勾股定理典型分类练习题
勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)
勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。
勾股定理例题单选题100道及答案解析
勾股定理例题单选题100道及答案解析1. 在直角三角形中,两直角边分别为3 和4,则斜边的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边的平方等于两直角边的平方和,即斜边= √(3²+ 4²) = 52. 一个直角三角形的两条直角边分别为6 和8,那么斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:先求出斜边为√(6²+ 8²) = 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为4.83. 若直角三角形的三边长分别为2,4,x,则x 的值可能有()A. 1 个B. 2 个C. 3 个D. 4 个答案:B解析:当4 为斜边时,x = √(4²- 2²) = 2√3;当x 为斜边时,x = √(2²+ 4²) = 2√5,所以x 的值有2 个4. 已知直角三角形的两直角边长分别为5 和12,则斜边长为()A. 13B. 14C. 15D. 16答案:A解析:斜边长= √(5²+ 12²) = 135. 直角三角形的一条直角边为9,另一条直角边为12,则斜边的长为()A. 15B. 16C. 17D. 18答案:A解析:斜边= √(9²+ 12²) = 156. 一个直角三角形的斜边为10,一条直角边为6,则另一条直角边为()A. 8B. 9C. 11D. 12答案:A解析:另一条直角边= √(10²- 6²) = 87. 若直角三角形的周长为12,斜边长为5,则其面积为()A. 12B. 10C. 8D. 6答案:D解析:设两直角边分别为a、b,a + b + 5 = 12,a + b = 7,(a + b)²= 49,即a²+ 2ab + b²= 49,又因为a²+ b²= 25,所以2ab = 24,面积= 0.5ab = 68. 直角三角形的两直角边分别为6 和8,则斜边上的中线长为()A. 5B. 6C. 7D. 8答案:A解析:斜边= 10,斜边上的中线长为斜边的一半,即 59. 在△ABC 中,∠C = 90°,AB = 13,AC = 12,则BC 的长为()A. 5B. 6C. 7D. 8答案:A解析:BC = √(13²- 12²) = 510. 若一个直角三角形的两条边长分别为3 和5,则第三条边长为()A. 4B. √34C. 4 或√34D. 无法确定答案:C解析:当5 为斜边时,第三条边= √(5²- 3²) = 4;当 3 和5 为直角边时,第三条边= √(3²+ 5²) = √3411. 已知直角三角形的两边长分别为3 和4,则第三边长为()A. 5B. √7C. 5 或√7D. 不确定答案:C解析:当4 为斜边时,第三边= √(4²- 3²) = √7;当 3 和4 为直角边时,第三边= √(3²+ 4²) = 512. 一个直角三角形的两条直角边分别为15 和20,那么这个三角形的周长是()A. 60B. 75C. 80D. 85答案:D解析:斜边= √(15²+ 20²) = 25,周长= 15 + 20 + 25 = 6013. 直角三角形的一条直角边为12,斜边为13,则另一条直角边为()A. 5B. 6C. 7D. 8答案:A解析:另一条直角边= √(13²- 12²) = 514. 若直角三角形的斜边长为25,一条直角边长为7,则另一条直角边长为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2415. 在Rt△ABC 中,∠C = 90°,若a = 5,b = 12,则c = ()A. 13B. 14C. 15D. 16答案:A解析:c = √(5²+ 12²) = 1316. 一个直角三角形的两条直角边分别为8cm 和15cm,则斜边为()A. 17cmB. 18cmC. 19cmD. 20cm答案:A解析:斜边= √(8²+ 15²) = 17cm17. 若直角三角形的周长为30cm,斜边长为13cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 13 = 30,a + b = 17,(a + b)²= 289,即a²+ 2ab + b²= 289,又因为a²+ b²= 13²= 169,所以2ab = 120,面积= 0.5ab = 30cm²18. 直角三角形的一条直角边长为11,另一条直角边长为60,则斜边的长为()A. 61B. 62C. 63D. 64答案:A解析:斜边= √(11²+ 60²) = 6119. 在直角三角形中,两直角边分别为5 和12,那么斜边上的中线长为()A. 6.5B. 7.5C. 8.5D. 9.5答案:A解析:斜边= 13,斜边上的中线长为6.520. 已知一个直角三角形的两条直角边分别为6 和8,那么这个直角三角形斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:斜边= 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为 4.821. 直角三角形的两直角边分别为9 和12,则此直角三角形的周长为()A. 21B. 30C. 36D. 42答案:C解析:斜边= √(9²+ 12²) = 15,周长= 9 + 12 + 15 = 3622. 若直角三角形的两直角边长分别为3cm 和4cm,则斜边上的高为()A. 2.4cmB. 2.5cmC. 2.6cmD. 2.7cm答案:A解析:斜边= 5cm,三角形面积= 0.5×3×4 = 0.5×5×斜边上的高,解得斜边上的高为2.4cm23. 一个直角三角形的两条直角边分别为7和24,则斜边为()A. 25B. 26C. 27D. 28答案:A解析:斜边= √(7²+ 24²) = 2524. 直角三角形的一条直角边为5,斜边为13,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(13²- 5²) = 1225. 在△ABC 中,∠C = 90°,BC = 6,AC = 8,则AB 的长为()A. 9B. 10C. 11D. 12答案:B解析:AB = √(6²+ 8²) = 1026. 若直角三角形的三边长分别为5,12,x,则x 的值可能是()A. 13B. 14C. 15D. 17答案:A解析:当x 为斜边时,x = √(5²+ 12²) = 13;当12 为斜边时,x = √(12²- 5²) = √119,因为选项中只有13,所以x = 1327. 一个直角三角形的两条直角边分别为18和24,则这个三角形的周长为()A. 60B. 72C. 84D. 96答案:C解析:斜边= √(18²+ 24²) = 30,周长= 18 + 24 + 30 = 7228. 直角三角形的一条直角边为16,斜边为20,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(20²- 16²) = 1229. 在Rt△ABC 中,∠C = 90°,若a = 8,b = 15,则c = ()A. 17B. 18C. 19D. 20答案:A解析:c = √(8²+ 15²) = 1730. 已知直角三角形的两边长分别为5和13,则第三边长为()A. 12B. √194C. 12 或√194D. 不能确定答案:C解析:当13 为斜边时,第三边= √(13²- 5²) = 12;当 5 和13 为直角边时,第三边= √(5²+ 13²) = √19431. 一个直角三角形的两条直角边分别为10和24,则斜边为()A. 25B. 26C. 27D. 28答案:B解析:斜边= √(10²+ 24²) = 2632. 若直角三角形的周长为24,斜边长为10,则其面积为()A. 24B. 36C. 48D. 96答案:B解析:设两直角边分别为a、b,a + b + 10 = 24,a + b = 14,(a + b)²= 196,即a²+ 2ab + b²= 196,又因为a²+ b²= 100,所以2ab = 96,面积= 0.5ab = 2433. 直角三角形的一条直角边长为7,斜边为25,则另一条直角边为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2434. 在△ABC 中,∠C = 90°,AB = 17,AC = 15,则BC 的长为()A. 8B. 9C. 10D. 11答案:A解析:BC = √(17²- 15²) = 835. 若一个直角三角形的两条边长分别为8和15,则第三条边长为()A. 17B. √161C. 17 或√161D. 无法确定答案:C解析:当15 为斜边时,第三条边= √(15²- 8²) = √161;当8 和15 为直角边时,第三条边= √(8²+ 15²) = 1736. 已知直角三角形的两边长分别为8和10,则第三边长为()A. 6B. 2√41C. 6 或2√41D. 不确定答案:C解析:当10 为斜边时,第三边= √(10²- 8²) = 6;当8 和10 为直角边时,第三边= √(8²+ 10²) = 2√4137. 一个直角三角形的两条直角边分别为20和21,则这个三角形的周长是()A. 60B. 61C. 62D. 63答案:D解析:斜边= √(20²+ 21²) = 29,周长= 20 + 21 + 29 = 7038. 直角三角形的一条直角边为24,斜边为25,则另一条直角边为()A. 7B. 8C. 9D. 10答案:A解析:另一条直角边= √(25²- 24²) = 739. 