模拟建模论文(应用回归分析)spss
SPSS多元统计论文-回归分析
回归分析在商品的需求量分析中的运用摘要:本文结合多元统计分析理论中关于多元线性回归分析的应用,对商品需求量与商品价格和人均月收入的关系的线性方程进行探索研究。
回归分析的基本思想是描述若干个变量间的统计关系,以研究一个或多个自变量与因变量之间的内在联系。
而回归分析研究又包括线性回归和非线性回归。
本文就是运用线性回归来分析商品需求量和商品价格,人均月收入之间的关系的。
关键词:线性回归线性方程商品需求量一.引言随着我国经济的快速发展,人们的物质生活条件越来越好,各种各样的商品出现在人们的日常生活中。
随着人们收入水平的不断变化,随着商品价格的不断变化,人们对某种商品的需求量也不同。
如果生产的商品量大于商品的需求量,则会导致资源浪费,商品的价格下降;反之如果商品的生产量少于商品的需求量,则会导致商品供应不足,价格上涨。
以上两种情况都会对经济发展造成不利的影响。
因此,对商品需求量的预测是必要的。
那么,应该如何预测商品的需求量呢?为此,本文在参阅相关文献的基础上,根据东方财富网所提供的某地1996~2995年10年间对某品牌的手表需求量和商品价格,人均月收入的数据采用线性回归的方法进行回归分析,并对模型进行检验,预测。
二.经济理论分析、所涉及的经济变量(1)经济理论分析:1.需求:是指在各种不同价格水平下,消费者愿意且能够购买的商品或服务的数量;2.需求与价格之间存在这需求规律,即“在其它条件不变的条件下,一种商品的价格上升会引起该商品的需求量减少,价格下降会引起该商品的需求量增多”;由此我们引出需求的价格弹性的概念,它是指需求量对价格变动的反应程度,是需求量变化的百分比除以价格变化 的百分比,即公式:价格变动率需求量变得率需求的价格弹性系数=3.同理,需求与收入的关系可以用需求的收入弹性分析,它表示某一商品的需求量对收入变化的反应程度,即公式: 收入变动率需求量变得率需求的收入弹性系数=(2)变量的设定:在经济生活中,我们不难发现价格和收入水平的高低对商品需求量有着直接且密切的影响,故所建立的模型是一个回归模型!其中“商品价格”与“消费者平均收入”分别是自变量x1、x2,“商品需求量”是因变量y 。
spss论文范文
spss系统工程运用回归分析法论文的范文运用逐步回归法分析影响上海银行存款的因素 1.目的和意义在现代商品经济社会中,人们的工作与生活已经离不开货币。
在生活中人们所需的各种商品,都需要用货币去购买;人们所需的各种服务,也需要支付货币来获得;人们劳动工作的所获得的报酬——工资,也是用货币支付的;人们为了种种目的,要积累财富,保存财富,采用的主要方式是积攒货币、到银行储蓄。
除个人外,企业、行政事业部门的日常运行同样也离不开货币。
财政收支也都是用货币进行的。
可见,货币已经融入了并影响这经济运行和人们的生活。
因此对上海的银行存款的分析是非常重要且必要的。
本文将介绍运用SPSS11.5统计分析软件中的逐步回归法对影响上海银行存款的因素进行分析研究并建立模型,为相关专业人士的决策提供一定参考。
这10个因素分别是全市居民储蓄(亿元)、从业人数(万人)、全市居民消费水平(元/人)、全市银行贷款(亿元)、全社会固定资产投资总额(亿元)、职工工资总额(亿元)、职工劳保福利费用(万元)、社会消费品零售总额(亿元)、外贸出口商品总额(亿美元)、全市财政收入(亿元)。
上海全市银行存款及影响其的10个因素的1951年至2000年的数据见下表2.1。
毕业论文spss不会用,求大神指导你要先有论文的目的和分析思路,然后根据目的的论文和分析思路,确定需要收集的数据和类型,最后才考虑应该用spss什么方法来实现。
下面是我自己写的一个带数据分析的论文写作指导首先,我要说明这里的指导并非常规意义的指导,我这里说的指导是到底应该如何写论文(应该还是很抽象,不过看完就知道了)。
迄今为止,我大约也帮忙做了能有上千份的学生论文数据分析部分,包括一部分的整篇论文写作,其中涉及到有医学类、护理类、人文社科类、教育类、经济学类、心理学类等,单凡需要用到数据分析的论文。
因为我是做市场研究与数据分析的,擅长的主要工具是spss,不敢说百分百精通spss,但是应付个八九十应该是足够了,很自然的平时就利用下班和业余时间帮学生做一些论文数据分析以及论文写作指导。
如何使用统计软件SPSS进行回归分析
如何使用统计软件SPSS进行回归分析如何使用统计软件SPSS进行回归分析引言:回归分析是一种广泛应用于统计学和数据分析领域的方法,用于研究变量之间的关系和预测未来的趋势。
SPSS作为一款功能强大的统计软件,在进行回归分析方面提供了很多便捷的工具和功能。
本文将介绍如何使用SPSS进行回归分析,包括数据准备、模型建立和结果解释等方面的内容。
一、数据准备在进行回归分析前,首先需要准备好需要分析的数据。
将数据保存为SPSS支持的格式(.sav),然后打开SPSS软件。
1. 导入数据:在SPSS软件中选择“文件”-“导入”-“数据”命令,找到数据文件并选择打开。
此时数据文件将被导入到SPSS的数据编辑器中。
2. 数据清洗:在进行回归分析之前,需要对数据进行清洗,包括处理缺失值、异常值和离群值等。
可以使用SPSS中的“转换”-“计算变量”功能来对数据进行处理。
3. 变量选择:根据回归分析的目的,选择合适的自变量和因变量。
可以使用SPSS的“变量视图”或“数据视图”来查看和选择变量。
二、模型建立在进行回归分析时,需要建立合适的模型来描述变量之间的关系。
1. 确定回归模型类型:根据研究目的和数据类型,选择适合的回归模型,如线性回归、多项式回归、对数回归等。
2. 自变量的选择:根据自变量与因变量的相关性和理论基础,选择合适的自变量。
可以使用SPSS的“逐步回归”功能来进行自动选择变量。
3. 建立回归模型:在SPSS软件中选择“回归”-“线性”命令,然后将因变量和自变量添加到相应的框中。
点击“确定”即可建立回归模型。
三、结果解释在进行回归分析后,需要对结果进行解释和验证。
1. 检验模型拟合度:可以使用SPSS的“模型拟合度”命令来检验模型的拟合度,包括R方值、调整R方值和显著性水平等指标。
2. 检验回归系数:回归系数表示自变量对因变量的影响程度。
通过检验回归系数的显著性,可以判断自变量是否对因变量有统计上显著的影响。
《2024年数据统计分析软件SPSS的应用(五)——相关分析与回归分析》范文
《数据统计分析软件SPSS的应用(五)——相关分析与回归分析》篇一数据统计分析软件SPSS的应用(五)——相关分析与回归分析一、引言在当今的大数据时代,数据统计分析已成为科研、商业决策和日常生活中的重要工具。
SPSS(Statistical Package for the Social Sciences)作为一款广泛使用的数据统计分析软件,其强大的功能为各类数据分析提供了有力支持。
本文将重点介绍SPSS中相关分析与回归分析的应用,探讨其在实际研究中的应用价值。
二、相关分析的应用1. 相关分析的基本概念相关分析是研究两个或多个变量之间关系密切程度的一种统计方法。
SPSS提供了多种相关系数计算方法,如皮尔逊相关系数、斯皮尔曼等级相关系数等,以帮助研究者了解变量间的关系强度和方向。
2. 相关分析在实证研究中的应用以市场营销领域为例,研究者可以通过SPSS计算消费者购买行为与产品价格、广告投入等变量之间的相关系数,从而了解各因素对消费者购买行为的影响程度。
