第一章行列式总结
线性代数知识点总结

大学线性代数知识点总结第一章 行列式 二三阶行列式N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n nn nj j j j j j j j j n ij a a a a ...)1(21212121)..(∑-=τ奇偶排列、逆序数、对换行列式的性质:①行列式行列互换,其值不变.转置行列式T D D = ②行列式中某两行列互换,行列式变号.推论:若行列式中某两行列对应元素相等,则行列式等于零. ③常数k 乘以行列式的某一行列,等于k 乘以此行列式. 推论:若行列式中两行列成比例,则行列式值为零; 推论:行列式中某一行列元素全为零,行列式为零. ④行列式具有分行列可加性⑤将行列式某一行列的k 倍加到另一行列上,值不变 行列式依行列展开:余子式ij M 、代数余子式ij j i ij M A +-=)1(定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零.克莱姆法则:非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j DD x j j ⋯⋯==、齐次线性方程组 :当系数行列式01≠=D 时,则只有零解逆否:若方程组存在非零解,则D 等于零特殊行列式:①转置行列式:332313322212312111333231232221131211a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a =③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零④三线性行列式:3331222113121100a a a a a a a 方法:用221a k 把21a 化为零,..化为三角形行列式⑤上下三角形行列式: 行列式运算常用方法主要行列式定义法二三阶或零元素多的 化零法比例化三角形行列式法、降阶法、升阶法、归纳法、第二章 矩阵矩阵的概念:n m A *零矩阵、负矩阵、行矩阵、列矩阵、n 阶方阵、相等矩阵矩阵的运算:加法同型矩阵---------交换、结合律 数乘n m ij ka kA *)(=---------分配、结合律乘法nm lkj ik n l kj l m ik b a b a B A *1**)()(*)(*∑==注意什么时候有意义一般AB=BA,不满足消去律;由AB=0,不能得A=0或B=0转置A A T T =)( T T T B A B A +=+)( T T kA kA =)( T T T A B AB =)(反序定理 方幂:2121k k k k A A A +=2121)(k k k kA A +=几种特殊的矩阵:对角矩阵:若AB 都是N 阶对角阵,k 是数,则kA 、A+B 、 AB 都是n 阶对角阵 数量矩阵:相当于一个数若…… 单位矩阵、上下三角形矩阵若…… 对称矩阵 反对称矩阵阶梯型矩阵:每一非零行左数第一个非零元素所在列的下方 都是0 分块矩阵:加法,数乘,乘法:类似,转置:每块转置并且每个子块也要转置注:把分出来的小块矩阵看成是元素逆矩阵:设A 是N 阶方阵,若存在N 阶矩阵B 的AB=BA=I 则称A 是可逆的, B A =-1非奇异矩阵、奇异矩阵|A|=0、伴随矩阵 初等变换1、交换两行列 2.、非零k 乘某一行列3、将某行列的K 倍加到另一行列初等变换不改变矩阵的可逆性 初等矩阵都可逆初等矩阵:单位矩阵经过一次初等变换得到的对换阵 倍乘阵 倍加阵等价标准形矩阵⎪⎪⎭⎫⎝⎛=O O O I D r r矩阵的秩rA :满秩矩阵 降秩矩阵 若A 可逆,则满秩 若A 是非奇异矩阵,则rAB=rB 初等变换不改变矩阵的秩求法:1定义2转化为标准式或阶梯形矩阵与行列式的联系与区别:都是数表;行列式行数列数一样,矩阵不一样;行列式最终是一个数,只要值相等,就相等,矩阵是一个数表,对应元素相等才相等;矩阵n ij n ij a k ka )()(=,行列式n ij nn ij a k ka =逆矩阵注:①AB=BA=I 则A 与B 一定是方阵 ②BA=AB=I 则A 与B 一定互逆;③不是所有的方阵都存在逆矩阵;④若A 可逆,则其逆矩阵是唯一的.矩阵的逆矩阵满足的运算律:1、可逆矩阵A 的逆矩阵也是可逆的,且A A =--11)(2、可逆矩阵A 的数乘矩阵kA 也是可逆的,且111)(--=A kkA 3、可逆矩阵A 的转置T A 也是可逆的,且T T A A )()(11--=4、两个可逆矩阵A 与B 的乘积AB 也是可逆的,且111)(---=A B AB 但是两个可逆矩阵A 与B 的和A+B 不一定可逆,即使可逆,但11)(--+≠+B A B AA 为N 阶方阵,若|A|=0,则称A 为奇异矩阵,否则为非奇异矩阵. 5、若A 可逆,则11--=A A伴随矩阵:A 为N 阶方阵,伴随矩阵:⎪⎪⎭⎫⎝⎛=22211211*A A A A A 代数余子式 特殊矩阵的逆矩阵:对1和2,前提是每个矩阵都可逆1、分块矩阵⎪⎪⎭⎫ ⎝⎛=C O B A D 则⎪⎪⎭⎫ ⎝⎛-=-----11111C O BC A AD 2、准对角矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=4321A A A A A , 则⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----141312111A A A A A 3、 I A A A AA ==** 4、1*-=A A A A 可逆 5、1*-=n A A 6、()()A AA A 1*11*==--A 可逆7、()()**T TA A = 8、()***AB AB =判断矩阵是否可逆:充要条件是0≠A ,此时*11A AA =- 求逆矩阵的方法:定义法I AA =-1伴随矩阵法AA A *1=-初等变换法()()1||-=A I I A n n 只能是行变换初等矩阵与矩阵乘法的关系: 设()nm ij aA *=是mn 阶矩阵,则对A 的行实行一次初等变换得到的矩阵,等于用同等的m 阶初等矩阵左乘以A :对A 的列实行一次初等变换得到的矩阵,等于用同种n 阶初等矩阵右乘以A 行变左乘,列变右乘第三章 线性方程组消元法 非齐次线性方程组:增广矩阵→简化阶梯型矩阵rAB=rB=r 当r=n 时,有唯一解;当n r ≠时,有无穷多解 rAB ≠rB,无解齐次线性方程组:仅有零解充要rA=n 有非零解充要rA<n 当齐次线性方程组方程个数<未知量个数,一定有非零解 当齐次线性方程组方程个数=未知量个数,有非零解充要|A|=0齐次线性方程组若有零解,一定是无穷多个N 维向量:由n 个实数组成的n 元有序数组.希腊字母表示加法数乘 特殊的向量:行列向量,零向量θ,负向量,相等向量,转置向量 向量间的线性关系: 线性组合或线性表示向量组间的线性相关无:定义179P向量组的秩:极大无关组定义P188定理:如果rj j j ααα,.....,21是向量组s ααα,.....,21的线性无关的部分组,则它是 极大无关组的充要条件是:s ααα,.....,21中的每一个向量都可由rj j j ααα,.....,21线性表出.秩:极大无关组中所含的向量个数.定理:设A 为mn 矩阵,则r A r =)(的充要条件是:A 的列行秩为r.现性方程组解的结构:齐次非齐次、基础解系线性组合或线性表示注:两个向量αβ,若βαk =则α是β线性组合单位向量组任意向量都是单位向量组的线性组合 零向量是任意向量组的线性组合任意向量组中的一个都是他本身的线性组合 向量组间的线性相关无注: n 个n 维单位向量组一定是线性无关 一个非零向量是线性无关,零向量是线性相关 含有零向量的向量组一定是线性相关 若两个向量成比例,则他们一定线性相关向量β可由n ααα,..,21线性表示的充要条件是)...()...(2121T Tn TTTnTTr r βαααααα=判断是否为线性相关的方法:1、定义法:设n k k k ....21,求n k k k ....21适合维数低的2、向量间关系法183P :部分相关则整体相关,整体无关则部分无关3、分量法n 个m 维向量组180P :线性相关充要n r Tn T T <⇒)....(21ααα 线性无关充要n r T n T T =⇒)....(21ααα推论①当m=n 时,相关,则0321=T T T ααα;无关,则0321≠T T T ααα ②当m<n 时,线性相关推广:若向量s ααα,...,21组线性无关,则当s 为奇数时,向量组13221,...,αααααα+++s 也线性无关;当s 为偶数时,向量组也线性相关.定理:如果向量组βααα,,...,21s 线性相关,则向量β可由向量组s ααα,...,21线性表出,且 表示法唯一的充分必要条件是s ααα,...,21线性无关. 极大无关组注:向量组的极大无关组不是唯一的,但他们所含向量的个数是确定的;不全为零的向量组的极大无关组一定存在; 无关的向量组的极大无关组是其本身; 向量组与其极大无关组是等价的. 齐次线性方程组I 解的结构:解为...,21αα I 的两个解的和21αα+仍是它的解; I 解的任意倍数αk 还是它的解;I 解的线性组合s s c c c ααα+++....2211也是它的解,s c c c ,...,21是任意常数.非齐次线性方程组II 解的结构:解为...,21μμII 的两个解的差21μμ-仍是它的解;若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的一个解,则u+v 是II 的一个解. 定理:如果齐次线性方程组的系数矩阵A 的秩n r A r <=)(,则该方程组的基础解系存在,且在每个基础解系中,恰含有n-r 个解.若μ是非齐次线性方程组AX=B 的一个解,v 是其导出组AX=O 的全部解,则u+v 是II 的全部解.第四章 向量空间向量的内积 实向量定义:α,β=n n T b a b a b a +++=....2211αβ 性质:非负性、对称性、线性性 α,k β=k α,β; k α,k β=2k α,β;α+β,δγ+=α,γ+α,δ+β,γ+β,δ;),(),(1111j i sj j ri i j sj j ri i i l k l k βαβα∑∑∑∑===== n R ∈δγβα,,,,向量的长度),(ααα=0=α的充要条件是α=0;α是单位向量的充要条件是α,α=1单位化 向量的夹角正交向量:αβ是正交向量的充要条件是α,β=0 正交的向量组必定线性无关 正交矩阵:n阶矩阵A I A A AA T T ==性质:1、若A 为正交矩阵,则A可逆,且T A A =-1,且1-A 也是正交矩阵;2、若A 为正交矩阵,则1±=A ;3、若A 、B为同阶正交矩阵,则AB也是正交矩阵; 4、n阶矩阵A=ij a 是正交矩阵的充要条件是A的列行向量组是 标准正交向量;第五章 矩阵的特征值和特征向量 特征值、特征向量A 是N 阶方阵,若数λ使AX=λX,即λI-A=0有非零解,则称λ为A 的一 个特征值,此时,非零解称为A 的属于特征值λ的特征向量. |A|=n λλλ...