2012年高中数学联赛湖北省预赛试卷(高一年级)

合集下载

2012各省高中数学联赛预赛试题汇编(续)(含答案)(精)

2012各省高中数学联赛预赛试题汇编(续)(含答案)(精)

山东省2012届高中数学夏令营数学竞赛(及答案)一.填空题(本题共5道小题,每小题8分,满分40分)1.函数f(x)=题)解:f(x)=立,所以,f(x)最大=.2.如果自然数a的各位数字之和等于5,那么称a为“吉祥数”, 将所有吉祥数从小到大排成一列a1,a2,…,an.若an=2012.则n=_______________. (王继忠供题)解:设x1x2 xm为吉祥数,则x1+x2+…+xm=5,由x1≥1和x2,…,xm≥0得44Cm+2个吉(x1-1)+x2+…+xm=4,所以,x1x2 xm为第Cm+3个吉祥数.1x2 xm为第的最大值是________________ ; (王泽阳供≤,=即x=12时成祥数.由此得:一位吉祥数共1个,二位吉祥数共C54C6=154=5个,三位吉祥数共个,=15因以1为首位的四位吉祥数共C64数为:个,以2为首位的前两个四位吉祥2003和2012.故n=1+5+15+15+2=38.3.已知f(x)是2011次多项式,当n=0,1,…,2011时,f(n)=nn+1.则f(2012)=______; (王林供2012各省高中数学竞赛预赛汇编第 1 页交流学习提高题)解:当n=0,1,…,2011时, (n+1)f(n)=n,即多项式(x+1)f(x)-x有2012个根, 设(x+1)f(x)-x=ax(x-1)(x-2)…(x-2011). 取x=-1,则1=2012!a.故a=12012!,x(x-1)(x-2) (x-2011)2012!(x+1)2012!2012!2013+20122013=20132013f(x)=+xx+1,f(2012)==1.4.将圆周上5个点按如下规则染色:先任选一点染成红色,然后依逆时针方向,第1步转过1个间隔将到达的那个点染红,第2步转过2个间隔将到达的那个点染红,第k步转过k个间隔将到达的那个点染红.一直进行下去,可得到_________个红点. (龚红戈供题)解:将5个点依次编号0—4,且不妨设开始染红的是0号点,则第1步染红的是1号点,第2步染红的是3号点,第3步染红的又是1号点.故共可得3个红点.5.如图,设O,I分别为∆ABC的外心、内心,且∠B=60 ,AB>BC,∠A的外角平分线交⊙O于D,已知AD=18,则OI=_____________.(李耀文供题)解: 连接BI并延长交⊙O于E,则E为弧AC的中点.连OE、AE、CE、OC,由∠B=60 ,易知∆AOE、∆COE均为=IE=CE正三角形.由内心的性质得知:AEA,所以、O、I、C四点共圆,且圆心为E.再延长AI交⊙O于F,=2∠OAI由题设知D、O、F共线,于是∠OEI,∠AOD=2∠AFD=2∠OAI,2012各省高中数学竞赛预赛汇编第 2 页交流学习提高又OA=OD=OE=IE, 从而∆OAD≌∆EOI, 故OI=AD=18.二.解答题(本题共5道小题,每小题20分,满分100分)6.证明:对任给的奇素数p,总存在无穷多个正整数n使得p|(n2n-1).(陈永高供题)证明:取n=(p-1)k,则由费尔马小定理知2(p-1)k⇔(p-1)k∙2(p-1)k≡1(modp),所以, p|(n2n-1)≡1(modp)⇔(p-1)k≡1(modp)⇔k≡-1(modp).2(p-1k)取k=pr-1(r∈N*),即n=(p-1)(pr-1),就有(p-1)k∙p|(n2n-1).≡1(mopd)即7.如图,已知P是矩形ABCD内任意一点,延长BP交AD于E,延长DP交AB 于F,延长CP中豪供题)证法1: 设CG交AD于Q,由∠∠AGB=∠CGD知△ABG∽△QDG交于R,由AD∥BR, AD=BC得AFFB=BCBR①BCBR=QEED又由△CPB∽△QPE及△RPB∽△DPE得由①,②得AFFB=QEED②,表明F,E是△ABG,△QDG的相似对应点,故得△FBG∽△EDG.所以,∠FGB=∠EGD,∠FGE=∠BGD=900, 即GE⊥GF. 2012各省高中数学竞赛预赛汇编第 3 页交流学习提高证法2:联结GB,GD,令∠GCB=α,∠GCD=β, 由正弦定理得:=BFsin∠BFPGBGD⋅=sinαsinβ=BPsin∠PBCDPsin∠PDCBFDEsin∠PBCDEsin∠DEPsin∠PDC=,由∠GBF=∠GDE得△FBG∽△EDG.所以,∠FGB=∠EGD,∠FGE=∠BGD=900, 即GE⊥GF.8.对于恰有120个元素的集合A.问是否存在子集A1,A2,…,A10满足: (1)|Ai|=36,i=1,2,…,10; (2)A1∪A2∪…∪A10=A;(3)|Ai∩Aj|=8,i≠j.请说明理由. (刘裕文供题) 解:答案:存在.3考虑长度为10的0,1数列.其中仅3项为1的恰有C10=120个,每个作为集合A的一个元素.2对每个j=1,2,…,10,第j项为1的0,1数列恰有C9=36个,它们是集合Aj的36个元素.对每对i,j∈{1,2,…,10}(i<j),第i项与第j项均为11的0,1数列恰有C8=8个,它们是Ai∩Aj的元素.综上知,存在满足条件的10个子集.9.求最小的正整数m,n(n≥2),使得n个边长为m的正方形,恰好可以割并成n个边长分别为1,2,…,n的正方形. (邹明供题)解:依题意n个边长为m的正方形,恰好可以割并成n个边长分别为2012各省高中数学竞赛预赛汇编第 4 页交流学习提高1,2,…,n的正方形⇔12+22+…+n2=nm2,即6m2=(n+1)(2n+1),则(n+1)(2n+1)=2n2+3n+1≡0(mod6),由n2≡0,1,3,4(mod6)知n≡±1(mod6).若6|n+1,设n=6k-1(k∈N),得m2=k(12k-1),因(k,12k-1)=1,所以k与12k-1都是完全平方数,但12k-1≡3 (mod4)矛盾!若6|n-1,设n=6k+1(k∈N),得m2=(3k+1)(4k+1),因(3k+1,4k+1)=1,所以,3k+1=v2,4k+1=u2,消去k得4v2-3u2=1,v=u=1时,k=0,n=1,但n≥2,故u>1,v>1.由4v2-3u2≡1(mod8)知u,v为奇数,直接计算得umin=15,vmin=13,k=56,所以,m最小=15³13=195,n最小=337.10.设实系数三次多项式p(x)=3x+ax+bx+c32有三个非零实数根.求证:6a3+10(a2-2b)2题) -12ab≥27c. (李胜宏供证明:设α,β,γ为p(x)=0的三个根,由根与系数关系⎧α+β+γ=-a⎪⎨αβ+βγ+γα=b⎪αβγ=-c⎩222得: 3a-2b=α+β+γ.原式⇔6a(a-2b)+10(a-2b)2≥27c3222222222⇔6(α+β+γ)(α+β+γ)-10(α+β+γ)2≤27αβγ ①.222若α+β+γ=0,则①成立.2012各省高中数学竞赛预赛汇编第 5 页交流学习提高若α2+β2+γ2>0,不妨设|α|≤|β|≤|γ|,由①的齐次性,不妨设α+β+γ222=9,则γ2≥3,2αβ≤α+β22=9-γ2≤6.①⇔2(α+β+γ)-αβγ≤10.因[2(α+β+γ)-αβγ]=[2(α+β)+(2-αβ)γ]≤[4+(2-αβ)][(α+β)+γ]232 =[8-4αβ+(αβ)](9+2αβ)=2(αβ)+(αβ)-20(αβ)+72 22222=(αβ+2)(2αβ-7)+100≤100,所以,2(α+β+γ)-αβγ≤10.故原式2成立.二O一二年全国高中数学联赛甘肃预赛试卷(2012 年6 月24 日上午9:00-11:30)考生注意: 1、本试卷共两大题(12 道小题),全卷满分120 分.2、用钢笔、签字笔或圆珠笔作答.3、解题书写不要超出装订线.4、不能使用计算器.一、填空题( 本题满分56 分,每小题7 分)1. 空间四点 A ,B ,C ,D两两间的距离均为1,点P 与点Q分别在线段AB 与CD上运动,则点 P 与点Q间的最小距离为____________;⎧⎪0≤OP⋅OA≤1,则点2.向量OA=(1,0),OB=(1,1),O为坐标原点,动点P(x,y)满足⎨⎪⎩0≤OP⋅OB≤2Q(x+y,y)构成的图形的面积为3. 设有非空集合A⊆{1,2,3,4,5,6,7}且当a∈A时,必有8-a∈A,这样的集合A的个数是_____________;⎧⎪x-[x],x≤0,其中[x]表示不超过x的最大整数,4.设f(x)=⎨若f⎪⎩f(x-1),x>0(x)=kx+k(k>0)有三个不同的实数根,则实数k的取值范围是5. 11位数的手机号码,前七位数字是1390931,若余下的4 个数字只能是1、3 、5 且都至少出现1 次, 这样的手机号码有___________个;6.若tanx1⋅tanx2⋅⋅tanx2012=1,则sinx1⋅sinx2⋅⋅sinx2012的最大值是2012各省高中数学竞赛预赛汇编第 6 页交流学习提高7.设函数f:R→R,满足f(0)=1且对任意x,y∈R都有f(xy+1)=f(x)f(y)-f(y)-x+2,则f(x)= ;8.实数x,y,z满足x2+y2+z2=1,则xy+yz的最大值为二、解答题( 本题满分 64 分, 第 9、10 题每题14 分,第11、12 题每题18 分)9.已知数列{an}满足an+1+an-1an+1-an+1=n(n∈N*),且a2=6。

2012全国高中数学联赛一试试题参考答案_B卷

2012全国高中数学联赛一试试题参考答案_B卷
2 2 2 c o s ( x )+ 2 s i n ( y )= 1 , ㊀㊀㊀① π π

{
② ③
则有序数对( x , y )= 解: ㊀( 4 , 2 ) .
由①、 i n ( x ) [ 2+ s i n ( x ) ]= 0 . ②得s π π 因为 2+ s i n ( x )> 0 , 所以 s i n ( x )= 0 . π π 代入②得㊀s i n ( y )= 0 . π 从而, x 、 y 均为正整数.
易知, F B的周长为 4 a , 内切圆半径为 1 , 则 △A 1 1 ㊀㊀㊀㊀㊀㊀㊀㊀S a ·1= 2 a . F B = ·4 △A 1 2 1 又S c ·│y y 4 c . │= F B = ·2 1- 2 △A 1 2 所以, 由2 a = 4 c , 得e = c 1 = . a 2

当且仅当 A M⊥B C , 即A B= A C= 5时, 上式等号成立. ㊀㊀故△A B C面积的最大值为 1 2 . → → → 【 方法 2 】 因为 │A B- A C C a = 6 , │= │B │= → 2 → 2 → → 所以 │A B C 2 A B ·A C= 3 6 . │ + │A │ -
【 方法 1 】 易知, 在一次投掷中, 投出的点数是 7的概率为 率为
1 1 1 1 . 从而, 投出的点数是奇数但不是 7的概率为 - = . 2 2 6 3 在 3次投掷中, 记“ 仅有一次投出的点数是 7 , 另两次中至少都是 7 , 另一次投出的点数是偶数” 为事件 B . 显然 A与 B互斥. 故所求事件 为 C= A+ B . 7 1 1 1 1 2 1 1 因为 P ( A )= C [ C ( ) ]= , ˑ ˑ + 3ˑ 2ˑ 6 2 3 2 2 4 1 2 1 1 2 ㊀㊀ P ( B )= C ( ) ˑ =ˑ , 3ˑ 6 2 2 4 7 1 1 ( C )= P ( A+ B )= P ( A )+ P ( B )= + = . 所以 P 2 4 2 4 3 【 方法 2 】 在 3次投掷中, 记“ 至少有一次投掷的点数是偶数” 为事件 A , “ 至少有一次投掷的点 数是 7 ” 为事件 B , 则所求事件为 C= A . ∩B 因为 C= A A , ∩B= ∪B