这种分析方法有助于企业制定有效的营销策略。
三、回归分析的应用1. 回归分析的基本概念回归分析是研究一个或多个自变量与因变量之间关系的一种预测性统计方法。
通过建立回归模型,可以分析自变量对因变量的影响程度,并进行预测。
SPSS提供了多种回归分析方法,如简单线性回归、多元线性回归等。
2. 回归分析在实证研究中的应用以医学领域为例,研究者可以通过SPSS建立药物剂量与患者恢复时间之间的回归模型,分析药物剂量对患者恢复时间的影响程度,为临床治疗提供参考依据。
此外,回归分析还可以用于研究其他领域的复杂关系,如教育、经济等。
四、案例分析以某电商平台销售数据为例,通过SPSS进行相关分析与回归分析。
首先,计算商品价格、商品评价数量、商品销量等变量之间的皮尔逊相关系数,了解各因素之间的关联程度。
然后,建立商品价格与商品销量的多元线性回归模型,分析价格对销量的影响程度。
实用回归分析论文
实用回归分析论文回归分析是一种广泛应用于研究和预测变量关系的统计方法。
它可以用来探索自变量与因变量之间的关系,并根据这些关系进行预测。
本篇论文旨在利用SPSS软件进行回归分析,并解释实验结果。
为了说明回归分析的实用性,本论文以一个假设为例进行讨论。
假设我们想研究其中一种健康饮食对人体血糖水平的影响。
我们能够搜集到500名参与者的相关数据,包括他们的饮食习惯和血糖水平。
在SPSS软件中,我们可以采用多元线性回归模型来探索自变量(饮食习惯)与因变量(血糖水平)之间的关系。
首先,我们需要将数据输入SPSS软件,并进行数据清洗和处理,确保数据的准确性和可靠性。
接下来,我们可以使用回归模型来进行实验结果的分析。
在SPSS软件中,我们可以选择"回归"选项,并指定因变量和自变量。
在这个示例中,我们将血糖水平作为因变量,饮食习惯作为自变量。
SPSS软件会给出回归模型的结果。
其中最重要的指标是相关系数和显著性水平。
相关系数用来衡量自变量与因变量之间的线性关系的强度,取值范围在-1到+1之间。
显著性水平可以告诉我们这个自变量对因变量的解释力是否显著。
通常,显著性水平小于0.05表示相关关系是显著的。
在这个案例中,回归分析的结果显示饮食习惯与血糖水平之间存在显著相关性(相关系数为0.4,显著性水平为0.01)。
这意味着饮食习惯对于解释血糖水平的变异有统计学意义。
我们可以通过这一结果来推测具体的饮食习惯与血糖水平之间的关系,进一步指导实际生活中的健康饮食选择。
此外,在SPSS软件中,我们还可以进行其他的回归分析,如逐步回归和多重回归。
这些方法可以帮助我们确定最佳的自变量组合,以及对因变量的解释力。
逐步回归可用于选择最有意义的自变量,而多重回归可以进一步探索多个自变量对因变量的解释力。
总结起来,回归分析是一种实用的统计方法,可以用来研究和预测变量之间的关系。
使用SPSS软件进行回归分析,可以对实验结果进行详细的解释和推断,从而指导实际生活中的决策和行动。
基于SPSS的多元回归分析模型选取的应用毕业论文
毕业论文题目基于SPSS的多元回归分析模型选取的应用基于SPSS的多元回归分析模型选取的应用摘要本文不仅对于复杂的统计计算通过常用的计算机应用软件SPSS来实现,同时通过对两组数据的实证分析,来研究统计学中多元回归分析中的变量选取,让大家对统计学中的多元回归分析中模型的选取以及变量的选取和操作方法有更深层次的了解. 一组数据是对于淘宝交易额的未来发展趋势的研究,一组数据时对于我国财政收入的研究. 本文通过两个实证即淘宝交易额研究和财政收入研究从不同程度上对非线性回归模型和变量选取的研究运用通俗的语言和浅显的描述将SPSS在多元回归分析中的统计分析方法呈现在大家面前,让大家对多元回归分析以及SPSS软件都可以有更深一步的了解. 通过SPSS软件对数据进行分析,对数据进行处理的方法进行总结,找出SPSS对于数据处理和分析的优缺点,最后得在对变量的选取和软件的操作提出建议.关键词:统计学,SPSS,变量选取,多元回归分析AbstractThis article not only for complex statistical calculations done by the commonly used computer application software of SPSS, through the empirical analysis of the two groups of data at the same time, to study the statistics of the variables in the multivariate regression analysis, let everybody in the multiple regression analysis of statistical model selection as well as the selection of variables and operation methods have a deeper understanding. Is a set of data for the future development trend of research taobao transactions, a set of data for the research of our country's fiscal revenue. In this paper, through two empirical taobao transactions and fiscal revenue research from different degree of the study of nonlinear regression model and variable selection using a common language and plain the SPSS statistical analysis method in multiple regression analysis of present in front of everyone, let everyone to multiple regression analysis and SPSS software can have a deeper understanding. Through SPSS software to analyze data, and summarizes method of data processing, find out the advantages and disadvantages of SPSS for data processing and analysis, finally had to put forward the proposal to the operation of the selection of variables and software.Keywords: Statistical, SPSS, The selection of variables, multiple regressionanalysis目录第一章引言 (3)第二章多元回归模型的选取 (4)2.1 多元回归分析概述 (4)2.2 相关系数概述 (5)2.3 非线性回归模型概述 (5)2.4 多元线性回归模型自变量的选取 (6)第三章非线性回归模型案例:淘宝交易额模型的研究 (7)3.1 回归模型变量的确定 (7)3.1.1 数据来源 (7)3.1.2 复相关系数 (8)3.1.3 散点图看线性关系 (9)3.1.4 回归分析看拟合度 (11)3.1.5 确定回归模型变量 (11)3.2 调整后的变量的相关分析 (12)3.2.1 散点图 (12)3.2.2 计算相关系数 (14)3.3 多元线性回归分析 (16)3.4 小结 (18)第四章线性回归分析变量选取案例:财政收入模型的研究 (18)4.1 数据来源及变量选取 (18)4.2 相关分析 (20)4.2.1 散点图 (20)4.2.2 计算相关系数 (21)4.3 线性回归分析 (24)4.4 逐步回归 (26)4.5 小结 (27)第五章总结 (28)参考文献 (30)第一章引言随着社会的发展,统计的运用围越来越广泛,统计学作为高等院校经济类专业和工商管理类专业的核心课程,不管是在经济管理领域,或是在军事、医学等领域的研究中对于数量分析与统计分析都需要更高的要求,需要用到的数学知识较多,应用方面的灵活性也较强,计算量大且复杂.