气相色谱分析.ppt

合集下载

气相色谱(GC)基础知识——基本原理PPT课件分析 共99页

气相色谱(GC)基础知识——基本原理PPT课件分析 共99页
范弟姆特方程
B H A Cu
u 流动相 线速度
1) 涡流扩散项A
A2dp
固定相颗粒越小,填充的越均匀 A越小,H越小,柱效越高,色谱峰越窄。
2) 分子扩散项B/u(纵向扩散项)
流动相
B2Dg
产生原因:浓度梯度
影响因素:流动相流速;
气体扩散系数 (Dg
1) M载气
柱内谱带构型 相应的响应信号
最小板高:
H最小=A+2(BC)1/2 =0.08+2(0.65×0.003)1/2=0.17cm
四 分离度
定义: R tr2tr1 2(tr2tr1)
12(W1W2) (W1W2) tr2, tr1: 组分2和组分1的保留时间 W2, W1: 组分2和组分1的峰底宽度
R=1.5 完全分离
(50%三氟丙基)甲 基聚硅氧烷
聚乙二醇
非极性 脂肪烃化合物, 石化产品
中等极性 极性化合物,如 高级脂肪酸
中强极性 极性化合物,如 醇、羧酸酯等
2 气固色谱固定相
分离对象
永久性气体 惰性气体 低沸点有机化合物
固体吸附剂
硅胶-强极性 氧化铝-弱极性 活性炭-非极性 分子筛-强极性 高分子多孔微球(GDX)
红色
{ 硅藻土 白色
{ { 担体(载体)
组成
固定液
非硅藻土
对载体的要求
a. 具有多孔性,即比表面积大。
b. 化学惰性,表面没有活性,有较好的 浸润性。
c. 热稳定性好。
d. 有一定的机械强度,使固定相在制备 和填充过程中不易粉碎。
担体的表面处理
a. 酸洗-浓盐酸浸泡,除去碱性作用基团 b. 碱洗-氢氧化钾甲醇溶液浸泡,除去酸

第2章 气相色谱分析法

第2章 气相色谱分析法

将两者混合起来进行色谱实验,如果发现有 新峰或在未知峰上有不规则的形状(例如峰略 有分叉等)出现,则表示两者并非同一物质; 如果混合后峰增高而半峰宽并不相应增加, 则表示两者很可能是同一物质. 3.多柱法:在一根色谱柱上用保留值鉴定组分有 时不一定可靠,因为不同物质有可能在同一色 谱柱上具有相同的保留值.所以应采用双柱或多 柱法进行定性分析.即采用两根或多根性质(极 性)不同的色谱柱进行分离,观察未知物和标 准试样的保留值是否始终重合.
§2.5 GC检测器 一、概述 1.作用:将经色谱柱分离后的各组分按其特性及含 量转换为相应的电讯号。 2.分类: 浓度型:测量的是载气中某组分浓度瞬间的变化, 即检测器的响应值和组分的浓度成正比。 热导TCD ; 电子捕获ECD; 质量型:测量的是载气中某组分进入检测器的速 度变化。即检测器响应值和组分的质量成正比。 氢焰FID; 火焰光度FPD;
二、根据色谱保留值进行定性 定性方法的可靠性与色谱柱的分离效率有密切的 关系,为了提高可靠性,应该采用重现性较好 和较少受到操作条件影响的保留值. 由于保留时间(或保留体积)受柱长、固定液 含量、载气流速等操作条件的影响比较大,因 此一般适宜采用仅与柱温有关,而不受操作条 件影响的相对保留值r21作为定性指标. 1.对于比较简单的多组分混合物,如果其中所有 待测组分均为已知,它们的色谱峰也能一一分 离,那么为了确定各个色谱峰所代表的物质, 可将各个保留值与各相应的标准试样在同一条 件下所测得的保留值进行对照比较,确定各个 组分.
§2.6 气相色谱定性方法
一、概述:各种物质在一定色谱条件下都有确定不 变的保留值,因此保留值可作为一种定性指标 . 现状:GC定性分析还存在一定问题.其应用仅限 于当未知物通过其它方面的考虑(如来源,其它 定性方法的结果等)后,已被确定可能为某几个 化合物或属于某种类型时作最后的确证;其可靠 性不足以鉴定完全未知的物质。 近年,GC/MS、GC/光谱联用技术的开发,计算机 的应用,打开了广阔的应用前景。

