实验习题-Matlab

合集下载

MATLAB实验一:参考--答案

MATLAB实验一:参考--答案

save wenjian.mat A a x load wenjian.mat A a x 小结及思考 在 matlab 中,A*B 与 A .*B 以及 B./A 与 B.\A 之间有什么区别?
A*B 是 A 与 B 进行通常意义上的矩阵乘法得到的矩阵,而 A.*B 是矩阵 A 的每个 元素与 B 的对应位置的元素相乘得到的矩阵。 B./A 是矩阵 B 的每一个元素除以 A 对应位置的元素得到的矩阵, B.\A 是矩阵 A 的每一个元素除以 B 对应位置的元素得到的矩阵。
(1)A=2015*eye(10) (2)A=8*(ones(8)-eye(8))
0 8 (2) 8
8 0 8

8 8 0 88
9. 设有分块矩阵 A
E33 O23
R32 ,其中 E,R,O,S 分别为单位阵、随机阵、零阵和对角阵, S 22
7. 写出下列函数的作用: clc Clear ones det triu fliplr zeros cat
清除命令窗口的记录 清除已声明的变量和函数的记录 生成全 1 矩阵 求一个方阵的行列式 取一个矩阵的上三角 对矩阵进行左右旋转 产生一个零矩阵 拼接两个数组或者矩阵
8. 建立如下矩阵
0 0 2015 2015 0 0 (1) 0 0 2015 1010
3.
计算 1.369 sin
2
7 26.48 2.9 的值(输入程序) 10
1.369^2+sin(7/10*pi)*26.48^(1/2)/2.9
4.
1 3 3 1 1 2 输入矩阵 A 4 4 6 , B 2 2 2 ,指出下列命令的含义 6 8 9 3 3 3

MATLAB全部实验及答案

MATLAB全部实验及答案

MATLAB全部实验及答案实验一、MATLAB基本操作实验内容及步骤4、有关向量、矩阵或数组的一些运算(1)设A=15;B=20;求C=A+B与c=a+b?(2)设A=[1 2 3;4 5 6;7 8 9],B=[9 8 7;6 5 4;3 2 1];求A*B与A.*B?A*B就是线代里面的矩阵相乘 A.*B是对应位置的元素相乘(3)设a=10,b=20;求i=a/b=0.5与j=a\b=2?(4)设a=[1 -2 3;4 5 -4;5 -6 7]请设计出程序,分别找出小于0的矩阵元素及其位置(单下标、全下标的形式),并将其单下标转换成全下标。

clear,clca=[1 -2 3;4 5 -4;5 -6 7];[x,y]=find(a<0);c=[];for i=1:length(x)c(i,1)=a(x(i),y(i));c(i,2)=x(i);c(i,3)=y(i);c(i,4)=(y(i)-1)*size(a,2)+x(i);endc(5)在MATLAB命令行窗口运行A=[1,2;3,4]+i*[5,6;7,8];看结果如何?如果改成运行A=[1,2;3,4]+i[5,6;7,8],结果又如何?前面那个是虚数矩阵,后面那个出错(6)请写出完成下列计算的指令:a=[1 2 3;3 4 2;5 2 3],求a^2=?,a.^2=?a^2= 22 16 1625 26 2326 24 28a.^2=1 4 99 16 425 4 9(7)有一段指令如下,请思考并说明运行结果及其原因clearX=[1 2;8 9;3 6];X( : ) 转化为列向量(8)使用三元组方法,创建下列稀疏矩阵2 0 8 00 0 0 10 4 0 06 0 0 0方法一:clear,clcdata=[2 8 1 4 6];ir=[1 1 2 3 4 ];jc=[1 3 4 2 1];s=sparse(ir,jc,data,4,4);full(s)方法二:不用三元组法clear,clca=zeros(4,4);a(1,[1,3])=[2,8];a(2,4)=1;a(3,2)=4;a(4,1)=6;a(9) 写出下列指令的运行结果>> A = [ 1 2 3 ]; B = [ 4 5 6 ];>> C = 3.^A>> D = A.^B5、 已知⎪⎭⎫⎝⎛+⋅=-334sin 234πt e y t 若需要计算t ∈[-1,1],取间隔为0.01,试计算出相对应的y 值。

MATLAB上机实验练习题及答案

MATLAB上机实验练习题及答案

MATLAB上机实验练习题及答案09级MATLAB上机实验练习题1、给出一个系数矩阵A[2 3 4;5 4 1;1 3 2],U=[1 2 3],求出线性方程组的一个精确解。

2、给出两组数据x=[0 0.3 0.8 1.1 1.6 2.3]’y=[0.82 0.72 0.63 0.60 0.55 0.50]’,我们可以简单的认为这组数据在一条衰减的指数函数曲线上,y=C1+C2e-t通过曲线拟合求出这条衰减曲线的表达式,并且在图形窗口画出这条曲线,已知的点用*表示。

3、解线性方程4、通过测量得到一组数据:5、已知一组测量值6、从某一个过程中通过测量得到:分别采用多项式和指数函数进行曲线拟合。

7、将一个窗口分成四个子窗口,分别用四种方法做出多峰函数的表面图(原始数据法,临近插值法,双线性插值法,二重三次方插值法)8、在同一窗口使用函数作图的方法绘出正弦、余弦、双曲正弦、双曲余弦。

分别使用不同的颜色,线形和标识符。

9、下面的矩阵X表示三种产品五年内的销售额,用函数pie显示每种产品在五年内的销售额占总销售额的比例,并分离第三种产品的切片。

X= 19.3 22.1 51.634.2 70.3 82.4 61.4 82.9 90.8 50.5 54.9 59.1 29.4 36.3 47.010、对应时间矢量t ,测得一组矢量y采用一个带有线性参数的指数函数进行拟合,y=a 0+a 1e -t +a 2te -t ,利用回归方法求出拟合函数,并画出拟合曲线,已知点用圆点表示。

11、请创建如图所示的结构数组(9分)12、创建如图所示的元胞数组。

(9分)13、某钢材厂从1990年到2010年的产量如下表所示,请利用三次样条插值的方法计算1999年该钢材厂的产量,并画出曲线,已知数据用‘*’表示。

要求写出达到题目要求的MATLAB 操作过程,不要求计算结果。

14、在一次化学动力学实验中,在某温度下乙醇溶液中,两种化合物反应的产物浓度与反应时间关系的原始数据如下,请对这组数据进行三次多项式拟合,并画出拟合曲线,已知数据如下。

MATLAB实验练习题(计算机) 南邮 MATLAB 数学实验大作业答案

MATLAB实验练习题(计算机) 南邮 MATLAB 数学实验大作业答案

“MATLAB”练习题要求:抄题、写出操作命令、运行结果,并根据要求,贴上运行图。

1、求230x e x -=的所有根。

(先画图后求解)(要求贴图)>> solve('exp(x)-3*x^2',0)ans =-2*lambertw(-1/6*3^(1/2))-2*lambertw(-1,-1/6*3^(1/2))-2*lambertw(1/6*3^(1/2))2、求下列方程的根。

1) 5510x x ++=a=solve('x^5+5*x+1',0);a=vpa(a,6)1.10447+1.05983*i -1.00450+1.06095*i-.199936 -1.00450-1.06095*i 1.10447-1.05983*i2)1sin02x x-=至少三个根>> fzero('x*sin(x)-1/2', 3) ans =2.9726>> fzero('x*sin(x)-1/2',-3) ans =-2.9726>> fzero('x*sin(x)-1/2',0) ans =-0.74083)2sin cos 0x x x -= 所有根>> fzero('sin(x)*cos(x)-x^2',0)ans =>> fzero('sin(x)*cos(x)-x^2',0.6)ans =0.70223、求解下列各题:1)30sin lim x x xx ->->> sym x;>> limit((x-sin(x))/x^3)ans =1/62) (10)cos ,x y e x y =求>> sym x;>> diff(exp(x)*cos(x),10)ans =(-32)*exp(x)*sin(x)3)21/20(17x e dx ⎰精确到位有效数字)>> sym x;>> vpa((int(exp(x^2),x,0,1/2)),17)ans =0.544987104183622224)42254x dx x+⎰>> sym x;>> int(x^4/(25+x^2),x)ans =125*atan(x/5) - 25*x + x^3/35)求由参数方程arctan x y t⎧⎪=⎨=⎪⎩所确定的函数的一阶导数dy dx 与二阶导数22d y dx 。