然而科学研究的深入,研究的对象也日益变得复杂,复杂系统的研究问题更是成为当今研究的热点. 为了更好的描述一个复杂的现象,就需要大量的数据和信息,如何高效、准确地利用已知的信息便成为当今社会研究的一项重要课题.在科学技术飞速发展的今天,统计学通过不断吸收和融合相关学科的新理论,开发应用新技术和新方法,拓展新的领域的同时不断深化和丰富了统计学传统领域的理论与方法. 在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的更多、更高的要求. 随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘. 从20世纪60年代开始,关于回归自变量的选择成为统计学中研究的热点问题,统计学家提出了许多回归选元的准则,并提出了许多行之有效的选元方法. 在应用回归分析去处理实际问题时,回归自变量选择是首先要解决的重要问题. 通常在做回归分析时,人们根据所研究问题的目的,结合经济理论罗列出对因变量可能有影响的的一些因素作为自变量引进回归模型,把一些对因变量影响很小的,有些甚至是没有影响的自变量,不但使得计算量变大,估计和预测的精度也下降了. 此外,如果遗漏了某些重要变量,回归方程的效果肯定不好. SPSS软件作为当今国际上运用广泛的统计分析软件,其功能齐全带有各种特点,在各个领域都得到了迅速普及,并成为各个行业提高管理水平、形成科学决策的重要手段. 然而,我国对于该软件的运用和理解始终处于早期应用阶段,无论是在功能的研究开发还是实际生活当中的运用都与西方发达国家相差甚远. 尤其是在管理决策方面,都因为没有进行深度分析而造成了浪费,要么就是利用SPSS软件进行简单分析而未进行深度开发,导致所得的信息有限、各信息间的关系不明确,最终导致管理者的判断出现偏差.基于以上背景,本文通过总结和吸取其他国外学者对统计学研究的,并结合我国的实际情况,本文采用了案例一对于网络购物这块的的研究,通过对2005年到2012年的居民消费水平,以及我国网络普及度,我国人人均纯收入以及我国的居民消费水平对淘宝网的未来发展趋势进行非线性回归模型的研究以及案例二对于我国财政收入的进行变量选取研究,通过对1992年到2012年的人均国生产总值,城镇居民家庭人均可支配收入,全社会固定投资,进出口总额,居民消费价格水平对我国财政收入的影响进行定量数据的研究. 通过对数据的选取,回归模型的确定以及软件的操作方法来告知读者如何在SPSS的操作中变量选取的原则、要求和方法.第二章多元回归模型的选取2.1 多元回归分析概述回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法(即寻找具有相关关系的变量减的数学表达式并进行统计推断的一种统计方法). 按照其所涉及的自变量,可分为一元回归分析和多元回归分析;线性回归分析和非线性回归分析是按照自变量和因变量之间的关系划分的.而本文运用了多元线性回归分析中的方法,多元线性回归分析就是指回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系. 多元回归分析的主要容有以下几点:(1)从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数. 估计参数的常用方法是最小二乘法;(2)对这些关系式的可信程度进行检验;(3)在许多自变量共同影响着一个因变量的关系中,判断哪些自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归等方法;(4)利用所求的关系式对某一生产过程进行预测或控制.回归分析研究的主要问题是确定Y与X间的定量关系表达式,这种表达式称为回归方程;对求得的回归方程的可信度进行检验;判断自变量X对因变量Y有无影响;利用所求得的回归方程进行预测和控制. 回归分析主要应用于研究两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,通过分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测.2.2 相关系数概述相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量. 相关关系是现象间客观存在的,但数值又是不严格及不完全确定的相互依存关系.1)复相关系数在一元回归分析中我们用相关系数r 来说明两变量之间线性相关的程度,在多元回归分析中,仍用它来表示y 与其他自变量之间的线性密切程度,此为复相关系数. 复相关是指因变量与多个自变量之间的相关关系. 复相关系数只是反映变量间表面的非本质的联系,因为变量很有可能受到其他变量的影响.2)偏相关系数在多变量的情况下,变量之间的相关系数是相当复杂的. 任意两个变量之间都有可能存在着相关关系,因此,只知道被解释变量与解释变量的总的相关程度是不够的. 如果需要了解某两个变量间的相关程度,就应在消除其他变量影响的情况下来计算他们的相关系数,这就是偏相关系数. 偏相关系数与复相关系数不同,复相关系数的取值在0-1之间,而偏相关系数则是有正有负,所以复相关系数与偏相关系数之间也有可能相差很大. 变量之间本存在错综复杂的关系,甚至可能使得符号也相反,但是偏相关系数才是变现变量之间的本质联系的.偏相关的主要用途:偏相关主要是用来研究自变量与因变量之间的关系的,其通过得到的自变量与因变量数据来进行计算,通过偏相关系数可以看出哪些自变量对因变量的影响更大一些,同时对于偏相关系数较小的变量,可以剔除.2.3 非线性回归模型概述非线性回归模型是指在众多的现象中,分析变量之间的关系时不符合解释变量线性和参数线性的一种模型. 在实际的经济活动中,经济变量的关系是相当复杂的,直接表示为线性关系的情况也并不多见. 但大多数的非线性关系是可以通过一些简单的数学处理,使之转化为线性关系,从而通过线性回归来进行计算. 而非线性回归模型又分为可化为线性模型的非线性回归模型和不可化为线性模型的非线性回归模型.本文研究的是可转化为线性模型的非线性回归模型,而可转化为线性模型的非线性回归模型又有好几种方法可以对变量进行转换.其有以下几种模型:1)多项式函数模型对于形如:k k x x x y ββββ+⋅⋅⋅+++=22110 ,的模型为多项式模型.