若直角三角形的斜边长为37,一条直角边长为12,则另一条直角边长为()A. 35B. 36C. 37D. 38答案:A解析:另一条直角边= √(37²- 12²) = 3540. 在Rt△ABC 中,∠C = 90°,若a = 12,b = 16,则c = ()答案:A解析:c = √(12²+ 16²) = 2041. 一个直角三角形的两条直角边分别为12cm 和16cm,则斜边为()A. 20cmB. 21cmC. 22cmD. 23cm答案:A解析:斜边= √(12²+ 16²) = 20cm42. 若直角三角形的周长为36cm,斜边长为15cm,则其面积为()A. 54cm²B. 60cm²C. 72cm²D. 81cm²答案:A解析:设两直角边分别为a、b,a + b + 15 = 36,a + b = 21,(a + b)²= 441,即a²+ 2ab + b²= 441,又因为a²+ b²= 15²= 225,所以2ab = 216,面积= 0.5ab = 54cm²43. 直角三角形的一条直角边长为18,另一条直角边长为24,则斜边的长为()A. 30B. 32C. 34D. 36答案:A解析:斜边= √(18²+ 24²) = 3044. 在直角三角形中,两直角边分别为7和24,那么斜边上的中线长为()A. 12.5B. 13C. 13.5D. 14答案:A解析:斜边= 25,斜边上的中线长为斜边的一半,即12.545. 已知一个直角三角形的两条直角边分别为9和12,那么这个直角三角形斜边上的高为()A. 7.2B. 7.5C. 7.8D. 8答案:A解析:斜边= 15,三角形面积= 0.5×9×12 = 0.5×15×斜边上的高,解得斜边上的高为7.246. 直角三角形的两直角边分别为15和20,则此直角三角形的周长为()A. 60B. 70C. 80D. 90答案:B解析:斜边= 25,周长= 15 + 20 + 25 = 6047. 若直角三角形的两直角边长分别为5cm和12cm,则斜边上的高为()A. 6cmB. 8cmC. 60/13 cmD. 120/13 cm答案:C解析:斜边= 13cm,三角形面积= 0.5×5×12 = 0.5×13×斜边上的高,解得斜边上的高为60/13 cm48. 一个直角三角形的两条直角边分别为25和60,则斜边为()A. 65B. 70C. 75D. 80答案:A解析:斜边= √(25²+ 60²) = 6549. 直角三角形的一条直角边为36,斜边为39,则另一条直角边为()A. 15B. 16C. 17D. 18答案:A解析:另一条直角边= √(39²- 36²) = 1550. 在△ABC 中,∠C = 90°,BC = 8,AC = 15,则AB 的长为()答案:B解析:AB = √(8²+ 15²) = 1751. 若直角三角形的三边长分别为8,15,x,则x 的值可能是()A. 17B. 18C. 19D. 20答案:A解析:当x 为斜边时,x = √(8²+ 15²) = 17;当15 为斜边时,x = √(15²- 8²) = √161,因为选项中只有17,所以x = 1752. 一个直角三角形的两条直角边分别为30和40,则这个三角形的周长为()A. 90B. 100C. 110D. 120答案:D解析:斜边= 50,周长= 30 + 40 + 50 = 12053. 直角三角形的一条直角边长为48,斜边为50,则另一条直角边为()A. 14B. 16C. 18D. 20答案:A解析:另一条直角边= √(50²- 48²) = 1454. 在Rt△ABC 中,∠C = 90°,若a = 10,b = 24,则c = ()A. 25B. 26C. 27D. 28答案:B解析:c = √(10²+ 24²) = 2655. 已知直角三角形的两边长分别为12和16,则第三边长为()A. 20B. 4√7C. 20 或4√7D. 不能确定答案:C解析:当16 为斜边时,第三边= √(16²- 12²) = 4√7;当12 和16 为直角边时,第三边= √(12²+ 16²) = 2056. 一个直角三角形的两条直角边分别为40和41,则斜边为()A. 58B. 59C. 60D. 61答案:D解析:斜边= √(40²+ 41²) = 6157. 若直角三角形的周长为48,斜边长为20,则其面积为()A. 48B. 96C. 192D. 384答案:B解析:设两直角边分别为a、b,a + b + 20 = 48,a + b = 28,(a + b)²= 784,即a²+ 2ab + b²= 784,又因为a²+ b²= 20²= 400,所以2ab = 384,面积= 0.5ab = 9658. 直角三角形的一条直角边为50,斜边为52,则另一条直角边为()A. 16B. 18C. 20D. 22答案:A解析:另一条直角边= √(52²- 50²) = 1659. 在△ABC 中,∠C = 90°,AB = 29,AC = 21,则BC 的长为()A. 20B. 22C. 24D. 26答案:A解析:BC = √(29²- 21²) = 2060. 若一个直角三角形的两条边长分别为10和26,则第三条边长为()A. 24B. 2√69C. 24 或2√69D. 无法确定答案:C解析:当26 为斜边时,第三条边= √(26²- 10²) = 24;当10 和26 为直角边时,第三条边= √(10²+ 26²) = 2√6961. 已知直角三角形的两边长分别为14和16,则第三边长为()A. 2√51B. 2√65C. 2√51 或2√65D. 不确定答案:C解析:当16 为斜边时,第三边= √(16²- 14²) = 2√51;当14 和16 为直角边时,第三边= √(14²+ 16²) = 2√6562. 一个直角三角形的两条直角边分别为55和73,则斜边为()A. 90B. 92C. 94D. 96答案:A解析:斜边= √(55²+ 73²) = 9063. 若直角三角形的周长为56,斜边长为25,则其面积为()A. 84B. 96C. 108D. 120答案:A解析:设两直角边分别为a、b,a + b + 25 = 56,a + b = 31,(a + b)²= 961,即a²+ 2ab + b²= 961,又因为a²+ b²= 25²= 625,所以2ab = 336,面积= 0.5ab = 8464. 直角三角形的一条直角边为65,斜边为68,则另一条直角边为()A. 21B. 23C. 25D. 27答案:A解析:另一条直角边= √(68²- 65²) = 2165. 在Rt△ABC 中,∠C = 90°,若a = 18,b = 24,则c = ()A. 30B. 32C. 34D. 36答案:A解析:c = √(18²+ 24²) = 3066. 一个直角三角形的两条直角边分别为18cm和24cm,则斜边为()A. 30cmB. 32cmC. 34cmD. 36cm答案:A解析:斜边= √(18²+ 24²) = 30cm67. 若直角三角形的周长为40cm,斜边长为17cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 17 = 40,a + b = 23,(a + b)²= 529,即a²+ 2ab + b²= 529,又因为a²+ b²= 17²= 289,所以2ab = 240,面积= 0.5ab = 60cm²68. 直角三角形的一条直角边长为32,另一条直角边长为24,则斜边的长为()A. 40B. 42C. 44D. 46答案:A解析:斜边= √(32²+ 24²) = 4069. 在直角三角形中,两直角边分别为11和60,则斜边上的中线长为()A. 30.5B. 31C. 31.5D. 32答案:C解析:斜边= 61,斜边上的中线长为30.570. 已知一个直角三角形的两条直角边分别为13和14,那么这个直角三角形斜边上的高为()A. 12B. 12.5C. 120/13D. 130/14答案:C解析:斜边= √(13²+ 14²) = √365,三角形面积= 0.5×13×14 = 0.5×√365×斜边上的高,解得斜边上的高为120/1371. 直角三角形的两直角边分别为21和28,则此直角三角形的周长为()A. 77B. 80C. 84D. 88答案:A解析:斜边= 35,周长= 21 + 28 + 35 = 8472. 若直角三角形的两直角边长分别为7cm和24cm,则斜边上的高为()A. 72/25 cmB. 84/25 cmC. 168/25 cmD. 252/25 cm答案:B解析:斜边= 25cm,三角形面积= 0.5×7×24 = 0.5×25×斜边上的高,解得斜边上的高为84/25 cm73. 一个直角三角形的两条直角边分别为75和100,则斜边为()A. 125B. 130C. 135D. 140答案:A解析:斜边= √(75²+ 100²) = 12574. 直角三角形的一条直角边为80,斜边为89,则另一条直角边为()A. 39B. 41C. 43D. 45答案:A解析:另一条直角边= √(89²- 80²) = 3975. 在△ABC 中,∠C = 90°,BC = 12,AC = 9,则AB 的长为()A. 13B. 14C. 15D. 16答案:C解析:AB = √(12²+ 9²) = 1576. 若直角三角形的三边长分别为15,20,x,则x 的值可能是()A. 25B. 26C. 27D. 28答案:A解析:当x 为斜边时,x = √(15²+ 20²) = 25;当20 为斜边时,x = √(20²- 15²) = 5√7,因为选项中只有25,所以x = 2577. 一个直角三角形的两条直角边分别为84和13,则斜边为()A. 85B. 86C. 87D. 88答案:A解析:斜边= √(84²+ 13²) = 8578. 