数学实验matlab练习题

数学实验matlab练习题

2015-2016数学实验练习题一、选择题1.清除Matlab工作空间(wordspace)变量的命令是(B )A. clcB. clearC. clfD.delete2. 清除当前屏幕上显示的所有内容,但不清除工作空间中的数据的命令是( A )A. clcB. clearC. clfD.delete3. 用来清除图形的命令( C )A. clcB. clearC. clfD.delete4. 在MATLAB程序中,使命令行不显示运算结果的符号是( A )A. ;B. %C. #D. &5. 在MATLAB程序中,可以将某行表示为注释行的符号是( B )A. ;B. %C. #D. &6.在循环结构中跳出循环,执行循环后面代码的命令为 ( B )A. returnB. breakC. continueD. Keyboard7.在循环结构中跳出循环,但继续下次循环的命令为( C )A. returnB. breakC. continueD. Keyboard8. MATLAB中用于声明全局变量的关键字是( C )A. infB. symsC. globalD. function9. 用户可以通过下面哪项获得指令的使用说明( A )A. helpB. loadC. demoD. lookfor10.在MATLAB命令窗口中键入命令S=zoros(3);可生成一个三行三列的零矩阵,如果省略了变量名S,MATLAB表现计算结果将用下面的哪一变量名做缺省变量名( A )A. ans;B. pi;C. NaN;D. Eps.11. 9/0的结果是( B )A. NAN;B. Inf;C. eps;D. 012.在MATLAB中程序或语句的执行结果都可以用不同格式显示,将数据结果显示为分数形式,用下面哪一条命令语句( D )A. format long;B. format long e;C. format bank;D. fromat rat13. 下列MATLAB命令中是构造1行3列的(-1,1)均匀分布随机矩阵的命令的是(D)A. randn(1,3);B. rand(1,3);C. ones(3);D. 以上都不对14. 产生四维元素都为1矩阵的语句为( A )A. ones(4)B. eye(4)C. zeros(4)D. rand(4)15. 用round 函数对数组[2.48 6.39 3.93 8.52]取整,结果为 ( C )A. [2 6 3 8]B. [2 6 4 8]C. [2 6 4 9]D. [3 7 4 9]16. y=dsolve(‘Dy=1/(1+x^2)-2*y^2’,’y(0)=0’,’x ’); ezplot(y)的功能是( A )A. 求微分方程特解并绘图;B. 解代数方程;C. 求定积分;D.求微分方程通解.17. MATLAB 命令roots([1,0,0,-1])的功能是 ( D )A. 产生向量[1,0,0,1];B. 求方程310x +=的根;C. 求多项式31x -的值;D. 求方程310x -=的根。

MATLAB概率习题

MATLAB概率习题

数学实验(概率论)题目一.用MATLAB 计算随机变量的分布1.用MA TLAB 计算二项分布在一级品率为0.2的大批产品中,随机地抽取20个产品,求其中有2个一级品的概率。

1. 用MA TLAB 计算泊松分布用MATLAB 计算:保险公司售出某种寿险保单2500份.已知此项寿险每单需交保费120元,当被保人一年内死亡时,其家属可以从保险公司获得2万元的赔偿(即保额为2万元).若此类被保人一年内死亡的概率0.002,试求:(1)保险公司的此项寿险亏损的概率;(2)保险公司从此项寿险获利不少于10万元的概率; (3)获利不少于20万元的概率. 3.用MA TLAB 计算均匀分布乘客到车站候车时间ξ()0,6U ,计算()13P ξ<≤。

4.用MA TLAB 计算指数分布用MA TLAB 计算:某元件寿命ξ服从参数为λ(λ=11000-)的指数分布.3个这样的元件使用1000小时后,都没有损坏的概率是多少? 5。

用MATLAB 计算正态分布 某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例? 二.用MATLAB 计算随机变量的期望和方差 1.用MA TLAB 计算数学期望(1)用MATLAB 计算离散型随机变量的期望 1)。

一批产品中有一、二、三等品、等外品及废品5种,相应的概率分别为0.7、0.1、0.1、0.06及0.04,若其产值分别为6元、5.4元、5元、4元及0元.求产值的平均值 2)。

已知随机变量X 的分布列如下:{}kk X p 21== ,,2,1n k =计算.EX (2)用MATLAB 计算连续型随机变量的数学期望假定国际市场上对我国某种商品的年需求量是一个随机变量ξ(单位:吨),服从区间[],a b 上的均匀分布,其概率密度为: 1()0a x bx b aϕ⎧≤≤⎪=-⎨⎪⎩其它计算我国该种商品在国际市场上年销售量的期望.ξE .(3)用MATLAB 计算随机变量函数的数学期望假定国际市场每年对我国某种商品的需求量是随机变量X (单位:吨),服从[20,40]上的均匀分布,已知该商品每售出1吨,可获利3万美元,若销售不出去,则每吨要损失1万美元,如何组织货源,才可使收益最大? 2. 用MA TLAB 计算方差(1)利用MATLAB 计算:设有甲、乙两种股票,今年的价格都是10元,一年后它们的试比较购买这两种股票时的投资风险.。

数学实验(matlab版)过程考试试卷及答案完整版

数学实验(matlab版)过程考试试卷及答案完整版

试绘出三种产品产量与季度的三维垂直方向条形图(分组式). >> x=[8,8,9;11,7,8;12,6,9;10,6,10]; bar3(x,'group') 图形如下:
2/2
第一题:编程计算下面问题, x 值由键≥ 1 y = x 2 , −1 ≤ x < 1 2 x − 1, x < −1
>> x=input('输入 x:'); if x>=1 y=x^2+1; end if x<-1 y=x^2-1; end if x>=-1&x<1 y=x^2; end y 输入 x:5 y= 26 第二题:某人做一种材料的伸缩实验,t 为温度(℃),L 为长度(mm),实验数据见下表 t 20 25 30 35 40 L 81 82.3 84 86.8 89
f = x 4 − xy + y 2 ,求
>> syms x y
∂f ∂ 3 f , ∂x ∂y 3
1/1
f=x^4-x*y+y^2; dx=diff(f,x,1) dy3=diff(f,y,3) dx = 4*x^3-y dy3 = 0 第四题:某厂生产三种产品,某年四季度的产量如下 A 产品产量 笫一季度 笫二季度 笫三季度 笫四季度 8 11 12 10 B 产品产量 8 7 6 6 C 产品产量 9 8 9 10
用二阶拟合法,求 L 与 t 的表达式.要求:1.编程;2.写出 L 与 t 的关系式. >> t=[20,25,30,35,40]; L=[81,82.3,84,86.5,89]; k=polyfit(t,L,2) k= 0.0091 -0.1446 80.2114 L=0.0091 t^2 —0.1446t+ 80.2114 第三题:求微分与积分(编程)

MATLAB实验习题1

MATLAB实验习题1

例:求[100,200]之间第一个能被21整除的整数。 for i=100:200 if mod(i,21)==0 x=i; break; end end
• 柯雷茨(collatz)猜想 对于任意的正整数n,如果n是偶数则除以2, 如果还是偶数再除以2,直至成为奇数。把 这个奇数乘以3加1再除以2,如果是偶数继 续除以2,直至成为一个新的奇数。然后再 将这个奇数乘以3加1,按照同样的办法计 算下去。经过若干次计算之后,最后的得 数是1. func0 )
例1.某商场对顾客所购买的商品实行打折销售,标准如下(商品价格用price来表示): price<200 没有折扣 200≤price<500 3%折扣 500≤price<1000 5%折扣 1000≤price<2500 8%折扣 2500≤price<5000 10%折扣 5000≤price 14%折扣 输入所售商品的价格,求其实际销售价格 price=input('请输入商品价格'); switch fix(price/100) case {0,1} %价格小于200 rate=0; case {2,3,4} %价格大于等于200但小于500 rate=3/100; case num2cell(5:9) %价格大于等于500但小于1000 rate=5/100; case num2cell(10:24) %价格大于等于1000但小于2500 rate=8/100; case num2cell(25:49) %价格大于等于2500但小于5000 rate=10/100; otherwise %价格大于等于5000 rate=14/100; end price=price*(1-rate) %输出商品实际销售价格