令21122,,,k k k z x z x z x === ,原模型可化为线性形式k k z z z y ββββ+⋅⋅⋅+++=22110 ,那么就可以用多元线性回归分析的方法进行处理了.2)指数函数模型对于形如:k x k x x e e e y ββββ+⋅⋅⋅+++=21210 ,的模型为指数函数模型. 令k x k x x e z e z e z =⋅⋅⋅==,,,2121 ,原模型可化为线性形式k k z z z y ββββ+⋅⋅⋅+++=22110 ,那么就可以用多元线性回归分析的方法进行处理了.3)双曲线模型;4)半对数模型和双对数模型等.本文将对指数函数型非线性模型进行案例说明,所以对于其他类型的非线性回归模型的道理是一致的,在这里就不进行一一解释.2.4 多元线性回归模型自变量的选择在多元线性回归模型中自变量的选择实质上就是模型的选择. 现设一切可供选择的变量是t 个 ,它们组成的回归模型称为全模型(记:1+=t m ),在获得n 组观测数据后,我们有模型:⎩⎨⎧+=),0(~2n n I N X Y σεεβ , 其中:Y 是1⨯n 的观测值,β是1⨯m 未知参数向量,X 是m n ⨯结构矩阵,并假定X 的秩为m .现从t x x x ,,,21 这t 个变量中选t '变量,不妨设t x x x ',,,21 ,那么对全模型中的参数β和结构矩阵X 可作如下的分块(记:1+'=t p ):()'=q p βββ, , ()q p X X X = .我们称下面的回归模型为选模型:⎩⎨⎧+=),0(~2n p p I N X Y σεεβ ,其中:Y 是1⨯n 的观测值,p β是1⨯p 未知参数向量, p X 是p n ⨯结构矩阵,并假定p X 的秩为p .自变量的选择可以看成是这样的两个问题,一是究竟是用全模型还是用选模型,二是若用选模型,则究竟应包含多少变量最适合. 然而自变量的选择与相关系数,回归分析都有密切的关系,自变量的选择需要通过一系列的验证,剔除之后才能得到最好的变量从而得到最好的回归模型. 下面我们用两个案例来对多元回归模型的选取来进行解释和探讨.第三章 非线性回归模型案例:淘宝交易额研究3.1 回归模型变量的确定3.1.1数据来源为研究淘宝网未来发展趋势,从新浪官方微博淘宝数据魔方中获得淘宝2009年聚划算中购物群众的年龄比例作为定性数据,进行研究年龄对淘宝购物的影响. 并在新浪财经网上获得淘宝网自2003年到2012年的淘宝交易额以及淘宝注册人数的数据. 在中商情报局里获得我国近网络普及度等数据并从国家统计年鉴中选取统计指标居民消费水平.淘宝注册人数(1x )在一定程度上反应了网络购物的群众的人数,反应了当今社会网络购物的普遍性. 同时淘宝的注册人数也展现了人们对网络购物的认可度,换言之也就是说接受了网络购物并会在网上进行消费,是对网络购物很大程度上的支持. 我国网络普及度(2x )是指我国近几年网络在我国普及的围,这一块更好的反映了网络对居民网络消费的影响,因为网络是网络消费的必要条件. 我国网络普及度反映的是在我国日趋发展的经济下,人们对网络的接受程以及信任程度也是直接影响到淘宝的网络购物.居民消费水平(3x )主要通过消费的物质产品和劳务的数量和质量来反映. 居民消费水平的提高也能很好的展现在网络消费上作出的贡献.第二产业增加值(4x )是指采矿业,制造业,电力、煤气及水的生产和供应业,建筑业. 而制造业的发展也相继影响着产品的销售,所以在这里采用第二产业对淘宝交易额的影响. 通过对以上这三个定量数据的研究来其与淘宝交易额的关系,从而研究淘宝未来的发展趋势以及优劣态. 原始数据如下:表3.1为消除数据之间因单位不同产生的量纲的影响,对数据进行标准化得如下数据得到表3.23.1.2 复相关系数对表3.2 的数据进行复相关系数的研究,看变量之间的复相关关系,得到如下表3.3的复相关系数表:表3.3表3.3中有带“**”号的结果表明有关的两变量在0.01的显著性水平下显著相关,由上图可知,y 与1x 的相关系数为0.987>0,表示变量之间存在线性关系,其相关系数检验对应的概率P 值为0.000,低于显著性水平0.05,说明淘宝交易额与淘宝注册人数之间相关性显著. y 与2x e 的相关系数为0.923>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与我国网络普及度之间相关性显著.y 与3x 的相关系数为0.963>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与居民消费水平之间相关性显著. y 与4x e 的相关系数为0.919>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明我国第二产业增加值与居民消费水平之间相关性显著.综上所述通过SPSS 得出的相关系数的矩阵得到为:=1yx r 0.987 ,=2yx r 0.923 ,=3yx r 0.963 ,=4yx r 0.919 .虽然变量都通过了检验,但是可以看到2yx r 和4yx r 较另外两个复相关系数较低,因此对变量进行散点图的分析来了解自变量与因变量的相关关系.3.1.3 散点图看线性关系对y 与各个变量作出散点图(1)淘宝注册人数1x 与淘宝网交易总额y 的相关性散点图:图3.1(2)网络普及度2x 与淘宝网交易总额y 的散点图:图3.2(3)我国居民消费水平3x 与淘宝交易额y 的散点图:图3.3(4)第二产业增加值4x 对淘宝交易额y 的散点图:图3.4图3.2和3.4分别是自变量2x 和4x 与因变量的相关系数图,可以看出自变量2x 和因变量y 之间呈明显的指数线性关系,而变量4x 也是同样与因变量y 之间呈明显的指数线性关系.他们之间是非线性回归模型的关系. 所拟合的效果不理想所以我们还需要对数据进行进一步的处理和分析,得到确切的答案.3.1.4 回归分析看拟合度对数据进行回归分析:表3.4表3.4是自变量与因变量得到的回归分析,可知,因变量y 与常数项和自变量1x ,2x ,3x ,4x 的回归的标准化回归系数分别为0.01,0.660,-0.229,1.439,-0.899.而通过P 检验可以看到由上表 2.4可以看出常数项以及各自变量的P 值分别为:0.906,0.000,0.018,0.000及0.000. 可以看出原始变量所得到的P 值并没有全部通过检验. 说明常数项对因变量影响不显著. 对数据进行t 值检验,在给定的05.0=α,自由度9211=-=n 的临界值时,查表得=9025.0t 2.262,其常数项的t 值为0.123小于2.262,说明常数项不显著. 综上所述,可以初步得到一个模型为:4321899.0439.1229.0660.001.0x x x x y -+-+= .3.1.5确定回归模型变量综上通过散点图、复相关系数以及回归分析可以知道由于自变量2x 和4x 与因变量y 之间是非线性关系,是呈指数线性关系为研究之间线性关系,所以得到的模型的拟合程度并不是很理想.因此对自变量2x 和4x 进行取e 的对数即2x e 和4x e 来对变量进行研究看拟合效果得到下表.