气相色谱法PPT课件

气相色谱法PPT课件
平缓。如A 前延峰(leading peak): 前沿平缓,后
沿陡峭。如B
A
B
对称因子[ƒs (symmetry factor)]
即拖尾因子(tailing factor):
用来描述峰形对称程度的。
计算公式为:
fs
W0.05h 2A
一、气相色谱法的分类和特点
(一)分类 按固定相的聚集状态分: 气固色谱法(GSC),属吸附色谱 气液色谱法(GLC),属分配色谱
按操作形式分,气相色谱属柱色谱.
按柱的粗细不同分:
填充柱色谱法:将固定相填充在金属
或玻璃管中(内径4mm~6mm)
毛细管柱色谱:毛细管柱(0.1mm~0.5mm)
分为
开口毛细管柱
和固体。(沸点在500℃以下,热稳定性 好,分子量在400以下的物质)。 目前气相色谱法所能分析的有机物,约 占全部有机物(约300万种)的20%。
气相色谱两大弱点: a.受试样蒸汽压限制 b.定性困难
二、气相色谱仪 gas chromatographic instruments
气相色谱仪
气相色谱仪
柱制备对柱效有较大影响,填料装填 太紧,柱前压力大,流速慢或将 柱堵 死;反之空隙体积大,柱效低。
4.检测系统(detection system) 色谱仪的眼睛。包括检测器、控温装 置;若作制备,则在检测器后面接分 步收集器。 作用:按组分浓度或质量随时间的变化,
转化成相应电信号
检测器:
广普型——对所有物质均有响应;
气化室: 将液体试样瞬间气化的 装置。无催化作用。
3.色谱柱系统(column system) 包括恒温控制装置,是色谱仪的心脏部
分。
柱材质:不锈钢管或玻璃管,内径3-6 毫米。长度可根据需要确定。

气相色谱分析

气相色谱分析
进样开始到柱后出现浓度最大值时所需时间。
保留时间(retention time)tR 被测样品从进样开始到柱后出现浓度最大值时所需的时间
调整保留时间(adjusted retention time)tR’ tR’=tR-tm
某组分由于溶解或吸附于固定相,比不溶解或不被吸
附的组分在色谱柱中多滞留的时间。
三、气相色谱分析的理论基础
1、基本原理
在一定温度下,组分在两相之间分配达到平衡时 的浓度(g·mL-1)比称为分配系数,以K表示。
待测组分在固定相和流动相之间发生的吸附,脱附 或溶解,挥发的过程叫做分配过程。
组分在固定相中的浓度 K 组分在流动相中的浓度 K Cs
Cm
(分配系数是色谱分析的依据)
气相色谱分析
2-1 气相色谱概述 2-2 气相色谱法的基本原理 2-3 色谱分离条件选择 2-4 固定相及其选择 2-5 气相色谱检测器 2-6 气相色谱定性分析 2-7 气相色谱定量方法 2-8 毛细管柱气相色谱法
§2-1 气相色谱法概述
色谱法是一种分离技术。 固定相:使混合物中各组分在两相间进行分配,其中
对于高沸点,不能气化和热不稳定的物质不能 用气相色谱法分离和测定。
§2-2 气相色谱法的基本原理
一、气相色谱流程:
1、高压钢瓶 2、减压阀 3、载气净化干燥管 4、针形阀 5、流量计 6、压力表 7、进样器 8、色谱柱 9、检测器 10、记录仪
图2.1 气相色谱流程图
二、气相色谱仪的组成及各部分的作用:
死体积(dead volume)Vm 指色谱柱在填完后柱管内固定相颗粒间所剩
余的空间,色谱仪中管路和连接头间的空间以及 检测器的空间的总和。当后两项很小,忽略不计 时,

气相色谱分析法—气相色谱仪(食品仪器分析课件)

