常用数学符号大全、关系代数符号
常用数学符号大全
常用数学符号大全数学,作为一门精确而又充满逻辑的学科,有着丰富多样的符号来表达各种数学概念和运算。
这些符号就像是数学世界的语言,让数学的表达更加简洁、准确和高效。
下面就让我们一起来了解一些常用的数学符号吧!一、基本运算符号1、加号(+):用于表示两个或多个数相加的运算。
例如:2 + 3 = 5。
2、减号():表示减法运算,如 5 2 = 3。
3、乘号(×或):指示乘法操作,比如 2 × 3 = 6 或者 2 3 = 6。
4、除号(÷或/):用于表示除法运算,像 6 ÷ 2 = 3 或者 6 / 2 = 3。
二、关系符号1、等于号(=):表明左右两边的量相等,比如 2 + 3 = 5 。
2、大于号(>):表示左边的量大于右边的量,例如 5 > 3 。
3、小于号(<):与大于号相反,意味着左边的量小于右边的量,像 3 < 5 。
4、大于等于号(≥):表示左边的量大于或等于右边的量,例如 5 ≥ 3 。
5、小于等于号(≤):表示左边的量小于或等于右边的量,比如 3 ≤ 5 。
三、集合符号1、属于(∈):如果一个元素属于某个集合,就用这个符号表示。
例如,若集合 A ={1, 2, 3},2 ∈ A 。
2、不属于(∉):与属于相反,如果一个元素不属于某个集合,就用这个符号。
比如 4 ∉ A 。
3、并集(∪):表示两个集合中所有元素组成的新集合。
例如,集合 A ={1, 2, 3},集合 B ={3, 4, 5},则 A ∪ B ={1, 2, 3, 4, 5} 。
4、交集(∩):表示两个集合中共同元素组成的集合。
比如,集合 A ={1, 2, 3},集合 B ={2, 3, 4},则A ∩ B ={2, 3} 。
四、代数符号1、未知数(通常用 x、y、z 等表示):在方程中代表需要求解的值。
例如,在方程 2x + 3 = 7 中,x 就是未知数。
2、系数(用数字与未知数相乘的数字):比如在式子 5x 中,5 就是系数。
常用的数学符号大全、关系代数符号
常用数学符号大全、关系代数符号1、几何符号丄 /∕∠c Θ≡BA2、 代数符号X ∧∨ 〜 ∫ ≠ ≤ ≥ ≈ ∞ :3、运算符号如加号( + ),减号(―),乘号(×或•),除号(÷或/), 交集(∩),根号(√),对数(log , Ig ,In ),比(:),微分 积分(/)等。
4、集合符号U ∩ ∈5、 特殊符号∑ ∏ (圆周率)6、 推理符号Ial 丄 SU ≠≡±≥ΓΔΘ Λ Ξ On Σ ① X Ψ αβ Y δ ε Zn θ IK λμ ξ OnP σ TU φ X ψωI IlmWV^W两个集合的并集(U ),(dx ),积分(∫),曲线i ii iii iv VVigi 血ix X∈∏∑∕√χ∞∟∠∣∕∕∧∨∩u ∫e.∙.∙.∙: ::S ≈ B= ≠≡≤≥ W 仝< > ® O 丄"C C指数0123 : 01237、数量符号如:i, 2+i,a,x,自然对数底e,圆周率n。
&关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“v”是小于符号,“≥”是大于或等于符号(也可写作“),"≤”是小于或等于符号(也可写作“》”),。
“→”表示变量变化的趋势,“s”是相似符号,“B”是全等号,“//”是平行符号,“丄”是垂直符号,“%”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“€”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“ □”,大括号“”横线“一”10、性质符号如正号“ + ”,负号“ —”,绝对值符号“I I ”正负号“ ±∙因为,(一个脚站着的,站不住)•••所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n)),幕(A, Ac, Aq, x^n )等。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学符号大全,你都认识吗?