1高斯函数

1高斯函数

第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x],即y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n 1]+[x+n 2]+…+[x+nn 1-]=[nx]; 证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa +11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 .3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 .2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+[4y]+ 月份 1 2 3 4 5 6 7 8 9 10 11 12[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字(见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 .2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= .3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+ 第一讲:高斯函数 3[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:对应的m 值 11 12 1 2 3 4 5 6 7 8 9 101.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . ③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = .②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 .2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .4 第一讲:高斯函数②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23] ③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.[练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数).6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 第一讲:高斯函数 5⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= . 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ]. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.8.不等问题:[例8]:(1981年美国数学奥林匹克试题)对正整数n 和一切实数x.求证:[nx]≥1][x +2]2[x +…+nnx ][. [解析]:为方便,记a n =1][x +2]2[x +…+nnx ][.用数学归纳法证明:①当n=1时,a 1=[x],[nx]=[x]⇒原不等式成立;②假设当k<n 时,原不等式均成立,即a 1≤[x],a 2≤[2x],…,a n-1≤[(n-1)x];注意到:a k -a k-1=kkx ][⇒ka k -ka k-1=[kx]⇒na n =a 1+(2a 2-a 1) 6 第一讲:高斯函数+(3a 3-2a 2)+…+[na n -(n-1)a n-1]=a 1+(2a 2-2a 1)+(3a 3-3a 2)+…+(na n -na n-1)+(a 1+a 2+…+a n-1)=[x]+[2x]+[3x]+…+[nx]+(a 1+a 2+…+a n-1)≤n[nx]⇒a n ≤[nx].[练习8]:1.(第10届地中海地区数学奥林匹克试题)设x 为大于1的实数.证明:(][}{x x x +-}{][x x x +)+(}{][x x x +-][}{x x x +)>29.2.(2005年国家集训队训试试题)求所有正整数m 、n,使得不等式[(m+n)α]+[(m+n)β]≥[m α]+[m β]+[n(α+β)]对任意实数α、β都成立.3.(2005年国家集训队选拔考试试题)设n 是任意给定的正整数,x 是正实数.证明:∑++-=nk x kx x k x 1])1)[1(][(≤n.第一讲:高斯函数 1第一讲:高斯函数高斯函数是数论中的重要函数,从小学、初中、高中,直到大学的各级、各类数学竞赛均有涉及,是数学竞赛极独特的内容.定义:[x]表示不超过实数x 的最大整数.则y=[x]称为高斯函数,也叫取整函数.由任一实数都能写成整数部分与非负纯小数之和,即x=[x]+α(0≤α<1),这里,[x]称为x 的整数部分,而α,即x-[x]称为x 的小数部分,记{x}=x-[x].函数性质:①高斯函数y=[x]的定义域是R,值域是Z;函数y={x}的定义域是R,值域是[0,1);②函数y=[x]与y=x-[x]与y={x}的图像分别为:③函数y=[x]是一个分段表达的不减的无界函数,即当x 1≤x 2时,有[x 1]≤[x 2];y={x}是一有界、周期为1的非单调函数;等式性质:①[n+x]=n+[x],{x+n}={x},其中x ∈R,n ∈Z;②[-x]=⎩⎨⎧∉--∈-)(1][)]([Z x x Z x x ;③若n ∈N +,x ∈R,则[n nx ][]=[x],特别地,[n x ][]=[n x],[nm x][]=[mn x ](证明:由x-1<[x]≤x<[x]⇒n[x]≤nx<n([x]+1)⇒[x]≤[n nx ][]>[x]+1⇒[n nx ][]=[x])不等性质:①若x ∈R,则x-1<[x]≤x<[x]+1;②若x,y ∈R,则[x+y]≥[x]+[y],且{x}+{y}≥{x+y},一般地,若x i ∈R,则[∑=ni i x 1]≥∑=ni i x 1][,特别地,[nx]≥n[x],[b na ]≥n[b a ];③若x,y ∈R +,则[xy]≥[x][y],特别地,][][y x ≥[yx],一般地,若x i ∈R +,则[∏=ni i x 1]≥∏=ni i x 1][,特别地,[x n ]≥[x]n ,[x]≥[n x ]n;厄米特恒等式:若x ∈R,n ∈N 6,则[x]+[x+n1]+[x+n2]+…+[x+nn 1-]=[nx];证明:引入辅助函数f(x)=[nx]-([x]+[x+n 1]+[x+n 2]+…+[x+n n 1-])⇒f(x+n 1)=[nx+1]-([x+n 1]+[x+n2]+…+[x+ n n 1-]+[x+n 1+n n 1-])=[nx]+1-([x+n 1]+[x+n 2]+…+[x+n n 1-]+[x]+1)=f(x)⇒f(x)是一个以n1为周期的周期函数,而当x ∈[0,n1]时,直接计算知f(x)=0.故对任意x ∈R,厄米特等式成立. 1.函数性质:[例1]:(2010年全国高中数学联赛天津预赛试题)若关于x 的函数f(x)=|x-[x+a]|存在最大值M(a),则正实数a 的取值范是 (其中[x]表示不超过x 的最大整数).[解析]:设x+a=n+α,其中,n ∈Z,0≤α<1,则f(x)=|x-[x+a]|=|n+α-a-n|=|α-a|;①当0<a<21时,由-a ≤α-a<1-a,因|1-a|>|-a|⇒f(x)无最大值;②当a ≥21时,由-a ≤α-a<1-a,因|1-a|≤|-a|⇒f(x)有最大值.故a 的取值范是[21,+∞).[练习1]:2 第一讲:高斯函数1.(1994年全国高中数学联赛河北预赛试题)设f(x)=xa+11-21,且[m]表示不超过m 的最大整数,则[f(x)]+[f(-x)]的值域是 .解:因f(x)+f(-x)=(x a +11-21)+(x a -+11-21)=x a +11+xxa a +1-1=0⇒f(-x)=-f(x);设f(x)=k+α,其中,k ∈Z,0≤α<1,①若α=0,则f(x)=k ⇒-f(x)=-k ⇒[f(x)]=k,[f(-x)]=-k ⇒[f(x)]+[f(-x)]=0;②若α≠0,则f(x)=k+α⇒-f(x)=-k-α= -(k+1)+(1-α)⇒[f(x)]=k,[f(-x)]=-(k+1)⇒[f(x)]+[f(-x)]=-1⇒[f(x)]+[f(-x)]的值域是{-1,0}. 2.(2012年全国高中数学联赛甘肃预赛试题)设f(x)=⎩⎨⎧>-≤-)0)(1()0]([x x f x x x ,其中[x]表示不超过x 的最大整数,若f(x)=kx+k(k>0)有三个不同的实数根,则实数k 的取值范围是 . 解:令g(x)=kx+k,由图知g(2)≤1,g(3)>1⇒41<k ≤31. 3.(2008年全国高中数学联赛湖南预赛试题)某学校数学课外活动小组,在坐标纸上某沙漠设计植树方案如下:第k 棵树种植在点P k (x k ,y k )处,其中x 1=1,y 1=1,当k ≥2时,x k =x k-1+1-5[51-k ]+5[52-k ],y k =y k-1+[51-k ]-[52-k ].其中,[a]表示实数a 的整数部分,例如[206]=2,[0.6]=0.按此方案,第2008棵树种植点的坐标为 . 解:令f(k)=[51-k ]-[52-k ],则f(k+5)=[515-+k ]-[525-+k ]=[1+51-k ]-[1+52-k ]=[51-k ]-[52-k ]=f(k),故f(k)是周期为5的函数;计算可知:f(2)=0,f(3)=0,f(4)=0,f(5)=0,f(6)=1;由x k =x k-1+1-5f(k)⇒x k -x k-1=1-5f(k)⇒x 2008=x 1+(x 2- x 1)+(x 3-x 2)+…+(x 2008-x 2007)=x 1+2007-5[f(2)+f(3)+…+f(2008)]=x 1+2007-5[4001(f(2)+f(3)+…+f(6))+f(2)+f(3)]=3;同理可得y 2008=402.所以,2008棵树的种植点为(3,402).2.求值问题:[例2]:(1993年全国高中数学联赛试题)整数[310103193+]的末两位数是_______.[解析]:由[310103193+]=[3103)310(313393+-+]=[(1031)2-1031×3+32-3103313+]=(1031)2-1031×3+32-1=1031(1031-3)+8⇒末两位数是08.[练习2]:1.(2006年上海市TI 杯高二年级数学竞赛试题)有一个根据某年某月某日计算“星期几”的有趣公式:d+[2.6m-0.2]+y+ [4y ]+[4c]-2c 除以7的余数,其中,c 表示年的前两位数字(即世纪),y 表示年的后两位数字,d 表示日,m 表示月对应的数字 (见表). [x]表 示不于x 的最大整数.则2008年6月18日是星期 . 解:因c=20,y=8,d=18,m=4⇒d+[2.6m-0.2]+y+[4y ]+[4c]-2c=18+[10.2]+8+[2]+[5]-40=3≡3(mod7)⇒2008年6月18日是星期三.2.①(2008年北京市中学生数学竞赛高一年级初试试题)以[x]表示不超过x 的最大整数,试确定[sin1]+[sin2]+[sin3]+ [sin4]+[sin5]的值. 解:因为0<1<2π,2π<2、3<π,π<4<23π,23π<5、6<2π⇒sin1、sin2、sin3∈(0,1),sin4、sin5∈(-1,0)⇒[sin1]=第一讲:高斯函数 3[sin2]=[sin3]=0,[sin4]=[sin5]=-1⇒[sin1]+[sin2]+[sin3]+[sin4]+[sin5]=-2.②(2011年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[sin1]+[cos2]+[tan3]+[sin4]+[cos5] +[tan6]= . 解:因为0<1<2π,2π<2<π,43π<3<π,π<4<23π,23π<5<2π,47π<6<2π⇒sin1∈(0,1),cos2∈(−1,0),tan3∈(−1, 0),sin4∈(−1,0),cos5∈(0,1),tan6∈(−1,0)⇒[sin1]+[cos 2]+[tan 3]+[sin 4]+[cos5]+[tan 6] =0+(-1)+(-1)+(-1) +0+(-1)=-4.3.①(2005年上海市高中数学竞赛试题)设[x]表示不超过实数x 的最大整数,求集合{n|n=[20052k ],1≤k ≤2004,k ∈N}的元素个数. 解:当20052k <1,即k<44时,[20052k ]=0;当1≤20052k <2,即45≤k<63时,[20052k ]=1;当2≤20052k <3,即64≤k<77时,[20052k ]=2; 当3≤20052k <4,即78≤k<89时,[20052k ]=3;当4≤20052k <5,即90≤k<100时,[20052k ]=4;当5≤20052k <6,即100≤k<109时,月份 1 2 3 4 5 6 7 8 9 10 11 12 对应的m 值111212345678910[20052k ]=5;当6≤20052k <7,即110≤k<118时,[20052k ]=6;当7≤20052k <8,即119≤k<126时,[20052k ]=7;…,集合{n|n=[20052k ], 1≤k ≤2004,k ∈N}的元素个数=1503.②(2010年全国高中数学联赛山西预赛试题)设a n =21⋅+32⋅+…+)1(+n n ,则[na n2]= . 解:由k<)1(+k k <k+21⇒2)1(+n n <a n <2)1(+n n +21n ⇒n+1<n a n 2<n+2⇒[n a n 2]=n+1. ③(2011年全国高中数学联赛福建预赛试题)对正整数n,设x n 是关于x 的方程nx 3+2x-n=0的实数根,记a n =[(n+1)x n ](n= 2,3,…)([x]表示不超过x 的最大整数).则10051(a 2+a 3+…+a 2011)= . 解:设f(x)=nx 3+2x-n,易知,当n 为正整数时,f(x)为增函数;f(1)=2>0,且当n ≥2时,f(1+n n )=n(1+n n )3+21+n n -n=3)1(+n n (- n 2+n+1)<0⇒x n ∈(1+n n ,1)⇒n<(n+1)x n <n+1⇒a n =[(n+1)x n ]=n ⇒10051(a 2+a 3+…+a 2011)=2013. ④(2007年全国高中数学联赛四川预赛试题)[x]表示不超过实数x 的最大整数,比如[3.14]=3,[0]=0,[-3.14]=-4.数列满足{a n }:a n =3n-2,若b n =[5na ],则b 1+b 2+…+b 2007= . 解:由b n =[5n a ]=[523-n ]⇒b 5k+r =[52)5(3-+r k ]=[3k+523-r ]=3k+[523-r ](r=0,1,2,3,4)⇒b 5k =3k-1,b 5k+1=b 5k+2=3k,b 5k+3=3k+1,b 5k+4=3k+2⇒b 5k-4+b 5k-3+b 5k-2+b 5k-1+b 5k =15k-10⇒b 1+b 2+…+b 2007=(b 1+b 2+…+b 5)+…+(b 401×5-4+b 401×5-3+b 401×5-2+b 401×5-1+b 401×5)+(b 401×5+1+b 401×5+2)=152)4011(401+-10×401+(3×401+3×401)=(15×201-4)401=1207411.3.求和问题:[例3]:(2012年全国高中数学联赛河南预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 22012]= .[解析]:我们来解决一般性问题:设a ∈N +,且a ≥2,求和[log a 1]+[log a 2]+[log a 3]+…+[log a n].当a t≤k<a t+1时,[log a k]=t,t=0,1,2,…,且在区间[a t,a t+1)中的正整数有(a-1)a t个.并设a m≤n<a m+1,n=a m+b(b ∈N +),则 [log a 1]+[log a 2]+[log a 3]+…+[log a n]=(a-1)[0×a 0+1×a+2×a 2+…+(m-1)×a m-1]+mb=(a-1){[1-a a (m-1)-2)1(-a a ]a m-1+ 4 第一讲:高斯函数2)1(-a a }+mb=[a(m-1)-1-a a ]a m-1+1-a a +m(b+1) 回到本题:a=2,由210<2012<211⇒m=10,由2012-210=2012-1024=988⇒b=988⇒和为(2×9-2)29+2+10×989=18084.[练习3]:1.①(2008年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则[log 21]+[log 22]+[log 23]+…+[log 2500]= .解:当2t ≤k<2t+1时,[log 2k]=t,t=0,1,2,…,且在区间[2t ,2t+1)中的正整数有2t 个.设f(x)=[log 2x],注意到29=512,所以, [log 21]+[log 22]+[log 23]+…+[log 2500]=∑=5001)(k k f =f(1)+∑-=1222)(k k f +∑-=12232)(k k f +∑-=12243)(k k f +∑-=12254)(k k f +∑-=12265)(k k f +∑-=12276)(k k f +∑-=12287)(k k f +∑=50028)(k k f =0+1×21+2×22+3×23+4×24+5×25+6×26+7×27+8(28-11)=3498.②(2010年全国高中数学联赛贵州预赛试题)设[x]表示不超过x 的最大整数,则[lg1]+[lg2]+[lg3]+…+[lg2010]= . 解:因为1≤k ≤9⇒[lgk]=0;10≤k ≤99⇒[lgk]=1;100≤k ≤999⇒[lgk]=2;1000≤k ≤2010⇒[lgk]=3;所以,[lg1]+ [lg2]+[lg3]+…+[lg2010]=60×1+900×2+1011×3=4923.③(2009年北京市中学生数学竞赛高一年级初试试题)[x]表示不超过x 的最大整数,若[log 36]+[log 37]+[log 38]+…+ [log 3(n-1)]+[log 3n]=2009,试确定正整数n 的值.解:由[log 36]=[log 37]=[log 38]=1⇒[log 36]+[log 37]+[log 38]=3;[log 39]=[log 310]=…=[log 326]=2⇒[log 39]+[log 310]+ …+[log 326]=36;[log 327]=[log 328]=…=[log 380]=3⇒[log 327]+[log 328]+…+[log 380]=162;[log 381]=[log 382]=…= [log 3242]=4⇒[log 381]+[log 382]+…+[log 3242]=648;3+36+162+648=849;[log 3243]=[log 3244]=…=[log 3728]=5⇒ [log 3243]+[log 3244]+…+[log 3728]=2430⇒n=474.④(1991年第二届“希望杯”全国数学邀请赛试题){x}表示不小于实数x 的最小整数,则{log 21}+{log 22}+…+{log 21991} = .解:当log 2n 为整数时,{log 2n}=[log 2n](n=20,21,…,210);当log 2n 为整数时,{log 2n}=[log 2n]+1;所以,{log 21}+{log 22}+…+{log 21991}=[log 21]+[log 22]+…+[log 21991]+1991-11;由a=2,1024=210<1991<211⇒m=10,由1991-210=967⇒b=967⇒ [log 21]+[log 22]+…+[log 21991]+1991-11=[2×9-2]29+2+10×968+1991-11=19854.2.①(1990年第一届“希望杯”全国数学邀请赛试题)设[x]表示不超过x 的最大整数,则[1]+[2]+[3]+…+ [19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]的值是 .解:当k 为整数时,[k ]+[-k ]=0(k=12,22,…,19892),当k 不是整数时,设k =n+α(0<α<1),则[k ]=n,[-k ]=[-n-α]=[-(n+1)+(1-α)]=-(n+1)⇒[k ]+[-k ]=-1⇒[1]+[2]+[3]+…+[19901989⋅]+[-1]+[-2]+[-3]+…+[-19901989⋅]=-1989×1990+1989=-19892.②(2012年北京市中学生数学竞赛高中一年级初赛试题)若[x]表示不超过x 的最大整数,求满足方程[nlg2]+[nlg5]=2012的自然数n 的值.