表3.5下面对表3.5进行变量分析与研究,通过对非线性模型中的变量的研究来了解多元回归分析中变量的选取与使用,同时对自变量进一步进行分析.3.2 调整后变量的相关分析3.2.1 散点图对y与各个变量作出散点图x与淘宝网交易总额y的相关性散点图:(1)淘宝注册人数1图3.5(2)e的网络普及度次方2x e与淘宝网交易总额y的相关性检验:图3.6x与淘宝交易额y的相关性检验:(3)我国居民消费水平3图3.7(4)e的第二产业增加值的次方4x e对淘宝交易额y的影响:图3.8由以上四个散点图可知,其所有的点均落在了左上至右下的一条直线上,表明了数据之间存在显著相关关系. 所以我们还需要对数据进行进一步的分析,得到确切的答案.3.2.2 计算相关系数(1)复相关系数r 是用来衡量回归直线对于观察值配合的密切程度,即用来衡量因变量y 与自变量1x ,2x e ,3x ,4x e 之间相关的密切程度. 以下是用SPSS 对数据进行相关性分析,得到如下的相关系数图表3.6图中有带“**”号的结果表明有关的两变量在0.01的显著性水平下显著相关,由上图可知,y 与1x 的相关系数为0.987>0,表示变量之间存在线性关系,其相关系数检验对应的概率P 值为0.000,低于显著性水平0.05,说明淘宝交易额与淘宝注册人数之间相关性显著. y 与2x e 的相关系数为0.979>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与我国网络普及度之间相关性显著.y 与3x 的相关系数为0.963>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与居民消费水平之间相关性显著. y 与4x e 的相关系数为0.997>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明我国第二产业增加值与居民消费水平之间相关性显著.综上所述通过SPSS 得出的相关系数的矩阵得到为:=1yx r 0.987 ,=2yx r 0.979 ,=3yx r 0.963 ,=4yx r 0.997 .由以上数据可以看出,各列之间存在正相关关系. 即淘宝网注册人数1x 、e 的我国网络普及度2x e 、我国居民消费水平3x 、e 的我国第二产业增加值次方4x e 与淘宝交易总额y 存在显著的相关关系.(2)计算偏相关系数:下面是用SPSS 作出的偏相关系数:① 消除我国网络普及度、第二产业增加值和居民消费水平的影响后,计算淘宝注册人数与淘宝交易额的偏相关系数为:表3.7由上可知,淘宝注册人数与淘宝交易额的偏相关系数为0.795.②消除淘宝交易额、第二产业增加值和居民消费水平的影响后,我国网络普及度和淘宝交易额的偏相关系数为:表3.8由上可知我国网络普及度与淘宝交易额的偏相关系数为0.733.③消除淘宝注册人数、第二产业增加值和我国网络普及度的影响后,我国居民消费水平和淘宝交易额的偏相关系数:表3.9由上可知,我国居民消费水平和淘宝交易额的偏相关系数为-0.932.④消除淘宝注册人数、我国网络普及度和居民消费水平的影响后,计算第二产业增加值与淘宝交易额的偏相关系数:表3.10由上可知,e的第二产业增加值次方与淘宝交易额的偏相关系数为0.946.⑤下表为各个变量之间的偏相关系数表,为方便,这里直接变各变量之间的偏相关系数:r y 1x 2x e3x 4x e y 0.795 0.773 -0.9320.946 1x 0.795 -0.611 0.758 -0.592x e0.773 -0.611 0.702 -0.521 3x-0.932 0.758 0.702 0.818 4x e 0.946 -0.59 -0.521 0.818表3.11这里我们对变量2x 和4x 采用的是其指数幂,是因为在对变量的相关性进行检验时,通过散点图可以看出2x 和4x 与因变量之间呈的是指数线性关系,是非线性关系所以对数据进行了处理,因为原始变量之间存在的非线性关系得出的结果不具有代表性. 可以通过散点图看到从以上的偏相关系数来看,如果2x e ,3x 和4x e 保持不变,y 与1x 之间存在相关关系,当1x ,3x 和4x e 的保持不变时,2x e 和y 之间存在相关关系,其他关系同上,在这里就不进行一一解释.我们也可以通过以上的偏相关系数表可以看出各个自变量之间也存在一定的偏相关关系,但是相对于自变量与因变量之间的偏相关关系较小,说明这些变量之间的选择比较显著.但是其关系强度较前者略低,所以经过以上系数得到的偏相关系数可以看出,其相关程度较原关系的强度低,应采用原数据的自变量和因变量. 即所采用的自变量和因变量保持不变.通过复相关系数的计算和偏相关系数的计算结果可以看出,复相关系数的取值在0-1之间,偏相关系数的取值在-1到1之间,由上数据便可看出偏相关系数与复相关系数之间的差距相差甚大,有的甚至改变了符号. 从上可以看出通过复相关系数不能很好的确定变量之间的相关关系,不能明确的解释变量,而偏回归系数可以看出变量是否符合要求. 从下面的回归分析中继续对变量进行研究.3.3 多元线性回归分析对数据进行回归分析,得到如下结果:表3.12复相关系数为1,判定系数为0.999,调整系数为0.999,估计值的标准误差为0.03296.表3.13由上面结果的看其显著性检验结果为,回归平方和为9.993,残差平方和0.007,总平方和10.000, F 统计量的值为2.299E3,对应的概率P 值为0.000,小于显著性水平0.05,即:淘宝交易总额y 与淘宝网注册人数1x 、e 的我国网络普及度次方2x e 、我国居民消费水平3x 和e 的我国第二产业增加值次方4x e 之间存在线性关系,所以可认为所建立的回归方程有效.表3.14由上表可知,因变量y 与常数项和自变量1x ,2x e ,3x ,4x e 的回归的标准化回归系数分别为-1.119,0.244,0.107,-0.321,0.615. 3个回归系数B 的显著性水平均小于0.05,这里可以认为自变量1x ,2x e ,3x ,4x e 对因变量y 有显著性影响. 于是得到回归方程为:42615.0321.0107.0244.0119.131x x e x e x y +-++-= , 由上图可知对数据进行t 值检验,在给定的05.0=α,自由度9211=-=n 的临界值时,查表得=9025.0t 2.262,因为1x ,2x e ,3x ,4x e 的参数对应的t 统计量的绝对值均大于2.262,这说明%5的显著性水平下,斜率系数均显著不为0,表明淘宝网注册人数1x ,e 的我国网络普及度次方2x e ,我国居民消费水平3x ,e 的我国第二产业增加值次方4x e 等变量联合起来对该商品的消费支出有显著的影响.P 检验:由上表可以看出各自变量以及常数项的P 值分别为:0.00,0.018,0.039,0.001及0.000,可以看出其P 值均小于0.05,均通过检验综上所述,四个自变量对因变量都有显著性影响,并都通过了检验可以得到最优方程式为:。
实用回归分析论文(SPSS实验结果)
实用回归分析论文(SPSS实验结果)由于没有具体的数据或研究题目,以下仅为回归分析论文的一般模板。
1. 研究背景和目的:介绍本次研究的背景和目的。
描述相关文献对该领域的研究情况,指出知识空白和研究的必要性。
例如:本研究旨在探讨X变量与Y变量之间的关系,并研究其他可能因素对此关系的影响。
回归分析被广泛应用于社会科学、经济学和医学等领域,但在某些情况下,该方法可能被错误地应用或解读。
因此,本研究旨在提供更多有关回归分析的实用性信息,以便更好地应用于实际研究中。
2. 变量选择和数据收集:介绍所选的独立变量、因变量以及可能的干扰因素。