数学符号大全,你都认识吗?1、几何符号⊥∥∠⌒⊙ ≡ ≌△2、代数符号∝∧∨~ ∫ ≠ ≤ ≥ ≈ ∞ ∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号 ∪ ∩ ∈5、特殊符号 ∑ π(圆周率)6、推理符号|a| ⊥∽△∠ ∩ ∪ ≠ ≡± ≥ ≤ ∈← ↑ → ↓ ↖↗↘↙∥∧∨ &; §①②③④⑤⑥⑦⑧⑨⑩Γ Δ Θ Λ Ξ Ο Π Σ Φ ΧΨ Ωα β γ δ ε ζ η θ ι κ λμ νξ ο π ρ σ τ υ φ χ ψ ωⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ∈ ∏ ∑ ⁄ √ ∝ ∞ ∟ ∠∣∥∧∨ ∩ ∪ ∫ ∮∴∵∶∷∽ ≈ ≌≒ ≠≡ ≤ ≥ ≦≧≮≯⊕⊙⊥ ⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”或“≮”是大于或等于符号,“≤”或“≯”)是小于或等于符号。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,正负号“±”绝对值符号“| |”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用数学符号大全、关系代数符号
常用数学符号大全、关系代数符号1、几何符号⊥⊥⊥⊥⊥≡⊥⊥2、代数符号⊥⊥⊥~∫≠≤≥≈∞⊥3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(⊥),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(⊥)等。
4、集合符号⊥∩⊥5、特殊符号∑π(圆周率)6、推理符号|a|⊥⊥⊥⊥∩⊥≠≡±≥≤⊥←↑→↓↖↗↘↙⊥⊥⊥&;§①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψω⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥⊥∏∑∕√⊥∞∟ ⊥⊥⊥⊥⊥∩⊥∫⊥⊥⊥⊥⊥⊥≈⊥⊥≠≡≤≥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“⊥”),“≤”是小于或等于符号(也可写作“⊥”),。
“→ ”表示变量变化的趋势,“⊥”是相似符号,“⊥”是全等号,“⊥”是平行符号,“⊥”是垂直符号,“⊥”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“⊥”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(⊥),直角三角形(Rt⊥),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(⊥),⊥因为,(一个脚站着的,站不住)⊥所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学里所有符号
数学里所有符号
运算符符号:加号(+)、减号(-)、乘号(*)、除号(/)、百分号(%)、等号(=)、不等号(≠)、大于号(>)、小于号(<)、约等于号(≈)、小于等于号(≤)、大于等于号(≥)、恒等于号(≡)等。
特殊符号:圆周率(π)、虚数单位(i)、罗马数字(Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅸ、Ⅹ、Ⅺ、Ⅻ)、正负号(±)、平方根号(√)、绝对值符号(||)、集合符号({}、[]、()、<>)、三角符号(∠、∇)。
数学公式符号:和(∑)、差(Δ)、积(∏)、商(÷)、指数符号(an)、分数符号(a/b)、幂符号(an)、根式符号(√a)、括号符号(+-*/)等。
代数符号:未知数符号(x、y、z)、代数式符号(a+b)、方程式符号(f(x)=0)、因式分解符号(ax+b=(cx+d)e)、分式符号(a/b)、等式符号("=")等。
几何符号:三角形符号(△)、四边形符号(□、平行四边形□)、多边形符号(n边形)、圆形符号(O)、圆弧符号(⌒)、球体符号(S)、圆锥体符号(C)、长方体符号(L)、正方体符号(□)等。