解:因为nlg2和nlg5是无理数,那么可以表示nlg2=m+a 其中m=[nlg2],a={nlg2}≠0,而nlg5=n-nlg2=n-m-a=(n-m-1)+(1- a)⇒[nlg5]=n-m-1⇒[nlg2]+[nlg5]=n-1=2012⇒n=2013.3.①(2012年全国高中数学联赛湖北预赛试题)设[x]表示不超过x 的最大整数,则∑+=+201201]222012[k k k = . 解:由1222012++k k <1⇒2012+2k <2k+1⇒2k>2012⇒k>11⇒当k>11时,[1222012++k k ]=0;当k=0时,[1222012++k k ]=1006;当k=1时,[1222012++k k]=503;当k=2时,[1222012++k k ]=250;当k=3时,[1222012++k k ]=126;当k=4时,[1222012++k k ]=63;当k=5时,[1222012++k k ]=31;当k=6时,[1222012++k k ]=16;当k=7时,[1222012++k k ]=8;当k=8时,[1222012++k k ]=4;当k=9时,[1222012++k k ]=2;当k=10、第一讲:高斯函数 511时,[1222012++k k ]=1⇒∑+=+20121]222012[k k k =1006+503+250+126+63+31+16+8+4+2+1+1=2012.②(2012年全国高中数学联赛福建预赛试题)对正整数x,记m=[2x ]+[22x ]+[32x ]+…+[k x 2],其中k 为满足2k≥x 的最小整数,符号[x]表示不超过x 的最大整数.x 与m 的差,即x-m 称为正整数x 的“亏损数”.(如x=100时,m=[2100]+[22100]+…+ [72100]=97,x-m=3,因此,数100的“亏损数”为3).则“亏损数”为9的最小正整数x 为________.解:设下x=a n ×2n+a n-1×2n-1+…+a 2×22+a 1×21+a 0×20,其中a i ∈{0,1}(i=0,1,2,…,n),则x-2[2x ]=a 0;[2x ]-2[22x]=a 1; [22x ]-2[32x ]=a 2,…,[nx 2]-2[12+n x ]=a n ⇒a 0+a 1+a 2+…+a n =(x-2[2x ])+([2x ]-2[22x ])+([22x ]-2[32x ])+…+([n x2]- 2[12+n x])=x-([2x ]+[22x ]+[32x ]+…+[12+n x ])=x-m=x 的“亏损数”⇒亏损数”为9的最小正整数x=1+2+22+…+28=511. 4.方程问题:[例4]:(1995年全国高中数学联赛试题)用[x]表示不大于实数x 的最大整数,方程lg 2x-[lgx]-2=0的实根个数是_____.[解析]:由x ≥[x],lg 2x-[lgx]-2=0⇒lg 2x-2=[lgx]≤lgx ⇒-1≤lgx ≤2⇒[lgx]=-1,0,1,2;当[lgx]=-1时,lg 2x=1⇒lgx=-1;当[lgx]=0时,lg 2x=2⇒lgx=±2,无解;当[lgx]=1时,lg 2x=3⇒lgx=3;当[lgx]=2时,lg 2x=4⇒lgx=2⇒实根个数是3.[练习4]:1.①(2007年全国高中数学联赛湖北预赛试题)设[x]表示不大于x 的最大整数,集合A={x|x 2-2[x]=3},B={x|81<2x<8},则A ∩B= .解:由81<2x <8⇒-3<x<3⇒[x]=-3,-2,-1,0,1,2;①若[x]≤-2,则x 2=2[x]+3<0,没有实数解;②若[x]=-1,则x 2=1⇒x=-1; ③若[x]=0,则x 2=3,没有符合条件的解;④若[x]=1,则x 2=5,没有符合条件的解;⑤若[x]=2,则x 2=7⇒有一个符合条件的解x=7⇒ A ∩B={-1,7}.②(2008年全国高中数学联赛江苏预赛试题)设集合A={x|x 2-[x]=2}和B={x||x|<2},其中符号[x]表示不大于x 的最大整数,则A ∩B= .解:因|x|<2⇒[x]的值可取-2,-1,0,1;当[x]=-2,则x 2=0无解;当[x]=-1,则x 2=1⇒x=-1;当[x]=0,则x 2=2无解;当[x]=1,则x 2=3⇒x=3⇒A ∩B={-1,3}.③(1999年全国高中数学联赛广西预赛试题)[tanx]表示不超过tan 的最大整数,则方程[tanx]=2cos 2x 的解为 . 解:由0≤2cos 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,cosx=0,tanx 无意义;当[tanx]=1时,cosx=±22, 注意:[tanx]=1⇒x=k π+4π(k ∈Z);当[tanx]=2时,cosx=1⇒sinx=0⇒tanx=0,矛盾. ④(2009年上海市高中数学竞赛试题)若[a]表示不超过实数a 的最大整数,则方程[tanx]=2sin 2x 的解是 . 解:由0≤2sin 2x ≤2⇒0≤[tanx]≤2⇒[tanx]=0,1,2;当[tanx]=0时,sinx=0,tanx=0⇒x=k π;当[tanx]=1时,sinx=±22,注意:[tanx]=1⇒x=2k π+4π(k ∈Z);当[tanx]=2时,sinx=1⇒cosx=0⇒tanx=0无意义.2.①(2006年全国高中数学联赛湖南预赛试题)对于实数x,当且仅当n ≤x<n+1(n ∈N +)时,规定[x]=n.则不等式4[x]2-36[x] +45<0的解集为 .6 第一讲:高斯函数解:由4[x]2-36[x]+45<0⇒23<[x]<215⇒2≤[x]≤7⇒2≤x<8. ②(2009年全国高中数学联赛山东预赛试题)对任意的x ∈R,[x]表示不大于x 的最大整数,则满足[|x 2-1|]=10的x 的集合是( )(A)(-23,-11) (B)[11,23] (C)(-23,-11]∪[11,23) (D)[-23,-11)∪(11,23]解:因[|x 2-1|]=10⇔10≤|x 2-1|<11⇔-11<x 2-1≤-10,或10≤x 2-1<11⇔x ∈(-23,-11]∪[11,23),选(C).③(2009年全国高中数学联赛福建预赛试题)方程x [x]=29的实数解是 (其中[x]表示不超过x 的最大整数). 解:显然x>0;①若x ≥3,则[x]≥3⇒x [x]≥27>29;②若0<x<2,则0≤[x]<2⇒x [x]<22=4<29;③若2≤x<3,则[x]=2⇒x 2=29 ⇒x223. 3.①(2011年全国高中数学联赛内蒙古预赛试题)方程x 2-8[x]+7=0的所有解为 .解:由x ≥[x]=872+x ⇒1≤x ≤7⇒[x]=1,2,3,4,5,6,7⇒x=1,33,41,7.②(2007年第十八届“希望杯”全国数学邀请赛试题)若[x]表示不超过x 的最大整数,且x 2-2008[x]+2007=0,则[x]的值是 .解:1,2005,2006,2007.③(1992年第三届“希望杯”全国数学邀请赛试题)[x]表示不超过实数x 的最大整数,则方程[3x-465]-2x-1=0的解是 .解:设2x+1=k,则x=21-k ,3x-465=6389-k =k+6383-k ,于是原方程等价于[k+6383-k ]-k=0⇒[6383-k ]=0⇒0≤6383-k<1⇒338≤k<344⇒k=13,14⇒解是x=6,213. ④(2011年全国高中数学联赛四川预赛试题)设x 为实数,定义[x]为不小于x 的最小整数,例如[π]=4,[-π]=-3,关于实数x 的方程[3x+1]=2x-21的全部实根之和等于 . 解:设2x-21=k ∈Z,则x=412+k ,3x+1=k+1+432+k ,于是原方程等价于[432+k ]=-1,即-2<432+k ≤-1⇒-211<k ≤-27⇒k=-5,-4⇒x=-49,-47⇒所有实根之和为-4. 5.方程综合:[例5]:(1998年加拿大数学奥林匹克试题.2009年全国高中数学联赛安徽预赛试题)求方程[2x ]+[3x ]+[7x ]=x 的所有解([a]表示不超过实数a 的最大整数).[解析]:由方程知解x 是整数,设x=42p+q(p ∈Z,q ∈{0,1,…,41}),则(21p+[2q ])+(14p+[3q ])+(6p+[7q ])=42p+q ⇒[2q ]+[3q ]+[7q]=p+q ⇒q=0,p=0,x=0;q=1,p=-1,x=-41;q=2,p=-1,x=-40;q=3,p=-1,x=-39,…,因此,方程的解集为{0, -6,-l2,-14,-18,-20,-21,-24,-26,-27,-28,-30,-32,-33,-34,-35,-36,-38,-39,-40,-41,-44,-45,-46,-47,-49,-50,- 51,-52,-53,-55,-57,-58,-59,-61,-64,-65,-67,-71,-73,-79,-85}.第一讲:高斯函数 7 [练习5]:1.(2010年全国高中数学联赛福建预赛试题)将方程x 3-3[x]=4的实数解从小到大排列得x 1,x 2,…,x k ,则x 13+x 23+…+x k 3的值为 ([x]表示不超过x 的最大整数).解:由x-1<[x]≤x;①当x ≥3时,x 3-3[x]≥x 3-3x=x(x 2-3)≥3(32-3)=18;②当x ≤-3时,x 3-3[x]<x 3-3(x-1)=x(x 2-3)+3≤ -3[(-3)2-3]+3=-15;③当-3<x<3时,[x]=-3,-1,-1,0,1,2;若[x]=-3,则x 3=3[x]+4=-5,不合要求;若[x]=-2,则x 3=3[x]+4= -2⇒x=-32,合要求;若[x]=-1,则x 3=3[x]+4=-1,不合要求;若[x]=0,则x 3=3[x]+4=4,不合要求;若[x]=1,则x 3=3[x]+4= 7⇒x=37,合要求;若[x]=2,则x 3=3[x]+4=10⇒x=310,合要求⇒(-32)3+(37)3+(310)3=15.2.①(1989年上海市高中数学竞赛试题)设[x]表示x 的整数部分,{x}=x −[x],则方程[x 3]+[x 2]+[x]={x}−1的所有实数根是 .解:由[x 3]+[x 2]+[x]∈Z ⇒{x}−1∈Z ⇒{x}=0⇒x ∈Z ⇒x 3+x 2+x=-1⇒(x+1)(x 2+1)=0⇒x=-1.②(1991年上海市高中数学竞赛试题)求满足[x 2−2x]=[x]2−2[x]的一切实数x.其中[x]表示不超过x 的最大整数. 解:设[x]=n,x-[x]=α(0≤α<1),则x 2−2x=(n+α)2-2(n+α)=n 2-2n+α2+2(n-1)α,所以原方程等价于[n 2-2n+α2+2(n-1)α]=n 2-2n ⇔[α2+2(n-1)α]=0⇔0≤α2+2(n-1)α<1;当α=0时,不等式成立,此时,x=n;当α≠0时,由0≤α2+2(n-1)α<1⇔0<α<1)1(2+-n -(n-1)⇔0<x-n<1)1(2+-n -(n-1)⇔x ∈(n,1)1(2+-n +1)(n=1,2,…). ③(1993年上海市高中数学竞赛试题)自然数x 使得[x]+[!x 3]+[!x 5]+[!x7]=1993.则x=_____. 解:由[x]+[!x 3]+[!x 5]+[!x 7]=1993⇒[x]<1993⇒x<1994⇒[!x 7]=0⇒[x]+[!x 3]+[!x5]=1993⇒x>5!;设x=5!n+r(0≤r<5!=120)⇒(120n+r)+(20n+[6r ])+n=1993⇒141n+r+[6r ]=1993=14×141+19⇒n=14,r+[6r]=19⇒r=17⇒x=1697. 3.①(2007年上海市TI 杯高二年级数学竞赛试题)求正整数n,使得[log 31]+[log 32]+[log 33]+[log 34]+…+[log 3n]=2007.其中[x]表示不超过x 的最大整数.解:因为当3k≤n<3k+1时,[log 3n]=k(k=0,1,2,…),且区间[3k,3k+1)内的正整数个数=3k+1-3k=2×3k,所以,S k =[log 31]+[log 32]+ [log 33]+[log 34]+…+[log 3(3k+1-1)]=2(0×30+1×31+2×32+…+k ×3k)=(23k-43)3k +43;令(23k-43)3k+43≤2007⇒(2k- 1)3k≤2675⇒k ≤5;S 5=1391,2007-1391=6×101⇒n=36+100=829. ②(2009年上海市TI 杯高二年级数学竞赛试题)对整数n>1,设x=1+21+…+n1,y=lg2+lg3+…+lgn.则满足[x]=[y]的所有整数n 构成的集合为 ([a]表示不超过实数a 的最大整数). 解:{5,6}.6.方程应用:[例6]:(1989年全国高中数学联赛试题)一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为__________. [解析]:设该数为x,则(x-[x])x=[x]2⇒x=251+[x](x>0);由0<x-[x]<1⇒0<215-[x]<1⇒0<[x]<251+<2⇒[x]=1 ⇒x=251+. [练习6]:1.(2009年全国高中数学联赛江苏预赛试题)设a 是整数,0≤b<1.若a 2=2b(a+b),则b= .解:若a 为负整数,则a 2>0,2b(a+b)<0,不可能,故a ≥0;于是a 2=2b(a +b)<2(a+1)⇒a 2-2a-2<0⇒0≤a<1+3⇒a=0,1,8 第一讲:高斯函数2;a=0时,b=0;a=1时,2b 2+2b-1=0⇒b=213-;a=2时,b 2+2b-2=0⇒b=3-1. 注:本题也可以这样说:求实数x,使[x]2=2{x}x.2.①(2011年全国高中数学联赛甘肃预赛试题)设[x]表示不超过实数x 的最大整数,则在平面上,由满足[x]2+[y]2=50的点所形成的图形的面积是 .解:由[x]2+[y]2=50⇒[x]=±1,[y]=±7;[x]=±5,[y]=±5;[x]=±7,[y]=±1.每组解有4种情况,每种情况下的面积为1⇒图形的面积是12.②(2011年北京市中学生数学竞赛高一年级初试试题)若[x]表示不超过x 的最大整数.求在平面直角坐标系xOy 中满足[x][y]=2011的所有点(x,y)组成的图形的面积.解:设[x]=a,[y]=b,即所有这样的点(x,y)组成的图形就是a ≤x<a+1,b ≤y<b+1界定的区域,它的面积为1,又2011是质数,所以满足[x][y]=2011的点(x,y)组成的图形是4个面积为1的区域,即[x]=1,[y]=2011;[x]=2011,[y]=1;[x]=−1,[y] =−2011;[x]=−2011,[y]=−1.这些图形的总面积是4.③(2012年全国高中数学联赛新疆预赛试题)[x]表示不超过实数x 的最大整数,则在平面直角坐标系xOy 中,满足[x][y]=2013的所有点(x,y)组成的图形面积为 .解:由[x][y]=2013=1×2013=3×671=11×183=33×61,共有16种情况,每种情形下的面积为1,所以,所有点(x,y)组成的图形面积为16.3.①(2009年全国高中数学联赛新疆预赛试题)数(3+8)2n (n ∈N +),且n ≥2009,设[x]为x 的整数部分,则[(3+8)2n]除以8的余数是( )(A)1 (B)3 (C)4 (D)7解:设a n =(3+8)2n +(3-8)2n =(17+122)n +(17-122)n ,则a 1=34,a 2=342-2=1154,a n+2=34a n+1-a n ⇒a 1≡2(m0d8),a 2≡2(m0d8),a 3≡34×2-2≡2(m0d8)⇒a n ≡2(m0d8);又因0<(3-8)2n <1⇒[(3+8)2n ]=a n -1⇒[(3+8)2n]≡1(m0d8).选(A).②(2009年全国高中数学联赛吉林预赛试题)(2+3)2010的小数点后一位数字是 .解:因(2+3)2010+(2-3)2010为整数,则(2+3)2010的小数部分为1-(2-3)2010,又因0<(2-3)2010<0.21005<(0.008)300,所以0.9<1-(2-3)2010<1,可知(2+3)2010的小数点后一位数字是9.7.等式问题:[例7]:(1987年第19届加拿大数学奥林匹克试题)对每一个正整数n,证明:[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[解析]:设正整数m 满足:m 2>4n+1;若m 为偶数,则m 2=4k>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+4>4n+3;若m 为奇数,则m 2=4k+1>4n+1⇒k>n ⇒k ≥n+1⇒m 2≥4n+5>4n+3;综上m 2>4n+3,即m>34+n ;特别地,取m=[14+n ]+1,满足:m 2>4n+1,则m>34+n⇒[14+n ]+1>34+n >14+n ≥[14+n ]⇒[34+n ]=[14+n ]⇒[14+n ]=[24+n ]=[34+n ];因(n +1+n )2=2n+1+2)1(+n n >2n+1+2n=4n+1⇒n +1+n >14+n ⇒[n +1+n ]≥[14+n ];且(n +1+n )2=2n+1+2)1(+n n <2n+1+2(n+1)=4n+3⇒n +1+n <34+n ⇒[n +1+n ]<[34+n ]⇒[n +1+n ]=[14+n ]=[24+n ]=[34+n ].[练习7]:1.①(1981年第44届莫斯科数学奥林匹克试题)试问:对x>1,下面的等式[][x ]=[x ]一定能成立吗?解:设[x ]=n,由[x ]≤x <[x ]+1⇒n ≤x <n+1⇒n 2≤x <(n+1)2⇒n 2≤[x ]<(n+1)2⇒n ≤][x <n+1⇒n ≤[][x ]<n+1⇒[][x ]=n ⇒[][x ]=[x ]成立.②(1948年第8届普特南数学奥林匹克试题)如果n 为一正整数,试证:[n +1+n ]=[24+n ].第一讲:高斯函数 9解:因(n +1+n )2=2n+1+2)1(+n n <2n+1+[n+(n+1)]=4n+2⇒n +1+n <24+n ⇒[n +1+n ]≤[24+n ];若存在某个正整数n,使得[n +1+n ]≠[24+n ],则[n +1+n ]<[24+n ];设[24+n ]=k,则n +1+n <k ≤24+n⇒2n+1+2)1(+n n <k 2≤4n+2⇒2)1(+n n <k 2-(2n+1)≤2n+1⇒4n(n+1)<[k 2-(2n+1)]2≤4n(n+1)+1(因4n(n+1)与4n(n+1)+1是连续整数)⇒[k 2-(2n+1)]2=4n(n+1)+1⇒k 2=4n+2,但任意整数的平方被4除不余2,矛盾. 2.①(1991年第9届美国数学邀请赛试题)设r 是实数,且满足条件[r+10019]+[r+10020]+…+[r+10091]=546.求[100r]. 解:设[r]=n,r=n+α(0≤α<1),则[r+100i ]=[n+α+100i ]=n(当0<α+100i <1时),或n+1(当1≤α+100i<2时),设其中有 73-k 个n,k 个n+1,则(73-k)n+k(n+1)=546⇒n=7+7335k -⇒k=35,n=7⇒α+10056<1,α+10057≥1⇒10043≤α<10044⇒7+10043≤r<7+10044⇒743≤100r<744⇒[100r]=743. ②(1981年第13届加拿大数学奥林匹克试题)试证方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解. 解:设f(x)=[x]+[2x]+[4x]+[8x]+[16x]+[32x],则f(x)单调不减;由f(x)≤[(1+2+4+8+16+32)x]=[63x]≤63x ⇒x ≥6312345>195;f(196)=63×196=12348⇒x<196⇒x ∈(195,196);令t=x-195,则t ∈(0,1),且f(x)=[195+t]+[2(195+t)]+ [4(195+t)]+[8(195+t)]+[16(195+t)]+[32(195+t)]=63×195+[t]+[2t]+[4t]+[8t]+[16t]+[32t]<12285+0+1+3+7+15+31 =12342⇒方程[x]+[2x]+[4x]+[8x]+[16x]+[32x]=12354没有实数解.3.(1989年国家理科试验班入学考试试题)通项为a n =b[c n +]+d 的数列{a n }:1,3,3,3,5,5,5,5,5,…,其中每一个正奇数m 恰好连续出现m 次.上述b 、c 、d 是侍定的整数,求b+c+d 的值.解:由a n+1-a n =b([c n ++1]-[c n +]),由题知,a n+1-a n =0,或2⇒b([c n ++1]-[c n +])=0,或2;由c n ++1-c n +=cn c n ++++11≤1⇒c n +<c n ++1≤c n ++1⇒[c n +]<[c n ++1]≤[c n +]+1⇒[c n ++1]-[c n +]=0,或1;显然b ≠0,当b([c n ++1]-[c n +])=2时,b=2,[c n ++1]-[c n +]=1;由a 1=2[c +1]+d=1⇒c ≥-1,d=1-2[c +1];注意到2k a =2k-1⇒2[c k +2]+d=2k-1⇒2[c k +2]+1-2[c +1]=2k-1⇒[c k +2]-[c +1]=k-1对任意的k ∈N +恒。