气相色谱分析法—气相色谱仪(食品仪器分析课件)
气相色谱仪的分离系统
色谱仪的分离系统是安装在柱箱内的色谱柱。色 谱柱的入口与气化室相连,其出口连在检测器上,用 于分离样品,是色谱仪的核心部分。
色谱柱的安置
色谱柱主要有填充柱和毛细管柱两类。 一、填充柱
填充柱由不锈钢或玻璃材料制成,内装固定相,一般内径为 3~4mm,长1~10m。形状有U形和螺旋形两种,常用的是螺旋形的 。填充柱制备简单,可供选择的固定相种类多,柱容量大,分离效 能也足够高,应用很广泛。
净化干燥器
三、稳压、恒流装置 高压钢瓶气需经过减压后才能使用。载气的流速是影响色谱分
离和定性分析的重要参数之一,因此其流速必须稳定。载气流速由 稳压阀或稳流阀调节控制。稳压阀的作用是通过改变输出气压来调 节气体流量的大小,并稳定输出气压。在恒温色谱分析中,当操作 条件不变时,整个系统阻力不变,单独使用稳压阀便可使色谱柱入 口压力稳定,从而保持稳定的流速。但在程序升温色谱分析中,由 于柱内阻力随温度升高而不断增加,载气的流量逐渐减少,因此需 要在稳压阀后连接一个稳流阀,以保持恒定的流量。
一、气相色谱仪基本结构
气相色谱仪结构示意图
二、气相色谱仪的流程
在气相色谱分析中,由载气系统的高压钢瓶(或气体发生器) 提供的流动相气体即载气(如H2、He、N2及Ar等),经减压阀减压、 稳压,净化器净化、干燥,稳压阀或稳流阀精确调节其压力后,以 稳定的压力和流量连续流经进样系统的样品气化室,将从进样口注 入的气体样品(或在气化室瞬间气化的液体试样蒸气),运载进入 色谱柱进行分离。
二、毛细管柱 毛细管柱又叫空心柱,最常用的是石英毛细管柱。普通毛细管
柱的内径一般为0.32mm,大口径毛细管柱内径为0.53mm。毛细管 柱渗透性好,传质阻力小,柱长可长达几十米,甚至几百米。毛细 管柱分辨率高(理论塔板数可达1.0×106),分析速度快,样品用 量小。但柱容量小,对检测器的灵敏度要求高。

气相色谱常用定量和定性方法ppt课件

气相色谱常用定量和定性方法ppt课件

定量注意事项
• 一般定量以峰面积为基准 • 所有参加计算的峰形正常(谱峰不前伸、不拖尾、不过载)的情
况下,也可以以峰高为基准进行计算 • 分子量相差不大或分子量较大的同系物校正因子相差不大,可直
接用峰面积(或峰高)定量
谢 谢!
准物S的调整保留时间ti’和ts ’ : ai,s = ti’/ ts ’
(2)计算ai,s并与文献相应值比较定性。 2.3.1.3特点 可消除实验条件不一致带来的误差。
2.3.2保留指数(I)定性法
2.3.2.1依据
保留指数I只与柱温和固定相的性质和被测物质的性质有关,与色谱柱 的尺寸、固定相的液膜厚度、载气流量、流速无关。
校正因子与待测物/标准物的性质和检测器的类型有关,可查文献, 也可测定
3.2.1定量校正因子的分类
• 质量校正因子
• 摩尔校正因子
• 体积校正因子
• fM ′ =fV ′
fm
f' m(i)
f' m(s)
m(i) A(s) m(s) A(i)
fM
f' M (i)
f' M (s)
m(i) A(s)M (s) m(s) A(i)M (i)
• 绝对校正因子:用已知准确浓度的标准 样品
3.3常用的定量计算方法
3.3.1 归一化法 3.3.2 外标法 3.3.3 单点校正法 3.3.4 内标法 3.3.5 标准加入法 3.3.6 加内标的标准加入法
3.3.1 归一化法
3.3.1.1 方法
当样品中各组分都能出峰时,将各组分的含量之和
按100%计算的定量方法。
2024/1/26
1
主要内容
1.什么是色谱定性和定量分析 2.常用的色谱定性分析方法 3.常用的色谱定量分析方法

仪器分析-气相色谱分析

仪器分析-气相色谱分析

• 3、保留值:是试样各组分在
色谱柱中保留行为的量度,它 反映组分与固定相间作用力大 小,通常用保留时间和保留体 积表示。 死时间tM:不被固定相吸附或 溶解的组分(如空气、甲烷) 从进样到出现其色谱蜂最大值 所需的时间,图中O'A'所示。 保留时间tR :指某组分通过 色谱柱所需时间,即试样从进 样到出现峰极大值时的时间, 图中O‘B所示。 调整保留时间tR’ 死时间后的 保留时间,它是组分在固定相 中的滞留时间。图中A’B所示, 即 tR’ = tR - tM
通常以有效塔板数neff 和有效塔板高度Heff 表示:
neff H eff
t t 2 5.5 4( ) 1 6( )2 W1 / 2 Wb L neff
' R
' R
2-2-3 速率理论
• 塔板理论存在的假定有缺陷,不能解释塔板高度H
受那些因素影响. 1956年,荷兰化学工程师van Deemter提出了色谱过程动力学速率理论。 • van Deemter方程:H=A+B/u+C*u u 为流动相线速度; A,B,C 为常数. 其中: A — 涡流扩散系数; B — 分子扩散系数; C — 传质阻力系数(包括液相和固相传质阻力系 数)
• 1、气路系统
• 载气:H2,N2,He,Ar等 • 净化器:提高载气纯度 • 稳压恒流装置,气体流速控制和测量。
• 2、进样系统
• 进样器: 微量注射器、六通阀 • 气化室:瞬间气化,死体积尽可能小
• 3、分离系统
• 色谱柱有填充柱和毛细管柱两大类
2-1-3 组成
• • • • •
4、温控系统 色谱柱、气化室、检测室三处温度控制 气化室温度应使试样瞬间气化但又不分解; 检测器除氢火焰外都对温度敏感; 柱温的变化影响柱的选择性和柱效,因此柱室的 温度控制要求精确,温控反复根据需要可以恒温, 也可以程序升温。