统计符号:平均数符号(x̄)、中位数符号(M)、众数符号(M x̄)、方差符号(s²)、标准差符号(s)、总体平均数符号(x̄_1)、样本平均数符号(x̄_2)、标准误差符号(s x̄_1)等。
以上是一些常见的数学符号,它们在数学学习和研究中经常使用,可以帮助我们更方便地表达和交流数学思想和概念。
数学所有符号
数学所有符号
数学中的符号有许多种,以下列举一些常用的数学符号:
几何符号:⊥(垂直于)、∥(平行于)、∠(角)、⌒(圆弧)、⊙(圆)、≡(全等于)、△(三角形)。
代数符号:∝(正比于)、∧(和)、∨(或)、~(等于)、∫(积分)、≠(不等于)、≤(小于等于)、≥(大于等于)、≈(约等于)、∞(无穷大)。
运算符号:+(加号)、-(减号或负号)、×(乘号)、÷(除号)。
集合符号:∪(并集)、∩(交集)。
特殊符号:∑(求和符号)、π(圆周率)。
推理符号:|a|(绝对值)、⊥(垂直符号)、∽(相似符号)。
排列组合符号:C-组合数、A-排列数、N-元素的总个数、R-参与选择的元素个数。
其他特殊符号:√(平方根)、∑(求和符号)。
以上列举的数学符号仅供参考,具体使用中的数学符号可能会因学科、专业和领域而有所不同。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用的数学符号大全及其意义
常⽤的数学符号⼤全及其意义 相信⼤家平时对于数学符号的认识经常会弄混淆吧,下⾯就是⼩编给⼤家带来的常⽤数学符号以及它们所代表的意义,希望能帮助到⼤家! ⼀、常⽤数学符号⼤全 数学符号⼤全及意义之运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),⽐(:),绝对值符号| |,微分(d),积分(∫),闭合曲⾯(曲线)积分(∮)等。
数学符号⼤全及意义之关系符号 如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是⼤于符号,“<”是⼩于符号,“≥”是⼤于或等于符号(也可写作“≮”,即不⼩于),“≤”是⼩于或等于符号(也可写作“≯”,即不⼤于),“→ ”表⽰变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平⾏符号,“⊥”是垂直符号,“∝”是正⽐例符号(表⽰反⽐例时可以利⽤倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表⽰“能整除”(例如a|b 表⽰“a能整除b”,⽽ ||b表⽰r是a恰能整除b的最⼤幂次),x,y等任何字母都可以代表未知数。
数学符号⼤全及意义之结合符号 如⼩括号“()”,中括号“[]”,⼤括号“{}”,横线“—”=。
数学符号⼤全及意义之性质符号 如正号“+”,负号“-”,正负号“ ”(以及与之对应使⽤的负正号“”) 数学符号⼤全及意义之省略符号 如三⾓形(△),直⾓三⾓形(Rt△),正弦(sin)(见三⾓函数), 双曲正弦函数(sinh),x的函数(f(x)),极限(lim),⾓(∠), ∵因为(⼀个脚站着的,站不住) ∴所以(两个脚站着的,能站住)(⼝诀:因为站不住,所以两个点;因为上⾯两个点,所以下⾯两个点) 总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数 (n元素的总个数;r参与选择的元素个数),幂等。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
常用的数学符号大全及其意义
常用的数学符号大全及其意义在数学中,有许多常用的符号用来表示数学概念、运算和关系。
以下是一些常见的数学符号及其意义的详细介绍:1.+(加号):表示两个数的加法运算,如2+3=52.-(减号):表示两个数的减法运算,如5-2=33.×(乘号):表示两个数的乘法运算,如2×3=64.÷(除号):表示两个数的除法运算,如6÷2=35.=(等号):表示两个数或表达式相等的关系,如2+3=56.<(小于号):表示一个数小于另一个数的关系,如3<57.>(大于号):表示一个数大于另一个数的关系,如5>38.≤(小于等于号):表示一个数小于或等于另一个数的关系,如3≤59.≥(大于等于号):表示一个数大于或等于另一个数的关系,如5≥310.≠(不等号):表示两个数或表达式不相等的关系,如2+3≠611.():圆括号,用于表示运算的优先级或改变表达式的结构,如(2+3)×412.[]:方括号,用于表示数集或矩阵等,如[1,2,3]。