若直角三角形的周长为60,斜边长为26,则其面积为()A. 72B. 96C. 108D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 60,a + b = 34,(a + b)²= 1156,即a²+ 2ab + b²= 1156,又因为a²+ b²= 26²= 676,所以2ab = 480,面积= 0.5ab = 12079. 直角三角形的一条直角边为96,斜边为100,则另一条直角边为()A. 28B. 32C. 36D. 40答案:B解析:另一条直角边= √(100²- 96²) = 3280. 在Rt△ABC 中,∠C = 90°,若a = 20,b = 21,则c = ()A. 29B. 30C. 31D. 32答案:A解析:c = √(20²+ 21²) = 2981. 已知直角三角形的两边长分别为20 和25,则第三边长为()A. 15B. 5√41C. 15 或5√41D. 不确定答案:C解析:当25 为斜边时,第三边= √(25²- 20²) = 15;当20 和25 为直角边时,第三边= √(20²+ 25²) = 5√4182. 一个直角三角形的两条直角边分别为63 和16,则斜边为()A. 65B. 67C. 69D. 71答案:A解析:斜边= √(63²+ 16²) = 6583. 若直角三角形的周长为70,斜边长为29,则其面积为()A. 120B. 130C. 140D. 150答案:A解析:设两直角边分别为a、b,a + b + 29 = 70,a + b = 41,(a + b)²= 1681,即a²+ 2ab + b²= 1681,又因为a²+ b²= 29²= 841,所以2ab = 840,面积= 0.5ab = 21084. 直角三角形的一条直角边为72,斜边为75,则另一条直角边为()A. 27B. 29C. 31D. 33答案:A解析:另一条直角边= √(75²- 72²) = 2785. 在△ABC 中,∠C = 90°,AB = 37,AC = 35,则BC 的长为()A. 12B. 14C. 16D. 18答案:A解析:BC = √(37²- 35²) = 1286. 若一个直角三角形的两条边长分别为18 和32,则第三条边长为()A. 38B. 14√2C. 38 或14√2D. 无法确定答案:C解析:当32 为斜边时,第三条边= √(32²- 18²) = 14√2;当18 和32 为直角边时,第三条边= √(18²+ 32²) = 3887. 已知直角三角形的两边长分别为9 和11,则第三边长为()A. √22B. √40C. √22 或√202D. 不确定答案:C解析:当11 为斜边时,第三边= √(11²- 9²) = √22;当9 和11 为直角边时,第三边= √(9²+ 11²) = √20288. 一个直角三角形的两条直角边分别为45和28,则斜边为()A. 53B. 55C. 57D. 59答案:A解析:斜边= √(45²+ 28²) = 5389. 若直角三角形的周长为66,斜边长为26,则其面积为()A. 96B. 108C. 112D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 66,a + b = 40,(a + b)²= 1600,即a²+ 2ab + b²= 1600,又因为a²+ b²= 26²= 676,所以2ab = 924,面积= 0.5ab = 11290. 直角三角形的一条直角边为108,斜边为110,则另一条直角边为()A. 32B. 34C. 36D. 38答案:D解析:另一条直角边= √(110²- 108²) = 3891. 在Rt△ABC 中,∠C = 90°,若a = 30,b = 40,则c = ()A. 50B. 60C. 70D. 80答案:A解析:c = √(30²+ 40²) = 5092. 一个直角三角形的两条直角边分别为36cm 和48cm,则斜边为()A. 60cmB. 62cmC. 64cmD. 66cm答案:A解析:斜边= √(36²+ 48²) = 60cm93. 若直角三角形的周长为56cm,斜边长为20cm,则其面积为()A. 96cm²B. 112cm²C. 128cm²D. 144cm²答案:A解析:设两直角边分别为a、b,a + b + 20 = 56,a + b = 36,(a + b)²= 1296,即a²+ 2ab + b²= 1296,又因为a²+ b²= 20²= 400,所以2ab = 896,面积= 0.5ab = 96cm²94. 直角三角形的一条直角边为78,斜边为85,则另一条直角边为()A. 37B. 39C. 41D. 43答案:B解析:另一条直角边= √(85²- 78²) = 3995. 在△ABC 中,∠C = 90°,BC = 16,AC = 30,则AB 的长为()A. 34B. 36C. 38D. 40答案:A解析:AB = √(16²+ 30²) = 3496. 若直角三角形的三边长分别为24,10,x,则x 的值可能是()A. 26B. 22C. 26 或22D. 不能确定答案:C解析:当x 为斜边时,x = √(24²+ 10²) = 26;当24 为斜边时,x = √(24²- 10²) = 2297. 一个直角三角形的两条直角边分别为90和120,则斜边为()A. 150B. 160C. 170D. 180答案:A解析:斜边= √(90²+ 120²) = 15098. 若直角三角形的周长为84,斜边长为37,则其面积为()A. 120B. 126C. 132D. 138答案:B解析:设两直角边分别为a、b,a + b + 37 = 84,a + b = 47,(a + b)²= 2209,即a²+ 2ab + b²= 2209,又因为a²+ b²= 37²= 1369,所以2ab = 840,面积= 0.5ab = 12699. 直角三角形的一条直角边为132,斜边为137,则另一条直角边为()A. 45B. 47C. 49D. 51答案:A解析:另一条直角边= √(137²- 132²) = 45100. 在Rt△ABC 中,∠C = 90°,若a = 48,b = 55,则c = ()A. 73 B. 75 C. 77 D. 79答案:A解析:c = √(48²+ 55²) = 73。
勾股定理典型练习题(含答案)
勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。
根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。
2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。
3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。
则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。
同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。
因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。
4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。
5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。
勾股定理的几种类型归类练习
勾股定理的几种类型归类练习一.选择题(共23小题)1.如图,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE∥AB交AC于点E,已知CE=3,CD=4,则AD长为()A.7B.8C.4D.42.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=3,则点D到AB 边的距离为()A.1B.C.2D.33.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=9,AB=15,则CE的长为()A.4B.C.D.54.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将△ACD沿直线AD 折叠,使点C落在斜边AB上的点E处,则CD的长为()cm.A.B.C.3D.5.如图,在矩形ABCD中,AB=10,BC=6.点E是边BC上一点,沿AE翻折△ABE,点B恰好落在CD边上点F处,则CE的长是()A.B.C.D.36.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3B.4C.5D.67.如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=5厘米,EF=12厘米,则边HF的长是()A.12厘米B.13厘米C.14厘米D.15厘米8.如图所示,把矩形纸条ABCD沿EF,GH同时折叠,B,C两点恰好落在AD边的P点处,若∠FPH的度数恰好为90°,PF=4,PH=3,则矩形ABCD的边BC的长为()A.10B.11C.12D.159.把一张矩形纸片ABCD按如图所示的方式进行折叠,使点B恰好与点D重合,折痕为EF,其中AB=3,BC=3.则△DEF的面积是()A.6B.6C.3D.410.如图,将边长为8cm正方形纸片ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长是()A.6cm B.5cm C.4cm D.3cm11.如图,将长方形纸片ABCD折叠,使点D与点B重合,折痕为EF.已知AB=4cm,BC=8cm,则△BEF的面积为()A.12cm2B.10cm2C.8.6cm2D.8cm212.如图,将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若AB=6,则BC 的长为()A.2B.2C.4D.213.