Matlab实验报告题目

Matlab实验报告题目

MATLAB 语言综合实验实验一 Matlab 运算基础一、实验目的1.熟悉启动和退出MATLAB 的方法。

2.熟悉MATLAB 命令窗口的组成。

3.掌握建立矩阵的方法。

4.掌握MATLAB 各种表达式的书写规则以及常用函数的使用。

二、实验内容1.求表达式的值,然后显示MATLAB 工作空间的使用情况并保存全部变量。

⎥⎦⎤⎢⎣⎡-+=++=545.0212),1ln(212i x x x z 其中>> x=[2 1+2*i;-0.45 5];>> z=1/2*log(x+sqrt(1+x^2))z =0.7114 - 0.0253i 0.8968 + 0.3658i0.2139 + 0.9343i 1.1541 - 0.0044i>>2.已知:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=723302131,76538773443412B A 求下列表达式的值:(1) A+6*B 和A-B+I (其中I 为单位矩阵)>> A=[12 34 -4;34 7 87;3 65 7];>> B=[1 3 -1;2 0 3;3 -2 7];>> A+6*Bans =18 52 -1046 7 10521 53 49>> I=[1 1 1;1 1 1;1 1 1];>> A-B+Ians =12 32 -233 8 851 68 1>>(2)A*B和A.*B>> A=[12 34 -4;34 7 87;3 65 7];>> B=[1 3 -1;2 0 3;3 -2 7];>> A*Bans =68 44 62309 -72 596154 -5 241>> A.*Bans =12 102 468 0 2619 -130 49>>(3)A^3和A.^3>> A=[12 34 -4;34 7 87;3 65 7];>> B=[1 3 -1;2 0 3;3 -2 7];>> A^3ans =37226 233824 48604247370 149188 60076678688 454142 118820 >> A.^3ans =1728 39304 -6439304 343 65850327 274625 343 >>(4)A/B及B\A>> A=[12 34 -4;34 7 87;3 65 7];>> B=[1 3 -1;2 0 3;3 -2 7];>> A/Bans =16.4000 -13.6000 7.600035.8000 -76.2000 50.200067.0000 -134.0000 68.0000>> B\Aans =109.4000 -131.2000 322.8000-53.0000 85.0000 -171.0000-61.6000 89.8000 -186.2000>>(5)[A,B]和[A([1,3],:);B^2]>> A=[12 34 -4;34 7 87;3 65 7];>> B=[1 3 -1;2 0 3;3 -2 7];>> [A,B]ans =12 34 -4 1 3 -134 7 87 2 0 33 65 7 3 -2 7 >> [A([1,3],:); B^2]ans =12 34 -43 65 74 5 111 0 1920 -5 40>>实验二 Matlab 矩阵分析与处理一、实验目的1.掌握生成特殊矩阵的方法。