各省高中数学竞赛预赛试题汇编[]

各省高中数学竞赛预赛试题汇编[]

2012各省数学竞赛汇集目录1.2012高中数学联赛江苏赛区初赛试卷------第3页2. 2012年高中数学联赛湖北省预赛试卷(高一年级)---第7页3. 2012年高中数学联赛湖北省预赛试卷(高二年级)---第10页4. 2012年高中数学联赛陕西省预赛试卷------第16页5. 2012年高中数学联赛上海市预赛试卷------第21页6. 2012年高中数学联赛四川省预赛试卷------第28页7. 2012年高中数学联赛福建省预赛试卷(高一年级)---第35页8. 2012年高中数学联赛山东省预赛试卷---第45页9. 2012年高中数学联赛甘肃省预赛试卷---第50页10. 2012年高中数学联赛河北省预赛试卷---第55页11. 2012年高中数学联赛浙江省预赛试卷---第62页12. 2012年高中数学联赛辽宁省预赛试卷---第72页13. 2012年高中数学联赛新疆区预赛试卷(高二年级)---第77页14. 2012年高中数学联赛河南省预赛试卷(高二年级)---第81页15. 2012年高中数学联赛北京市预赛试卷(高一年级)---第83页2012高中数学联赛江苏赛区初赛试卷一、填空题(70分)1、当[3,3]x ∈-时,函数3()|3|f x x x =-的最大值为__18___.2、在ABC ∆中,已知12,4,AC BC AC BA ⋅=⋅=-则AC =___4____.3、从集合{}3,4,5,6,7,8中随机选取3个不同的数,这3个数可以构成等差数列的概率为_____310_______. 4、已知a 是实数,方程2(4)40x i x ai ++++=的一个实根是b (i 是虚部单位),则||a bi +的值为_____22___.5、在平面直角坐标系xOy 中,双曲线:C 221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于,A B 两点.若FAB ∆的面积为83,则直线的斜率为___12____. 6、已知a 是正实数,lg a ka =的取值范围是___[1,)+∞_____.7、在四面体ABCD 中,5AB AC AD DB ====,3BC =,4CD =该四面体的体积为_____53_______.8、已知等差数列{}n a 和等比数列{}n b 满足:11223,7,a b a b +=+=334415,35,a b a b +=+=则n n a b +=___132n n-+___.(*n N ∈)9、将27,37,47,48,557175,,这7个数排成一列,使任意连续4个数的和为3的倍数,则这样的排列有___144_____种.10、三角形的周长为31,三边,,a b c 均为整数,且a b c ≤≤,则满足条件的三元数组(,,)a b c 的个数为__24___.二、解答题(本题80分,每题20分)11、在ABC ∆中,角,,A B C 对应的边分别为,,a b c ,证明:(1)cos cos b C c B a +=(2)22sin cos cos 2CA B a b c+=+12、已知,a b为实数,2a >,函数()|ln |(0)af x x b x x=-+>.若(1)1,(2)ln 212ef e f =+=-+. (1)求实数,a b ; (2)求函数()f x 的单调区间;(3)若实数,c d 满足,1c d cd >=,求证:()()f c f d <13、如图,半径为1的圆O 上有一定点M 为圆O 上的动点.在射线OM上有一动点B ,1,1AB OB =>.线段AB 交圆O 于另一点C ,D 为线段的OB 中点.求线段CD 长的取值范围.14、设是,,,a b c d 正整数,,a b 是方程2()0x d c x cd --+=的两个根.证明:存在边长是整数且面积为ab 的直角三角形.2012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

2012湖北省高中数学竞赛预赛试题及参考答案

2012湖北省高中数学竞赛预赛试题及参考答案

一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合,,则 =A. B. C. D.(2)已知:,:,则是的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(3)函数()的图象的一条对称轴方程是A. B. C. D.(4)执行如图所示的程序框图,若输出的结果是,则判断框内的条件是A. ?B. ?C. ?D. ?(第4题图)(5)若双曲线的渐近线与抛物线相切,则此双曲线的离心率等于A.B.C.D.(6)将一个质点随机投放在关于的不等式组所构成的三角形区域内,则该质点到此三角形的三个顶点的距离均不小于的概率是A. B.C.D.(7)某三棱锥的三视图如图所示,则该三棱锥的体积为A.B.(第7题图)(8)已知函数,定义函数给出下列命题:①;②函数是奇函数;③当时,若,,总有成立,其中所有正确命题的序号是A.②B.①③C.②③D.①②第二部分(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上.(9)为虚数单位,计算.(10)已知向量,若,则的值为.(11)已知等差数列的公差为,是与的等比中项,则首项 _,前项和 __.(12)若直线与圆相交于 , 两点,且线段的中点坐标是,则直线的方程为 .(13)某公司一年购买某种货物吨,每次都购买吨( 为的约数),运费为万元/次,一年的总存储费用为万元.若要使一年的总运费与总存储费用之和最小,则每次需购买吨.(14)数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如当时,,,;当时,,,, .则当时,;试写出.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)(本小题满分13分)在中,角所对的边分别为,且 .(Ⅰ)求函数的最大值;(Ⅱ)若,求b的值.(16)(本小题满分13分)为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间.(Ⅰ)求实数的值及参加“掷实心球”项目测试的人数;(Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率;(Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.(17)(本小题满分14分)如图,已知四边形是正方形,平面,,, , , 分别为 , , 的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)在线段上是否存在一点 ,使平面?若存在,求出线段的长;若不存在,请说明理由.(18)(本小题满分13分)已知函数,().(Ⅰ)求函数的单调区间;(Ⅱ)求证:当时,对于任意,总有成立.(19)(本小题满分14分)已知椭圆的右焦点,长轴的左、右端点分别为 ,且 .(Ⅰ)求椭圆的方程;(Ⅱ)过焦点斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点 . 试问椭圆上是否存在点使得四边形为菱形?若存在,试求点到轴的距离;若不存在,请说明理由.(20)(本小题满分13分)已知实数(且)满足,记 .(Ⅰ)求及的值;(Ⅱ)当时,求的最小值;(Ⅲ)当为奇数时,求的最小值.注:表示中任意两个数 , ()的乘积之和.北京市朝阳区高三年级第一次综合练习数学学科测试答案(文史类)2013.5一、选择题:题号(1)(2)(3)(4)(5)(6)(7)(8)答案 D A B C B C A C二、填空题:题号(9)(10)(11)(12)(13)(14)答案或8;63;(注:两空的填空,第一空3分,第二空2分)三、解答题:(15)(本小题满分13分)(Ⅰ) .因为,所以 .则所以当,即时,取得最大值,且最大值为.……7分(Ⅱ)由题意知,所以.又知,所以,则 .因为,所以,则 .由得,.……………………13分(16)(本小题满分13分)解:(Ⅰ)由题意可知,解得 .所以此次测试总人数为.答:此次参加“掷实心球”的项目测试的人数为40人.……………………4分(Ⅱ)由图可知,参加此次“掷实心球”的项目测试的初二男生,成绩优秀的频率为,则估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率为.……………………7分(Ⅲ)设事件A:从此次测试成绩不合格的男生中随机抽取2名学生来自不同组.由已知,测试成绩在有2人,记为;在有6人,记为.从这8人中随机抽取2人有,共28种情况.事件A包括共12种情况.所以.答:随机抽取的2名学生来自不同组的概率为.……………………………13分(17)(本小题满分14分)(Ⅰ)证明:因为 , 分别为,的中点,所以 .又因为平面,平面,所以平面 . ……………4分(Ⅱ)因为平面,所以 .又因为,,所以平面 .由已知 , 分别为线段 , 的中点,所以 .则平面 .而平面,所以平面平面 . …………………………………………………9分(Ⅲ)在线段上存在一点,使平面 .证明如下:在直角三角形中,因为 , ,所以 .在直角梯形中,因为, ,所以,所以 .又因为为的中点,所以 .要使平面,只需使 .因为平面,所以,又因为, ,所以平面,而平面,所以 .若,则∽ ,可得 .由已知可求得,,,所以.……14分(18)(本小题满分13分)解:(Ⅰ)函数的定义域为,.当时,当变化时,,的变化情况如下表:当时,↗↘↗综上所述,当时,的单调递增区间为,单调递减区间为,;当时,的单调递增区间为,,单调递减区间为 .……………………………………5分(Ⅱ)由(Ⅰ)可知,当时,在上单调递增,;在上单调递减,且 .所以时, .因为,所以,令,得 .①当时,由,得;由,得,所以函数在上单调递增,在上单调递减.所以 .因为,所以对于任意,总有 .②当时,在上恒成立,所以函数在上单调递增, .所以对于任意,仍有 .综上所述,对于任意,总有 . …………………13分(19)(本小题满分14分)解:(Ⅰ)依题设,,则, .由,解得,所以 .所以椭圆的方程为 . …………………………………………4分(Ⅱ)依题直线的方程为 .由得 .设 , ,弦的中点为,则,,,,所以 .直线的方程为,令,得,则 .若四边形为菱形,则, .所以 .若点在椭圆上,则 .整理得,解得 .所以椭圆上存在点使得四边形为菱形.此时点到的距离为. ………………………………………………14分(20)(本小题满分13分)解:(Ⅰ)由已知得..………………………3分(Ⅱ)时,.固定,仅让变动,那么是的一次函数或常函数,因此.同理.以此类推,我们可以看出,的最小值必定可以被某一组取值的所达到,于是.当()时,.因为,所以,且当,,时,因此.……………………………………………7分(Ⅲ).固定,仅让变动,那么是的一次函数或常函数,因此.同理..以此类推,我们可以看出,的最小值必定可以被某一组取值的所达到,于是.当()时,.当为奇数时,因为,所以,另一方面,若取,,那么,因此.…………………………………………………………13分。