如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在AB边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是()A.3cm B.4cm C.5cm D.6cm14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,小正方形的面积为5,则大正方形的面积为()A.12B.13C.14D.1515.我国是最早了解勾股定理的国家之一,根据《周髀算经》的记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”.三国时代的蒋铭祖对《蒋铭祖算经》勾股定理作出了详细注释,并给出了另外一种证明.下面四幅图中,不能证明勾股定理的是()A.B.C.D.16.如图,正方形内的数字代表所在正方形的面积,则A所在的正方形的面积为()A.B.28C.128D.10017.如图,图中所有的三角形都是直角三角形,所有的四边形都是正方形,其中A,B,C,D四个小正方形的面积之和等于12,则最大的正方形的边长为()A.2B.C.3D.418.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=4,将四个直角三角形中边长为4的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()A.56B.24C.64D.3219.如图,阴影部分是两个正方形,图中还有一个直角三角形和一个空白的正方形,阴影部分的面积为25cm2,直角三角形①中较长的直角边长12cm,则直角三角形①的面积是()A.16cm2B.25cm2C.30cm2D.169cm220.如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A.7B.8C.7D.721.如图,一根大树被台风刮断,若树离地面3米处折断,树顶端落在离树底部4米处,则树折断之前有()A.5米B.7米C.8米D.10米22.如图,一棵大树在离地面9米高的B处断裂,树顶A落在离树底BC的12米处,则大树断裂之前的高度为()A.9米B.15米C.21米D.24米23.一旗杆在其的B处折断,量得AC=5米,则旗杆原来的高度为()A.米B.2米C.10米D.米二.填空题(共22小题)24.△ABC中,AB=AC=5,BC=8,BD为AC边的高线,则BD的长为.25.如图,在△ABC中,∠C=90°,DE⊥AB于D,交AC于点E,若BC=BD,AC=6cm,BC=8cm,AB=10cm,则△ADE的周长是.26.如图所示,在△ABC中,∠C=90°,DE⊥AB于点D,交AC于点E.若BC=BD,AC=4cm,BC=3cm,AB=5cm,则△ADE的周长是.27.如图,在△ABC中,∠ACB=90°,AC=9,BC=12,点D在边AB上,AD=AC,AE ⊥CD,垂足为F,与BC交于点E,则BE的长是.28.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为20cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm,则该圆柱底面周长为.29.如图,在矩形ABCD中,点M为矩形AD的中点,连接CM,沿着CM折叠,点D的对应点D',N为BC上一点,且BN<CN,沿MN折叠,恰好AM与D'M重合,此时点A 的对应点为点D',若AB=6,BN=3.5,则A′到CM的距离为.30.如图,在矩形ABCD中,AB=6,BC=18,把矩形折叠,使点D与点B重合,点C落在点E处,则折痕FG的长为.31.如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE沿DE翻折,点C恰好落在AB边上的F处,则CE的长为.32.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB、AC于点D、E,若AC=8,BD=5,则CE的长度是.33.如图所示,矩形纸片ABCD中,AB=4cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF的长为.34.如图,“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形EFGH拼成的大正方形ABCD.若AE=5,AB=13,则中间小正方形EFGH的面积是.35.将四个全等的直角三角形分别拼成正方形(如图1,2),边长分别为6和2.若以一个直角三角形的两条直角边为边向外作正方形(如图3),其面积分别为S1,S2.则S1﹣S2=.36.如图,在△ABC中,∠C=90°,AC=5,BC=12.以AB为一边在△ABC的同侧作正方形ABDE,则图中阴影部分的面积为.37.用三张正方形纸片,按如图所示的方式构成图案,已知围成阴影部分的三角形是直角三角形,S1=9,S3=25,则正方形S2的面积为.38.图1是一个勾股定理演示教具的正面示意图,当它倒过来时,大正方形中的全部墨水恰能注满两个小正方形.王老师有一个内长为11寸,内宽为9寸的木质盒子(如图2).现要自制一个这样的教具(由三个正方形和一个直角三角形组成),使得教具恰好摆入这个盒子中,以便保护和携带(如图3所示,A,B,C,D,E五点均紧贴盒子边缘,教具的厚度等于木盒的内高).此时盒子的空间利用率为.39.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形E 的边长为7cm,则图中五个正方形A、B、C、D、E的面积和为cm2.40.如图,一旗杆离地面6m处折断,旗杆顶部落在离旗杆底部8m处,旗杆折断之前的高度是m.41.我国古代的数学名著《九章算术》中有这样一个题目“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?”译文为“今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵索沿地面退行,在离木柱根部8尺处时,绳索用尽,问绳索AC的长为尺.42.如图所示,一棵大树折断后倒在地上,请按图中所标的数据,计算大树没折断前的高度的结果是.43.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.44.《九章算术》中有一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,则折断处离地面的高度为尺.45.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为m.三.解答题(共13小题)46.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)当△ABP为直角三角时,求t的值;(2)当△ABP为等腰三角形时,求t的值.47.如图,已知等腰△ABC的底边BC=13,D是腰AB上一点,且CD=12,BD=5.(1)求证:△BDC是直角三角形;(2)求AC的长.48.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AC边上,且∠CBE=45°,BE分别交AC,AD于点E、F.(1)如图1,若AB=13,BC=10,求AF的长;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.49.如图,在△ABC中,AB=AC=13,F是BC中点,AF=12,D是AB中点,DE⊥AC 于点E.(1)求BF的长;(2)直接写出DE的长.50.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使点C落在斜边AB上的点E处,试求CD的长.51.如图,在三角形纸片ABC中,AB=15cm,AC=9cm,BC=12cm,现将边AC沿过点A 的直线折叠,使它落在AB边上.若折痕交BC于点D,点C落在点E处,你能求出BD 的长吗?请写出求解过程.52.如图,Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,与点B′重合,AD为折痕,求DB′的长.53.如图,在Rt△ABC中,∠B=90°,AB=7cm,AC=25cm.点P从点A出发沿AB方向以1cm/s的速度向终点B运动,点Q从点B出发沿BC方向以6cm/s的速度向终点C 运动,P,Q两点同时出发,设点P的运动时间为t秒.(1)求BC的长;(2)当t=2时,求P,Q两点之间的距离;(3)当AP=CQ时,求t的值?54.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.55.如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是:大正方形的面积有两种求法,一种是等于c2,另一种是等于四个直角三角形与一个小正方形的面积之和,即,从而得到等式c2=,化简便得结论a2+b2=c2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题(1)如图2,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,BC=4,求CD的长度.(2)如图3,在△ABC中,AD是BC边上的高,AB=4,AC=5,BC=6,设BD=x,求x的值.56.如图,一棵竖直生长的竹子高为8米,一阵强风将竹子从C处吹折,竹子的顶端A刚好触地,且与竹子底端的距离AB是4米.求竹子折断处与根部的距离CB.57.《九章算术》卷九“勾股”中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺.牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽,问绳索长是多少?根据题意求出绳索长.58.《九章算术》是我国古代最重要的数学著作之一其中记载了这样一个问题:“今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?”译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺.牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽.问绳索长是多少尺?。