**21 注: 1、AX=λX2、求特征值、特征向量的方法0=-A I λ 求i λ 将i λ代入λI-AX=0求出所有非零解 3、对于不同的矩阵,有重根、单根、复根、实根主要学习的特殊:n I )(λ的特征向量为任意N 阶非零向量或)(21不全为零i n c c c c ⎪⎪⎪⎭⎫ ⎝⎛4、特征值: 若)0(≠λλ是A 的特征值则1-A --------λ1 则m A --------m λ则kA --------λk若2A =A 则-----------λ=0或1若2A =I 则-----------λ=-1或1若k A =O 则----------λ=0迹trA :迹A=nn a a a +⋯⋯++2211性质:1、N 阶方阵可逆的充要条件是A 的特征值全是非零的2、A 与1-A 有相同的特征值3、N 阶方阵A 的不同特征值所对应的特征向量线性无关4、5、P281相似矩阵定义P283:A 、B 是N 阶矩阵,若存在可逆矩阵P,满足B AP P =-1,则矩阵A 与B 相似,记作A~B性质1、自身性:A~A,P=I2、对称性:若A~B 则B~A B AP P =-1 1-=PBP A A BP P =---111)(3、传递性:若A~B 、B~C 则A~C B AP P =-111 C BP P =-212---C P P A P P =-)()(211214、若AB,则A 与B 同不可逆5、若A~B,则11~--B A B AP P =-1两边同取逆,111---=B P A P6、若A~B,则它们有相同的特征值. 特征值相同的矩阵不一定相似7、若A~B,则)()(B r A r = 初等变换不改变矩阵的秩例子:B AP P =-1则1100100-=P PB AO AP P =-1 A=OI AP P =-1 A=II AP P λ=-1 A=I λ矩阵对角化定理:N 阶矩阵A 与N 阶对角形矩阵相似的充要条件是A 有N 个线性无关的特征向量注:1、P 与^中的i i x λ与顺序一致2、A~^,则^与P 不是唯一的推论:若n 阶方阵A 有n 个互异的特征值,则~^A P281定理:n 阶方阵~^A 的充要条件是对于每一个i K 重特征根i λ,都有i i K n A I r -=-)(λ注:三角形矩阵、数量矩阵I λ的特征值为主对角线.约当形矩阵约当块:形如⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=λλλλ111J 的n 阶矩阵称为n 阶约当块; 约当形矩阵:由若干个约当块组成的对角分块矩阵⎪⎪⎪⎭⎫ ⎝⎛=n J J J J 21i J 是约当块称为约当形矩阵. 定理:任何矩阵A 都相似于一个约当形矩阵,即存在n 阶可逆矩阵J AP P =-1.第六章 二次型二次型与对称矩阵只含有二次项的n 元多项式f 称为一个n 元二次型,简称二次型. 标准型:形如 的二次型,称为标准型.规范型:形如 的二次型,称为规范型.线性变换矩阵的合同:设AB 是n 阶方阵,若存在一个n 阶可逆矩阵C,使得 则称A 与B 是合同的,记作A B.合同的性质:反身性、对称性、传递性、秩、化二次型为标准型:配方法、做变换二次型中不含有平方项。
=线性代数期末复习总结.docx

第一章行列式一、行列式的性质性质1行列式与它的转置行列式相等,即|A | = |A T|.(行列互换,行列式不变)性质2互换行列式的两行(列),行列式变号.推论1如果行列式有两行(列)完全相同,则此行列式为零.性质3行列式的某一行(列)中所有的元素都乘以同一个倍数k,等于用数k 乘以此行列式.a ua i2a i3anai2^13ka na i2a i3a2Xa22a23 — ka 2xka’2 転23 = ka 2}a22 a23角1 a 32 «33a 3i角2 。
33脳31«33若行列式中有一行(列)为0,则行列式为0.行列式中如果有两行(列)元素成比例,则此行列式为零.坷 1坷]a n 纠341 a n 坷 3a21+b l a 22+b 2 如+4—a 21 a 22"23+ b l b 2 S。
31 “32 。
33。
31 “32 “33。
31 “32 “33 性质6把行列式的某一列(行)的各元素乘以同一个倍数然后加到另一列(行) 对应的元素上去,行列式不变.a\\a i2ai3au a n + ka !3 a i3 aCL CLa CL + kaaW21 u 22w23^21 "22 ' e"23 "23 “31 °32 "33°31 “32 + 氐 °33 。
33性质7 (Laplace 定理)行列式等于它的任一行(列)的各元素与其对应的代数余 子式乘积之和,BP : | A| = a ix A i} + a i2A i2 + • • • + a in A in (1 = 1,2,• • •, n )推论2性质4 。
21 ^22a31 “32ka [{ ka {2。
13。
23a 33 。
21 °3a n"12 "13 a22 ^23a 32= 40 = 0性质5行列式中如果有两行(列)元素成比例,则此行列式为零.二. 行列式的计算 1、字母型(用性质求值)2a I 】(1)、若三阶行列式£>= a tJ =3,则2°3i"1 “3—2d] -2^2—2a*(2)、若三阶行列式D = S b 2 g=-1,则 -2叽-2b 2 -2b.C] c 2 c 3-2C] -2C 2 -2C 32、四阶行列式计算降阶计算。
线性代数重点知识总结

说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
线性代数知识点总结