2012年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

2012年普通高等学校招生全国统一考试数学理试题(湖北卷,含答案)

y2 b2
1(a, b o) 的两顶点为 A1, A2,虚轴两端点为 B,B 2 ,,两焦
点为 F1, F2。若以 A1A2 为直径的圆内切于菱形 (Ⅰ)双曲线的离心率 e=______;
F1B1F2B2,切点分别为 A, B,C, D。则
(Ⅱ)菱形 F1B1F2B2 的面积 S1 与矩形 ABCD的面积 S2 的比值 S1 S2
b2 2

a1b1
+a2b2

(III )请将( II )中的命题推广到一般形式,并用数学归.纳.法... 证明你所推广的命题。注 : 当α 为正有理数时,有求道公式 (x α) r =α x α-1
有一项是符合题目要求的
1. 方程 x2 +6x +13 =0 的 一个根是
A -3+2i B 3+2i C -2 + 3i D 2 + 3i
2 命题“ x0∈ CRQ, x03 ∈ Q ”的否定是
A
x 0?CRQ, x03 ∈ Q B
x 0∈ CRQ , x03 ?Q
C
x 0?CRQ , x03 ∈ Q D
x
+∞)上的如下函数:① f ( x) =x2;② f ( x) =2 ;③
;④ f (x) =ln|x | 。
则其中是“保等比数列函数”的 f ( x)的序号为 A. ①② B. ③④ C. ①③ D. ②④ 8. 如图,在圆心角为直角的扇形 OAB中,分别以 OA,OB为直径作两个半圆。在扇形 随机取一点,则此点取自阴影部分的概率是

x0∈CRQ , x03 ?Q
3 已知二次函数 y =f(x) 的图像如图所示 ,则它与 X 轴所围图形的面积为

2012年全国高中数学联赛试题详细解析

2012年全国高中数学联赛试题详细解析

2012年全国高中数学联赛一试参考答案及详细评分标准一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上.1.设P 是函数2y x x=+(0x >)的图像上任意一点,过点P 分别向 直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅u u u r u u u r的值是 .2.设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=, 则tan tan AB的值是 .3.设,,[0,1]x y z ∈,则M =是 .4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的 两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N , 则||||MN AB 的最大值是 . 5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的侧面与底面所成的角为45o,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 .6.设()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.若对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 . 7.满足11sin 43n π<<的所有正整数n 的和是 . 8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)二、解答题:本大题共3小题,共56分.解答应写出文字说明、推理过程或演算步骤. 9.(本小题满分16分)已知函数131()sin cos 2,,022f x a x x a a R a a =-+-+∈≠ (1)若对任意x R ∈,都有()0f x ≤,求a 的取值范围; (2)若2a ≥,且存在x R ∈,使得()0f x ≤,求a 的取值范围.10.(本小题满分20分)已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23331212()n n a a a a a a +++=+++L L(1)当3n =时,求所有满足条件的三项组成的数列123,,a a a ;(2)是否存在满足条件的无穷数列{}n a ,使得20132012?a =-若存在, 求出这样的无穷数列的一个通项公式;若不存在,说明理由. 11.(本小题满分20分)如图,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==.(1)求证:||||OA OC ⋅为定值;(2)当点A 在半圆22(2)4x y -+=(24x ≤≤)上运动时, 求点C 的轨迹.2012年全国高中数学联赛加试试题一、(本题满分40分)如图,在锐角ABC ∆中,,,AB AC M N >是BC 边上不同的两点,使得.BAM CAN ∠=∠设ABC ∆和AMN ∆的外心分别为12,O O ,求证:12,,O O A三点共线。

2012年全国高中数学联赛一试及加试试题参考答案

2012年全国高中数学联赛一试及加试试题参考答案

2012年全国高中数学联赛一试及加试试题参考答案2012年全国高中数学联赛一试及加试试题一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上.21.设P 是函数y x (x 0 )的图像上任意一点,过点P 分别向x直线y x 和y 轴作垂线,垂足分别为 A B ,则PA PB 的值是_____________. 32.设ABC 的内角A B C 的对边分别为a b c ,且满足a cos B b cos A c ,5 tan A则的值是_____________. tan B3.设x y z 01 ,则M x y y z z x 的最大值是_____________.4.抛物线y 2 px p 0 的焦点为F ,准线为l , A B 是抛物线上的2两个动点,且满足AFB .设线段AB 的中点M 在l 上的投影为N ,3 MN 则的最大值是_____________. AB 5.设同底的两个正三棱锥P ABC 和Q ABC 内接于同一个球.若正三棱锥P ABC 的侧面与底面所成的角为45 ,则正三棱锥Q ABC 的侧面与底面所成角的正切值是_____________.6.设f x 是定义在R 上的奇函数,且当x 0 时,f x x .若对任意的x a a 2 ,不等式f x a 2 f x 恒成立,则实数a 的取值范围是_____________. 1 17.满足sin 的所有正整数n 的和是_____________. 4 n 38.某情报站有A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用 A 种密码的概率是_____________.(用最简分数表示)二、解答题:本大题共3小题,共56分.解答应写出文字说明、推理过程或演算步骤.1 3 19.(本小题满分16分)已知函数 f x a sin x cos 2 x a a R a 0 2 a 2(1)若对任意x R ,都有f x 0 ,求 a 的取值范围;(2)若 a 2 ,且存在x R ,使得f x 0 ,求a 的取值范围.10.(本小题满分20分)已知数列an 的各项均为非零实数,且对于任意的正整数n ,都有a1 a2 an 2 a13 a2 an 3 3(1)当n 3 时,求所有满足条件的三项组成的数列a1 a2 a3 (2)是否存在满足条件的无穷数列an ,使得a2013 2012 若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由.11.(本小题满分20分)如图5,在平面直角坐标系XOY 中,菱形ABCD 的边长为 4 ,OB OD 6 .且(1)求证:OA OC 为定值;(2)当点A在半圆x 2 y 4 (2 x 4 )上运动时,求2 2点C 的轨迹.2012 年全国高中数学联赛加试试题一、(本题满分40 分)如图,在锐角ABC 中,AB AC M N 是BC 边上不同的两点,使得BAM CAN . 设ABC 和AMN 的外心分别为O1 O2 ,求证:O1 O2 A 三点共线。

全国高中数学联合竞赛湖北省预赛试题参考答案

全国高中数学联合竞赛湖北省预赛试题参考答案

全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:1.评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;第9小题4分一档,第10、11小题5分为一个档次。

请严格按照本评分标准的评分档次给分,不要增加其他中间档次.2.如果考生的解答方法和本解答不同,只要思路合理、步骤准确,在评卷时可参考本评分标准适当划分档次评分.一、填空题(本题满分64分,每小题8分。

直接将答案写在横线上。

)1.设集合⎭⎬⎫⎩⎨⎧-∈==)34,3(,21|sin |ππx x x E ,则E 的真子集的个数为 . 2.已知函数46)(2++=x b x x f 的最大值为49,则实数=b . 3.若1|lg |<ϕ,则使函数)cos()sin()(ϕϕ-+-=x x x f 为奇函数的ϕ的个数为 .4.在△ABC 中,已知B ∠的平分线交AC 于K .若BC =2,CK =1,223=BK ,则△ABC 的面积为 . 5.数列}{n a 满足:3,121==a a ,且)(||*12N n a a a n n n ∈-=++.记}{n a 的前n 项和为n S ,则=100S .6.已知=,=,过O 作直线AB 的垂线,垂足为P .若3||,3||==b a ,6π=∠AOB ,b y a x OP +=,则=-y x .7.已知实数z y x ,,满足32=xyz ,4=++z y x ,则||||||z y x ++的最小值为 .8.将总和为200的10个数放置在给定的一个圆周上,且任意三个相邻的数之和不小于58.所有满足上述要求的10个数中最大数的最大值为 .二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知二次函数c bx ax x f ++=2)(的图象经过点)0,2(-,且不等式221)(22+≤≤x x f x 对一切实数x 都成立.(1)求函数)(x f 的解析式;(2)若对一切]1,1[-∈x ,不等式)2()(x f t x f <+恒成立,求实数t 的取值范围.10.已知数列}{n a 中,41,121==a a ,且),4,3,2()1(1 =--=+n a n a n a n n n .(1)求数列}{n a 的通项公式; (2)求证:对一切*N n ∈,有6712<∑=nk k a .11.设313116234++++=x x x x P ,求使P 为完全平方数的整数x 的值.全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)1. 15 . 2. 5 .3. 3 .4.16715.5. 89 .6. -2 .7. 12 .8. 26 .9. 解:(1)由题设知,024=+-c b a . ① 令22122+=x x ,解得2=x ,由题意可得2221)2(222+⨯≤≤⨯f ,即4)2(4≤≤f ,所以4)2(=f ,即424=++c b a . ② 由①、②可得1,42=-=b a c . ……………………4分又x x f 2)(≥恒成立,即0)2(2≥+-+c x b ax 恒成立,所以0>a ,且04)2(2≤--=∆ac b ,即0)42(4)21(2≤---a a ,所以41=a ,从而142=-=a c . 所以函数)(x f 的解析式为 141)(2++=x x x f .…8分 (2)由)2()(x f t x f <+得122411)()(4122++⎪⎭⎫ ⎝⎛<++++x x t x t x ,故 0)382)(2(<+++t x t x . 当3822+-<-t t 即2>t 时,3822+-<<-t x t ,此不等式对一切]1,1[-∈x 都成立的充要条件是⎪⎩⎪⎨⎧>+--<-138212t t ,此不等式组无解.当3822+-=-t t 即2=t 时,0)2(2<+t x ,矛盾. …12分 当3822+->-t t 即2<t 时,t x t 2382-<<+-,此不等式对一切]1,1[-∈x 都成立的充要条件是⎪⎩⎪⎨⎧>--<+-121382t t ,解得2125-<<-t .综合可知,实数t 的取值范围是⎪⎭⎫ ⎝⎛--21,25. 16分 10.解: (1)由已知,对2≥n 有 11)1()1(11---=--=+n a n n a n a n a n n n n , 两边同除以n ,得 )1(1)1(111---=+n n a n na n n ,即)111()1(111nn a n na n n ---=--+, 5分 于是,)111(111)1(1112121---=⎪⎭⎫ ⎝⎛---=⎥⎦⎤⎢⎣⎡--∑∑-=-=+n k k a k ka n k n k k k , 即 2),111(1)1(12≥---=--n n a a n n ,所以 123)111(1)1(12--=---=-n n n a a n n , 2,231≥-=n n a n .又1=n 时也成立,故*,231N n n a n ∈-=. ……………………10分(2)当2≥k ,有)131431(31)13)(43(1)23(122---=--<-=k k k k k a k ,……15分 所以2≥n 时,有⎥⎦⎤⎢⎣⎡---++-+-+<+=∑∑==)131431()8151()5121(31112212n n a a nk k n k k.6761113121311=+<⎪⎭⎫ ⎝⎛--+=n 又1=n 时,.67121<=a 故对一切*N n ∈,有6712<∑=n k k a . ……………………20分11.设313116234++++=x x x x P ,求使P 为完全平方数的整数x 的值.解: )10(3)13(22--++=x x x P .所以,当10=x 时,2131=P 是完全平方数. ……5分 下证没有其它整数x 满足要求.(1) 当10>x 时,有22)13(++<x x P ,又03132)3(222>++=+-x x x x P ,∴22)3(x x P +>,∴2222)13()3(++<<+x x P x x .Z x ∈,所以此时P 不是完全平方数.…10分(2)当10<x 时,有22)13(++>x x P .令Z y y P ∈=,2,则|13|||2++>x x y ,即|13|1||2++≥-x x y ,所以 222)13(1||2++≥+-x x y y , 即01|13|2)10(32≥+++---x x x .解此不等式,得x 的整数值为6,5,4,3,0,1,2----±±,但它们对应的P 均不是完全平方数.综上所述,使P 为完全平方数的整数x 的值为10. ……………………20分。