(完整版)勾股定理经典例题(含答案)
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
勾股定理典型分类练习题
勾股定理典型分类练习题题型一:直接考查勾股定理例1.在ABCC∠=︒.∆中,90⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。
变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?题型二:利用勾股定理测量长度例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0.5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.题型三:勾股定理和逆定理并用例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么 △DEF 是直角三角形吗?为什么题型四:旋转中的勾股定理的运用:例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能与△ACP ′重合,若AP=3,求PP ′的长。
变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.题型五:翻折问题例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.PAPCBCA BD E 1015题型6:勾股定理在实际中的应用:例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.在Rt △ABC 中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是( )A.5、4、3B.13、12、5C.10、8、6D.26、24、103.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 4.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。
勾股定理初二练习题二十道
勾股定理初二练习题二十道1. 在直角三角形ABC中,角C=90°,AB=12cm,AC=5cm,求BC 的长度。
2. 在直角三角形DEF中,角D=90°,DE=8cm,DF=15cm,求EF 的长度。
3. 在直角三角形GHI中,角I=90°,GH=17cm,HI=8cm,求GI的长度。
4. 在直角三角形JKL中,角J=90°,KL=10cm,JL=6cm,求JK的长度。
5. 在直角三角形MNO中,角O=90°,MN=6cm,NO=10cm,求MO的长度。
6. 在直角三角形PQR中,角P=90°,PR=13cm,PQ=12cm,求QR 的长度。
7. 在直角三角形STU中,角T=90°,ST=21cm,TU=20cm,求SU 的长度。
8. 在直角三角形VWX中,角V=90°,VX=24cm,WX=7cm,求WV的长度。
9. 在直角三角形YZA中,角Z=90°,ZY=15cm,ZA=9cm,求YA 的长度。
BC的长度。
11. 在直角三角形EFG中,角E=90°,EG=7cm,FG=25cm,求EF 的长度。
12. 在直角三角形HIJ中,角H=90°,IJ=20cm,HJ=9cm,求HI的长度。
13. 在直角三角形KLM中,角K=90°,KL=16cm,LM=12cm,求KM的长度。
14. 在直角三角形NOP中,角N=90°,NO=5cm,OP=13cm,求NP 的长度。
15. 在直角三角形QRS中,角Q=90°,QR=30cm,RS=16cm,求QS的长度。
16. 在直角三角形TUV中,角T=90°,TV=25cm,UV=7cm,求TU 的长度。
17. 在直角三角形WXY中,角W=90°,WX=14cm,XY=9cm,求WY的长度。
18. 在直角三角形ZAB中,角Z=90°,ZA=11cm,AB=15cm,求ZB的长度。
勾股定理练习题及答案(共6套)
勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
勾股定理分类题型(全)
一、证明方法二、面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A.S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 14、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________。
c baABbbb bcc cc aaaab ccaa bDCAEBS 3S 2S 15、如图17-3-7是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2,则最大的正方形E 的面积_______.6、以某直角三角形三边分别作三个正方形,其中两个正方形的面积分别为25和12,则第三个正方形的面积为___________________.7、如图,∠B =∠D =90°,∠A =60°,AB =4,CD =2. 求四边形ABCD 的面积.8、如图,长方形纸片ABCD 沿对角线AC 折叠,设点D 落在D'处,BC 交AD'于点E,AB=6 cm,BC=8 cm,求阴影部分的面积.9.如图,小正方形边长为1,连接小正方形的三个得到,可得△ABC ,则边AC 上的高为( )A. 223 B. 5103 C. 553D. 55410、如图,四边形ABCD 中,AD =1cm ,BC =2cm ,AB =2cm ,CD =3cm ,且∠ABC =90度,求四边形ABCD的面积三角形ABC 中,AB=5,AC=3,BC 边上的中线AD=2,求三角形ABC 的面积?三、在直角三角形中,求相关量1在Rt △ABC 中,∠C=90°,AB=10,AC=6,则BC 的长为___________4260°DCBAABC2、已知直角三角形的两边长为3、2,则另一条边长的平方是_________3、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的__________.4、在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=____________________ 5、一个直角三角形的三边长的平方和为200,则斜边长为___________;6、斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是______________.7、如图AB=BC=CD=DE=1,AB ⊥BC,AC ⊥CD,AD ⊥DE,则AE 的长为________四、勾股数的应用、利用勾股定理逆定理判断三角形的形状1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,17 2、若线段a ,b ,c 组成直角三角形,则它们的比为( ) A 、2∶3∶4 B 、3∶4∶6 C 、5∶12∶13 D 、4∶6∶73、下面的三角形中:①△ABC 中,∠C=∠A -∠B ;②△ABC 中,∠A :∠B :∠C=1:2:3; ③△ABC 中,a :b :c=3:4:5; ④△ABC 中,三边长分别为8,15,17. 其中是直角三角形的个数有( ).A .1个B .2个C .3个D .4个 4、已知2512-++-y x x 与25102+-z z 互为相反数,试判断以x 、y 、z 为三边的三角形的形状。
(完整版)勾股定理练习题及答案(共6套)