描述数据收集的方法和样本的特点,阐述数据的统计学特征。
例如:本研究选择了X1、X2和X3作为独立变量,Y作为因变量。
在探究X和Y之间的关系时,本研究考虑了干扰因素A和B。
数据收集采用了问卷调查的方法,样本为100位大学生。
调查数据的统计学特征如下:均值、标准差、最大值和最小值。
3. 回归模型:描述所使用的回归模型及其假设。
根据假设,说明如何进行统计分析。
例如:本研究选择了多元线性回归模型。
假设独立变量与因变量之间存在线性关系,且同时考虑了干扰因素的影响。
在此假设下,通过进行多元线性回归分析,得出具体的回归方程。
使用SPSS软件进行统计分析,通过显著性检验和模型拟合程度来验证上述假设。
4. 实验结果:解释回归分析结果,如拟合程度、系数的显著性、变量的解释等。
根据结果,提供对研究目的的回答,对假说进行证明或推翻。
例如:本研究得到的回归方程为Y = a + b1*X1 + b2*X2 + b3*X3 +c1*A + c2*B。
通过F检验,得出回归模型的显著性水平P<0.01,表明回归模型解释了数据的一定程度。
通过系数显著性检验,得出X1、X3和B对Y变量具有显著影响,而其余变量影响不显著。
对于X1、X3和B,本研究解释了其对Y变量的具体贡献,分析了研究问题的深层含义。
5. 结论和建议:总结研究结论,说明其对实践和理论的贡献,并提出未来研究的方向。
回归分析的模型SPSS概要
回归分析的模型SPSS概要回归分析是一种统计学方法,用于研究自变量(或预测变量)对因变量(或响应变量)的影响关系。
它可以帮助我们了解变量之间的相关性,并通过建立数学模型对未来的变量进行预测。
SPSS是一款常用于数据分析和统计建模的软件,在回归分析中有广泛的应用。
简单线性回归是最基本也是最常用的回归分析方法之一、它适用于只有一个自变量和一个因变量的情况下,通过建立一条直线来描述变量之间的关系。
SPSS可以计算出斜率和截距,从而得出预测方程。
通过预测方程,我们可以根据已知的自变量的值来预测因变量的值。
在多元线性回归中,可以考虑多个自变量对因变量的影响。
SPSS可以用最小二乘法估计参数值,并提供一些统计指标来评估模型的拟合程度。
这些指标包括R方、调整后的R方、标准误差、F统计量等。
R方是衡量模型拟合度的指标,其值越接近1表示模型的拟合度越好。
逻辑回归是用于处理二分类问题的回归方法。
它通过建立一种数学模型来预测一个事件的概率。
SPSS可以通过最大似然法估计参数值,并提供一些统计指标来评估模型的拟合程度。
这些指标包括似然比、卡方值、准确率等。
除了上述的回归方法,SPSS还提供了其他一些回归分析方法,如多元逻辑回归、多项式回归、非线性回归等。
这些方法可以根据具体的研究问题和数据类型进行选择。
在进行回归分析之前,需要进行数据的准备工作。
首先,要收集相关的自变量和因变量数据,并进行数据清理、缺失值处理等。
接下来,根据研究目的和数据类型选择合适的回归分析方法,并进行模型的建立和参数的估计。
最后,对模型进行检验和评估,并分析结果的可靠性和实际意义。
总之,回归分析是一种重要的统计方法,在研究和预测变量之间的关系、制定决策等方面具有广泛的应用。
SPSS作为一款功能强大的统计分析软件,可以帮助用户进行回归分析,并提供一系列的统计指标和图表来解释结果。
通过合理使用回归分析和SPSS,可以更好地理解变量之间的关系,并做出准确的预测和决策。
基于SPSS的多元回归分析模型选取的应用毕业论文
毕业论文题目基于SPSS的多元回归分析模型选取的应用基于SPSS的多元回归分析模型选取的应用摘要本文不仅对于复杂的统计计算通过常用的计算机应用软件SPSS来实现,同时通过对两组数据的实证分析,来研究统计学中多元回归分析中的变量选取,让大家对统计学中的多元回归分析中模型的选取以及变量的选取和操作方法有更深层次的了解. 一组数据是对于淘宝交易额的未来发展趋势的研究,一组数据时对于我国财政收入的研究. 本文通过两个实证即淘宝交易额研究和财政收入研究从不同程度上对非线性回归模型和变量选取的研究运用通俗的语言和浅显的描述将SPSS在多元回归分析中的统计分析方法呈现在大家面前,让大家对多元回归分析以及SPSS软件都可以有更深一步的了解. 通过SPSS软件对数据进行分析,对数据进行处理的方法进行总结,找出SPSS对于数据处理和分析的优缺点,最后得在对变量的选取和软件的操作提出建议.关键词:统计学,SPSS,变量选取,多元回归分析AbstractThis article not only for complex statistical calculations done by the commonly used computer application software of SPSS, through the empirical analysis of the two groups of data at the same time, to study the statistics of the variables in the multivariate regression analysis, let everybody in the multiple regression analysis of statistical model selection as well as the selection of variables and operation methods have a deeper understanding. Is a set of data for the future development trend of research taobao transactions, a set of data for the research of our country's fiscal revenue. In this paper, through two empirical taobao transactions and fiscal revenue research from different degree of the study of nonlinear regression model and variable selection using a common language and plain the SPSS statistical analysis method in multiple regression analysis of present in front of everyone, let everyone to multiple regression analysis and SPSS software can have a deeper understanding. Through SPSS software to analyze data, and summarizes method of data processing, find out the advantages and disadvantages of SPSS for data processing and analysis, finally had to put forward the proposal to the operation of the selection of variables and software.Keywords: Statistical, SPSS, The selection of variables, multiple regressionanalysis目录第一章引言 (3)第二章多元回归模型的选取 (4)2.1 多元回归分析概述 (4)2.2 相关系数概述 (5)2.3 非线性回归模型概述 (5)2.4 多元线性回归模型自变量的选取 (6)第三章非线性回归模型案例:淘宝交易额模型的研究 (7)3.1 回归模型变量的确定 (7)3.1.1 数据来源 (7)3.1.2 复相关系数 (8)3.1.3 散点图看线性关系 (9)3.1.4 回归分析看拟合度 (11)3.1.5 确定回归模型变量 (11)3.2 调整后的变量的相关分析 (12)3.2.1 散点图 (12)3.2.2 计算相关系数 (14)3.3 多元线性回归分析 (16)3.4 小结 (18)第四章线性回归分析变量选取案例:财政收入模型的研究 (18)4.1 数据来源及变量选取 (18)4.2 相关分析 (20)4.2.1 散点图 (20)4.2.2 计算相关系数 (21)4.3 线性回归分析 (24)4.4 逐步回归 (26)4.5 小结 (27)第五章总结 (28)参考文献 (30)第一章引言随着社会的发展,统计的运用围越来越广泛,统计学作为高等院校经济类专业和工商管理类专业的核心课程,不管是在经济管理领域,或是在军事、医学等领域的研究中对于数量分析与统计分析都需要更高的要求,需要用到的数学知识较多,应用方面的灵活性也较强,计算量大且复杂.然而科学研究的深入,研究的对象也日益变得复杂,复杂系统的研究问题更是成为当今研究的热点. 为了更好的描述一个复杂的现象,就需要大量的数据和信息,如何高效、准确地利用已知的信息便成为当今社会研究的一项重要课题.在科学技术飞速发展的今天,统计学通过不断吸收和融合相关学科的新理论,开发应用新技术和新方法,拓展新的领域的同时不断深化和丰富了统计学传统领域的理论与方法. 在我国,社会主义市场经济体制的逐步建立,实践发展的需要对统计学提出了新的更多、更高的要求. 随着我国社会主义市场经济的成长和不断完善,统计学的潜在功能将得到更充分更完满的开掘. 从20世纪60年代开始,关于回归自变量的选择成为统计学中研究的热点问题,统计学家提出了许多回归选元的准则,并提出了许多行之有效的选元方法. 在应用回归分析去处理实际问题时,回归自变量选择是首先要解决的重要问题. 通常在做回归分析时,人们根据所研究问题的目的,结合经济理论罗列出对因变量可能有影响的的一些因素作为自变量引进回归模型,把一些对因变量影响很小的,有些甚至是没有影响的自变量,不但使得计算量变大,估计和预测的精度也下降了. 此外,如果遗漏了某些重要变量,回归方程的效果肯定不好. SPSS软件作为当今国际上运用广泛的统计分析软件,其功能齐全带有各种特点,在各个领域都得到了迅速普及,并成为各个行业提高管理水平、形成科学决策的重要手段. 然而,我国对于该软件的运用和理解始终处于早期应用阶段,无论是在功能的研究开发还是实际生活当中的运用都与西方发达国家相差甚远. 尤其是在管理决策方面,都因为没有进行深度分析而造成了浪费,要么就是利用SPSS软件进行简单分析而未进行深度开发,导致所得的信息有限、各信息间的关系不明确,最终导致管理者的判断出现偏差.基于以上背景,本文通过总结和吸取其他国外学者对统计学研究的,并结合我国的实际情况,本文采用了案例一对于网络购物这块的的研究,通过对2005年到2012年的居民消费水平,以及我国网络普及度,我国人人均纯收入以及我国的居民消费水平对淘宝网的未来发展趋势进行非线性回归模型的研究以及案例二对于我国财政收入的进行变量选取研究,通过对1992年到2012年的人均国生产总值,城镇居民家庭人均可支配收入,全社会固定投资,进出口总额,居民消费价格水平对我国财政收入的影响进行定量数据的研究. 通过对数据的选取,回归模型的确定以及软件的操作方法来告知读者如何在SPSS的操作中变量选取的原则、要求和方法.第二章多元回归模型的选取2.1 多元回归分析概述回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法(即寻找具有相关关系的变量减的数学表达式并进行统计推断的一种统计方法). 按照其所涉及的自变量,可分为一元回归分析和多元回归分析;线性回归分析和非线性回归分析是按照自变量和因变量之间的关系划分的.而本文运用了多元线性回归分析中的方法,多元线性回归分析就是指回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系. 多元回归分析的主要容有以下几点:(1)从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数. 估计参数的常用方法是最小二乘法;(2)对这些关系式的可信程度进行检验;(3)在许多自变量共同影响着一个因变量的关系中,判断哪些自变量的影响是显著的,哪些自变量的影响是不显著的,将影响显著的自变量选入模型中,而剔除影响不显著的变量,通常用逐步回归等方法;(4)利用所求的关系式对某一生产过程进行预测或控制.回归分析研究的主要问题是确定Y与X间的定量关系表达式,这种表达式称为回归方程;对求得的回归方程的可信度进行检验;判断自变量X对因变量Y有无影响;利用所求得的回归方程进行预测和控制. 回归分析主要应用于研究两个变量之间到底是哪个变量受哪个变量的影响,影响程度如何,通过分析现象之间相关的具体形式,确定其因果关系,并用数学模型来表现其具体关系,并根据实测数据来求解模型的各个参数,然后评价回归模型是否能够很好的拟合实测数据;如果能够很好的拟合,则可以根据自变量作进一步预测.2.2 相关系数概述相关关系是一种非确定性的关系,相关系数是研究变量之间线性相关程度的量. 相关关系是现象间客观存在的,但数值又是不严格及不完全确定的相互依存关系.1)复相关系数在一元回归分析中我们用相关系数r 来说明两变量之间线性相关的程度,在多元回归分析中,仍用它来表示y 与其他自变量之间的线性密切程度,此为复相关系数. 复相关是指因变量与多个自变量之间的相关关系. 复相关系数只是反映变量间表面的非本质的联系,因为变量很有可能受到其他变量的影响.2)偏相关系数在多变量的情况下,变量之间的相关系数是相当复杂的. 任意两个变量之间都有可能存在着相关关系,因此,只知道被解释变量与解释变量的总的相关程度是不够的. 如果需要了解某两个变量间的相关程度,就应在消除其他变量影响的情况下来计算他们的相关系数,这就是偏相关系数. 偏相关系数与复相关系数不同,复相关系数的取值在0-1之间,而偏相关系数则是有正有负,所以复相关系数与偏相关系数之间也有可能相差很大. 变量之间本存在错综复杂的关系,甚至可能使得符号也相反,但是偏相关系数才是变现变量之间的本质联系的.偏相关的主要用途:偏相关主要是用来研究自变量与因变量之间的关系的,其通过得到的自变量与因变量数据来进行计算,通过偏相关系数可以看出哪些自变量对因变量的影响更大一些,同时对于偏相关系数较小的变量,可以剔除.2.3 非线性回归模型概述非线性回归模型是指在众多的现象中,分析变量之间的关系时不符合解释变量线性和参数线性的一种模型. 在实际的经济活动中,经济变量的关系是相当复杂的,直接表示为线性关系的情况也并不多见. 但大多数的非线性关系是可以通过一些简单的数学处理,使之转化为线性关系,从而通过线性回归来进行计算. 