13.{}:花括号,用于表示集合的元素或条件,如{1,2,3}。
14.√(开方号):表示一个数的平方根,如√9=315.^(上标):表示一个数的幂运算,如2^3=816. ∞(无穷大):表示一个数趋近于无穷大的概念,如lim(x→∞) = ∞。
17.∑(求和符号):表示一系列数的累加和,如∑(1,2,3)=1+2+318. ∫(积分符号):表示曲线下的面积或函数的积分运算,如∫(0, 1) x^2 dx。
21.∠(角度符号):表示一个角度的概念,如∠ABC表示角ABC。
22.∥(平行符号):表示两条直线平行的关系,如AB∥CD。
23.⊥(垂直符号):表示两条直线垂直的关系,如AB⊥CD。
24.∆(三角形符号):表示一个三角形的概念,如∆ABC表示三角形ABC。
25.∝(正比符号):表示两个量之间成正比的关系,如y∝x表示y与x成正比。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
(完整版)常用数学符号大全
(完整版)常用数学符号大全1. 加号(+):表示两个数相加,例如 2 + 3 = 5。
2. 减号():表示两个数相减,例如 5 3 = 2。
3. 乘号(×):表示两个数相乘,例如2 × 3 = 6。
4. 除号(÷):表示两个数相除,例如6 ÷ 2 = 3。
5. 等号(=):表示两个数或表达式相等,例如 2 + 3 = 5。
6. 不等号(≠):表示两个数或表达式不相等,例如2 + 3 ≠ 4。
7. 大于号(>):表示一个数大于另一个数,例如 5 > 3。
8. 小于号(<):表示一个数小于另一个数,例如 3 < 5。
9. 大于等于号(≥):表示一个数大于或等于另一个数,例如 5 ≥ 3。
10. 小于等于号(≤):表示一个数小于或等于另一个数,例如3 ≤ 5。
11. 分数线(/):用于表示分数,例如 1/2 表示一半。
12. 开方号(√):用于表示求一个数的平方根,例如√9 = 3。
13. 乘方号(^):用于表示求一个数的幂,例如 2^3 = 8。
14. 求和号(∑):用于表示求和,例如∑(i=1 to n) i 表示求从 1 到 n 的和。
15. 积分号(∫):用于表示求定积分,例如∫(f(x)dx) 表示求函数 f(x) 在某个区间上的定积分。
16. 对数号(log):用于表示求对数,例如 log10(100) = 2。
17. 三角函数符号(sin、cos、tan):用于表示求三角函数的值,例如sin(30°) = 0.5。
18. 倒数符号(1/x):用于表示求一个数的倒数,例如 1/2 =0.5。
19. 无穷大符号(∞):表示无穷大,例如lim(x→∞) f(x) 表示求函数 f(x) 当 x 趋向于无穷大时的极限。
(完整版)常用数学符号大全1. 矩阵符号([ ]):用于表示矩阵,例如 [1 2; 3 4] 表示一个 2x2 的矩阵。
数学中的所有符号
数学中的所有符号
1、几何符号:
几何是研究空间结构及性质的一门学科。
它是数学中最基本的研究内容之一,常见定理有勾股定理,欧拉定理,斯图尔特定理等。
常用符号有:⊥(垂直)、∥(平行)、∠(角)、⌒(弧)、⊙(圆)。
2、代数符号:
代数的研究对象不仅是数字,而是各种抽象化的结构。
在其中我们只关心各种关系及其性质,而对于“数本身是什么”这样的问题并不关心。
常用符号有:∝(正比)、∧(逻辑和)、∨(逻辑或)、∫(积分)、≠(不等于)、≤(小于等于)、≥(大于等于)、≈(约等于)、∞(无穷)。
3、运算符号:
运算符号是计算数学时所用的符号,计算符号有加号、减号、乘号、除号。
常用符号有:×(乘)、÷(除)、√(根号)、±(加减)。
4、集合符号:
集合是指具有某种特定性质的具体的或抽象的对象汇总成的集体,这些对象称为该集合的元素。
一定范围的,确定的,可以区别的事物,当作一个整体来看待,就叫做集合,简称集。
常用符号有:∪(并)、∩(交)、∈(属于)。
5、希腊符号:
在数学中,希腊字母通常被用来表示常数、特殊函数和一些特定的变量。
在数学领域,通常大写与小写的希腊字母所代表的意义都会有所分别,并且互不相关。
常用符号有:α(阿尔法)、β(贝塔)、γ(伽马)、δ(代尔塔)、ε(埃普西龙)、ζ(泽塔)、η(诶塔)、θ(西塔)、ι(埃欧塔)、κ(堪帕)、λ(兰姆达)、μ(谬)、ν