分析化学第13章气相色相色谱分析

分析化学第13章气相色相色谱分析

柱后
四臂
化为可以记录的电压信号,从而实
柱前
现其检测功能。
A
B
构成:由池体和热敏元件构成。
通常将参比臂和样品臂组成 Wheatstone 电桥。如图。
柱后
柱前
工作过程:
1)在只有载气通过时,四个臂的温度都保持不变, 电阻值也不变。此时,调节电路电阻使电桥平衡, AB两端无电压信号输出; 2)当有样品随载气进入两个样品臂时,此时热导系 数发生变化,或者说,测量臂的温度发生变化,其电 阻亦发生变化,电桥失去平衡,AB两端有电压信号 输出。当载气和样品的混合气体与纯载气的热导系数 相差越大,则输出信号越强。
物并发射特征分子光谱。测量光谱的强度则可进行定量分析。
含S、P化合物在氢焰中的变化过程如下:
含S 化合物: RS Air O2 SO2 CO2;SO2 8 H 2S 4 H2O S 3900 C S* 跃迁 S hν(354 ~ 430 nm, λmax 394nm) 含 P 化合物
2)池体温度:池体温度低,与热敏元件间温差大,灵敏度提高。但温度过低,可 使试样凝结于检测器中。通常池体温度应高于柱温。
3)载气种类:载气与试样的热导系数相差越大,则灵敏度越高。通常选择热导系数 大的H2和He作载气。用N2作载气,热导系数较大的试样(如甲烷)可出现倒峰。
4)热敏元件阻值:阻值高、电阻温度系数大(随温度改变,阻值改变大,或者说

温度高,分析时间短,但分离效果差




程序升温:30~180oC


程序升温,分离效果好,且分析时间短




四、温控系统
温度控制是否准确、变温速度是否快速是市售色 谱仪器的最重要指标之一。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/11/11
2. 气固色谱固定相的特点
(1)性能与制备和活化条件有很大关系; (2)同一种固定相,不同厂家或不同活化条件,分离效果 差异较大; (3)种类有限,能分离的对象不多; (4)使用方便。
2020/11/11
二、气液色谱固定相
stationary phases in gas-liquid chromatograph
、5A、10X及13X分子筛等(孔径:埃)。常用5A和13X(常 温下分离O2与N2)。除了广泛用于H2、O2、N2、CH4、CO等 的分离外,还能够测定He、Ne、Ar、NO、N2O等。 (5)高分子多孔微球(GDX系列)
新型的有机合成固定相(苯乙烯与二乙烯苯共聚)。 型号:GDX-01、-02、-03等。适用于水、气体及低级醇 的分析。
7、苯基(60%)甲基 OV-22 350 聚硅氧烷
8、邻苯二甲酸 二壬酯
DNP
130
9、三氟丙基甲基 聚硅氧烷
OV-210 250
10、 氰丙基(25%) OV-225 250 苯基(25%)
甲基聚硅氧烷
11、聚乙二醇
PEG20M 250
甲苯 甲苯 甲苯 甲苯 乙醚 氯仿
乙醇
12、 丁二酸二乙 二醇聚酯
手册中,一般将固定液按有机化合物的分类方法分为:脂肪 烃、芳烃、醇、酯、聚酯、胺、聚硅氧烷等。
2020/11/11
(4)固定液的最高最低使用温度
高于最高使用温度易分解,温度低呈固体;
(5) 混合固定相
对于复杂的难分离组分通常采用特殊固定液或将两种甚 至两种以上配合使用;
(6) 固定液的相对极性
规定:角鲨烷(异三十烷)的相对极性为零,β,β’—氧 二丙睛的相对极性为100。
DEGS 225
氯仿
相对 极性 0 — +1 +1 +2 +2 +2 +2 +2 +3
氢键 氢键
麦氏 常数 总和 0 143 229 423 592 827 1075
1500 1813
2308 3430
分析对象 (参考)
烃类及非极性化合物 非极性和弱极 性各类 高 沸点有机化合物 各类高沸点弱 极性有 机 化合物,如芳烃
高分子微球