MATLAB数学实验100例题解

MATLAB数学实验100例题解

一元函数微分学实验1 一元函数的图形(基础实验)实验目的 通过图形加深对函数及其性质的认识与理解, 掌握运用函数的图形来观察和分析 函数的有关特性与变化趋势的方法,建立数形结合的思想; 掌握用Matlab 作平面曲线图性的方法与技巧.初等函数的图形2 作出函数x y tan =和x y cot =的图形观察其周期性和变化趋势. 解:程序代码:>> x=linspace(0,2*pi,600); t=sin(x)./(cos(x)+eps);plot(x,t);title('tan(x)');axis ([0,2*pi,-50,50]); 图象:程序代码:>> x=linspace(0,2*pi,100); ct=cos(x)./(sin(x)+eps);plot(x,ct);title('cot(x)');axis ([0,2*pi,-50,50]); 图象:4在区间]1,1[-画出函数xy 1sin =的图形. 解:程序代码:>> x=linspace(-1,1,10000);y=sin(1./x); plot(x,y);axis([-1,1,-2,2]) 图象:二维参数方程作图6画出参数方程⎩⎨⎧==t t t y tt t x 3cos sin )(5cos cos )(的图形:解:程序代码:>> t=linspace(0,2*pi,100);plot(cos(t).*cos(5*t),sin(t).*cos(3*t)); 图象:极坐标方程作图8 作出极坐标方程为10/t e r =的对数螺线的图形. 解:程序代码:>> t=0:0.01:2*pi; r=exp(t/10);polar(log(t+eps),log(r+eps)); 图象:90270分段函数作图10 作出符号函数x y sgn =的图形. 解:程序代码:>> x=linspace(-100,100,10000); y=sign(x); plot(x,y);axis([-100 100 -2 2]);函数性质的研究12研究函数)3(log 3)(35x e x x f x -++=在区间]2,2[-上图形的特征. 解:程序代码:>> x=linspace(-2,2,10000);y=x.^5+3*exp(x)+log(3-x)/log(3); plot(x,y); 图象:实验2 极限与连续(基础实验)实验目的 通过计算与作图, 从直观上揭示极限的本质,加深对极限概念的理解. 掌握用 Matlab 画散点图, 以及计算极限的方法. 深入理解函数连续的概念,熟悉几种间断点的图形 特征,理解闭区间上连续函数的几个重要性质.作散点图14分别画出坐标为)10,,2,1(),4,(),,(3222 =+i i i i i i 的散点图, 并画出折线图. 解:散点图程序代码: >> i=1:10; plot(i,i.^2,'.')或:>> x=1:10;y=x.^2;for i=1:10;plot(x(i),y(i),'r')hold onend折线图程序代码:>> i=1:10;plot(i,i.^2,'-x')程序代码:>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'.')>> i=1:10;plot(i.^2,4*(i.^2)+i.^3,'-x')数列极限的概念16通过动画观察当∞→n 时数列21n a n =的变化趋势.解:程序代码: >> n=1:100; an=(n.^2); n=1:100; an=1./(n.^2); n=1:100; an=1./(n.^2); for i=1:100plot(n(1:i),an(1:i)),axis([0,100,0,1]) pause(0.1) end 图象:函数的极限18在区间]4,4[-上作出函数xx xx x f --=339)(的图形, 并研究 )(lim x f x ∞→ 和 ).(lim 1x f x →解:作出函数x x xx x f --=339)(在区间]4,4[-上的图形 >> x=-4:0.01:4;y=(x.^3-9*x)./(x.^3-x+eps); plot(x,y)从图上看,()f x 在x →1与x →∞时极限为0两个重要极限 20计算极限⎪⎭⎫⎝⎛+→x x x x x sin 11sin lim )1(0 x x e x 2lim )2(+∞→30sin tan lim )3(xx x x -→ x x x 0lim )4(+→ x xx ln cot ln lim )5(0+→ x x x ln lim )6(20+→ xx xx x x sin cos sin lim)7(20-→ 125523lim )8(323+++-∞→x x x x x xx x e e x x x sin 2lim )9(0----→ xx x x cos 110sin lim )10(-→⎪⎭⎫ ⎝⎛ 解:(1)>> limit(x*sin(1/x)+1/x*sin(x))ans =1(2) >> limit(x^2/exp(x),inf) ans = 0(3) >> limit((tan(x)-sin(8))/x^3) ans =NaN(4) >> limit(x^x,x,0,'right') ans =1(5) >> limit(log(cot(x))/log(x),x,0,'right') ans =-1(6) >> limit(x^2*log(x),x,0,'right') ans =0(7) >> limit((sin(x)-x.*cos(x))./(x.^2.*sin(x)),x,0) ans =1/3(8) >> limit((3*x.^3-2*x.^2+5)/(5*x.^3+2*+1),x,inf) ans =3/5(9) >> limit((exp(x)-exp(-x)-2*x)./(x-sin(x))) ans =2(10) >> limit((sin(x)/x).^(1/(1-cos(x)))) ans =exp(-1/3)实验3 导数(基础实验)实验目的 深入理解导数与微分的概念, 导数的几何意义. 掌握用Matlab 求导数与高 阶导数的方法. 深入理解和掌握求隐函数的导数, 以及求由参数方程定义的函数的导数的方法. 导数概念与导数的几何意义22作函数71232)(23+-+=x x x x f 的图形和在1-=x 处的切线. 解:作函数71232)(23+-+=x x x x f 的图形程序代码: >> syms x;>> y=2*x^3+3*x^2-12*x+7; >> diff(y) ans =6*x^2+6*x-12 >> syms x;y=2*x^3+3*x^2-12*x+7; >> f=diff(y) f =6*x^2+6*x-12 >> x=-1;f1=6*x^2+6*x-12 f1 = -12>> f2=2*x^3+3*x^2-12*x+7 f2 = 20>> x=linspace(-10,10,1000);y1=2*x.^3+3*x.^2-12*x+7; y2=-12*(x+1)+20; plot(x,y1,'r',x,y2,'g')求函数的导数与微分24求函数bx ax x f cos sin )(=的一阶导数. 并求.1⎪⎭⎫⎝⎛+'b a f解:求函数bx ax x f cos sin )(=的一阶导数程序代码: >> syms a b x y;y= sin(a*x)*cos(b*x); D1=diff(y,x,1) 答案:D1 =cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b求.1⎪⎭⎫ ⎝⎛+'b a f程序代码: >> x=1/(a+b);>> cos(a*x)*a*cos(b*x)-sin(a*x)*sin(b*x)*b 答案:ans =cos(a/(a+b))*a*cos(b/(a+b))-sin(a/(a+b))*sin(b/(a+b))*b 拉格朗日中值定理26对函数),2)(1()(--=x x x x f 观察罗尔定理的几何意义. (1) 画出)(x f y =与)(x f '的图形, 并求出1x 与.2x 解:程序代码:>> syms x;f=x*(x-1)*(x-2); f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-10,10,1000); y1=x.*(x-1).*(x-2);y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); plot(x,y1,x,y2)(2)画出)(x f y 及其在点))(,(11x f x 与))(,(22x f x 处的切线. 程序代码:>> syms x; >> f=x*(x-1)*(x-2); >> f1=diff(f) f1 =(x-1)*(x-2)+x*(x-2)+x*(x-1) >> solve(f1) ans =1+1/3*3^(1/2) 1-1/3*3^(1/2)>> x=linspace(-3,3,1000); >> y1=x.*(x-1).*(x-2);>> y2 =(x-1).*(x-2)+x.*(x-2)+x.*(x-1); >> plot(x,y1,x,y2) >> hold on>> x=1+1/3*3^(1/2); >> yx1=x*(x-1)*(x-2) yx1 =-0.3849>> x=1-1/3*3^(1/2); >> yx2=x*(x-1)*(x-2) yx2 =0.3849x=linspace(-3,3,1000); yx1 =-0.3849*x.^0; yx2 =0.3849*x.^0; plot(x,yx1,x,yx2)28求下列函数的导数:(1) 31+=x e y ; 解:程序代码:>> syms x y; y=exp((x+1)^3); D1=diff(y,1) 答案:D1 =3*(x+1)^2*exp((x+1)^3)(2) )]42ln[tan(π+=x y ;解:程序代码:>> syms x;y=log(tan(x/2+pi/4)); D1=diff(y,1) 答案:D1 =(1/2+1/2*tan(1/2*x+1/4*pi)^2)/tan(1/2*x+1/4*pi)(3) x x y sin ln cot 212+=;解:程序代码:>> syms x;y=1/2*(cot(x))^2+log(sin(x)); D1=diff(y,1) 答案:D1 =cot(x)*(-1-cot(x)^2)+cos(x)/sin(x) (4) xy 2arctan21=. 解:程序代码:>> syms x;>> y=sqrt(2)*atan(sqrt(2)/x); >> D1=diff(y,1) 答案:D1 =-2/x^2/(1+2/x^2)一元函数积分学与空间图形的画法实验4 一元函数积分学(基础实验)实验目的 掌握用Matlab 计算不定积分与定积分的方法. 通过作图和观察, 深入理解定积分的概念和思想方法. 初步了解定积分的近似计算方法. 理解变上限积分的概念. 提高应用 定积分解决各种问题的能力.不定积分计算30求.)1(532⎰-dx x x解:程序代码:>> syms x y;>> y=x^2*(1-x^3)^5; >> R=int(y,x) 答案:R =-1/18*x^18+1/3*x^15-5/6*x^12+10/9*x^9-5/6*x^6+1/3*x^332求.arctan 2⎰xdx x解:程序代码:>> syms x y;>> y=x^2*atan(x); >> R=int(y,x) 答案:R =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1)定积分计算34 求.)(102⎰-dx x x解:程序代码:>> syms x y; >> y=x-x^2;>> R=int(y,x,0,1) 答案: R =1/6变上限积分 36 画出变上限函数⎰x dt t t 02sin 及其导函数的图形.解:程序代码:>> syms x y t; >> y=t*sin(t^2); >> R=int(y,x,0,x) 答案:R =t*sin(t^2)*x 再求导函数 程序代码:>> DR=diff(R,x,1) 答案:DR =t*sin(t^2)实验5 空间图形的画法(基础实验)实验目的 掌握用Matlab 绘制空间曲面和曲线的方法. 熟悉常用空间曲线和空间曲面 的图形特征,通过作图和观察, 提高空间想像能力. 深入理解二次曲面方程及其图形.一般二元函数作图38作出函数2214y x z ++=的图形.解:程序代码:>> x=linspace(-5,5,500); [x,y]=meshgrid(x); z=4./(1+x.^2+y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')40作出函数)94cos(22y x z +=的图形. 解:程序代码:>> x=-10:0.1:10;[x,y]=meshgrid(x);z=cos(4*x.^2+9*y.^2); mesh(x,y,z);xlabel('x-axis'),ylabel('y-axis'),zlabel('z-axis');title('function')讨论:坐标轴选取范围不同时,图形差异很大,对本题尤为明显,如右图为坐标轴[-1,1]二次曲面42作出单叶双曲面1941222=-+z y x 的图形.(曲面的参数方程为 ,tan 3,cos sec 2,sin sec u z v u y v u x === (.20,2/2/πππ≤≤<<-v u ))解:程序代码:>> v=0:pi/100:2*pi; >> u=-pi/2:pi/100:pi/2; >> [U,V]=meshgrid(u,v); >> x=sec(U).*sin(V); >> y=2*sec(U).*cos(V); >> z=3*tan(U); >> surf(x,y,z)44 可以证明: 函数xy z =的图形是双曲抛物面. 在区域22,22≤≤-≤≤-y x 上作出它的图形.解:程序代码:>> x=-2:0.01:2;[x,y]=meshgrid(x); >> z=x.*y;>> mesh(x,y,z);46 画出参数曲面]2,001.0[],4,0[)5/2/ln(tan cos sin sin sin cos ∈∈⎪⎩⎪⎨⎧++===v u u v v z vu y v u x π 的图形.解:程序代码:>> v=0.001:0.001:2; >> u=0:pi/100:4*pi;>> [U,V]=meshgrid(u,v); >> x=cos(U).*sin(V); >> y=sin(U).*sin(V);>> z=cos(V)+log(tan(V/2)+U/5); >> mesh(x,y,z);空间曲线48 作出空间曲线)60(2,sin ,cos π≤≤===t t z t t y t t x 的图形. 解:程序代码:>> syms t;ezplot3(t*cos(t),t*sin(t),2*t,[0,6*pi])-1010-20-100100xx = t cos(t), y = t sin(t), z = 2 tz50绘制参数曲线 ⎪⎪⎩⎪⎪⎨⎧=+==t z t y t x arctan 211cos 2的图形.解:程序代码:>> t=-2*pi:pi/100:2*pi;x=cos(t).