2012年湖北省部分重点高中联考协作体期中考试高一期中考试数学试卷及答案

2012年湖北省部分重点高中联考协作体期中考试高一期中考试数学试卷及答案

错误!未指定书签。

2012年秋季湖北省重点高中联考协作体期中考试高一数学试卷命题学校:广水一中 命题教师:王道金 刘才华第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.1. 集合{}2,1,0=A ,{}0,4,5,6B =,全集{}1,0,1,2,3,4,5,6U =-,则()U A C B =( )A .{}1,2 B.{0,1,2} C.{0} D.{4,5} 2.函数2()ln(4)f x x =+-的定义域是( ) A .(),1-∞ B .()21-,C .()22-,D .()12,3.若1x y <<,则下列选项中正确的是( )A .44x y > B .44log log x y < C .log 4log 4x y < D .1144x y⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭4.已知函数3log 0()30x x x f x x >⎧=⎨⎩,,≤,若1()3f a =,则实数a =( )A .1-BC .1-D .1或5. 已知函数1()42xx f x +=-的定义域为[1,2],则()f x 的值域为( )A .[0,8]B .[0,)+∞C .[1,)-+∞D .[1,8]-6. 已知3log 41x =,则22xx-+=( )A .199B .133 C.3D .1537. 设0x 是方程24log x x -=的解,且0[,1]x k k ∈+ ()k Z ∈,则k 的值为( )A . 0B .1C .2D .38. 偶函数()f x 在区间(,0]-∞上单调递增,则使1(31)(2f x f ->成立的x 的取值范围为( )A .1(,)2+∞B .1(,2-∞C .11(,(,)22-∞+∞D .11(,)629. 某研究小组在一项实验中获得一组关于x 、y 之间的数据,将其整理得到如图所示的散点图, 下列函数中,最能近似刻画y 与x 之间关系的是( ) A .1(2x y =B .214y x =C.y =D .ln y x =10.已知31()log 2xf x x ⎛⎫=- ⎪⎝⎭,实数a 、b 、c 满足()()()0f a f b f c < (0a b c >>>),若实数0x 是函数()f x 的一个零点,那么下列不等式中,不可能...成立的是 ( ) A .0x a > B .0x b < C .0x c < D .0x c >第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.11. 函数2()log (31)f x x =+的单调递增区间为_____________. 12.若常数1a >,则关于x 的不等式7241xx aa -+>的解集为___________.13.若函数|1||1|y x x m =++--的图像与x 轴有公共点,则实数m 的取值范围为__________. 14.某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价为5元.销售单价与日均销售量的关系如图表所示.根据以上数据作出分析,这个营业部每桶水的定价为_________元时,才能获得最大利润.15.已知点(,)A m n 、点(,)B n m (0m >且1m ≠)分别是幂函数y x α=和y x β=图像上的点,则αβ= _ .三、 解答题:本大题共6小题,共75分,解答时应写出必要的文字说明及演算步骤. 16.(本题满分12分)已知集合{}|26A x x =<≤,{}|1B x x a =<<,其中1a >. ⑴ 若8a =,求A B ,()R C A B ; ⑵ 若A B ∅ ≠,求a 的取值范围.17. (本题满分12分)求下函数的值域(1)y x =-(2)2121x x y -=+18.(本题满分12分)已知91612ab==,11c a b =+,函数()31xtf x c =-+(x R ∈). (1)求c 的值;(2)是否存在常数t ,使()f x 为奇函数,若存在,求t 的值并证明;若不存在,说明理由.19.(本题满分12分)提高过江大桥的车辆通行能力可以改善城市的交通状况.一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到或超过200辆/千米时,造成堵塞,此时车流速度0v =;当车流密度不超过40辆/千米时,车流速度80v =千米/小时,研究表明:当40200x ≤≤时,车流速度v 是车流密度x 的一次函数.(1)当0x ≥时,求车流速度函数()v x 的表达式;通常为保护大桥,延长使用寿命,过桥车辆限定最高时速,试问这座大桥限速多少千米/小时?(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/每小时)()()f x x v x = 达到最大值,并求出最大值.20.(本题满分13分)已知函数2()2f x x ax b =-+(a ≥2,b R ∈).(1)若函数()f x 的定义域和值域都为[1]a ,,求a 和b 的值; (2)若0b =,求函数()f x 在区间[]11a +,上的最大值和最小值;(3)若0b =,且函数()f x 满足对于任意的1x ,[]211x a ∈+,,总有12()()4f x f x -≤成立,求a 的取值范围.21.(本题满分14分)已知函数()af x x x=+(0x ≠,a R ∈). (1)当1a >-且0a ≠时,试比较(1)f a +与()f a 的大小; (2)当3a =时,证明:函数()f x 在[2,)+∞上单调递增;(3)是否存在正数t ,使不等式()f x t +≥()f x 对任意的[1,)x ∈+∞和任意的[2,4]a ∈上恒成立,若存在,求t 的取值范围;若不存在,说明理由.2012年秋季湖北省重点高中联考协作体期中考试高一数学试卷参考答案和评分细则一.选择题:本大题共10小题,每小题5分,共50分.二.填空题:本大题共5小题,每小题5分,共25分.11.1(,)3-+∞ 12.{|1}x x < 13.2m ≥ 14.10 15.1三. 解答题:本大题共6小题,共75分,解答时应写出必要的文字说明及演算步骤.16. (1)8a =,{|18}B x x =<<,{|18}A B x x =<< ,………………………………2分{|2R C A x x =<或6}x ≥, …………………………………………………………………4分则(){|12R C A B x x =<< 或68}x ≤<.………………………………………………… 6分 (2) A B ≠∅ ,如图2a > …………………………………………………… 12分17.(若解法不同,请按相应步骤给分)解:(1)令t =0t ≥,且21x t =-,∴21y t t =--+ (0t ≥)……………2分对称轴21=t ,∴21y t t =--+在[0,)t ∈+∞单调递减, ………………………………4分 则1y ≤,即值域为{|1}y y ≤. ………………………………………………………………6分(2)221xxy y +=-, 即(1)21xy y -=--, 则1201xy y --=>-, ………………8分 ∴(1)(1)0y y +-<,∴ 11y -<<, ………………………………………………………10分 ∴值域为{|11}y y -<<. ………………………………………………………………12分18.解:(1)9log 12a = ,16log 12b =, ……………………………………………………2分∴9161111log 12log 12a b +=+1212log 9log 16=+12log 1442==,∴2c =.…………………6分 (2) 假设存在实数t ,使()f x 为奇函数,则(0)0f =,即2-0031t=+,∴4t =. ………8分 证明:4()231x f x --=-+43213x x⨯=-+,∴4(13)()()4031x x f x f x ++-=-=+,即()()f x f x -=-. ∴()f x 为奇函数.故存在实数4t =,使()f x 为奇函数. ………………………………………12分 19.当200x >时,()0v x =;当040x ≤≤,()80v x =;当40200x ≤≤,设()v x kx b =+(a 、b 为常数)……………………………………………………………………………………………2分由题意(40)4080(200)2000v k b v k b =+=⎧⎨=+=⎩,则12100k b ⎧=-⎪⎨⎪=⎩,故80(040)1()100(40200)20(200)x v x x x x ≤≤⎧⎪⎪⎪=-+<≤⎨⎪⎪>⎪⎩……4分∵max ()()80v x v x ≤=,所以大桥的限速为80千米/小时.……………………………………6分(2)280(040)1()()100(40200)20(200)x x f x x v x x x x x ≤≤⎧⎪⎪⎪==-+<≤⎨⎪⎪>⎪⎩………………………………………8分 当040x ≤≤,()f x =803200x ≤;……………………………………………………………9分 当40200x <≤时,21()100(100)50002f x x x f =-+≤=, ……………………………11分 所以当100x =辆/千米时,max ()5000f x =辆/小时. ………………………………………12分20.解:(1) 2()2f x x ax b =-+的对称轴方程为x a =,开口向上∴()f x 在区间[1,]a 上递减,∴max 2min ()(1)12()()1f x f b a a f x f a a b ==+-=⎧⎨==-+=⎩ , …………………………………………………………3分21即2320a a -+=∴2a =或1a =,又∵2a ≥,所以1a =(舍),即=2a ,此时5b =,∴ 25a b =⎧⎨=⎩. …………………………………………………………………………………………5分(2) 2()2f x x ax =-的对称轴为x a =,∵2a ≥,∴|1|1|1|a a a +-=≤-,∴在区间[1,1]a +上,max ()(1)12f x f a ==-, …………………………………………………………………7分2min ()()f x f a a ==-, ……………………………………………………………………………9分(3) 由(2)知∵12|()()|f x f x -的最大值为max min ()()f x f x -=2(1)()21f f a a a -=-+ …11分 即2(1)4a -≤,13a -≤≤,又2a ≥,故a 的取值范围为23a ≤≤. ……………………………13分 21.解:(1)∵(1)11a f a a a +=+++,()1f a a =+,∴(1)()1af a f a a +-=+,………2分 ∵1a >- ,∴10a +> ,则当0a >时,01aa >+,即(1)()f a f a +>, 当10a -<<时,01aa <+,即(1)()f a f a +<……………………………………………………4分(2) 3a =,则3()f x x x=+,证明:任取12,x x ,且122x x ≤<,则2223()f x x x =+,1113()f x x x =+ ∴212121212121212133311()()()()3()()x x f x f x x x x x x x x x x x x x --=+-+=-+-=-, …………6分 ∵122x x ≤<,∴210x x ->,2143x x >>,∴2121213()0x x x x x x -->,即21()()0f x f x ->, ∴21()()f x f x >,即()f x 在[2,)+∞上单调递增. ………………………………………8分 (3)假设存在正数t 满足不等式()()f x t f x +≥,即a a x t x x t x ++++≥,∴a at x x t-+≥,∴()at t x x t +≥,∵0t >,1x ≥,∴()a x x t +1≥,即()x x t a +≥,at x x-+≥ ……………10分∴a t x x -+≥对任意的[1,)x ∈+∞都成立,则max )a t x x -+≥(,设()ag x x x=-+ ,易得()g x 在[1,)x ∈+∞上单调递减,则max ()(1)1g x g a ==-+,∴1t a ≥-+……………………………12分又1t a ≥-+对任意的[2,4]a ∈也成立,则max (1)t a ≥-+, 又[2,4]a ∈时,max (1)3a -+=, ∴3t ≥,故存在正数3t ≥,满足不等式总成立.…………………………………………………14分2012年10月12日。

