系
方势阱中的能级也是离散的,波函数与能级之间 存在对应关系。
3
粒子在阱中的运动规律
势阱和势垒的穿透
分析粒子在势阱和势垒中的穿透 现象,以及相关的穿透系数和反 射系数的计算。
能级和波函数的求
解
阐述如何利用WKB近似方法求解 体系的能级和波函数,包括连接 公式的应用和计算精度的提高。
05
散射理论
散射截面和散射长度
散射截面
描述粒子在散射过程中与靶粒子 发生相互作用的概率,与入射粒 子波长、靶粒子性质和相互作用 类型有关。
量子力学的五大公设PPT培训课件
性质
测量退相干是量子力 学中的一种独特现象, 与经典物理中的测量 不同。
它表明量子系统与测 量仪器之间的相互作 用会导致量子系统失 去相干性,即失去其 同时处于多个状态的 特性。
测量退相干是量子测 量中不可避免的过程, 是量子系统与测量仪 器相互作用的必然结 果。
测量退相干的几何解释
量子态的几何表示
量子计算
在量子计算中,测量退相干是一个关键问题。由于量子比特与周围环境中的其他粒子发生相互作用,会导致量子比特 的相干性消失,从而影响量子计算的精度和可靠性。
量子通信
在量子通信中,为了确保信息传输的安全性和可靠性,需要克服测量退相干问题。通过对量子态进行编码和解码,可 以减少测量退相干的影响,提高量子通信的传输质量和安全性。
测量的几何解释
总结词
在几何表述中,测量被解释为对量子态的投影,将量子态从高维空间映射到低维空间。
详细描述
在几何表述中,量子态被视为高维空间中的向量。测量被解释为将这个向量投影到一个 低维子空间的过程。这个投影的结果是一个与原始量子态相关的新的量子态,其性质取
决于测量的具体操作。
测量的应用
总结词
量子力学中的测量 在许多领域都有应用, 包括量子计算、量子通信和量子传感等。
算符的应用
量子测量
通过测量算符可以对量子系统进行测量,获取系统的状态信息。测量算符的选择和测量过 程会对系统造成干扰,因此需要遵循一定的原则和限制。
量子纠缠
量子纠缠是量子力学中的一种现象,指两个或多个量子系统之间存在一种特殊的关联,使 得它们的状态无法单独描述,只能用整体状态来描述。纠缠的度量和控制是量子计算和量 子通信中的重要问题,需要用到算符的概念。
状态空间的应用
大学物理课件-量子力学
二. 康普顿效应(1922—1923年)
1 、康普顿效应实验规律
X射线7.1nm I
=0o
S
石墨晶体
A1 A2
C
W
探测器
B
I
准直系统
散射角
=45o
I
波长变长的散射称为康普顿散射
=90o
I 0
波长不变的散射称为正常散射
=135o
波长的增加量 0与散射角 有关。而与 散射物质的性质无关,与入射光波长也无关。
赖曼系
取 n3
n=3
巴尔末系
n=2 n=1
第四节 粒子的波动性
德布罗意(1892-1960) : 法国人,原来从 事历史研究,受其 兄影响,改学物理 ,1924年获博士学 位,1929年获诺贝 尔物理奖。1932年 任巴黎大学物理教 授,1933年被选为 法国科学院院士。
第三节 玻尔的氢原子理论
一. 氢原子光谱的实验规律
H
连 续
H
H
H
3645.7A0 4101.2 4340.1 4860.7 (线系限)(紫色) (蓝色) (绿色)
H
6562.1 (红色)
谱线是线状分立的
巴尔末公式(1885年)
B
n2 n2
4
,
n 3,4,5,6,
B=3645.7A0
~ 1
c
n0
0
2h sin2 mec
2
康普顿波长
该式说明了与散射物质无关,与入射光波长也 无关。
康普顿散射进一步证实了光子论,证明了光子能 量、动量表示式的正确性,光确实具有波粒两象 性. 另外证明在光电相互作用的过程中严格遵守能 量、动量守恒定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这样,在无穷远的地方,波函数应由两部分组成:一部
分是描写入射粒子的平面波 1 Aeikx ;另一部分是描
写散射粒子的球面散射波:
2
f ( , ) eikx
r
,
这个波是由散射中心向外传播的。
r 1
2
Aeikz
f
( , ) eikr
r
,
(8)
这里考虑的是弹性散射,所以散射波的能量没有改变,即
波矢 k的数值不变,上式中的 f (仅, 是) 的函和数,而与 无关,可以r 证明,(8)式在 时满足方r 程(7)。
时解具有r (8) 的形式而得出。后面几节将具体讨论如何
求方程(7)的解。
§6.2 中心力场中的弹性散射(分波法)
下面将给出在中心力场作用下,粒子的散射截面的一个 普遍的计算方法——分波法。
1、散射粒子所满足的薛定谔方程
在中心力场的情况下,势能只与粒子到散射中心的距离有 关,与的方向无关,所以方程(7)可写为:
k2
2mE
2
p2
2
(4)
p k
(5)
mm
V (r ) 2mU (r [k 2 V (r )] 0 (7)
通常我们观察被散射的粒子都是在离开散射中心很远的地方,
所以只需讨论 时r 的行为就够了,假设时, r,即