*cos(t);y=1./(1+2*t);z=atan(t); plot3(x,y,z);grid;xlabel('x'),ylabel('y'),zlabel('z')xyz多元函数微积分实验6 多元函数微分学(基础实验)实验目的 掌握利用Matlab 计算多元函数偏导数和全微分的方法, 掌握计算二元函数极值和条件极值的方法. 理解和掌握曲面的切平面的作法. 通过作图和观察, 理解二元 函数的性质、方向导数、梯度和等高线的概念.求多元函数的偏导数与全微分52设),(cos )sin(2xy xy z +=求.,,,222yx zx z y z x z ∂∂∂∂∂∂∂∂∂解:程序代码:>> syms x y;S=sin(x*y)+(cos(x*y))^2; D1=diff(S,'x',1); D2=diff(S,'y',1); D3=diff(S,'x',2); D4=diff(S,'y',2); D1,D2,D3,D4答案: D1 = cos(x*y)*y-2*cos(x*y)*sin(x*y)*yD2 = cos(x*y)*x-2*cos(x*y)*sin(x*y)*xD3 =-sin(x*y)*y^2+2*sin(x*y)^2*y^2-2*cos(x*y)^2*y^2 D4 = -sin(x*y)*x^2+2*sin(x*y)^2*x^2-2*cos(x*y)^2*x^2实验7 多元函数积分学(基础实验)实验目的掌握用Matlab 计算二重积分与三重积分的方法; 深入理解曲线积分、曲面积分的 概念和计算方法. 提高应用重积分和曲线、曲面积分解决各种问题的能力.计算重积分54计算,2dxdy xyD⎰⎰ 其中D 为由,,2y x y x ==+ 2=y 所围成的有界区域.解:程序代码:>> syms x y;int(int(x*y^2,x,2-y,sqrt(y)),y,1,2) 答案:ans =193/120 重积分的应用56求旋转抛物面224y x z --=在Oxy 平面上部的面积.S 解:程序代码:>> int(2*pi*r,r,0,2) 答案: ans =4*pi无穷级数与微分方程实验8 无穷级数(基础实验) 实验目的观察无穷级数部分和的变化趋势,进一步理解级数的审敛法以及幂级数部分和对函数的 逼近. 掌握用Matlab 求无穷级数的和, 求幂级数的收敛域, 展开函数为幂级数以及展 开周期函数为傅里叶级数的方法.数项级数58(1) 观察级数∑∞=121n n的部分和序列的变化趋势.解:程序代码:for i=1:100 s=0; for n=1:i s=s+1/n^2; endplot(i,s,'.');hold on; end(2) 观察级数∑∞=11n n 的部分和序列的变化趋势.>> for i=1:100 s=0; for n=1:i s=s+1/n; endplot(i,s,'.'); hold on; end60 求∑∞=++123841n n n的值.解:程序代码:>> syms n;score=symsum(1/(4*n^2+8*n+3),1,inf) 答案: score =1/6函数的幂级数展开62求x arctan 的5阶泰勒展开式. >> syms x;>> T5=taylor(atan(x),6)答案:T5 =x-1/3*x^3+1/5*x^5实验9 微分方程(基础实验)实验目的 理解常微分方程解的概念以及积分曲线和方向场的概念,掌握利用 Matlab 求微分方程及方程组解的常用命令和方法.求解微分方程64求微分方程 22x xe xy y -=+'的通解. 解:程序代码:>> y=dsolve('Dy+2*x*y=x*exp(-x^2)','x') 答案:y =(1/2*x^2+C1)*exp(-x^2)66求微分方程x e y y y x 2cos 52=+'-''的通解. 解:程序代码:>> y=dsolve('D2y-2*Dy+5*y=exp(x)*cos(2*x)','x') 答案: y =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/4*exp(x)*sin(2*x)*x68求微分方程组⎪⎪⎩⎪⎪⎨⎧=--=++02y x dtdy e y x dt dxt 在初始条件0,100====t t y x 下的特解.解:程序代码:>> [x,y]=dsolve('Dx+x+2*y-exp(t)','Dy-x-y','x(0)=1','y(0)=0','t') 答案: x = cos(t)y = 1/2*sin(t)-1/2*cos(t)+1/2*exp(t)70求解微分方程,)1(122/5+=+-x x y dx dy 并作出积分曲线. 解:程序代码:>> syms x yy=dsolve('Dy-2*y/(x+1)-(x+1)^(5/2)','x') 答案:y =(2/3*(x+1)^(3/2)+C1)*(x+1)^2 做积分曲线 由>> syms x yx=linspace(-5,5,100); C=input('请输入C 的值:'); y=(2/3*(x+1).^(3/2)+C).*(x+1).^2; plot(x,y)例如对应有: 请输入C 的值:2 请输入C 的值:20矩阵运算与方程组求解实验10 行列式与矩阵实验目的掌握矩阵的输入方法. 掌握利用Matlab 对矩阵进行转置、加、减、数乘、相乘、乘方等运算, 并能求矩阵的逆矩阵和计算方阵的行列式.矩阵A 的转置函数Transpose[A]72 求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛411365243271的转置. 解:程序代码:>> A=[1,7,2;3,4,2;5,6,3;1,1,4]; >> Sove=A' 答案:Sove =1 3 5 1 7 4 6 12 234 矩阵线性运算 73设,291724,624543⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛=B A 求.24,A B B A -+ 解:程序代码:>> A=[3,4,5;4,2,6]; B=[4,2,7;1,9,2];S1=A+BS2=4*B-2*A答案:S1 =7 6 125 11 8S2 =10 0 18-4 32 -474设,148530291724,36242543⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=mb ma 求矩阵ma 与mb 的乘积. 解:程序代码:>> ma=[3,4,5,2;4,2,6,3];>> mb=[4,2,7;1,9,2;0,3,5;8,4,1];>> Sove=ma*mb答案:Sove =32 65 5642 56 65矩阵的乘法运算 75设,101,530291724⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=B A 求AB 与,A B T 并求.3A解:程序代码:>> A=[4 2 7;1 9 2;0 3 5];B=[1;0;1];>> AB=A*BAB =1135>> BTA=B'*ABTA =4 5 12>> A3=A^3A3 =119 660 555141 932 44454 477 260求方阵的逆76 设,5123641033252312⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=A 求.1-A 解:程序代码:>> A=[2,1,3,2;5,2,3,3;0,1,4,6;3,2,1,5];Y=inv(A)答案:Y =-1.7500 1.3125 0.5000 -0.68755.5000 -3.6250 -2.0000 2.37500.5000 -0.1250 0.0000 -0.1250-1.2500 0.6875 0.5000 -0.312577 设,221331317230,5121435133124403⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=B A 求.1B A - 解:程序代码:>> A=[3 0 4 4 ;2 1 3 3 ;1 5 3 4;1 2 1 5];B=[0 3 2 ;7 1 3;1 3 3 ;1 2 2];Solve=A'*B答案:Solve =16 16 1714 20 2225 26 2830 37 3978 解方程组⎪⎩⎪⎨⎧-=-+=+-=++.2442,63,723z y x z y x z y x解:程序代码:>> A=[3 2 1;1 -1 3;2 4 -4];b=[7 6 -2];>> A\b'答案:ans =1.00001.00002.0000求方阵的行列式79 求行列式 .3351110243152113------=D 解:程序代码:>> A=[3,1,-1,2;-5,1,3,-4;2,0,1,-1;1,-5,3,-3];D=det(A)答案:D =4080求.11111111111122222222d d d d c c c c b b b b a a a a D ++++= 解:程序代码:>> syms a b c d;D=[a^2+1/a^2 a 1/a 1;b^2+1/b^2 b 1/b 1;c^2+1/c^2 c 1/c 1;d^2+1/d^2 d 1/d 1];det(D)答案:ans =-(-c*d^2*b^3+c^2*d*b^3-c^3*d^2*a+c^3*d*a^2*b^4+c*d^2*a^3-c^3*d^2*a*b^4-c^2*d*a^3-c*d^2*b^3*a^4+c^2*d*b^3*a^4+c^3*d^2*b*a^4-c^3*d*b^2*a^4-c^2*d^3*b*a^4+c*d^3*b^2*a^4+c*d ^2*a^3*b^4-c^2*d*a^3*b^4+c^3*d^2*b-c^3*d*b^2-c^2*d^3*b+c*d^3*b^2+c^3*d*a^2+c^2*d^3*a-c *d^3*a^2-b*d^2*a^3+b^2*d*a^3+b^3*d^2*a-b^3*d*a^2-b^2*d^3*a+b*d^3*a^2+b*c^2*a^3-b^2*c*a ^3-b^3*c^2*a+b^3*c*a^2+b^2*c^3*a-b*c^3*a^2+c^2*d^3*a*b^4-c*d^3*a^2*b^4-b*d^2*a^3*c^4+b ^2*d*a^3*c^4+b^3*d^2*a*c^4-b^3*d*a^2*c^4-b^2*d^3*a*c^4+b*d^3*a^2*c^4+b*c^2*a^3*d^4-b^2*c*a^3*d^4-b^3*c^2*a*d^4+b^3*c*a^2*d^4+b^2*c^3*a*d^4-b*c^3*a^2*d^4)/a^2/c^2/d^2/b^281 计算范德蒙行列式.1111145444342413534333231252423222154321x x x x x x x x x x x x x x x x x x x x 解:程序代码:>> syms x1 x2 x3 x4 x5; >> A=[1,1,1,1,1;x1,x2,x3,x4,x5;x1^2,x2^2,x3^2,x4^2,x5^2;x1^3,x2^3,x3^3,x4^3,x5^3;x1^4,x2^4,x3^4,x4^4,x5^4];>> DC=det(A);>> DS=simple(DC)答案:DS =(-x5+x4)*(x3-x5)*(x3-x4)*(-x5+x2)*(x2-x4)*(x2-x3)*(-x5+x1)*(x1-x4)*(x1-x3)*(x1-x2)82 设矩阵 ,60975738723965110249746273⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=A 求.),(|,|3A A tr A 解:程序代码:>> A=[3,7,2,6,-4;7,9,4,2,0;11,5,-6,9,3;2,7,-8,3,7;5,7,9,0,-6];>> D=det(A),T=trace(A),A3=A^3答案:D =11592T =3A3=726 2062 944 294 -3581848 3150 26 1516 2281713 2218 31 1006 4041743 984 -451 1222 384801 2666 477 745 -125向量的内积83 求向量}3,2,1{=u 与}0,1,1{-=v 的内积.解:程序代码:>> u=[1 2 3];v=[1 -1 0];solve=dot(u,v)答案:solve =-184设,001001⎪⎪⎪⎭⎫⎝⎛=λλλA 求.10A 一般地?=k A (k 是正整数).解:程序代码:>> syms r;>> A=[r,1,0;0,r,1;0,0,r];>> A^10答案:ans =[ r^10, 10*r^9, 45*r^8][ 0, r^10, 10*r^9][ 0, 0, r^10]85.求⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++a a a a a 1111111111111111111111111的逆.解:程序代码:>> syms aA=[1+a,1,1,1,1;1,1+a,1,1,1;1,1,1+a,1,1;1,1,1,1+a,1;1,1,1,1,1+a];solve=inv(A)答案:solve =[ 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5),-1/a/(a+5)] [ -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5),-1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5), -1/a/(a+5)][ -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), -1/a/(a+5), 1/a*(a+4)/(a+5)] 实验11 矩阵的秩与向量组的极大无关组实验目的 学习利用Matlab 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 求矩阵的秩86 设,815073*********⎪⎪⎪⎭⎫ ⎝⎛-------=M 求矩阵M 的秩.解:程序代码:>> M=[3,2,-1,-3,-2;2,-1,3,1,-3;7,0,5,-1,-8];R=rank(M)答案:R=2向量组的秩87求向量组)0,3,0,2(),2,5,4,0(),1,1,2,1(231=--=-=ααα的秩.解:程序代码:>> A=[1,2,-1,1;0,-4,5,-2;2,0,3,0];R=rank(A)答案:R =288向量组)7,5,1,3(),5,4,3,1(),1,1,1,1(),3,2,1,1(4321==-==αααα是否线性相关?解:由>> A=[1 1 2 3;1 -1 1 1;1 3 4 5;3 1 5 7];rank(A)ans = 3即rank(A)=3 小于阶数489向量组)3,1,1(),2,1,3(),7,2,2(321=-==ααα是否线性相关?解:由>> A3=[2,2,7;3,-1,2;1,1,3];R=rank(A3)得 R = 3即rank(A3)=3 等于阶数3故向量组线性无关。