玻璃微球


氟担体

适用于涂渍极性固定液分析极性物质 催化吸附性小,减小色谱峰拖尾
上海试剂厂
由苯乙烯和二乙烯苯共聚而成
上海试剂厂
经酸碱处理,比表面积 0.02 m2 / g ,可在 较高温度下使用,适宜分析高沸点物质。 由四氟乙烯聚合而成,比表面积 10.5 m2 /
g 适宜分析强极性物质和腐蚀性物质
适宜分离非极性或弱极性组分的试样。缺点是表面存有活 性吸附中心点。 白色担体:
煅烧前原料中加入了少量助溶剂(碳酸钠)。 颗 粒疏 松,孔径较大。比表面积较小,机械强度较差。但吸附性 显著减小,适宜分离极性组分的试样。
2020/1色
硅 硅藻土 藻 担体 土 类
担体名称
醇、醛酮、脂 肪酸、 酯 等极性化合物
表 优选固定液
麦 氏 常 数 : x’、y’、z’ 、u’、s’ 表 示 , 分 别 代 表了极性分子间存在着 的静电力(偶极定向力 );极性与非极性分子 间存在着的诱导力;非 极性分子间的色散力; 氢键等。也可以用五个 数的总和来表示固定相 的 极 性 大 小 , 如 : β, β’—氧二丙睛五个常数 的总和为4427,是强极 性固定相。
2020/11/11
3.固定液
固定液:高沸点难挥发的有机化合物,种类繁多。
(1) 对固定液的要求 应对被分离试样中的各组分具有不同的溶解能力,较好
的热稳定性,并且不与被分离组分发生不可逆的化学反应。
(2) 选择的基本原则 “相似相溶”,选择与试样性质相近的固定相。
(3) 固定液分类方法 如按化学结构、极性、应用等的分类方法。在各种色谱
stationary phases in gas-liquid chromatograph
2020/11/11
一、气固色谱固定相
stationary phases in Gas-solid chromatograph
1. 种类
(1)活性炭 有较大的比表面积,吸附性较强。
(2)活性氧化铝 有 较 大 的 极 性 。 适 用 于 常 温 下 O2、N2、CO、CH4、
2020/11/11
固定液 名称
1、 角鲨烷 (异三十烷)
2、阿皮松 L
商品牌号 SQ
使用温度 (最高)

150
溶剂 乙醚
APL
300

3、硅油
OV-101 350
丙酮
4、 苯基 10%
OV-3
350
甲基聚硅氧烷
5、 苯基(20%)
OV-7
350
甲基聚硅氧烷
6、 苯基(50%)
OV-17 300
甲基 聚硅氧烷
C2H6、C2H4等气体的相互分离。CO2能被活性氧化铝强烈吸 附而不能用这种固定相进行分析。
(3)硅胶 与活性氧化铝大致相同的分离性能,除能分析上述物质
外,还能分析CO2、N2O、NO、NO2等,且能够分离臭氧。
2020/11/11
气固色谱固定相
(4)分子筛 碱及碱土金属的硅铝酸盐(沸石),多孔性。如3A、4A
• 比表面积大,孔径分布均匀; • 化学惰性,表面无吸附性或吸附性很弱,与被分离组份 不起反应; • 具有较高的热稳定性和机械强度,不易破碎; • 颗粒大小均匀、适度。一般常用60~80目、80~100目。
2020/11/11
2.担体(硅藻土)
红色担体: 孔径较小,表孔密集,比表面积较大,机械强度好。
气液色谱固定相 [ 固定液 + 担体(支持体)] : 小颗粒表面涂渍上一薄层固定液。
固定液特点: • 固定液在常温下不一定为液体,但在使用温度下一定呈 液体状态。 • 固定液的种类繁多,选择余地大,应用范围不断扩大。 担体:化学惰性的多孔性固体颗粒,具有较大的比表面积。
2020/11/11
1. 作为担体使用的物质应满足的条件
第二章 气相色谱分析
gas chromatographic analysis, GC
第四节 气相色谱固定相
stationary phases in gas chromatograph
一、气固色谱固定相
stationary phases in Gas-solid chromatograph
二、气液色谱固定相
201 红色担体 301 釉化红色担体
6201 红色担体
特点及用途
生产厂家
适用于涂渍非极性固定液分析非极性物 质 由 201 釉化而成,性能介于红色与白色 硅藻土担体之间,适用于分析中等极性 物质
上海试剂厂 大连催化剂厂
白色 101 白色担体
硅藻土 101 酸洗
担体 101 硅烷化白色担体
102 白色担体
相关文档
最新文档