线性代数知识点总结线性代数知识点总结篇1第一章行列式知识点1:行列式、逆序数知识点2:余子式、代数余子式知识点3:行列式的性质知识点4:行列式按一行(列)展开公式知识点5:计算行列式的方法知识点6:克拉默法则第二章矩阵知识点7:矩阵的概念、线性运算及运算律知识点8:矩阵的乘法运算及运算律知识点9:计算方阵的幂知识点10:转置矩阵及运算律知识点11:伴随矩阵及其性质知识点12:逆矩阵及运算律知识点13:矩阵可逆的判断知识点14:方阵的行列式运算及特殊类型的矩阵的运算知识点15:矩阵方程的求解知识点16:初等变换的概念及其应用知识点17:初等方阵的概念知识点18:初等变换与初等方阵的关系知识点19:等价矩阵的概念与判断知识点20:矩阵的子式与最高阶非零子式知识点21:矩阵的秩的概念与判断知识点22:矩阵的秩的性质与定理知识点23:分块矩阵的概念与运算、特殊分块阵的运算知识点24:矩阵分块在解题中的技巧举例第三章向量知识点25:向量的概念及运算知识点26:向量的线性组合与线性表示知识点27:向量组之间的线性表示及等价知识点28:向量组线性相关与线性无关的概念知识点29:线性表示与线性相关性的关系知识点30:线性相关性的判别法知识点31:向量组的最大线性无关组和向量组的秩的概念知识点32:矩阵的秩与向量组的秩的关系知识点33:求向量组的最大无关组知识点34:有关向量组的定理的综合运用知识点35:内积的概念及性质知识点36:正交向量组、正交阵及其性质知识点37:向量组的正交规范化、施密特正交化方法知识点38:向量空间(数一)知识点39:基变换与过渡矩阵(数一)知识点40:基变换下的坐标变换(数一)第四章线性方程组知识点41:齐次线性方程组解的性质与结构知识点42:非齐次方程组解的性质及结构知识点43:非齐次线性线性方程组解的各种情形知识点44:用初等行变换求解线性方程组知识点45:线性方程组的公共解、同解知识点46:方程组、矩阵方程与矩阵的乘法运算的关系知识点47:方程组、矩阵与向量之间的联系及其解题技巧举例第五章矩阵的特征值与特征向量知识点48:特征值与特征向量的概念与性质知识点49:特征值和特征向量的求解知识点50:相似矩阵的概念及性质知识点51:矩阵的相似对角化知识点52:实对称矩阵的相似对角化.知识点53:利用相似对角化求矩阵和矩阵的幂第六章二次型知识点54:二次型及其矩阵表示知识点55:矩阵的合同知识点56 : 矩阵的等价、相似与合同的关系知识点57:二次型的标准形知识点58:用正交变换化二次型为标准形知识点59:用配方法化二次型为标准形知识点60:正定二次型的概念及判断线性代数知识点总结篇2行列式一、行列式概念和性质1、逆序数:所有的逆序的总数2、行列式定义:不同行不同列元素乘积代数和3、行列式性质:(用于化简行列式)(1)行列互换(转置),行列式的值不变(2)两行(列)互换,行列式变号(3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k乘此行列式(4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。
线性代数知识点总结

线性代数知识点总结第一章 行列式一要点1、二阶、三阶行列式2、全排列和逆序数;奇偶排列可以不介绍对换及有关定理;n 阶行列式的定义3、行列式的性质4、n 阶行列式ij a D =;元素ij a 的余子式和代数余子式;行列式按行列展开定理5、克莱姆法则二基本要求1、理解n 阶行列式的定义2、掌握n 阶行列式的性质3、会用定义判定行列式中项的符号4、理解和掌握行列式按行列展开的计算方法;即+11j i A a +22j i A a ⎩⎨⎧≠==+j i j i D A a jn in 0 +j i A a 1122i j a A +⎩⎨⎧≠==+j i j i D A a nj ni0 5、会用行列式的性质简化行列式的计算;并掌握几个基本方法:归化为上三角或下三角行列式;各行列元素之和等于同一个常数的行列式;利用展开式计算6、掌握应用克莱姆法则的条件及结论会用克莱姆法则解低阶的线性方程组7、了解n 个方程n 个未知量的齐次线性方程组有非零解的充要条件第二章 矩阵一要点1、矩阵的概念n m ⨯矩阵n m ij a A ⨯=)(是一个矩阵表..当n m =时;称A 为n 阶矩阵;此时由A 的元素按原来排列的形式构成的n 阶行列式;称为矩阵A 的行列式;记为A .注:矩阵和行列式是两个完全不同的两个概念..2、几种特殊的矩阵:对角阵;数量阵;单位阵;三角形矩阵;对称矩阵3、矩阵的运算;矩阵的加减法;数与矩阵的乘法;矩阵的转置;矩阵的乘法1矩阵的乘法不满足交换律和消去律;两个非零矩阵相乘可能是零矩阵..如果两矩阵A 与B 相乘;有BA AB =;则称矩阵A 与B 可换..注:矩阵乘积不一定符合交换2方阵的幂:对于n 阶矩阵A 及自然数k ;个k k A A A A ⋅⋅= 规定I A =0;其中I 为单位阵 .3 设多项式函数k k k k a a a a ++++=--λλλλϕ1110)( ;A 为方阵;矩阵A 的多项式I a A a A a A a A k k k k ++++=--1110)( ϕ;其中I 为单位阵..4n 阶矩阵A 和B ;则B A AB =.5n 阶矩阵A ;则A A nλλ=4、分块矩阵及其运算5、逆矩阵:可逆矩阵若矩阵A 可逆;则其逆矩阵是唯一的;矩阵A 的伴随矩阵记为*A ; E A A A AA ==**矩阵可逆的充要条件;逆矩阵的性质..6、矩阵的初等变换:初等变换与初等矩阵;初等变换和初等矩阵的关系;矩阵在等价意义下的标准形;矩阵A 可逆的又一充分必要条件:A 可以表示成一些初等矩阵的乘积;用初等变换求逆矩阵..7、矩阵的秩:矩阵的k 阶子式;矩阵秩的概念;用初等变换求矩阵的秩8、矩阵的等价二要求1、理解矩阵的概念;矩阵的元素;矩阵的相等;矩阵的记号等2、了解几种特殊的矩阵及其性质3、掌握矩阵的乘法;数与矩阵的乘法;矩阵的加减法;矩阵的转置等运算及性质4、理解和掌握逆矩阵的概念;矩阵可逆的充分条件;伴随矩阵和逆矩阵的关系;当A 可逆时;会用伴随矩阵求逆矩阵5、了解分块矩阵及其运算的方法1在对矩阵的分法符合分块矩阵运算规则的条件下;其分块矩阵的运算在形式上与不分块矩阵的运算是一致的..2特殊分法的分块矩阵的乘法;例如n m A ⨯;l n B ⨯;将矩阵B 分块为) (21l b b b B =;其中j b l j 2, ,1=是矩阵B 的第j 列;则=AB ) (21l b b b A ) (21l Ab Ab Ab =又如将n 阶矩阵P 分块为) (21n p p p P =;其中j p n j 2, ,1=是矩阵P 的第j 列.