matlab数学实验考试题及答案

matlab数学实验考试题及答案

matlab数学实验考试题及答案一、选择题(每题2分,共10分)1. MATLAB中用于生成0到1之间均匀分布的随机数的函数是?A. randB. randiC. randnD. randperm答案:A2. 下列哪个命令可以计算矩阵的行列式?A. detB. rankC. eigD. inv答案:A3. MATLAB中用于求解线性方程组的命令是?A. solveB. linsolveC. fsolveD. ode45答案:A4. 在MATLAB中,如何创建一个3x3的单位矩阵?A. eye(3)B. ones(3)C. zeros(3)D. identity(3)答案:A5. MATLAB中用于绘制二维图形的函数是?A. plotB. surfC. meshD. contour答案:A二、填空题(每题3分,共15分)1. MATLAB中,使用________函数可以计算矩阵的迹。

答案:trace2. 若要在MATLAB中创建一个从1到10的向量,可以使用________函数。

答案:1:103. MATLAB中,使用________函数可以计算矩阵的特征值。

答案:eig4. 若要在MATLAB中绘制一个正弦波,可以使用________函数。

答案:sin5. MATLAB中,使用________函数可以计算矩阵的逆。

答案:inv三、简答题(每题10分,共20分)1. 描述MATLAB中如何使用循环结构来计算并打印1到100之间所有奇数的和。

答案:可以使用for循环结构,初始化一个变量sum为0,然后遍历1到100之间的每个数,使用模运算符判断是否为奇数,如果是,则将其加到sum上,最后打印sum的值。

2. 简述MATLAB中如何使用条件语句来检查一个数是否为素数,并打印出所有小于100的素数。

答案:可以使用for循环遍历2到99之间的每个数,对于每个数,使用一个while循环检查它是否有除1和它本身之外的因数,如果没有,则使用if语句判断该数是否为素数,如果是,则打印该数。

MATLAB相关的实验以及答案

MATLAB相关的实验以及答案

y=zeros(size(x)); i=numel(x); for j=1:i if (x(j)>=0) y(j)=-3*x(j)^2+5; else y(j)=3*x(j)^2+5; end end x y
4. 编写一程序,求出 编写一程序,求出[100 1000]以内的全部素数。 以内的全部素数。 以内的全部素数 num=[ ]; i=1; for k1=100:1000 k2=fix(sqrt(k1)); sign=1; for k3=2:k2 if mod(k1,k3)==0 sign=0; break end end if sign==1 num(i)=k1; i=i+1; end end num
6. 建立函数count(x),其中x为一个班的学生成绩,统 建立函数 ,其中 为一个班的学生成绩, 为一个班的学生成绩 计该班学生成绩,其中优秀:成绩≥90,良好:80≤ 计该班学生成绩,其中优秀:成绩 ,良好: 成绩<90,中等:70≤成绩 成绩<80,及格:60≤成绩 成绩<70, 成绩 ,中等: 成绩 ,及格: 成绩 , 不及格:成绩<60,分别输出优秀、良好、中等、不 不及格:成绩 ,分别输出优秀、良好、中等、 及格的人数,要求有输入、输出提示语句。例如: 及格的人数,要求有输入、输出提示语句。例如: >> count 请输入该班学生成绩: %输出提示 请输入该班学生成绩: 输出提示 [34 67 98 89 78] %输入成绩 输入成绩 成绩优秀: %输出结果 成绩优秀:1 输出结果 成绩良好: 成绩良好:1 成绩中等: 成绩中等:1 成绩及格: 成绩及格:1 成绩不及格: 成绩不及格:1
2. 输入三角形的三条边,求三角形的面积。如果输入 输入三角形的三条边,求三角形的面积。 的三个数不能构成三角形,要求输出“ 的三个数不能构成三角形,要求输出“不能构成一个 三角形”这样的提示信息。 三角形”这样的提示信息。 提示: 提示: area = s(s −a)(s −b)(s −c) s = (a +b + c) / 2 a=input('a='); b=input('b='); c=input('c='); if (a+b>c)&(a+c>b)&(b+c>a) s=(a+b+c)/2; area=sqrt(s*(s-a)*(s-b)*(s-c)) else fprintf(‘不能构成一个三角形 不能构成一个三角形\n’) 不能构成一个三角形 end

MATLAB实验题答案

MATLAB实验题答案

MATLAB实验题答案result5 =( 1 ) a = 1 : 2 : 5a =1 3 5( 2 ) b = [ a' , a' , a' ;a ]b =1 1 13 3 35 5 51 3 5( 3 ) c = a + b ( 2 , : )c =4 6 82、下列运算是否合法,为什么如合法,结果是多少>> result2=a*bError using *Inner matrix dimensions must agree. >> result3=a+b result3 =3 6 258 11>> result4=b*dresult4 =31 22 2240 49 1331 22 2240 49 13-5 -8 7>> result6=a.*b result6 =2 8 -3415 30>> result7=a./b result7 =>> result9=a.\b result9 =>> result10=a92result10 =1 4 916 25 36>> resultl 1=29aresult11 =2 4 816 32 64>>result5=[b;c']*d 3、⽤MATLAB求解下⾯的的⽅程组。

1、求以下变量的值,并在MATLAB^验证。

1 2 x13 2 x211 5 x32 13 x4>> A=[7 2 1 -2;9 15 3 -2;-2 -2 11 5;1 3 2 13] >> B=[4 7 -1 0]>> B=B'>> x=inv(A)*B>> A1=[1 1 1 0;1 2 1 -1;2 -1 0 -3;3 3 5 -6] >> B2=[1;8;3;5]>> x2=inv(A1)*B27 2 1 29 15 3 22 2 11 51 32 13(1)求矩阵A的秩(rank)(2)求矩阵 A 的⾏列式(determinant)(3)求矩阵 A 的逆(inverse)(4)求矩阵 A 的特征值及特征向量(eigenvalue and eigenvector)>> A3=[7 2 1 -2;9 15 3 -2;-2 -2 11 5;1 3 2 13] >> r=rank(A3) >> b=inv(A3)n 10查看y 的值)m1=0;for m=-10:10 m仁m1+2^m;endm1m1 =6、求分段函数的值。