6、特殊符号:
数学中常用某个特定的符号来表示某个元素。
常用符号有:∑(求和)、π(圆周率)。
高中数学常用符号表
高中数学常用符号表1. 基本运算符号加法:+减法:乘法:×(中文)、(英文)除法:÷(中文)、/(英文)平方根:√立方根:³√指数:^(英文)2. 比较符号大于:>小于:<大于等于:≥小于等于:≤等于:=不等于:≠3. 集合符号属于:∈不属于:∉空集:∅并集:∪交集:∩补集:A'4. 函数符号函数:f(x)值域:f(x) ∈ D定义域:x ∈ D反函数:f^(1)(x)极限:lim(x→a) f(x) 5. 三角函数符号正弦:sin余弦:cos正切:tan余切:cot正割:sec余割:csc6. 对数符号对数:log自然对数:ln以10为底的对数:lg 7. 概率与统计符号总体:N样本:n平均数:μ样本平均数:x̄标准差:σ样本标准差:s方差:Var协方差:Cov相关系数:ρ8. 微积分符号导数:f'(x)积分:∫微分:d9. 矩阵符号矩阵:A转置:A^T矩阵乘法:A×B矩阵加法:A+B矩阵减法:AB矩阵的逆:A^(1) 10. 其他符号无穷大:∞虚数单位:i平行:∥垂直:⊥交集:∩并集:∪1. 集合论符号集合的元素个数:|A|子集:A⊆B真子集:A⊊B交集:A∩B并集:A∪B差集:A\B 或 AB对称差:A⊕B2. 数列与级数符号数列:{a_n}级数:∑等差数列:a_n = a_1 + (n1)d等比数列:a_n = a_1 r^(n1)数列的极限:lim(n→∞) a_n 3. 几何符号点:A线段:AB线:l平面:α角:∠ABC三角形:△ABC四边形:ABCD圆:⊙O弧:⌒扇形:扇ABO直线与平面的夹角:∠Al平面与平面的夹角:∠αβ坐标系:Oxyz点的坐标:(x, y)直线的斜率:k直线的截距:b圆的半径:r圆的直径:d球的半径:R球的直径:D向量:a→向量的模:|a→|向量的点积:a→·b→向量的叉积:a→×b→5. 复数符号复数:a + bi实部:Re(z)虚部:Im(z)复数的模:|z|复数的共轭:z复数的辐角:θ6. 排列组合符号排列:A(n, k)组合:C(n, k)阶乘:n!数列的通项公式:a_n = f(n)数列的前n项和:S_n等差数列的前n项和:S_n = n/2 (a_1 + a_n)等比数列的前n项和:S_n = a_1 (1 r^n) / (1 r)(r ≠ 1)2. 几何符号三角形的周长:P三角形的面积:S三角形的内角和:180°圆的周长:C圆的面积:A球的表面积:A球的体积:V3. 解析几何符号直线的方程:y = mx + b圆的方程:(x a)^2 + (y b)^2 = r^2椭圆的方程:(x h)^2/a^2 + (y k)^2/b^2 = 1双曲线的方程:(x h)^2/a^2 (y k)^2/b^2 = 1抛物线的方程:y = ax^2 + bx + c4. 复数符号复数的指数形式:z = r(cosθ + isinθ)复数的极坐标形式:z = r∠θ复数的欧拉公式:e^(iθ) = cosθ + isinθ排列的个数:P(n, k) = n! / (n k)!组合的个数:C(n, k) = n! / [k!(n k)!]二项式系数:C(n, k) = (n choose k)6. 概率与统计符号概率:P(A)条件概率:P(A|B)独立事件:P(A∩B) = P(A)P(B)互斥事件:P(A∪B) = P(A) + P(B)期望值:E(X)方差:Var(X)标准差:σ正态分布:N(μ, σ^2)。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
数学符号大全常用数学符号常用数学符号意义
数学符号⼤全常⽤数学符号常⽤数学符号意义数学符号⼤全|常⽤数学符号|常⽤数学符号意义⼀、常⽤数学符号⼤全数学符号⼤全及意义之运算符号如加号( ),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb),⽐(:),绝对值符号| |,微分(d),积分(∫),闭合曲⾯(曲线)积分(∮)等。