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n P λλλ 0 0 00 0 00 0 0 21 ) (21n p p p = ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ 0 0 00 0 00 0 0 21) (2211n n p p p λλλ = 3设对角分块矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=SS A A A A 2211 ;),2,1(s P A PP =均为方阵; A 可逆的充要条件是PP A 均可逆;s P ,2,1=;且⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=----11221111 ss A A A A6、理解和掌握矩阵的初等变换和初等矩阵及其有关理论;掌握矩阵的初等变换;化矩阵为行最简形;会用初等变换求矩阵的秩、求逆矩阵7、理解矩阵的秩的概念以及初等变换不改变矩阵的秩等有关理论8、若矩阵A 经过有限次初等变换得到矩阵B ;则称矩阵A 和矩阵B 等价;记为B A ≅. n m ⨯矩阵A 和B 等价当且仅当)()(B r A r =;在等价意义下的标准型:若r A r =)(;则r D A ≅;⎥⎦⎤⎢⎣⎡=000 r r I D ;r I 为r 阶单位矩阵.. 因此n 阶矩阵A 可逆的充要条件为n I A ≅..第三章 线性方程组一要点1、n 维向量;向量的线性运算及其有关运算律记所有n 维向量的集合为n R ;n R 中定义了n 维向量的线性运算;则称nR 为 n 维向量空间..2、向量间的线性关系1线性组合与线性表示;线性表示的判定2线性相关与线性无关;向量组的线性相关与无关的判定3、向量组的等价;向量组的秩;向量组的极大无关组及其求法;向量组的秩及其求法 1设有两个向量组,1α,2αs α )(A,1β,2βt β )(B向量组)(A 和)(B 可以相互表示;称向量组)(A 和)(B 等价..向量组的等价具有传递性..2一个向量组的极大无关组不是惟一的;但其所含向量的个数相同;那么这个相同的个数定义为向量组的秩..4、矩阵的秩与向量组的秩的关系5、线性方程组的求解1线性方程组的消元解法2线性方程组解的存在性和唯一性的判定3线性方程组解的结构4齐次线性方程的基础解系与全部解的求法5非齐次方程组解的求法二要求1、理解n 维向量的概念;掌握向量的线性运算及有关的运算律2、掌握向量的线性组合、线性表示、线性相关、线性无关等概念3、掌握线性表示、线性相关、线性无关的有关定理4、理解并掌握向量组的等价极大无关组、向量组的秩等概念;及极大无关组、向量组秩的求法5、掌握线性方程组的矩阵形式、向量形式的表示方法6、会用消元法解线性方程组7、理解并掌握齐次方程组有非零解的充分条件及其判别方法8、理解并掌握齐次方程组的基础解系、全部解的概念及其求法9、理解非齐次方程组与其导出组解的关系;掌握非齐次方程组的求解方法第四章 矩阵的特征值与特征向量一要点1、矩阵的特征值与特征向量的定义;特征方程、特征值与特征向量的求法与性质2、相似矩阵的定义、性质;矩阵可对角化的条件3、实对称矩阵的特征值和特征向量向量内积的定义及其性质;正交向量组;施密特正交化方法;正交矩阵;实对称矩阵的特征值与特征向量的性质;实对称矩阵的对角化二要求1、理解矩阵的特征值、特征向量的概念及有关性质2、掌握特征值与特征向量的求法3、理解并掌握相似矩阵的概念与性质4、掌握判断矩阵与对角矩阵相似的条件及对角化的方法5、会将实对称矩阵正交相似变换化为对角矩阵..第五章二次型一要点1、二次型与对称矩阵:二次型的定义;二次型与对称矩阵的对应关系2、二次型与对称矩阵的标准形配方法;初等变换法;正交变换法;合同矩阵;二次型及对称矩阵的标准形与规范形 3、二次型与对称矩阵的有定性二次型与对称矩阵的正定、负定、半正定、半负定二要求1、理解并掌握二次型的定义及其矩阵的表示方法..2、会用三种非退化线性替换:即配方法、初等变换法、正交变换法化二次型为标准形及规范型3、掌握二次型的正定、负定、半正定、半负定的定义;会判定二次型的正定性..。
线性代数-第一章总结

第一章 行列式线性方程组的求解是线性代数的一个重要课题。
行列式是由研究线性方程组产生的,它是一个重要的数学工具,它在数学及其他学科中都有着广泛的应用。
本章的教学基本要求:了解行列式的定义和性质,掌握利用行列式的性质及按行(列)展开定理计算行列式的方法,会计算简单的n 阶行列式。
理解和掌握克拉默(Cramer )法则。
本章的重点及难点:利用行列式的性质及按行(列)展开定理计算行列式的值,主要是三阶、四阶行列式的计算;利用克拉默法则求解线性方程组。
§ 1 二阶、三阶行列式一、内容提要 1.二阶行列式的定义2112221122211211a a a a a a a a -= 其中ij a 称为行列式的元素,ij a 的两个下标表示该元素在行列式中的位置,第一个下标称为行标,表明该元素位于第i 行;第二个下标称为列标,表明该元素位于第j 列。
二阶行列式中,等式右端的表达式又称为行列式的展开式,二阶行列式的展开式可以用所谓对角线法则得到,即:2111 a a -+2212a a =21122211a a a a -其中,实线上两个元素的乘积带正号,虚线上两个元素的乘积带负号,所得两项的代数和就是二阶行列式的展开式。