MATLAB习题

MATLAB习题

MATLAB习题习题一1、通常情况下,MATLAB的工作界面主要由有哪几种窗口构成?答:指令窗口、历史指令窗口、工作空间浏览器、当前目录浏览器等窗口构成。

2、在MATLAB窗口中,可以键入各种指令、函数,并显示运行结果的窗口为【 A 】A、指令窗口B、当前目录浏览器C、工作空间浏览器D、历史指令窗口3、在MATLAB窗口中,可以对内存变量直接进行操作的窗口为【 C 】A、指令窗口B、当前目录浏览器C、工作空间浏览器D、历史指令窗口4、在MATLAB窗口中,记录在MATLAB命令窗口执行过的指令操作的窗口为【 D 】A、指令窗口B、当前目录浏览器C、工作空间浏览器D、历史指令窗口5、在MATLAB窗口中,用于搜索、查看和改变MATLAB路径和文件的窗口为【 B 】A、指令窗口B、当前目录浏览器C、工作空间浏览器D、历史指令窗口6、在MATLAB语言中,如果一个命令行很长,可以在物理行之后如下续行符【 B 】A、“,”B、“…”C、“、、、”D、“,”7、在MATLAB语言中,提示其后语句为输入指令的行提示符为【 D 】A、“;”B、“:”C、“,”D、“>>”8、在MATLAB语言中,在指令窗口运行过的指令再次调出运行的按键为【 B 】A、“;”B、“↑”或“↓”C、“,”D、“>>”9、在MATLAB语言中,若希望结果不被显示,可在语句之后加上符号【 A 】A、“;”B、“:”C、“,”D、“>>”10、在MATLAB语言中,下列常用操作命令解释错误的是【BE 】A、dir为显示当前目录下的文件B、clc为清除工作区中的变量C、path为显示搜索目录D、clf为清空当前图形窗口E、clear为清除命令窗口中的内容F、path为显示搜索路径11、若只知要搜索函数的前两个字母,可用lookfor 命令搜索此关键字的帮助信息。

12、在MATLAB语言中,可采用Tab 键进行模糊查询。

matlab所有实验及答案李楠资料

matlab所有实验及答案李楠资料

第二章 习题1、 矩阵Y= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3472123100451150425,给出元素1的全下标和单下标,求出元素100的存储位置。

取出子矩阵⎥⎦⎤⎢⎣⎡21301,并求该矩阵的维数。

解:命令为:Y=[5,2,4;0,15,1;45,100,23;21,47,3] Y(2,3) Y(10)find(Y==100) sub2ind([4 3],3,2)B=Y(2:2:4,3:-2:1) 或 B=Y([2 4],[3 1]) [m n]=size(Y)2、已知矩阵A=[1 0 -1 ;2 4 1; -2 0 5],B=[0 -1 0;2 1 3;1 1 2] 求2A+B 、A 2-3B 、A*B 、B*A 、A .*B ,A/B 、A\B 解:命令为:A=[1 0 -1 ;2 4 1; -2 0 5] B=[0 -1 0;2 1 3;1 1 2] E=2*A+B F=A^2-3*B G=A*B H=B*A I=A.*B J=A/B K=A\B3、 利用函数产生3*4阶单位矩阵和全部元素都为8的4*4阶矩阵,并计算两者的乘积。

解:命令为: A=eye(3,4) B=8*ones(4) C=A*B4、创建矩阵a=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------7023021.5003.120498601,取出其前两列构成的矩阵b ,取出前两行构成矩阵c ,转置矩阵b 构成矩阵d ,计算a*b 、c<d ,c&d, c|d ,~c|~d 解:命令为:a=[-1,0,-6,8;-9,4,0,12.3;0,0,5.1,-2;0,-23,0,-7] b=a(:,[1 2]) c=a([1 2],:) d=b ’ e=a*b f=c<d g=c&d h=c|d i=~c|~d5、 使用函数,实现A 到B 、C 、D 、E 的转换A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡129631185210741 B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡321654987121110 C=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡101112789456123,D=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡369122********* E=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡126311521041 解:命令为:A=[1 4 7 10;2 5 8 11;3 6 9 12] B=rot90(A) C=rot90(A,3) D=fliplr(A) A(:,3)=[] E=A7. 矩阵A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-410091021.5823.1204450002,用函数取出列向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100845和矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡410091001.582004450002 解:命令为:A=[2 0 0 0;45 4 0 12.3;2 8 5.2 -2;0 91 100 4] B=diag(A)C=tril(A)8.建立5阶魔方矩阵,求该矩阵的行列式和逆矩阵、秩以及any 和all 运算结果。

Matlab实验习题集答案

Matlab实验习题集答案

1:用以上两种形式计算36sin 5e ++π算术运算结果。

>> 5^6+sin(pi)+exp(3)ans =1.5645e+004>> x=5^6+sin(pi)+exp(3)x = 1.5645e+0042:已知矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2211,2121B A ,对它们做简单的关系与逻辑运算C=(A<B)&(A= =B)>> A=[1 2;1 2];>> B=[1 1;2 2];>> C=(A<B)&(A==B) C =0 00 03:对数7sin 5+=a 用五位定点、十五位定点以及有理数形式表示出来。

>> a=5+sin(7);format short,aa =5.6570>> a=5+sin(7);>> format long,aa =5.6569865987187894:直接输入创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=98760154321A>> A=[1 2 3;4 15 60;7 8 9]A =1 2 34 15 607 8 95:输入矩阵111111111⎛⎫ ⎪ ⎪ ⎪⎝⎭。

%利用MATLAB 命令直接输入矩阵OneMatrix=ones(3,3,1)OneMatrix =1 1 1 1 1 1 1 1 16:输入矩阵00000 00000⎛⎫ ⎪⎝⎭>> OneMatrix=ones(2,5,1);ZeroMatrix=zeros(size(OneMatrix))ZeroMatrix =0 0 0 0 00 0 0 0 07:生成3阶魔方矩阵。

>> magic(3)ans =8 1 63 5 74 9 28:操作符冒号”:”的应用a)步长为1的等差数列b)步长为2的等差数列c)步长为-2的等差、递减数列>> 0:1:10ans =0 1 2 3 4 5 6 7 8 9 10 >> 0:2:10ans =0 2 4 6 8 10>> 10:(-2):0ans =10 8 6 4 2 09:已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=162ln973sin56231A,抽取与修改矩阵A的一些元素.a)求矩阵A的第二行第三列元素b)求矩阵A的第四个元素c)取矩阵A的A(2),A(3),A(4)d)取矩阵A的第一行e)取矩阵A的第三列f)把矩阵A的第一行第三列元素赋值给变量g)把矩阵A的第二行第一列元素修改为100>> A=[1 23 56;sin(3) 7 9;log(2) 6 1] >> A(2,3)ans =9>> A(4)ans =23>> A(2),A(3),A(4)ans =0.141120008059867ans =0.693147180559945ans =23>> A(1,:)ans =1 23 56>> A(:,3)ans =5691>> x=A(1,3)x =56>> A(2,1)=100A =1.0000 23.0000 56.0000 100.0000 7.0000 9.00000.6931 6.0000 1.000010:已知矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=851,9631BA,利用A与B生成矩阵13100690C⎛⎫= ⎪⎝⎭,() D A B=,AAAB⎛⎫= ⎪⎝⎭。

matlab数学实验练习题

matlab数学实验练习题

Matlab 数学实验实验一 插值与拟合实验内容:预备知识:编制计算拉格朗日插值的M 文件。

1. 选择一些函数,在n 个节点上(n 不要太大,如5 ~ 11)用拉格朗日、分段线性、三次样条三种插值方法,计算m 个插值点的函数值(m 要适中,如50~100)。

通过数值和图形输出,将三种插值结果与精确值进行比较。

适当增加n ,再做比较,由此作初步分析。

下列函数任选一种。

(1)、 ;20,sin π≤≤=x x y (2)、;11,)1(2/12≤≤--=x x y (3)、;22,c o s10≤≤-=x x y(4)、22),exp(2≤≤--=x x y2.用电压V=10伏的电池给电容器充电,电容器上t 时刻的电压为)(0)()(τteV V V t v ---=,其中0V 是电容器的初始电压,τ是充电常数。

试由下面一组t ,V 数据确定0V 和τ。

实验二 常微分方程数值解试验实验目的:1. 用MATLAB 软件求解微分方程,掌握Euler 方法和龙格-库塔方法;2. 掌握用微分方程模型解决简化的实际问题。

实验内容: 实验三 地图问题1. 下图是一个国家的地图,为了计算出它的国土面积,首先对地图作如下测量:以由西向东方向为x 轴,由南到北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当地划分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到了表中的数据(单位mm )。