数学符号⼤全及意义之关系符号如“=”是等号,“≈”是近似符号(即约等于),“≠”是不等号,“>”是⼤于符号,“<”是⼩于符号,“≥”是⼤于或等于符号(也可写作“≮”,即不⼩于),“≤”是⼩于或等于符号(也可写作“≯”,即不⼤于),“→ ”表⽰变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平⾏符号,“⊥”是垂直符号,“∝”是正⽐例符号(表⽰反⽐例时可以利⽤倒数关系),“∈”是属于符号,“⊆”是包含于符号,“⊇”是包含符号,“|”表⽰“能整除”(例如a|b 表⽰“a能整除b”,⽽ ||b表⽰r是a恰能整除b的最⼤幂次),x,y等任何字母都可以代表未知数。
数学符号⼤全及意义之结合符号如⼩括号“()”,中括号“[]”,⼤括号“{}”,横线“—”=。
数学符号⼤全及意义之性质符号如正号“ ”,负号“-”,正负号“ ”(以及与之对应使⽤的负正号“”)数学符号⼤全及意义之省略符号如三⾓形(△),直⾓三⾓形(Rt△),正弦(sin)(见三⾓函数),双曲正弦函数(sinh),x的函数(f(x)),极限(lim),⾓(∠),∵因为(⼀个脚站着的,站不住)∴所以(两个脚站着的,能站住)(⼝诀:因为站不住,所以两个点;因为上⾯两个点,所以下⾯两个点)总和,连加:∑,求积,连乘:∏,从n个元素中取出r个元素所有不同的组合数 (n元素的总个数;r参与选择的元素个数),幂等。
数学符号⼤全及意义之排列组合符号C 组合数A (或P) 排列数n 元素的总个数r 参与选择的元素个数! 阶乘,如5!=5×4×3×2×1=120,规定0!=1!! 半阶乘(⼜称双阶乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840数学符号⼤全及意义之离散数学符号∀全称量词∃存在量词├断定符(公式在L中可证)╞满⾜符(公式在E上有效,公式在E上可满⾜)﹁命题的“⾮”运算,如命题的否定为﹁p∧命题的“合取”(“与”)运算∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算↔命题的“双条件”运算的p<=>q 命题p与q的等价关系p=>q 命题p与q的蕴涵关系(p是q的充分条件,q是p的必要条件)A* 公式A的对偶公式,或表⽰A的数论倒数(此时亦可写为 )wff 合式公式iff 当且仅当↑命题的“与⾮” 运算(“与⾮门”)↓命题的“或⾮”运算(“或⾮门”)□模态词“必然”◇模态词“可能”◇模态词“可能”∅空集∈属于(如"A∈B",即“A属于B”)∉不属于P(A) 集合A的幂集|A| 集合A的点数R²=R○R [R=R○R] 关系R的“复合”ℵ Aleph,阿列夫⊆包含⊂(或 ) 真包含另外,还有相应的⊄,⊈,⊉等∪集合的并运算U(P)表⽰P的领域∩集合的交运算-或\ 集合的差运算〡限制集合关于关系R的等价类A/R 集合A上关于R的商集[a] 元素a产⽣的循环群I环,理想Z/(n) 模n的同余类集合r(R) 关系 R的⾃反闭包s(R) 关系 R的对称闭包CP 命题演绎的定理(CP 规则)EG 存在推⼴规则(存在量词引⼊规则) ES 存在量词特指规则(存在量词消去规则)ES 存在量词特指规则(存在量词消去规则)UG 全称推⼴规则(全称量词引⼊规则)US 全称特指规则(全称量词消去规则)R 关系r 相容关系R○S 关系与关系的复合domf 函数的定义域(前域)ranf 函数的值域f:x→y f是x到y的函数(x,y) x与y的最⼤公约数,有时为避免混淆,使⽤gcd(x,y) [x,y] x与y的最⼩公倍数,有时为避免混淆,使⽤lcm(x,y) aH(Ha) H关于a的左(右)陪集Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合d(A,B),|AB|,或AB 点A与点B间的距离d(V) 点V的度数G=(V,E) 点集为V,边集为E的图GW(G) 图G的连通分⽀数k(G) 图G的点连通度Δ(G) 图G的最⼤点度A(G) 图G的邻接矩阵P(G) 图G的可达矩阵M(G) 图G的关联矩阵C 复数集I 虚数集N ⾃然数集,⾮负整数集(包含元素"0")N*(N ) 正⾃然数集,正整数集(其中*表⽰从集合中去掉元素“0”,如R*表⽰⾮零实数) P 素数(质数)集Q 有理数集R 实数集Z 整数集Set 集范畴Top 拓扑空间范畴Ab 交换群范畴Grp 群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴⼆、常⽤数学符号意义汇总= 