2.三阶行列式的定义333231232221131211a a a a a a a a a 322311332112312213322113312312332211a a a a a a a a a a a a a a a a a a ---++= 三阶行列式的展开式也可以用对角线法则得到,三阶行列式的对角线法则如下图所示:+- 333231232221131211a a a a a a a a a其中每一条实线上三个元素的乘积带正号,每一条虚线上三个元素的乘积带负号,所得六项的代数和就是三阶行列式的展开式。
二、例题分析例1 求解二元线性方程组⎩⎨⎧=+=+342232121x x x x解: 由于系数行列式 4123=D 0101243≠=⨯-⨯= 2324243221=⨯-⨯==D , 7123331232=⨯-⨯==D 所以方程组有唯一解为: 2.011==D Dx , 7.022==DD x 。
考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。
(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半;<2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。
方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。
~特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。
3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1(。
定理:一个排列中任意两个元素对换,改变排列的奇偶性。
奇排列变为标准排列的对换次数为基数,偶排列为偶数。
n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。
%2、互换行列式两行或两列,行列式变号。
若有两行(列)相等或成比例,则为行列式0。
3、行列式某行(列)乘数k,等于k 乘此行列式。
行列式某行(列)的公因子可提到外面。
4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。
5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。
6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。
(按行、列展开法则)}7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。
线性代数各章要点整理

第一章行列式主要知识点一、行列式的定义和性质1.余子式和代数余子式的定义2.行列式按一行或一列展开的公式1)2)3.行列式的性质1)2)用数k乘行列式的某一行(列)所得新行列式=原行列式的k倍. 推论3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论4)如果行列式中两行(列)对应元素成比例,则行列式值为0.5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k倍加到另一行(列)上,所得新行列式与原行列式的值相等.二、行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形(或对角形)行列式的计算.3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开.4.行列式中各行元素之和为一个常数的类型.5.范德蒙行列式的计算公式第二章矩阵主要知识点一、矩阵的概念1.要分清矩阵与行列式的区别2.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵)二、矩阵的运算1.矩阵A , B的加、减、乘有意义的充分必要条件2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法、乘法的交换律和结合律;乘法关于加法的分配律)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点).3.转置对称阵和反对称阵1)转置的性质2)若A T=A (A T= - A),则称A为对称(反对称)阵4.逆矩阵1)方阵A可逆(也称非异,非奇异,满秩)的充分必要条件是.当A可逆时,.2)方阵A的伴随阵的定义。
重要公式;与A -1的关系(当方阵A可逆时,)3)重要结论:若n阶方阵A,B满足AB=E,则A,B都可逆,且A-1=B ,B-1=A.4)逆矩阵的性质:; ; .5)消去律:设方阵A可逆,且AB=AC(BA=CA),则必有B=C。
(若不知A可逆,仅知A≠0结论不一定成立。
数学三【线性代数】第一章 行列式(概念整理)

-4-
二、行列式理论在线性方程组中的应用——克莱姆法则
对方程组
a11 x1 a12 x2 a1n xn 0, a x a x a x 0, 21 1 22 2 2n n an1 x1 an 2 x2 ann xn 0
a12 a1n a11 ai 2 bi 2 ain bin ai1 an 2 ann an1
a12 a1n a11 ai 2 ain bi1 an 2 ann an1
a12 a1n bi 2 bin . an 2 ann
原来的排列次序构成的 n 1 阶行列式,称为元素 aij 的余子式,记为 M ij ,称
Aij (1)i j M ij 为元素 aij 的代数余子式.
(二)几个特殊的高阶行列式
a1 0 1. 对角行列式——形如 0
于其对角线上元素之积.