在粒U子(远r )离散0射中心时,两者之间的相互作用趋于零。
(r, ,) Rl (r)Pl (cos )
l
(14)
这个展开式中的每一项称为一个分波,Rl (r)Pl (c是os第 )个 l
分波,每一个分波都是方程(13)的解,通常称l 0,1的, 2分,3
波分别为 s, p,分d,波f 。
其中勒让德多项式 Pl (cos ) 为已知,所以我们只需讨论 Rl (r)
q( ,) 1 ( dn )
N d 显然,q( ,具)有面积的量纲,称为微分散射截面。微分散
射截面 q(表 ,示)单位时间内散射到单位立体角 (面d积/距
离平方)的粒子数占总粒子数比率,即
dn q(, )Nd
将 q( ,)d 对所有方向积分,得
2
Q q( ,)d 0 0 q( ,)sin d d
二、研究散射的意义:
碰撞的具体情况与粒子本身的结构及它们之间的 相互作用性质密切相关,通过对散射结果的分析,可 以探知粒子的结构,推动基础理论的发展。人们之所 以能从原子到夸克这样一个层次一个层次地深入认识 物质的结构,在很大程度上,是依赖于对散射的研究。
三、散射的分类
弹性散射:一粒子与另一粒子碰撞的过程中,只有动 能的交换,粒子内部状态并无改变。 非弹性散射:两粒子碰撞中粒子的内部状态有所改变 (例如原子被激发或电离)。
在(8)式中取 A ,1则 ,1 2 这 1表明每单位体积只有
一个入射粒子,入射波的几率流密度是
Jz
i 2m
[
1
1
z
1
1 ]
z
i 2m
[ik
1
1
ik11]
(9)
其实,这就是入射粒子流强度,散射波的几率流密度是:
Jr
i 2m
[
2
2
r
2
2
r
]
i 2m
f
( ,)
2 [
ik r2
ik r2
]
d
(1
4 0
)
2
(
Ze2
M 2
)2
d
sin4
2
然而,在散射实验中,人们并不对每个粒子的轨道感兴趣,
而是研究入射粒子束经过散射后沿不同方向出射的分布。
设一束粒子流以稳定的入射流强度沿Z轴方向射向靶粒子A,
由于靶粒子的作用,设在单位时间内有 dn个粒子沿 (方,向)
的立体角 中d射出,显然, dn Nd, 令d,n 即q( ,)Nd
Q 称为总散射截面。
五、散射的量子力学描述
上面关于微分散射截面和总散射截面的定义,在 量子力学中同样适用。
下面我们来讨论量子力学中如何通过解薛定谔方 程来定散射截面。
取散射中心为坐标原点,用U (r )表示入射粒子与散射中 心之间的相互作用势能,则体系的薛定谔方程可写为:
2
2 U E
2m
式中m是入射粒子的质量,E是它的能量,为简单起见,令
cot
2
4 0
M 2
2Ze2
b
(偏转角 与瞄准距离之间的关系)
那些瞄准距离在 b和b db 之间的 粒子,散射后,必定向
着和 d 之间的角度射出,如下图所示:
凡通过图中所示环形面积 d 的 粒子,必定散射到角度
在 和 d 之间的一个空心圆锥体之中。环形面积 d称
为有效散射截面,又称微分截面。且
满足的径向方程
1 r2
d r 2 dr
dRl (r dr
)
k
2
V
(r
)
l
(l r2
1)
Rl
(r
)
0
令
Rl
(r)
ul
(r) r
得 ul (满r) 足的方程
(16)
d
2ul (r) dr 2
k
2
V
(r)
l
(l r2
1)
ul
(r)
2 [k 2 V (r)] 0
(13)
取沿粒子入射方向并通过散射中心的轴线为极轴,这个轴
是我们讨论问题中的旋转对称轴,波函数 和散射振幅都f
与 角无关。
由3.3节的讨论我们知道方程(13)的一般解可写为
(r, ,) Rl (r)Ylm ( ,)
lm
现在 既与 无关,所以 m 0 ,因而(13)的一般解为:
r2
f ( ,) 2
(10)
它表示单位时间内穿过球面上单位面积的粒子数,故单位
时间穿过面积 dS 的粒子数是
dn JrdS r2
f ( ,) 2 dS
f ( ,) 2 d
(11)
因为 ,N比较(11)与(1)两式,可知微分散射截面是
q(, ) f (, ) 2
(12)
所以知道了f (,,)就可求得 q,( , ) 称f为(散,射) 振幅。 的具体f形(式,通) 过求薛定谔方程(7)的解并要求在
在这里我们只讨论弹性散射,即假设碰撞过程中 粒子的内部状态未变,并假设散射中心质量很大、碰 撞对其运动没有影响。
四、散射的经典力学描述
从经典力学来看,在散射过程中,每个入射粒子都以一
个确定的碰撞参数(瞄准距离)b 和方位角0 射向靶子,
由于靶子的作用,入射粒子的轨道将发生偏转,沿某方
向 (出,射) 。例如在 粒子的散射实验中,有
第六章 散 射
§6.1 碰撞过程 散射截面 §6.2 中心力场中的弹性散射(分波法) §6.3 方形势阱与势垒所产生的散射 §6.4 玻恩近似
§6.1 碰撞过程 散射截面
一、什么是散射?
简单地说,散射就是指粒子与粒子之间或粒子与力 场之间的碰撞(相互作用)过程,是一种具有重要实 际意义的现象,所以散射现象也称碰撞现象。