等于≠ 不等于≈约等于< ⼩于> ⼤于// 平⾏平⾏且相等⊥垂直≥ ⼤于或等于≤ ⼩于或等于≡恒等于或同余π圆周率约为3.1415926536e ⾃然常数约为 2.7182818285|x| 绝对值或(复数的)模∽相似≌全等远⼤于<< 远⼩于∪并集∩交集⊆包含于∈属于⊙圆\ 除,求商值,部分编程语⾔中理解为整除α,β,γ,φ… ⾓度;系数∞ ⽆穷⼤(包括正⽆穷⼤ ∞与负⽆穷⼤-∞) lnx 以e为底的对数(⾃然对数)lgx 以10为底的对数(常⽤对数)lbx 以2为底的对数lbx 以2为底的对数lim 求极限floor(x) 或[x],亦可写为下取整函数(直译为“地板函数”),⼜称⾼斯函数ceil(x) 亦可写为上取整函数(直译为“天花板函数”)x mod y模,求余数x-floor(x) 或{x} 表⽰x的⼩数部分dy,df(x) 函数y=f(x)的微分(或线性主部)∫f(x)dx 不定积分,函数f的全体原函数。
数学符号大全,你都认识吗?
数学符号大全,你都认识吗?1、几何符号⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △2、代数符号∝ ∧ ∨ ~∫ ≠ ≤ ≥ ≈ ∞ ∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪ ∩ ∈5、特殊符号∑ π(圆周率)6、推理符号|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡± ≥ ≤ ∈←↑ → ↓ ↖ ↗ ↘ ↙∥ ∧ ∨&; §① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩Γ Δ Θ Λ Ξ Ο Π Σ Φ ΧΨ Ωα β γ δ ε ζ η θ ι κ λμ νξ ο π ρ σ τ υ φ χ ψ ωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣∥ ∧ ∨ ∩ ∪ ∫ ∮∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕⊙ ⊥⊿ ⌒ ℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”或“≮”是大于或等于符号,“≤”或“≯”)是小于或等于符号。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,正负号“±”绝对值符号“| |”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用数学符号大全、关系代数符号
1、几何符号
⊥∥∠⌒⊙≡≌△
2、代数符号
∝∧∨~∫≠≤≥≈∞∶
3、运算符号
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号
∪∩∈
5、特殊符号
∑π(圆周率)
6、推理符号
|a| ⊥∽△∠∩∪≠≡±≥≤∈←
↑→↓↖↗↘↙∥∧∨
&; §
①②③④⑤⑥⑦⑧⑨⑩
ΓΔΘΛΞΟΠΣΦΧΨΩ
αβγδεζηθικλμν
ξοπρστυφχψω
ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ
ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ
∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮
∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥
⊿⌒℃
指数0123:o123
7、数量符号
如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号
如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号
如小括号“()”中括号“[]”,大括号“{}”横线“—”
10、性质符号
如正号“+”,负号“-”,绝对值符号“| |”正负号“±”
11、省略符号
如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),