0 0 a2 0 ,称为对角行列式,对角行列式等 0 an a12 a1n a11 a22 a2 n a21 及 0 ann an1 0 0 a22 0 为 an 2 ann
5. 行列式的某行(或列)的倍数加到另一行(或列),行列式不变,即
a1n a11 ain ai1 ka j1 a jn a j1 ann an1
a12 ai 2 ka j 2 a j2 an 2
a1n ain ka jn , 其中 k 为任 a jn ann
a11 0 2. 上(下)角行列式——称 0
上三角行列式和下三角行列式,他们都等于主对角线上的元素之积.
第一章 行列式总结

第一章行列式一、 二、三阶行列式定义的引出 1. 二阶行列式例1:二阶线性方程组⎩⎨⎧=+=+22221211212111b x a x a b x a x a且021122211≠-a a a a .解:利用加减消元可求得122122112121121122122111221221,.b a a b a b b a x x a a a a a a a a --==--取2112221122211211a a a a a a a a D -==,2122212221211b a a b a b a b D -==,得.,2211DD x DD x ==定义1 二阶行列式由22个数排成2行2列所组成下面的式子(或符号)2112221122211211a a a a a a a a -= 称为二阶行列式,行列式中每一个数称为行列式的元素,数ij a 称为行列式的元素,它的第一个下标称为行标,表明该元素位于第行,第二个下标j 称为列标, 表明该元素位于第j 列.位于第行第j 列的元素称为行列式的),(j i 元。
2阶行列式由22个数组成,两行两列;展开式是一个数或多项式;若是多项式则必有2!2=项,且正负项的各数相同。
应用:解线性方程 例2:解方程组.328322121⎩⎨⎧-=-=+x x x x解D 2132-=13)2(2⨯--⨯=,7-=1D 2338--=)3(3)2(8-⨯--⨯=,7-=2D 3182-=18)3(2⨯--⨯=.14-=因,07≠-=D 故所给方程组有唯一解1x DD 1=77--=,1=2x DD 2=714--=.2=2.三阶行列式定义2由23个数排成3行3列所组成下面的式子(符号)i i i 1112112121212a b D a b b a a b ==-333231232221131211a a a a a a a a a =.332112322311312213322113312312332211a a a a a a a a a a a a a a a a a a ---++称为三阶行列式。
第一章(第一节) 行列式

对分子的观察结果与对分母的观察结果一样。 为了更加方便写出三元线性方程组的解,更好 记忆解的解构,就提出了三阶行列式的定义。 三阶行列式的定义 给出32=9个数,排成三行三列的数表
a11 a21 a31
a12 a22 a32
a13 a23 a33
[6]
a11 a12
a13
D a21 a22 a23 a31 a32 a33
(1)每项都是三个元素的乘积,且三个元素来 自不同行、不同列,且每行一个元素,每列也是 一个元素,共3!=6项; (2)6项中三项为正,与主对角线平行的方向 的三个元素的乘积为正,与副对角线平行的方 向的三个元素的乘积为负。
b1 b2 b3
a12 a22 a32
a13 a23 a33
b1a22 a33 a12 a23b3 a13b2a32 a13a22b3 b1a23a32 a12b2a32
D
a11
a12
a21 a22
, D1
b1 b2
a12 a22
, D2
a11
b1
a21 b2
当D≠0时,有
b1 b2 D1 x1 a11 D a21 a12 a11 a22 a21 D2 , x2 a12 a11 D a22 a21 b1 b2 a12 a22
可以看出,求x1的解时,x1所在系数列被右端 常系数列替换,其余不变,求x2时,x2所在系 数列被右端常系数列替换,其余不变。这样更 加方便写出二元线性方程组的解,更好记忆。
首先定义:a11,a22,a33三个元素的连线称为主对 角线,用实线表示,a13,a22,a31三个元素的连线 称为副对角线,用虚线表示。
对分母的观察结果:
大一高数行列式知识点总结

大一高数行列式知识点总结一、行列式的定义行列式是线性代数中的重要概念,它由方阵中的元素按照一定规律组织而成。
对于一个n阶方阵A,其行列式记作det(A)或|A|。
二、行列式的性质1. 行列式对调换行或列的顺序不变。
2. 若方阵A的某一行(或列)的元素全部为0,则det(A)=0。
3. 若方阵A的某两行(或列)的对应元素互换,则det(A)变号。
4. 若方阵A的某一行(或列)的元素是另一行(或列)对应元素的常数倍,则det(A)成比例。
5. 若方阵A的两行(或列)完全相同,则det(A)=0。
三、求行列式的方法1. 拉普拉斯展开法:a. 选择某一行(或列)进行展开;b. 对该行(或列)的元素进行运算,再进行乘法运算;c. 将乘法结果与对应的元素符号相乘,再进行相加操作。
2. 三角形法则:a. 对于一个上三角形矩阵,主对角线上的元素依次相乘;b. 对于一个下三角形矩阵,副对角线上的元素依次相乘;c. 将乘法结果与对应的元素符号相乘,再进行相加操作。
四、逆序对与行列式的关系逆序对是指在一个数列中,如果位置i的数比位置j的数大,但i<j,那么就称(i,j)为一个逆序对。
逆序对的奇偶性对应了行列式的符号。
1. 偶排列:逆序对的数量为偶数,行列式符号为正。