勾股定理课时练(1)8. 一个部件的形状以下图,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .1. 在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2 BC 2 AC 2的值是()2.如图 18-2- 4 所示 ,有一个形状为直角梯形的部件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该部件另一腰 AB 的长是 ______ cm(结果不取近似值) . 第 8 题图3. 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.9. 如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .4.一根旗杆于离地面12 m处断裂,如同装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂以前高多少m ?第 9 题图10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处,5. 如图,以以下图,今年的冰雪灾祸中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4 他想把他的马牵到小河畔去饮水,而后回家. 他要达成这件事情所走的最短行程是多少?米处,那么这棵树折断以前的高度是米 .“路”3m4m第 5 题图第 2 题图11 如图,某会展中心在会展时期准备将高5m, 长 13m,宽 2m 的楼道上铺地毯 , 已知地毯平方米 18 6. 飞机在空中水平飞翔, 某一时辰恰巧飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离元,请你帮助计算一下,铺完这个楼道起码需要多少元钱?这个男孩头顶 5000 米, 求飞机每小时飞翔多少千米 ?13m 5m第 11 题12. 甲、乙两位探险者到荒漠进行探险,没有了水,需要找寻水源.为了不致于走散,他们用两部7. 以下图,无盖玻璃容器,高18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一对话机联系,已知对话机的有效距离为15 千米.清晨 8:00 甲先出发,他以 6 千米 / 时的速度向蜘蛛,与蜘蛛相对的容器的上口外侧距张口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北前进,上午10: 00,甲、乙二人相距多远?所走的最短路线的长度 . 还可以保持联系吗?第 7 题图第一课时答案:1.A ,提示:依据勾股定理得BC 2 AC 2 1,所以AB 2BC 2 AC 2 =1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m,而 3+4-5=2 m ,所以他们少走了 4 步.3. 60 ,提示:设斜边的高为x ,依据勾股定理求斜边为122 52 169 13 ,再利13用面积法得,15 12 1 13 x, x 60 ;2 2 134.解:依题意, AB=16 m, AC=12 m,在直角三角形 ABC 中 ,由勾股定理 ,BC 2AB 2AC 216 212 220 2,所以 BC=20 m ,20+12=32( m ),故旗杆在断裂以前有32 m高.6. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002400023000(米),3所以飞机飞翔的速度为540 (千米/小时)2036007.解:将曲线沿 AB睁开,以下图,过点 C 作 CE⊥ AB于 E.在R t CEF , CEF90 ,EF=18-1-1=16( cm ),1CE=30(cm) ,2. 60CE 2 EF 2 30 2 16 2 34( ) 由勾股定理,得CF=8.解:在直角三角形ABC中,依据勾股定理,得在直角三角形 CBD中,依据勾股定理,得2 2 2 2CD=BC+BD=25+12 =169,所以 CD=13.9.解:延伸 BC、AD交于点 E. (以下图)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8,设 AB=x,则 AE=2x,由勾股定理。
勾股定理专题训练试题精选(一)附答案
勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。
第一章 勾股定理 分类提升训练(含答案) 2024--2025学年 北师大版 八年级数学上册
第一章 勾股定理 分类提升训练 2024--2025学年 北师大版 八年级数学上册一、单选题1.学了“勾股定理”后,甲、乙两位同学的观点如下:甲:如果是直角三角形,那么一定成立;乙:在中,如果,那么不是直角三角形.对于两人的观点,下列说法正确的是( )A .甲对,乙错B .甲错,乙对C .两人都错D .两人都对2.如图,在中,,分别以,为边向外作正方形,面积分别为,,若,,则的长为( )A .4B .2CD .33.为预防新冠疫情,民生大院入口的正上方处装有红外线激光测温仪(如图所示),测温仪离地面的距离米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为米的市民正对门缓慢走到离门米的地方时(即米),测温仪自动显示体温,则人头顶离测温仪的距离等于( )A .米B .米C .米D .米4.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,∠ABO =60°,若矩形的对角线长为6.则线段AD 的长是( )ABC V 222a b c +=ABC V 222a b c +≠ABC V ABC V 90ACB ∠=︒AC AB 1S 2S 13S =27S =BC A 3AB = 1.8CD 1.6 1.6BC =AD 2.0 2.2 2.25 2.5A .3B .4C .2D .35.如图是一圆柱玻璃杯,从内部测得底面半径为,高为,现有一根长为的吸管任意放入杯中,则吸管露在杯口外的长度最少是( )A .B .C .D .6.如图,已知矩形纸片,,,点在边上,将沿折叠,点落在点处,,分别交于点,,且,则的长为( )A.B .C .D .7. 如图,在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .B .C .D .28.如图,有一个水池,水面是一个边长为尺的正方形,在水池正中央有一根芦苇,它高出水面6cm 16cm 25cm 6cm 5cm 9cm (25cm -ABCD 4AB =3BC =P BC CDP V DP C E PE DE AB O F OP OF =DF 3911451317557173276256101尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面、求这根芦苇的长度是多少尺?设芦苇的长度是尺,根据题意,可列方程为( )A .B .C .D .9.如图,过矩形对角线的交点,作对角线的垂线,交于点,交于点,若,,则的长等于( )A .B .CD .10.在Rt 中,.以为圆心,AM 的长为半径作弧,分别交AC ,AB 于点M ,N.再分别以M ,N 为圆心,适当长度为半径画弧,两弧交于点.连接AP ,并延长AP 交BC 于点.过点作于点,垂足为,则DE 的长度为( )A .B .C .2D .1二、填空题11.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1米,当他把绳子下端拉开5米后,发现下端刚好接触地面,则旗杆高度为 米.12.下图是公园的一角,有人为了抄近道而避开横平竖直的路的拐角 ,而走“捷径 ”,于是在草坪内走出了一条不该有的“路 ”.已知 米, 米,只为少走 米的路. x 222510x +=()2221015x -+=()22215x x -+=()22251x x +=-ABCD O BD AD E BC F 3AE =5BF =EF 48ABC V B ∠=90,8,10AB AC ︒==A P D D DE AC ⊥E E 8345ABC ∠AC AC 40AB =30BC =13.若的三边,,满足,则的面积是 .14.如图,矩形ABCD 中, , ,CB 在数轴上,点C 表示的数是 ,若以点C 为圆心,对角线CA 的长为半径作弧交数轴的正半轴于点P ,则点P 表示的数是 .15.有一根长7cm 的木棒,要放进长、宽、高分别为5cm 、4cm 、3cm 的木箱, (填“能”或“不能”)放进去。
勾股定理练习题及答案
勾股定理练习题及答案勾股定理是数学中的一条基本定理,被广泛应用于几何学和物理学等领域。
它的形式简单,但是应用广泛,可以解决很多实际问题。
在这篇文章中,我们将通过一些练习题来巩固和应用勾股定理。
练习题一:已知直角三角形的斜边长为10,一条直角边长为6,请计算另一条直角边的长度。
解答一:根据勾股定理,直角边的平方和等于斜边的平方。
设另一条直角边的长度为x,则有:x^2 + 6^2 = 10^2化简得:x^2 = 100 - 36x^2 = 64x = 8练习题二:已知一个直角三角形的两条直角边分别为3和4,请计算斜边的长度。
解答二:同样地,根据勾股定理,斜边的平方等于直角边的平方和。
设斜边的长度为y,则有:y^2 = 3^2 + 4^2y^2 = 9 + 16y = 5练习题三:已知一个直角三角形的斜边长为13,一条直角边长为5,请计算另一条直角边的长度。
解答三:同样地,根据勾股定理,直角边的平方和等于斜边的平方。
设另一条直角边的长度为z,则有:z^2 + 5^2 = 13^2z^2 + 25 = 169z^2 = 144z = 12通过以上的练习题,我们可以看到勾股定理在解决直角三角形问题时的应用。
它通过简单的数学关系,将三角形的边长联系起来,帮助我们求解未知边长。
这在实际生活中也有广泛的应用,比如测量建筑物的高度、计算斜坡的倾斜度等等。
除了直角三角形,勾股定理还可以应用于其他几何图形。
例如,我们可以利用勾股定理计算矩形的对角线长度。
设矩形的长为a,宽为b,则对角线的长度d 可以通过以下公式计算:d^2 = a^2 + b^2此外,勾股定理还可以用于解决一些物理问题。
例如,当我们知道一个物体在斜面上的高度差和斜面的倾斜角度时,可以利用勾股定理计算物体在斜面上的总之,勾股定理是一条简单而重要的数学定理,它的应用范围广泛,可以解决很多实际问题。
通过练习题的实践,我们可以更好地理解和应用这一定理。
希望本文对你有所帮助!。
勾股定理练习题及答案
勾股定理练习题及答案一、选择题1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理,直角三角形的两直角边的平方和等于斜边的平方。
所以斜边的平方= 5²+ 12²= 25 + 144 = 169,斜边长为 13 厘米。
2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:对于选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,因为25 ≠ 36,所以不能组成直角三角形;对于选项 B,5²+ 12²= 25 + 144 =169,13²= 169,因为 169 = 169,所以能组成直角三角形;对于选项C,5²+ 11²= 25 + 121 = 146,12²= 144,因为146 ≠ 144,所以不能组成直角三角形;对于选项 D,2²+ 3²= 4 + 9 = 13,4²= 16,因为13 ≠ 16,所以不能组成直角三角形。