∵因为,(一个脚站着的,站不住)
∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
12、排列组合符号
C-组合数
A-排列数
N-元素的总个数
R-参与选择的元素个数
!-阶乘,如5!=5×4×3×2×1=120
C-Combination- 组合
A-Arrangement-排列
13、离散数学符号
├断定符(公式在L中可证)
╞满足符(公式在E上有效,公式在E上可满足)┐命题的“非”运算
∧命题的“合取”(“与”)运算
∨命题的“析取”(“或”,“可兼或”)运算→命题的“条件”运算
A<=>B 命题A 与B 等价关系
A=>B 命题A与B的蕴涵关系
A* 公式A 的对偶公式
wff 合式公式
iff 当且仅当
↑命题的“与非”运算(“与非门”)
↓命题的“或非”运算(“或非门”)
□模态词“必然”
◇模态词“可能”
φ空集
∈属于(??不属于)
P(A)集合A的幂集
|A| 集合A的点数
R^2=R○R [R^n=R^(n-1)○R] 关系R的“复合”(或下面加≠)真包含
∪集合的并运算
∩集合的交运算
- (~)集合的差运算
〡限制
[X](右下角R) 集合关于关系R的等价类
A/ R 集合A上关于R的商集
[a] 元素a 产生的循环群
I (i大写) 环,理想
Z/(n) 模n的同余类集合
r(R) 关系R的自反闭包
s(R) 关系的对称闭包
CP 命题演绎的定理(CP 规则)
EG 存在推广规则(存在量词引入规则)
ES 存在量词特指规则(存在量词消去规则)
UG 全称推广规则(全称量词引入规则)US 全称特指规则(全称量词消去规则)R 关系
r 相容关系
R○S 关系与关系的复合
domf 函数的定义域(前域)
ranf 函数的值域
f:X→Y f是X到Y的函数
GCD(x,y) x,y最大公约数
LCM(x,y) x,y最小公倍数
aH(Ha) H 关于a的左(右)陪集
Ker(f) 同态映射f的核(或称f同态核)[1,n] 1到n的整数集合
d(u,v) 点u与点v间的距离
d(v) 点v的度数
G=(V,E) 点集为V,边集为E的图
W(G) 图G的连通分支数
k(G) 图G的点连通度
△(G) 图G的最大点度
A(G) 图G的邻接矩阵
P(G) 图G的可达矩阵
M(G) 图G的关联矩阵
C 复数集
N 自然数集(包含0在内)
N* 正自然数集
P 素数集
Q 有理数集
R 实数集
Z 整数集
Set 集范畴
Top 拓扑空间范畴
Ab 交换群范畴
Grp 群范畴
Mon 单元半群范畴
Ring 有单位元的(结合)环范畴
Rng 环范畴
CRng 交换环范畴
R-mod 环R的左模范畴
mod-R 环R的右模范畴
Field 域范畴
Poset 偏序集范畴
上述符号所表示的意义和读法(中英文参照)+ plus 加号;正号
- minus 减号;负号
±plus or minus 正负号
× is multiplied by 乘号
÷is divided by 除号
= is equal to 等于号
≠ is not equal to 不等于号
≡ is equivalent to 全等于号
≌is approximately equal to 约等于
≈ is approximately equal to 约等于号< is less than 小于号
> is more than 大于号
≤ is less than or equal to 小于或等于≥ is more than or equal to 大于或等于% per cent 百分之…
∞ infinity 无限大号
√ (square) root 平方根
X squared X的平方
X cubed X的立方
∵since; because 因为
∴hence 所以
∠angle 角
⌒semicircle 半圆
⊙circle 圆
○ circumference 圆周
△triangle 三角形
⊥perpendicular to 垂直于∪intersection of 并,合集∩ union of 交,通集
∫ the integral of …的积分
∑ (sigma) summation of 总和
°degree 度′ minute 分
〃 second 秒# number …号@ at 单价
/ju'silən/。