2. 奇排列:逆序对的数量为奇数,行列式符号为负。
五、行列式的计算方法1. 二阶行列式:对于一个2x2的方阵A,其行列式计算公式为:|A| = a11*a22 - a12*a21。
2. 三阶行列式:对于一个3x3的方阵A,其行列式计算公式为:|A| =a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - a31*a22*a13 -a32*a23*a11 - a33*a21*a12。
3. 高阶行列式:对于一个n阶行列式,可以利用拉普拉斯展开法或三角形法则进行计算。
六、行列式的应用行列式在线性代数和相关学科中有广泛的应用,包括线性方程组的求解、特征值与特征向量的计算以及矩阵的求逆等。
线代_第1章行列式(知识点汇总)

对换改变排列的奇偶性
在排列中,将任意2个元素对调,
其余元素不动----对换
9
3.n 阶行列式
n阶行列式的定义
a11 a12 L
a21 a22 L
a1n
a2n
1
a a t 1 p1 2 p2
L
anpn
L L L L L L L
an1 an2 L ann
(1)t aq1 a1 q2 2 L aqnn
3
第1章行列式----知识结构
3.展开式:余子式Mij,代数余子式Aij ,
Aij 1 i j Mij
| A |
a A n
j1 kj kj
a A n
k 1 kj kj
a A n j1 ij kj
0(i
k)
a A n i 1 ik ij
0(k
j)
4.行列式计算:利用性质及展开定理
4
1.二阶与三阶行列式
二阶行列式: a11 a21
三阶行列式:
a12 a22
a11a22 a12a21
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 (6) a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
----大的数在小的数左边,则这两数构成一个逆6序
全排列及逆序数(续)
逆序数: 一个排列中所有逆序的总数称为 此排列的逆序数. 排列的奇偶性
奇排列:逆序数为奇数的排列; 偶排列:逆序数为偶数的排列.
7
计算排列逆序数的方法
设P1P2…Pn是1,2,…,n这n个自然数的任一排 列,并规定由小到大为标准次序.
线性代数知识点及总结

线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(− 1 τ(j1 j2 ⋯ jn)a1 j1 a2 j2 ⋯ anjn ∑ )
1. n阶行列式的每项都是位于不同行、不同列n个元素的乘积 2. 取定n个元素后,将它们按行标自然顺序排列 3. a1 p1 a2 p2 ⋯ anpn的符号为(− 1) 4. n阶行列式由n!的代数和组成 5. 掌握行列式的定义求行列式的方法,特别是三角行列式
= D + x∑∑ A ij
i =1 j=1
n
n
p n − m +1 − q n − m +1 p n −m + 2 − q n −m + 2 Dn = Dm − Dm −1 p −q p−q
第五节 行列式的计算方法
1. 利用行列式的性质化行列式为上(下)三角行列式 2. 行列式按行(或列)展开,将行列式降阶 3. 利用Laplace定理使行列式降阶 4. 箭式行列式的求法 a11 + x a12 + x ⋯ a1n + x a 21 + x a 22 + x ⋯ a 2n + x 5. 利用公式 ⋯ ⋯ ⋱ ⋯ a n1 + x a n2 + x ⋯ a nn + x 6. 升级法 7. 递推公式法 Dn= mDn-1- nDn-2 若p + q = m, pq = n
第四节 行列式按行(或列)展开
概念:某元素aij的余子式Mij和代数余子式Aij n阶行列式的k阶子式M,M的余子式N,代数余子式A 公式:
1 ,当 i = j, 其中 δ ij = 0 ,当 i ≠ j .
Laplace定理
D ,当 i = j , ∑ aki Akj = Dδ ij = 0 ,当 i ≠ j; k =1 n D ,当 i = j , ∑ aik Ajk = Dδ ij = 0 ,当 i ≠ j; k =1
第一章 行列式
第一节 n阶排列
概念:n阶排列, 排列的逆序, 排列的逆序数, 排列的奇偶性, 对换 需要掌握:排列逆序数的计算方法 定理:对换改变排列的奇偶性
ห้องสมุดไป่ตู้
第二节 n阶行列式的定义
a11 D= a 21 ⋯ a n1
a12 ⋯ a1n a 22 ⋯ a 2n ⋯ ⋱ ⋯ a n2 ⋯ a nn =
τ ( p1 p2 ⋯ pn )
第三节 行列式的性质
1. 行列式转置,行列式的值不变 2. 行列式的某一行或列可以提取公因子 3. 行列式的其中一行(或列)的每个元素可以分成两个元素 之和,则行列式等于两个行列式之和 4. 行列式的任意两行(或列)的元素相等或者对应成比例, 行列式的值为零 5. 行列式某行(或列)的元素加另一行(或列)对应元素的 某倍数,行列式的值不变。 6. 交换行列式的两行(或列)的相应元素,行列式的符号改变
n
n阶范德蒙行列式
1 x1
2 x1
1 x2 x2 2 ⋯ x
n −1 2
1 x3 x2 3 ⋯ x
n −1 3
⋯ ⋯ ⋯ ⋱
1 xn
2 xn =
⋯ x
n −1 1
⋯
n −1 n
n ≤ i < j≤1
∏ (x
i
− xj)
⋯ x
= (x n − x n −1 )(x n − x n − 2 )⋯ (x n − x 2 )(x n − x1 ) (x n −1 − x n − 2 )⋯ (x n −1 − x 2 )(x n −1 − x1 ) ⋯⋯ (x 2 − x1 )