2012年普通高等学校招生全国统一考试数学湖北卷

2012年普通高等学校招生全国统一考试数学湖北卷

2012年普通高等学校招生全国统一考试(湖北卷)一、选择题1.方程x 2+6x +13=0的一个根是( ) A .-3+2i B .3+2i C .-2+3i D .2+3i2.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q3.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π24.已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3 D .6π5.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .126.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.347.定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”,现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2; ②f (x )=2x ;③f (x )=|x |; ④f (x )=ln|x |.则其中是“保等比数列函数”的f (x )的序号为( ) A .①② B .③④ C .①③ D .②④8.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π9.函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .710.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈3169V B .d ≈ 32VC .d ≈ 3300157VD .d ≈ 32111V二、填空题11.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________12.阅读如图所示的程序框图,运行相应的程序,输出的结果s =________13.回文数是指从左到右读与从右到左读都一样的正整数,如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.则(1)4位回文数有________个;(2)2n +1(n ∈N +)位回文数有________个.14.如图,双曲线x 2a 2-y 2b 2=1(a ,b >0)的两顶点为A 1,A 2,虚轴两端点为B 1,B 2,两焦点为F 1,F 2.若以A 1A 2为直径的圆内切于菱形F 1B 1F 2B 2,切点分别为A ,B ,C ,D .则(1)双曲线的离心率e =________;(2)菱形F 1B 1F 2B 2的面积S 1与矩形ABCD 的面积S 2的比值S 1S 2=________.15.(选修4-1:几何证明选讲)如图,点D 在⊙O 的弦AB 上移动,AB =4,连接OD ,过点D 作OD 的垂线交⊙O 于点C ,则CD 的最大值为________.16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知射线θ=π4与曲线⎩⎪⎨⎪⎧x =t +1,y =(t -1)2,(t 为参数)相交于A ,B 两点,则线段AB 的中点的直角坐标为________.三、解答题17.已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx ,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈(12,1).(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点(π4,0),求函数f (x )在区间[0,3π5]上的取值范围.18.已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.19.如图1,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图2所示).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大;(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y 的均值与方差;(2)在降水量X 至少是300的条件下,工期延误不超过6天的概率.21.设A 是单位圆x 2+y 2=1上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足|DM |=m |DA |(m >0,且m ≠1).当点A 在圆上运动时,记点M 的轨迹为曲线C .(1)求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求其焦点坐标;(2)过原点且斜率为k 的直线交曲线C 于P ,Q 两点,其中P 在第一象限,它在y 轴上的射影为点N ,直线QN 交曲线C 于另一点H .是否存在m ,使得对任意的k >0,都有PQ ⊥PH ?若存在,求m 的值;若不存在,请说明理由.22.(1)已知函数f (x )=rx -x r +(1-r )(x >0),其中r 为有理数,且0<r <1.求f (x )的最小值;(2)试用(1)的结果证明如下命题:设a 1≥0,a 2≥0,b 1,b 2为正有理数.若b 1+b 2=1,则a 1b 1a 2b 2≤a 1b 1+a 2b 2; (3)请将(2)中的命题推广到一般形式,并用数学归纳法证明你所推广的命题. 注:当α为正有理数时,有求导公式(x α)1=αx α-1.答案2012年普通高等学校招生全国统一考试(湖北卷)一、选择题1.解析:配方得(x +3)2=-4=(2i)2,所以x +3=±2i ,x =-3±2i. 答案:A2.解析:其否定为∀x ∈∁R Q ,x 3∉Q . 答案:D3.解析:由题中图象易知f (x )=-x 2+1,则所求面积为2∫10(-x 2+1)d x =2(-x 33+x )|10=43. 答案:B4.解析:由三视图可知该几何体的体积V =π×12×2+12×π×12×2=3π.答案:B5.解析:512 012+a =(13×4-1)2 012+a ,被13整除余1+a ,结合选项可得a =12时,512 012+a 能被13整除.答案:D6.解析:由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当ax=b y =c z =12时取等号,因此有a +b +c x +y +z =12. 答案:C7.解析:设等比数列{a n }的公比为q ,则{a 2n }的公比为q 2,{ |a n | }的公比为|q |,其余的数列不是等比数列.答案:C8.解析:设扇形的半径为2,其面积为π×224=π,其中空白区域面积为π-4×(π4-12)=2,因此此点取自阴影部分的概率为π-2π=1-2π.答案:A9.解析:令x cos x 2=0,则x =0,或x 2=k π+π2,又x ∈[0,4],因此x k =k π+π2(k =0,1,2,3,4),共有6个零点.答案:C10.解析:∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.答案:D 二、填空题11.解析:∵(a +b )2-c 2=ab , ∴cos C =a 2+b 2-c 22ab =-12,C =2π3.答案:2π312.解析:a =1,s =0,n =1;s =1,a =3,n =2;s =4,a =5,n =3;s =9,a =7,循环结束,因此输出s =9.答案:913.解析:2位回文数有9个,4位回文数有9×10=90个,3位回文数有90个,5位回文数有9×10×10=100×9个,依次类推可得2n +1位有9×10n 个.答案:90 9×10n14.解析:由题意可得a b 2+c 2=bc ,∴a 4-3a 2c 2+c 4=0,∴e 4-3e 2+1=0,∴e 2=3+52,∴e =1+52.设sin θ=b b 2+c 2,cos θ=cb 2+c 2, S 1S 2=2bc 4a 2sin θcos θ=2bc4a 2bc b 2+c2=b 2+c 22a 2=e 2-12=2+52.答案:1+52 2+5215.(选修4-1:几何证明选讲)解析:由题意知CD 2=OC 2-OD 2,OC 是半径,所以当OD 的值最小时,DC 最大,易知D 为AB 的中点时,DB =DC =2最大.答案:216.(选修4-4:坐标系与参数方程)解析:记A (x 1,y 1),B (x 2,y 2),将θ=π4,转化为直角坐标方程为y =x (x ≥0),曲线为y=(x -2)2,联立上述两个方程得x 2-5x +4=0,所以x 1+x 2=5,故线段AB 的中点坐标为(52,52). 答案:(52,52)三、解答题17.解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin(2ωx -π6)+λ.由直线x =π是y =f (x )图象的一条对称轴,可得 sin(2ωπ-π6)=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈(12,1),k ∈Z ,所以k =1,故ω=56.所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点(π4,0),得f (π4)=0,即λ=-2sin(56×π2-π6)=-2sin π4=-2,即λ=- 2.故f (x )=2sin(53x -π6)-2,由0≤x ≤3π5,有-π6≤53x -π6≤5π6,所以-12≤sin(53x -π6)≤1,得-1-2≤2sin(53x -π6)-2≤2-2,故函数f (x )在[0,3π5]上的取值范围为[-1-2,2- 2 ].18.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8.解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.19.解:(1)法一:在如图1所示的△ABC 中,设BD =x (0<x <3),则CD =3-x . 由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x . 由折起前AD ⊥BC 知,折起后(如图2),AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD ,又∠BDC =90°,所以S △BCD =12BD ·CD =12x (3-x ).于是V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x )≤112[2x +(3-x )+(3-x )3]3=23, 当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.法二:同法一,得V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ).令f (x )=16(x 3-6x 2+9x ),由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1.当x ∈(0,1)时,f ′(x )>0;当x ∈(1,3)时,f ′(x )<0. 所以当x =1时,f (x )取得最大值.故当BD =1时,三棱锥A -BCD 的体积最大.(2)法一:以D 为原点,建立如图a 所示的空间直角坐标系D -xyz .由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E (12,1,0),且=(-1,1,1).设N (0,λ,0),则=(-12,λ-1,0).因为EN ⊥BM 等价于=0,即(-12,λ-1,0)·(-1,1,1)=12+λ-1=0,故λ=12,N (0,12,0).所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .设平面BMN 的一个法向量为n =(x ,y ,z ),得⎩⎪⎨⎪⎧y =2x ,z =-x .可取n =(1,2,-1). 设EN 与平面BMN 所成角的大小为θ,则|-12-1|6×22=32,即θ=60°. 故EN 与平面BMN 所成角的大小为60°.法二:由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2. 如图b ,取CD 的中点F ,连接MF ,BF ,EF ,则MF ∥AD . 由(1)知AD ⊥平面BCD ,所以MF ⊥平面BCD .如图c ,延长FE 至P 点使得FP =DB ,连接BP ,DP ,则四边形DBPF 为正方形, 所以DP ⊥BF .取DF 的中点N ,连接EN ,又E 为FP 的中点,则EN ∥DP , 所以EN ⊥BF .因为MF ⊥平面BCD , 又EN ⊂平面BCD ,所以MF ⊥EN , 又MF ∩BF =F ,所以EN ⊥平面BMF . 又BM ⊂平面BMF ,所以EN ⊥BM .因为EN ⊥BM 当且仅当EN ⊥BF ,而点F 是唯一的,所以点N 是唯一的.即当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM .连接MN ,ME ,由计算得NB =NM =EB =EM =52, 所以△NMB 与△EMB 是两个共底边的全等的等腰三角形, 如图d 所示,取BM 的中点G ,连接EG ,NG ,则BM ⊥平面EGN .在平面EGN 中,过点E 作EH ⊥GN 于H , 则EH ⊥平面BMN .故∠ENH 是EN 与平面BMN 所成的角. 在△EGN 中,易得EG =GN =NE =22,所以△EGN 是正三角形, 故∠ENH =60°,即EN 与平面BMN 所成角的大小为60°. 20.解:(1)由已知条件和概率的加法公式有:P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4, P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1. 所以Y 的分布列为:于是,E (Y )=0×0.3+2×0.4+6×0.2+10×0.1=3;D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6.由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤x <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.21.解:(1)如图1,设M (x ,y ),A (x 0,y 0),则由|DM |=m |DA |(m >0,且m ≠1),可得x =x 0,|y |=m |y 0|,所以x 0=x ,|y 0|=1m|y |. ①因为A 点在单位圆上运动,所以x 20+y 20=1. ②将①式代入②式即得所求曲线C 的方程为x 2+y 2m2=1(m >0,且m ≠1).因为m ∈(0,1)∪(1,+∞),所以当0<m <1时,曲线C 是焦点在x 轴上的椭圆, 两焦点坐标分别为(-1-m 2,0),(1-m 2,0); 当m >1时,曲线C 是焦点在y 轴上的椭圆, 两焦点坐标分别为(0,-m 2-1),(0,m 2-1).(2)法一:如图2、3,∀k >0,设P (x 1,kx 1),H (x 2,y 2),则Q (-x 1,-kx 1),N (0,kx 1),直线QN 的方程为y =2kx +kx 1,将其代入椭圆C 的方程并整理可得(m 2+4k 2)x 2+4k 2x 1x +k 2x 21-m 2=0.依题意可知此方程的两根为-x 1,x 2,于是由韦达定理可得-x 1+x 2=-4k 2x 1m 2+4k 2,即x 2=m 2x1m 2+4k 2.因为点H 在直线QN 上,所以y 2-kx 1=2kx 2=2km 2x1m 2+4k 2,4(2-m 2)k 2x 21m 2+4k 2=0.即2-m 2=0,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH . 法二:如图2、3,∀x 1∈(0,1)设P (x 1,y 1),H (x 2,y 2),则Q (-x 1,-y 1),N (0,y 1).因为P ,H 两点在椭圆C 上,所以⎩⎪⎨⎪⎧ m 2x 21+y 21=m 2,m 2x 22+y 22=m 2,两式相减可得m 2(x 21-x 22)+(y 21-y 22)=0. ③依题意,由点P 在第一象限可知,点H 也在第一象限,且P ,H 不重合,故(x 1-x 2)(x 1+x 2)≠0,于是由③式可得(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-m 2. ④又Q ,N ,H 三点共线,所以k QN =k QH ,即2y1x 1=y 1+y 2x 1+x 2.于是由④式可得k PQ ·k PH =y 1x 1·y 1-y 2x 1-x 2=12·(y 1-y 2)(y 1+y 2)(x 1-x 2)(x 1+x 2)=-m 22.而PQ ⊥PH 等价于k PQ ·k PH =-1,即-m 22=-1,又m >0,得m =2,故存在m =2,使得在其对应的椭圆x 2+y 22=1上,对任意的k >0,都有PQ ⊥PH .22.解:(1)f ′(x )=r -rx r -1=r (1-x r -1),令f ′(x )=0,解得x =1.当0<x <1时,f ′(x )<0,所以f (x )在(0,1)内是减函数;当x >1时,f ′(x )>0,所以f (x )在(1,+∞)内是增函数.故函数f (x )在x =1处取得最小值f (1)=0.(2)由(1)知,当x ∈(0,+∞)时,有f (x )≥f (1)=0,即x r ≤rx +(1-r ), ①若a 1,a 2中至少有一个为0,则ab 11ab 22≤a 1b 1+a 2b 2成立;若a 1,a 2均不为0,又b 1+b 2=1,可得b 2=1-b 1,于是在①中令x =a 1a 2,r =b 1,可得(a1a 2)b 1≤b 1·a1a 2+(1-b 1),即ab 11·a 1-b 12≤a 1b 1+a 2(1-b 1),亦即ab 11ab 22≤a 1b 1+a 2b 2.综上,对a 1≥0,a 2≥0,b 1,b 2为正有理数且b 1+b 2=1,总有ab 11ab 22≤a 1b 1+a 2b 2. ②(3)(2)中命题的推广形式为设a 1,a 2,…,a n 为非负实数,b 1,b 2,…,b n 为正有理数.若b 1+b 2+…+b n =1,则ab 11ab 22…abn n ≤a 1b 1+a 2b 2+…+a n b n . ③用数学归纳法证明如下:(1)当n =1时,b 1=1,有a 1≤a 1,③成立.(2)假设当n =k 时,③成立,即若a 1,a 2,…,a k 为非负实数,b 1,b 2,…,b k 为正有理数,且b 1+b 2+…+b k =1,则ab 11ab 22…abk k ≤a 1b 1+a 2b 2+…+a k b k .当n =k +1时,已知a 1,a 2,…,a k ,a k +1为非负实数,b 1,b 2,…,b k ,b k +1为正有理数,且b 1+b 2+…+b k +b k +1=1,此时0<b k +1<1,即1-b k +1>0,于是ab 11ab 22…ab kk ab k +1k +1=(ab 11ab 22…ab kk )ab k +1k +1=(ab 11-b k +11a b 21-b k +12…a b k 1-b k +1k)1-b k +1ab k +1k +1. 因b 11-b k +1+b 21-b k +1+…+b k 1-b k +1=1,由归纳假设可得 a b 11-b k +11a b 21-b k +12…a b k 1-b k +1k ≤a 1·b 11-b k +1+a 2·b 21-b k +1+…+a k ·b k 1-b k +1=a 1b 1+a 2b 2+…+a k b k 1-b k +1, 从而ab 11ab 22…ab kk ab k +1k +1≤(a 1b 1+a 2b 2+…+a k b k 1-b k +1)1-b k +1ab k +1k +1. 又因(1-b k +1)+b k +1=1,由②得(a 1b 1+a 2b 2+…+a k b k 1-b k +1)1-b k +1ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k 1-b k +1· (1-b k +1)+a k +1b k +1=a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,从而ab 11ab 22…ab kk ab k +1k +1≤a 1b 1+a 2b 2+…+a k b k +a k +1b k +1,故当n =k +1时,③成立.由(1)(2)可知,对一切正整数n ,所推广的命题成立.说明:(3)中如果推广形式中指出③式对n ≥2成立,则后续证明中不需讨论n =1的情况.。

详解2012年全国高中数学联赛湖北赛区预赛试题

详解2012年全国高中数学联赛湖北赛区预赛试题
详解 2012 年全国高中数学联赛湖北赛区预赛试题
1. 函数 f (x)= x+1 的值域为_______. x2+4x+7 解法一 由题意可知 f (x)的定义域为 x≥-1,令 t=x+1≥0, x=t-1.当 t=0 时,f (x)=0; t t 1 1 当 t>0 时,g(t)= = = ≤ , 4 6 ( t-1)2+4( t-1)+7 t2+2t+4 t+2+ t 又 g(t)>0,于是 g(t)∈ 0, 所以,函数 f (x+C 小结:解法一是着眼于转换初等函数的方法,一般的对于 f (x)= 2 型函数考虑 Dx +Ex+F 以下变形 A A A A A (Dx2+Ex+F)+(B- )x+(C- ) (B- )x+(C- ) 2 D D D D A Ax +Bx+C D = = + f (x)= 2 D Dx +Ex+F Dx2+Ex+F Dx2+Ex+F 2 Ax +Bx+C A A 1 然后在令 t=(B- )x+(C- ),把函数 f (x)= 2 型转化为 y=Mt+N +P型. D D t Dx +Ex+F 当 MN>0 时,利用重要不等式求值域;当 MN<0,利用函数单调性求值域. Ax2+Bx+C 值域问题转化方程(A - 解法二是着眼于函数与方程的关系,把函数 y = 2 Dx +Ex+F y D)x2+(B-y E) x+C-y F=0 有解的问题. 2. 已知 3sin2α+2sin2β=1, 3(sin α+cos α)2-2(sin β+cos β)2=1, 则 cos2(α+β)=_____. 2 2 ① 3sin α+2sin β=1, 3cos2α+2cos 2α=3, 解: 由 则 2 2 ② 3(sin α+cos α) -2(sin β+cos β) =1, 3sin 2α-sin 2β=0, 1 2 2 由① +② 得 cos2(α+β)=- . 3 小结:本题考察三角函数的变换,变换的本质就是变形,变形包含角的变形和函数的变 形,变形的原则就是尽可能让已知和问题中的角和函数统一.本题函数都是弦函数,所以考 虑角,已知中的角是 α、β,而问题中的角 2(α+β)(或看成 2α+2β).比较已知与问题中的 角之间关系,确定思路是 α、β2α、2β2α+2β. tan(α+β) 练习:已知 2sinβ=sin (2α+β),且 α≠kπ+ ,k∈Z.则 =_______. 2 tan α 答案:3.