根据地图的比例我们知道18mm相当于40km,试由测量数据计算该国土2实验四狼追兔问题狼猎兔问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。

当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。

当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。

狼在追赶过程中所形成的轨迹就是追击曲线。

狼是否会在兔子跑回洞穴之前追赶上兔子?为了研究狼是否能够追上兔子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。

Matlab实验题目与答案

Matlab实验题目与答案

(温馨提示:实验课结束后,请将所有作业(题目、代码、结果)利用word 整理成一个完整的实验报告,加上封面,打印,纸质档于18周周一交)第一次上机作业目的:1. 掌握MATLAB 各种表达式的书写规则2. 运行课堂上讲过的例子,熟悉矩阵、表达式的基本操作和运算。

作业:1. 熟悉matlab 集成环境界面。

回答以下问题,并操作相关的指令:(1) 分别写出清除命令窗口和清除变量的指令。

答: clc 和clear(2)在命令行输入命令后,matlab 的搜索过程是怎样的?答: (1)检查该命令对象是不是一个变量。

(2)检查该命令对象是不是一个内部函数。

(3)检查该命令对象是否为当前目录下的程序文件。

(4)检查该命令对象是否为MATLAB 搜索路径中其他目录下的M 文件。

(3)什么是matlab 的当前工作目录?写出两种设置当前工作目录的方法? 答: 就是matlab 当前文件读取和存储的默认路径(1)在当前目录窗口中更改(2)在MATLAB 桌面工具栏中更改(3)使用cd 命令:cd c:\mydir---将c :\mydir 设置为当前目录(4)什么是matlab 的搜索路径?写出两种设置搜索路径的方法?答: 指Matlab 运行文件时进行搜索的目录。

(1)用path 命令设置:(2)用Set Path 对话框设置(5)help 命令和doc 命令有什么作用,它们有什么区别?答: help 命令:最基本的帮助命令,查询信息直接显示在命令窗口。

doc 命令:在帮助窗口中显示HTML 帮助文档,显示函数的详细用法及 例子,比help 命令更详细。

2. 在matlab 中输入下列表达式,并求各表达式的值,显示MATLAB 工作空间的使用情况并用两种方式保存全部变量,变量保存的文件名必须包含自己的学号后四位数:(1))1034245.01(26-⨯+⨯=w w=sqrt(2)*(1+0.34245*10^-6)w =1.4142(2),)tan(22ac b e abc c b a x ++-+++=ππ 其中a=3.5,b=5,c=9.8。

MATLAB程序设计插值实验题目

MATLAB程序设计插值实验题目

1、当2,1,1-=x 时,4,3,0)(-=x f ,求x =0时的值。

2、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

3、4()31f x x x =++,已知x =0,1,2处的值,计算x =0.11的近似值。

4.求i =3和5时的值。

5. 给定数据表,采用牛顿插值方法求i =3和5时的值。

6. 已知函数y =在4, 6.25,9x x x ===的近似值。

7. 已知函数y =在4,9,16x x x ===的近似值。

8. 已知函数y =在0,1,4,9x x x x ==== 9. 给定数据表:构造出函数()f x 的差商表,并计算x =0.5时的值.10. 已知函数y =在8,27,64x x x ===的近似值。

11. 已知函数sin()y x =在0,/4,/2x x x ππ===处的函数值,试通过一个二次插值函数求sin(/5)π的近似值。

12. 已知函数cos()y x =在0,/4,/2x x x ππ===处的函数值,试通过一个二次插值函数求cos(/5)π的近似值。

13. 已知函数tan()y x =在0,/4,/3x x x ππ===处的函数值,试通过一个二次插值函数求tan(/5)π的近似值。

14. 已知函数4y x =在1,2,3x x x ===处的函数值,试通过一个二次插值函数求 1.111x =的近似值。

15. 已知函数sin()y x =在0,/4,/2x x x ππ===处函数值,通过一个二次插值函数求1sin(2/5)π-的近似值。

16. 已知函数cos()y x =在0,/4,/2x x x ππ===处函数值,通过一个二次插值函数求1+cos(/5)π的近似值。

17. 已知函数5y x =在1,2,3x x x ===处的函数值,试通过一个二次插值函数求 1.121x =的近似值。

18. 已知函数41/y x =在1,2,3x x x ===处的函数值,试通过一个二次插值函数求 1.211x =的近似值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 计算9.248.26107sin 369.12÷⎪⎭
⎫ ⎝⎛π+的值 2、 产生一个5阶魔术方阵,并执行如下操作:
(1) 将矩阵的第2行3列元素赋值给变量c
(2) 将由矩阵第2,3,4行第3,5列构成的子矩阵赋值给变量d
3、给出区间[0,1]上的6个等分点数据。

4、建立如下矩阵 (1)10102007000200700
02007⨯⎛⎫ ⎪ ⎪ ⎪ ⎪⎝
⎭ (2)1010010101001010100⨯⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ 5、设有分块矩阵⎥⎦
⎤⎢⎣⎡=⨯⨯⨯⨯2232233
3S O R E A ,其中E,R,O,S 分别为单位阵、随机阵、零阵和对角阵,试通过数值计算比较A*A 与A.*A 的区别。

实验二、Matlab 程序设计
1、 已知函数⎪⎩
⎪⎨⎧≤≤<≤<≤-+=2110,
101,1)(2x x x x x x f 计算)5.1(),5.0(),1(f f f -. 2、 用for-end 循环语句求:100!和∑=100
1i i 。

3、 用while-end 循环语句求不超过1000的偶数之和与奇数之和。

4、 建立一个命令M-文件:求所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字的立方和等于该数本身。

例如,153是一个水仙花数,因为153=13+53+33。

5、建立如下矩阵
(1)10101000120011
100⨯⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ (2)20072000002007300000200740000020075000002007⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭
1、 在同一坐标系下面画出)5.0sin(2.01.0x e
y x +=和)5.0cos(2.01.0x e y x +=在区间]2,0[π上的曲线图。

2、 绘制三维螺旋线:].,0[,5.0,sin 2,cos 2π∈===t t z t y t x
3、 画出曲面)sin(xy z =的网线图。

4、 画出曲面)(22y x xe z +-=的图形。

5、作出下列曲面的3维图形,
1)
)sin(22y x z +=π; 2)环面:⎪⎩⎪⎨⎧=+=+=,sin ,sin )cos 1(,cos )cos 1(u z v u y v u x )2,0()2,0(ππ∈∈v u 。

实验四、使用Matlab 解决微积分问题
1、 求下列函数的极限:
(1) 4
202
cos lim
x e
x x x -→- (2) x x 1lim 0+→ 2、 按要求实现下面的求导运算: (1) 已知)tan()1ln(22x x e y x -+=,求)3(,y y ';
(2) 已知xy y x e
y x z 22)(22++=,求y x z x z x z ∂∂∂∂∂∂∂222,,。

3、 已知函数]3,2[,2sin )(2π∈=x x e x f x。

使用Matlab 软件,完成下面的实验任务:
(1) 求出函数)(x f 的一阶导数,二阶导数,并画出它们相应的曲线。

(2) 观察函数的单调区间,凹凸区间,以及极值点和拐点。

4、 使用Matlab 软件,完成下列积分运算:
(1) 求不定积分⎰⎰+-1,232x x dx
dx e x x ;
(2) 求定积分:⎰⎰ππ
π
2024342cos sin ,sin xdx x dx x
x ; 5、 试求解无穷级数的和11111447710(32)(31)S n n =
+++++⨯⨯⨯-+ 6、 试求出函数2sin ()(43)x f x x x =
++的麦克劳林幂级数展开式的前9项,并求出关于
2x =的Taylor 幂级数展开式的前5项。

7、 求微分方程2
(1)2sin 0x y xy x '-+-=的通解。

实验五、使用Matlab 解决线性代数问题
1、 判断下面的线性方程组是否有解,若有解求其通解。

(1)⎪⎩⎪⎨⎧=--+=+--=--+08954433134321
43214321x x x x x x x x x x x x
(2)123412341
2342132344352x x x x x x x x x x x x +-+=⎧⎪-+-=⎨⎪+-+=-⎩
2、 计算行列式3
23232321111d d d
c c c
b b b a a a
以及相应矩阵的逆矩阵。

3、 求矩阵11211132231012
01A --⎡⎤
⎢⎥--⎢⎥=⎢⎥⎢⎥--⎣⎦的特征值和特征向量。

相关文档
最新文档