3、一个直角三角形的三边长分别为 2,3,x,则 x 的值为()A √13B √5C √13 或√5D 无法确定答案:C解析:当 x 为斜边时,x =√(2²+ 3²) =√13;当 3 为斜边时,x =√(3² 2²) =√5。
所以 x 的值为√13 或√5 。
4、已知直角三角形的两条边长分别是 5 和 12,则第三边的长为()A 13B √119C 13 或√119D 不能确定答案:C解析:当 12 为斜边时,第三边的长为√(12² 5²) =√119;当 5 和12 为直角边时,第三边的长为√(5²+ 12²) = 13。
勾股定理及常见题型分类
勾股定理及常见题型分类一、知识要点:1.勾股定理是指直角三角形斜边的平方等于两直角边平方和。
2.勾股定理的证明方法包括几何证明和代数证明,其中几何证明使用勾股树。
3.勾股定理的逆定理是指若一个三角形的三边满足勾股定理,则该三角形是直角三角形。
4.勾股定理常见题型包括勾股定理的应用、勾股定理的证明和勾股定理的逆定理。
二、典型题题型一:“勾股树”及其拓展类型求面积1.如图所示,正方形A、B、C、D构成了一棵勾股树,求最大正方形E的面积。
2.如图所示,直线l上有三个正方形a、b、c,已知a、c 的边长分别为6和8,求b的面积。
3.如图所示,以Rt△ABC的三边为直径分别向外作三个半圆,探索三个半圆的面积之间的关系。
4.如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是S1+S2=S3.5.如图所示,依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是4、5、6、7.题型二:勾股定理与图形问题1.如图所示,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,依此类推,第n个等腰直角三角形的斜边长是n+1.2.如图所示,求该四边形的面积。
3.如图所示,已知在△ABC中,∠A=45°,AC=2,AB=3+1,则边BC的长为3.4.如图所示,某公司的大门为长方形ABCD,上部为以AD为直径的半圆,已知AB=2.3m,BC=2m,卡车高2.5m,宽1.6m,判断卡车是否能通过公司的大门,并说明理由。
5.如图所示,已知AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
题型三:已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm、2cm,则斜边长为√5cm。
2.已知直角三角形的两边长为3cm、2cm,则另一条边长的平方是5cm²。
初中勾股定理练习题精选全文完整版
可编辑修改精选全文完整版第一章《勾股定理》练习题一、选择题(8×3′=24′) 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。
其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。
现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 二、填空题(12×3′=36′)9、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________。
勾股定理练习题(含答案)
勾股定理练习题【1】一、基础达标:1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A 2d (B d(C )2d (D )d8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3 B :4 C :5 D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC 为直径作半圆,则这个半圆的面积是.19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是. 二、综合发展: 1.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?3.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?4.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?15.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 小汽车 小汽车 B C 观测点A CB EC D所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9.解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11.解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
勾股定理10题
勾股定理10题
以下是10道关于勾股定理的题目:
1.已知直角三角形的两条直角边分别为3和4,求斜边的长度。
2.在一个直角三角形中,斜边长为5,一条直角边长为3,求另一条直角边的长度。
3.一个直角三角形的斜边长为13,其中一条直角边长为5,求另一条直角边的长度。
4.一个直角三角形的两条直角边分别为6和8,求斜边上的高。
5.已知直角三角形的斜边长为10,一条直角边与斜边的夹角为30°,求另一条直角边
的长度。
6.一个直角三角形的斜边长为17,其中一条直角边长为8,求这个直角三角形的面
积。
7.一个直角三角形的两条直角边分别为a和b,斜边长为c,且a ️c = 3:4:5,求这个
直角三角形的面积。
8.已知直角三角形的斜边长为13,且两条直角边的比为3:4,求这个直角三角形的面
积。
9.一个直角三角形的斜边长为25,其中一条直角边长为15,求这个直角三角形的一
个锐角的正切值。
10.一个直角三角形的两条直角边分别为6和8,求这个直角三角形的外接圆半径。
这些题目涵盖了勾股定理的基本应用,包括求斜边长度、求直角边长度、求高、求面积、求角度正切值以及求外接圆半径等。
通过练习这些题目,可以加深对勾股定理的理解和掌握。
勾股定理题型分类(经典)
勾股定理全章复习类型一:已知两边求第三边例1:⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长变式练习:已知两条线段的长分别为15和8,当第三条线段取整数_____时,这三条线段能围成一个直角三角形.类型二:判断三角形形状例1:下列线段不能组成直角三角形的是( ).A. B. C. D. 2、若三角形的三边长为a ,b ,c ,且满足等式(a +b)2-c 2=2ab ,则此三角形是______三角形.变式练习1:判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=;(3),,();2、若边长为a 的正方形的面积等于长为b +c ,宽为b -c 的长方形的面积,则以a ,b ,c 为三边长的三角形是______三角形.3、已知△ABC 的三边为a ,b ,c ,且a +b =7,ab =12,c =5,试判定△ABC 的形状.类型三:勾股树及变形例1:如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。
6,8,10a b c ===3,2,1===c b a 43,1,45===c b a 6,3,2===c b a a b c ,,a b c a 43b c 3422a m n =-22b m n =+2c mn =0m n >> A B C D7cm15题 变式练习:如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2……按照此规律继续下去,则S 2018的值为( )A .(22)2015 B .(22)2016 C .(12)2015 D .(12)2016 类型四:勾股定理证明的应用例1:如图1,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( )A S 1=S 2B S 1<S 2C S 1>S 2D 无法确定变式练习:如图,Rt△ABC 中,AC =5,BC =12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为 .类型五:数轴表示数例题1:在数轴上表示√17变式练习:如图,数轴上有两个直角三角形Rt △ABO 、Rt △CDO ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理典型分类练习题题型一:直接考查勾股定理例1.在ABCC∠=︒.∆中,90⑴已知6BC=.求AB的长AC=,8⑵已知17AC=,求BC的长AB=,15变式1:已知,△ABC中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,试说明△ABC是等腰三角形。