湖北省全国高一数学联合竞赛预赛试题(湖北省)

湖北省全国高一数学联合竞赛预赛试题(湖北省)

(高一年级)说明:评阅试卷时,请依照本评分标准。

填空题只设8 分和 0 分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参照本评分标准适合区分品位评分。

一、填空题(此题满分64 分,每题 8 分。

直接将答案写在横线上。

)1.已知会合 A { x | x a}, B { x | x b}, a, b N,且 A B N {1} ,则 a b 1 .2.已知正项等比数列{ a n } 的公比 q 1 ,且 a2 , a4 , a5成等差数列,则a1a 4 a 7 3 5 .a 3 a6 a9 23.函数 f ( x)x 1的值域为 [0,6.x 2 4x]7 64.已知3 sin2 2 sin 2 1 ,3(sin cos ) 2 2(sin cos ) 2 1 ,则cos 2( ) 1 .3 5.已知数列 { a n } 知足: a1为正整数,a na n , a n为偶数 ,1 2a n为奇数 ,3a n 1,假如 a1 a2 a3 29 ,则 a1 5 .6.在△ ABC 中,角 A, B, C 的对边长 a, b,c 知足 a c 2b ,且 C 2 A ,则 sin A 7 .4 7.在△ ABC 中, AB BC 2 , AC 3 .设 O 是△ ABC 的心里,若AO p AB qAC ,则p的值为3.q 28.设 x1 , x2 , x3是方程x3 x 1 0 的三个根,则x15 x25 x35的值为- 5 .二、解答题(本大题满分56 分,第9 题 16分,第10 题 20 分,第11题 20分)9 .已知正项数列{ a n } 知足anan 1 a n a n 2 4anan 1 a n2 1 3 a n a n 1且a1 1 ,a2 8 ,求{ a n}的通项公式.解在已知等式两边同时除以a n a n 1,得 1 a n 24 1a n 13 ,an 1 a n因此a n 21 4( 1a n 11) .1a na n 1------------------------------------------4 分令 b na n 11 , 则 b1 4, b n 1 4b n,即数列 {b n } 是以b1 = 4 为首项 ,4 为公比的等比数1a n列,所以b n b1 4n 1 4n .- 1 -------------------------------------------8分所以1an 11 4 n,即a n 1[( 4 n 1) 21]a n.a n------------------------------------------12分于是,当 n 1 时 ,a n[( 4 n 1 1) 2 1]a n 1[( 4n 1 1)21] [( 4n 2 1) 2 1]a n 2n 1n 1[( 4 k11) 2 1]a 1 [( 4 k 1 1) 2 1] ,k 1k 11,n 1,因此,n1a n[( 4k11)21], n 2.k1------------------------------------------16分10.已知正实数 a, b 知足 a 2 b 2 1 ,且 a 3 b 3 1 m(a b 1)3 ,求 m 的最小值.解 令 acos ,b sin, 0,则2mcos 3sin 31(cossin )(cos 2cos sin sin 2) 1(cossin3(cossin3. -------------------1)1)--------------------- 5分令xcos sin,则x2 sin() (1,2 ],且421 .cos sinx2 ------------------------------10分于是x 21mx(12 ) 1 2 3x x 32 x x 22 x3 1.( x 1) 32( x 1)32( x 1) 2 2(x 1)2( x 1) 2 ------------------------------15分由于函数 f (x)31) 1在(1, 2] 上单一递减,因此 f ( 2 ) m f (1) .2(x 2因 此 ,m的最 小值为f ( 2 ) 3 2 4 .------------------------------------------202分11.设 f ( x) log a (x 2a) log a ( x 3a) ,此中 a 0 且 a 1 .若在区间 [a 3, a 4] 上 f ( x) 1 恒建立,求 a 的取值范围.解 f (x)log a ( x 2 5ax 6a 2 )log a [( x 5a )2 a 2 ] .2 4- 2 -由x2a 0, 得x 3a ,由题意知 a 3 3a ,故 a3,进而 (a 3) 5a 3 (a 2) 0 ,x 3a 0, 2 2 2故函数g(x) (x 5a )2 a2 在区间[a 3, a 4] 上单一递加.2 4------------------------------------------ 5 分(1)若 0 a 1 ,则 f (x) 在区间 [a 3, a 4] 上单一递减,因此 f ( x) 在区间 [ a 3, a 4] 上的最大值为 f ( a 3) log a (2a 2 9a 9) .在区间 [ a 3, a 4] 上不等式 f (x) 1 恒建立,等价于不等式log a (2a2 9a 9) 1 建立,从而2a2 9a 9 a ,解得 a 5 7或 a 5 7 .2 2结合0 a 1 得0 a 1 .------------------------------------------10 分(2)若1 a 3,则 f (x) 在区间 [a 3, a 4] 上单一递加,因此 f ( x) 在区间 [ a 3, a 4] 上2的最大值为 f ( a 4) log a (2a2 12 a 16) .在区间 [a 3, a 4] 上不等式 f ( x) 1恒建立,等价于不等式log a(2a2 12a 16) 1 建立,从而2a 2 12a 16 a ,即2 2 13 16 0 13 41 13 41a ,解得 a .a 4 4易知13 41 3 ,所以不符4 2合.------------------------------------------ 15 分综上可知: a 的取值范围为(0,1) .------------------------------------------ 20分- 3 -。

2012年全国高中数学联合竞赛湖北省预赛试题

2012年全国高中数学联合竞赛湖北省预赛试题

2012年全国高中数学联合竞赛湖北省预赛试题参考答案(高一年级)说明:评阅试卷时,请依据本评分标准。

填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。

一、填空题(本题满分64分,每小题8分。

直接将答案写在横线上。

)1.已知集合∈>=≤=b a b x x B a x x A ,},|{},|{N ,且 B A N }1{=,则=+b a 1 .2.已知正项等比数列}{n a 的公比1≠q ,且542,,a a a 成等差数列,则=++++963741a a a a aa . 3.函数741)(2+++=x x x x f的值域为. 4.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13-. 5.已知数列}{n a 满足:1a 为正整数,⎪⎩⎪⎨⎧+=+,,13,,21为奇数为偶数n n n n n a a a a a 如果29321=++a a a ,则=1a 5 .6.在△ABC 中,角C B A ,,的对边长c b a ,,满足b c a 2=+,且A C 2=,则=Asin 4. 7.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则qp 的值为32. 8.设321,,x x x 是方程013=+-x x 的三个根,则535251x x x ++的值为 -5 . 二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)9.已知正项数列}{n a满足=11a =,28a =,求}{n a 的通项公式.解 在已知等式两边同时除以1+n n a a ,得3141112++=++++nn n n a aa a , 所以11)=. ------------------------------------------4分 令111++=+nn n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数列,所以n n n b b 4411=⋅=-. ------------------------------------------8分所以n nn a a 4111=+++,即 n n n a a ]1)14[(21--=+. ------------------------------------------12分 于是,当1>n 时,22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a∏∏-=--=---=--==112111121]1)14[(]1)14[(n k k n k k a ,因此,⎪⎩⎪⎨⎧≥--==∏-=-.2,]1)14[(,1,11121n n a n k k n ------------------------------------------16分10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的最小值. 解 令cos ,sin a b θθ==,02πθ<<,则322333)1sin (cos 1)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=++++=θθθθθθθθθθθθm .----------------------------------------5分令 θθsin cos +=x ,则 ]2,1()4sin(2∈+=πθx ,且21s i n c o s 2-=x θθ.------------------------------10分于是21)1(23)1(22)1(22)1(232)1(1)211(223332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分因为函数21)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.因此,m 的最小值为2423)2(-=f . ------------------------------------------20分11.设)3(log )2(log )(a x a x x f a a -+-=,其中0>a 且1≠a .若在区间]4,3[++a a 上1)(≤x f 恒成立,求a 的取值范围.解 22225()l o g (56)l o g [()]24a aa a f x x ax a x =-+=--.由⎩⎨⎧>->-,03,02a x a x 得a x 3>,由题意知a a 33>+,故23<a ,从而53(3)(2)022a a a +-=->,故函数225()()24a a g x x =--在区间]4,3[++a a 上单调递增.------------------------------------------5分(1)若10<<a ,则)(x f 在区间]4,3[++a a 上单调递减,所以)(x f 在区间]4,3[++a a 上的最大值为)992(log )3(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)992(log 2≤+-a a a 成立,从而a a a ≥+-9922,解得275+≥a 或275-≤a . 结合10<<a 得10<<a . ------------------------------------------10分(2)若231<<a ,则)(x f 在区间]4,3[++a a 上单调递增,所以)(x f 在区间]4,3[++a a 上的最大值为)16122(log )4(2+-=+a a a f a .在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)16122(log 2≤+-a a a 成立,从而a a a ≤+-161222,即0161322≤+-a a ,解得4411344113+≤≤-a . 易知2344113>-,所以不符合. ------------------------------------------15分综上可知:a 的取值范围为(0,1). ------------------------------------------20分。

2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)(2021年整理)

2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)(2021年整理)

2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2.2012年全国高中数学联赛模拟卷(一)(一试+二试,附详细解答)(word版可编辑修改)的全部内容。

2012年全国高中数学联赛模拟卷(一)第一试(考试时间:80分钟 满分:120分)姓名:_____________考试号:______________得分:____________一、填空题(本大题共8小题,每小题8分,共64分)1.不等式229x <+的解集为 . 解析: 由0211≠+-x 得0,21≠-≥x x ,原不等式可变为()922112+<++x x解得845<x 故原不等式的解集为145,00,28⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦2.过正方体外接球球心的截面截正方体所得图形可能为______________。

①三角形 ②正方形 ③梯形④五边形 ⑤六边形答案:②⑤,解:由对称性可知,所得图形应为中心对称图形,且②⑤可以截得 3.直线2kx y -=||1x =-有两个不同的交点,则实数k 的取值范围是__ _______。

提示:44[2,)(,2]33--⋃, 曲线为两个半圆,直线过定点(0,−2),数形结合可得。

4.复数z ,使322z z z +=,则z 的所有可能值为 _____ ____. 答案:0,1,12,12i i -+-- 解:322z z z +==2z z ⋅,∴2(12)0z z z +-=当 0z =时,满足条件,当 0z ≠时,2120z z +-=设 22(,),212()z a bi a b R a b abi a bi =+∈-++--则∴ 22120(1)220(2)a b a ab b ⎧-+-=⎨+=⎩ ,由(2) 2(1)0b a +=1)0b = 代入(1) 整理得:2(1)01a a -=⇒=2)0b ≠,则 1a =- 代入(1) 得:242b b =⇒=±,经检验复数1,12z i =-±均满足条件。

2012年全国高中数学联合竞赛湖北省预赛试题参考

2012年全国高中数学联合竞赛湖北省预赛试题参考

精心整理
2012年全国高中数学联合竞赛湖北省预赛试题参考
这篇关于《2012年全国高中数学联合竞赛湖北省预赛试题参考》的文章,是特地为大家整理的,希望对大家有所帮助!
一、)
1234
56.
7.
8二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分)
9.已知正项数列满足且,,求的通项公式.
10.已知正实数满足,且,求的取值范围.
11.已知点为抛物线内一定点,过作斜率分别为的两条直线交抛物线于,且分别是线段的中点.
(1)当且时,求△的面积的最小值;
(2)若(为常数),证明:直线过定点.
2012
一、)1
2
3
如果,则5.
4.设集合,是的子集,且满足,,那么满足条件的子集的个数为185.5.过原点的直线与椭圆:交于两点,是椭圆上异于的任一点.若直线的斜率之积为,则椭圆的离心率为.
6.在△中,,.设是△的内心,若,则的值为.
7.在长方体中,已知,则长方体的体积时,为.
8.设表示不超过的整数,则2012.
二、解答题(本大题满分56分,第9题16分,第10题20分,第11

9
令,,所以
所以

因此
10.已知正实数满足,且,求的取值范围.
解令。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国高中数学联合竞赛湖北省预赛试题
(高一年级)(附答案)
说明:评阅试卷时,请依据本评分标准。

填空题只设8分和0分两档;解答题的评阅,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分。

一、填空题(本题满分64分,每小题8分。

直接将答案写在横线上。

) 1.已知集合∈>=≤=b a b x x B a x x A ,},|{},|{N ,且 B A N }1{=,则=+b a 1 . 2.已知正项等比数列}{n a 的公比1≠q ,且542,,a a a 成等差数列,则
=++++9637
41a a a a a
a .
3.函数7
41
)(2+++=
x x x x f
的值域为. 4.已知1sin 2sin 322=+βα,1)cos (sin 2)cos (sin 322=+-+ββαα,则=+)(2cos βα13
-.
5.已知数列}{n a 满足:1a 为正整数,
⎪⎩⎪⎨⎧+=+,
,13,,21
为奇数为偶数n n n n
n a a a a a 如果29321=++a a a ,则=1a 5 .
6.在△ABC 中,角C B A ,,的对边长c b a ,,满足b c a 2=+,且A C 2=,则=
A
sin . 7.在△ABC 中,2==BC AB ,3=AC .设O 是△ABC 的内心,若AC q AB p AO +=,则
q p
的值为32
. 8.设321,,x x x 是方程013=+-x x 的三个根,则5
35251x x x ++的值为 -5 .
二、解答题(本大题满分56分,第9题16分,第10题20分,第11题20分) 9.已知正项数列}{n a
=且11a =,
28a =,求}{n a 的通项公式.
解 在已知等式两边同时除以1+n n a a ,得3141112++=+
+++n
n n n a a
a a , 所以
11)=. ------------------------------------------4分
令111
++=+n
n n a a b ,则n n b b b 4,411==+,即数列}{n b 是以1b =4为首项,4为公比的等比数

,所以
n
n n b b 4411=⋅=-.
------------------------------------------8分


n n
n a a 4111
=++
+,即
n
n n a a ]1)14[(21--=+.
------------------------------------------12分
于是,当1>n 时,
22221121]1)14[(]1)14[(]1)14[(-------⋅--=--=n n n n n n a a a
∏∏-=--=---=
--==1
1
21
1
1
12
1
]1)14
[(]1)14
[(n k k n k k a ,
因此,
⎪⎩⎪⎨
⎧≥--==∏-=-.2,]1)14[(,1,
11
1
21n n a n k k n ------------------------------------------16分
10.已知正实数b a ,满足122=+b a ,且333)1(1++=++b a m b a ,求m 的最小值. 解 令cos ,sin a b θθ==,02
π
θ<<
,则
3
22333)1sin (cos 1
)sin sin cos )(cos sin (cos )1sin (cos 1sin cos ++++-+=
++++=θθθθθθθθθθθθm .----------------------------------------5分

θ
θsin cos +=x ,则 ]2,1()4
sin(2∈+
=πθx ,且
2
1
sin cos 2-=x θθ.------------------------------10分 于是
21)1(23)1(22)
1(22)1(232)1(1
)211(2
23332-+=+-=+-+=+-+=++--=x x x x x x x x x x x x m . ------------------------------15分
因为函数2
1
)1(23)(-+=x x f 在]2,1(上单调递减,所以)1()2(f m f <≤.
因此,m 的最小值为
2
4
23)2(-=
f . ------------------------------------------20分
11.设)3(log )2(log )(a x a x x f a a -+-=,其中0>a 且1≠a .若在区间]4,3[++a a 上
1)(≤x f 恒成立,求a 的取值范围.
解 2
2
2
25()log (56)log [()]24
a a a a f x x ax a x =-+=--.
由⎩⎨
⎧>->-,
03,02a x a x 得a x 3>,由题意知a a 33>+,故23
<a ,从而53
(3)(2)022
a a a +-
=
->,故函数
2
25()()24
a a g x x =--
在区间]4,3[++a a 上单调递增
.
------------------------------------------5分
(1)若10<<a ,则)(x f 在区间]4,3[++a a 上单调递减,所以)(x f 在区间]4,3[++a a 上的最大值为)992(log )3(2+-=+a a a f a .
在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)992(log 2≤+-a a a 成立,从而a a a ≥+-9922,解得275+≥
a 或2
7
5-≤a . 结
合10<<a 得
10<<a . ---------------------------------------
---10分
(2)若2
3
1<
<a ,则)(x f 在区间]4,3[++a a 上单调递增,所以)(x f 在区间]4,3[++a a 上的最大值为)16122(log )4(2+-=+a a a f a .
在区间]4,3[++a a 上不等式1)(≤x f 恒成立,等价于不等式1)16122(log 2≤+-a a a 成立,从而a a a ≤+-161222,即0161322≤+-a a ,解得
4
41
1344113+≤≤-a . 易

2
3
44113>-,所以不符
合. ------------------------------------------15分综上可知:a的取值范围为(0,1). ------------------------------------------20分。

相关文档
最新文档