变式2:已知△ABC的三边a、b、c,且a+b=17,ab=60,c=13, △ABC是否是直角三角形?你能说明理由吗?题型二:利用勾股定理测量长度例1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?例2如图,水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分BC的长是0. 5米,把芦苇拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC.题型三:勾股定理和逆定理并用例3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点,且AB FB 41那么 △DEF 是直角三角形吗?为什么题型四:旋转中的勾股定理的运用:例4、如图,△ABC 是直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后,能及△ACP ′重合,若AP=3,求PP ′的长。
变式:如图,P 是等边三角形ABC 内一点,PA=2,PB=23,PC=4,求△ABC 的边长.分析:利用旋转变换,将△BPA 绕点B 逆时针选择60°,将三条线段集中到同一个三角形中,根据它们的数量关系,由勾股定理可知这是一个直角三角形.题型五:翻折问题例5:如图,矩形纸片ABCD 的边AB=10cm ,BC=6cm ,E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上的点G 处,求BE 的长.PAPCBCABD E 1015 变式:如图,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 好落在BC 边上的点F ,求CE 的长.题型6:勾股定理在实际中的应用:例6、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到 公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉 机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响, 已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?变式:如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?关于最短性问题例5、如右图1-19,壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处, 它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不 引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行 突然袭击.结果,壁虎的偷袭得到成功,获得了一顿美餐.请问壁虎至少要爬行多少路 程才能捕到害虫?(π取3.14,结果保留1位小数,可以用计算器计算)选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.在Rt △ABC 中,∠C=90,周长为60,斜边及一条直角边之比为13∶5,则这个三角形三边长分别是( )A.5、4、3B.13、12、5C.10、8、6D.26、24、103.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( ) A 、5组; B 、4组; C 、3组; D 、2组 4.下列结论错误的是( )A 、三个角度之比为1∶2∶3的三角形是直角三角形;B 、三条边长之比为3∶4∶5的三角形是直角三角形;C 、三条边长之比为8∶16∶17的三角形是直角三角形;D 、三个角度之比为1∶1∶2的三角形是直角三角形。
5.下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n ) 2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( ) A. ①② B. ②③ C. ①③ D. ③④6. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c) D . a:b:c =13∶5∶127.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形 8.三角形的三条中位线长分别为6、8、10,则该三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.以下列线段c b a \\的长为三边的三角形中,不是直角三角形的是( )A 25,24,7===c b a B.1,2,1===c b a C 5:4:3::=c b a D.15,13,12===c b a10.已知三角形的三边长为a 、b 、c ,如果()a b c c -+-+-+=51226169022,则△ABC 是( )A.以a 为斜边的直角三角形B.以b 为斜边的直角三角形C.以c 为斜边的直角三角形D.不是直角三角形11.有五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的摆放是( )715242520715202425157252024257202415(A)(B)(C)(D)12.若三角形ABC 中,∠A ∶∠B ∶∠C=2∶1∶1,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则下列等式中,成立的是( )A.222c b a =+ B.222c a = C.222a c = D.222b c =BACD13.已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或2514. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D. 815.如果三角形三边长分别为6、8、10,那么最大边上的高是( ) A.2.4 B.4.5 C.4.8 D.616.若直角三角形的两条直角边长分别为3cm 、4cm ,则斜边上的高为( )A 、25cm B 、125cm C 、 5 cm D 、512cm 17.直角三角形的两直角边分别为5cm ,12cm ,其中斜边上的高为( ). A .6cm B .8.5cm C .3013cm D .6013cm 18.在△ABC 中,∠C=90°,如果AB=10,BC ∶AC=3∶4,则BC=( ) A.6 B.8 C.10 D 、以上都不对19.已知一个直角三角形的两边长分别为3和4,则第三边长是( )A .5B .25C .7D .5或720.等腰三角形的底边为16cm ,底边上的高为6cm ,则腰长为( ) A.8 cm B 9cm C 10cm D 13cm21.Rt △一直角边的长为11,另两边为自然数,则Rt △的周长为( )A 、121B 、120C 、132D 、不能确定22.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( ) A .121 B .120 C .90 D .不能确定 23.已知直角三角形两边的长为3和4,则此三角形的周长为( ).A .12B .7+7C .12或7+7D .以上都不对24.在△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为 A .42 B .32 C .42或32 D .37或3325.如果Rt △两直角边的比为5∶12,则斜边上的高及斜边的比为( )A 、60∶13B 、5∶12C 、12∶13D 、60∶16926.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A 、24cm 2B 、36cm 2C 、48cm 2D 、60cm 227.等腰三角形底边上的高为8,周长为32,则三角形的面积为( )A 、56B 、48C 、40D 、3228.一个三角形的三边长分别是5、13、12,则它的面积等于( )A.30B.60C.65D.15629.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 及点D 重合, 折痕为EF ,则△ABE 的面积为( )A 、 6cm 2B 、8cm 2C 、10cm 2D 、12cm 230.在同一平面上把三边BC=3,AC=4、AB=5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( )A 、125 ;B 、135 ;C 、56 ;D 、24531.在△ABC 中,∠ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为( ) A.2 B.2.6 C.3 D.432.如图,梯子AB 靠在墙上,梯子的底端A 到墙根O 的距离为2m ,梯子的顶端B 到地 面的距离为7m ,现将梯子的底端A 向外移动到A ′,使梯子的底端A ′到墙根O 的距离 等于3m .同时梯子的顶端B 下降至B ′,那么BB ′( ).A .小于1mB .大于1mC .等于1mD .小于或等于1m33.将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( ).A .h ≤17cmB .h ≥8cmC .15cm ≤h ≤16cmD .7cm ≤h ≤16cm填空题1,在Rt △ABC 中,∠C=90º,如果a=8,c=17,则b=2.在Rt △ABC 中,∠C=90°(1)若a=5,b=12,则c=__(2)b=8,c=17,则S △ABC =___。
3.在Rt △ABC 中,∠C =90°,且2a =3b ,c =213,则a =_____,b =_____.4.直角三角形ABC 中,∠C=90º,若C=5,则a 2+b 2+c 2=5.在△ABC 中,AB=8cm,BC=15cm,要使CB=90º,则AC 长为 cm6.若一个三角形的三边之比为45∶28∶53,则这个三角形是__(按角分类)。