而非线性回归模型又分为可化为线性模型的非线性回归模型和不可化为线性模型的非线性回归模型.本文研究的是可转化为线性模型的非线性回归模型,而可转化为线性模型的非线性回归模型又有好几种方法可以对变量进行转换.其有以下几种模型:1)多项式函数模型对于形如:k k x x x y ββββ+⋅⋅⋅+++=22110 ,的模型为多项式模型.令21122,,,k k k z x z x z x === ,原模型可化为线性形式k k z z z y ββββ+⋅⋅⋅+++=22110 ,那么就可以用多元线性回归分析的方法进行处理了.2)指数函数模型对于形如:k x k x x e e e y ββββ+⋅⋅⋅+++=21210 ,的模型为指数函数模型. 令k x k x x e z e z e z =⋅⋅⋅==,,,2121 ,原模型可化为线性形式k k z z z y ββββ+⋅⋅⋅+++=22110 ,那么就可以用多元线性回归分析的方法进行处理了.3)双曲线模型;4)半对数模型和双对数模型等.本文将对指数函数型非线性模型进行案例说明,所以对于其他类型的非线性回归模型的道理是一致的,在这里就不进行一一解释.2.4 多元线性回归模型自变量的选择在多元线性回归模型中自变量的选择实质上就是模型的选择. 现设一切可供选择的变量是t 个 ,它们组成的回归模型称为全模型(记:1+=t m ),在获得n 组观测数据后,我们有模型:⎩⎨⎧+=),0(~2n n I N X Y σεεβ , 其中:Y 是1⨯n 的观测值,β是1⨯m 未知参数向量,X 是m n ⨯结构矩阵,并假定X 的秩为m .现从t x x x ,,,21 这t 个变量中选t '变量,不妨设t x x x ',,,21 ,那么对全模型中的参数β和结构矩阵X 可作如下的分块(记:1+'=t p ):()'=q p βββ, , ()q p X X X = .我们称下面的回归模型为选模型:⎩⎨⎧+=),0(~2n p p I N X Y σεεβ ,其中:Y 是1⨯n 的观测值,p β是1⨯p 未知参数向量, p X 是p n ⨯结构矩阵,并假定p X 的秩为p .自变量的选择可以看成是这样的两个问题,一是究竟是用全模型还是用选模型,二是若用选模型,则究竟应包含多少变量最适合. 然而自变量的选择与相关系数,回归分析都有密切的关系,自变量的选择需要通过一系列的验证,剔除之后才能得到最好的变量从而得到最好的回归模型. 下面我们用两个案例来对多元回归模型的选取来进行解释和探讨.第三章 非线性回归模型案例:淘宝交易额研究3.1 回归模型变量的确定3.1.1数据来源为研究淘宝网未来发展趋势,从新浪官方微博淘宝数据魔方中获得淘宝2009年聚划算中购物群众的年龄比例作为定性数据,进行研究年龄对淘宝购物的影响. 并在新浪财经网上获得淘宝网自2003年到2012年的淘宝交易额以及淘宝注册人数的数据. 在中商情报局里获得我国近网络普及度等数据并从国家统计年鉴中选取统计指标居民消费水平.淘宝注册人数(1x )在一定程度上反应了网络购物的群众的人数,反应了当今社会网络购物的普遍性. 同时淘宝的注册人数也展现了人们对网络购物的认可度,换言之也就是说接受了网络购物并会在网上进行消费,是对网络购物很大程度上的支持. 我国网络普及度(2x )是指我国近几年网络在我国普及的围,这一块更好的反映了网络对居民网络消费的影响,因为网络是网络消费的必要条件. 我国网络普及度反映的是在我国日趋发展的经济下,人们对网络的接受程以及信任程度也是直接影响到淘宝的网络购物.居民消费水平(3x )主要通过消费的物质产品和劳务的数量和质量来反映. 居民消费水平的提高也能很好的展现在网络消费上作出的贡献.第二产业增加值(4x )是指采矿业,制造业,电力、煤气及水的生产和供应业,建筑业. 而制造业的发展也相继影响着产品的销售,所以在这里采用第二产业对淘宝交易额的影响. 通过对以上这三个定量数据的研究来其与淘宝交易额的关系,从而研究淘宝未来的发展趋势以及优劣态. 原始数据如下:表3.1为消除数据之间因单位不同产生的量纲的影响,对数据进行标准化得如下数据得到表3.23.1.2 复相关系数对表3.2 的数据进行复相关系数的研究,看变量之间的复相关关系,得到如下表3.3的复相关系数表:表3.3表3.3中有带“**”号的结果表明有关的两变量在0.01的显著性水平下显著相关,由上图可知,y 与1x 的相关系数为0.987>0,表示变量之间存在线性关系,其相关系数检验对应的概率P 值为0.000,低于显著性水平0.05,说明淘宝交易额与淘宝注册人数之间相关性显著. y 与2x e 的相关系数为0.923>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与我国网络普及度之间相关性显著.y 与3x 的相关系数为0.963>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与居民消费水平之间相关性显著. y 与4x e 的相关系数为0.919>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明我国第二产业增加值与居民消费水平之间相关性显著.综上所述通过SPSS 得出的相关系数的矩阵得到为:=1yx r 0.987 ,=2yx r 0.923 ,=3yx r 0.963 ,=4yx r 0.919 .虽然变量都通过了检验,但是可以看到2yx r 和4yx r 较另外两个复相关系数较低,因此对变量进行散点图的分析来了解自变量与因变量的相关关系.3.1.3 散点图看线性关系对y 与各个变量作出散点图(1)淘宝注册人数1x 与淘宝网交易总额y 的相关性散点图:图3.1(2)网络普及度2x 与淘宝网交易总额y 的散点图:图3.2(3)我国居民消费水平3x 与淘宝交易额y 的散点图:图3.3(4)第二产业增加值4x 对淘宝交易额y 的散点图:图3.4图3.2和3.4分别是自变量2x 和4x 与因变量的相关系数图,可以看出自变量2x 和因变量y 之间呈明显的指数线性关系,而变量4x 也是同样与因变量y 之间呈明显的指数线性关系.他们之间是非线性回归模型的关系. 所拟合的效果不理想所以我们还需要对数据进行进一步的处理和分析,得到确切的答案.3.1.4 回归分析看拟合度对数据进行回归分析:表3.4表3.4是自变量与因变量得到的回归分析,可知,因变量y 与常数项和自变量1x ,2x ,3x ,4x 的回归的标准化回归系数分别为0.01,0.660,-0.229,1.439,-0.899.而通过P 检验可以看到由上表 2.4可以看出常数项以及各自变量的P 值分别为:0.906,0.000,0.018,0.000及0.000. 可以看出原始变量所得到的P 值并没有全部通过检验. 说明常数项对因变量影响不显著. 对数据进行t 值检验,在给定的05.0=α,自由度9211=-=n 的临界值时,查表得=9025.0t 2.262,其常数项的t 值为0.123小于2.262,说明常数项不显著. 综上所述,可以初步得到一个模型为:4321899.0439.1229.0660.001.0x x x x y -+-+= .3.1.5确定回归模型变量综上通过散点图、复相关系数以及回归分析可以知道由于自变量2x 和4x 与因变量y 之间是非线性关系,是呈指数线性关系为研究之间线性关系,所以得到的模型的拟合程度并不是很理想.因此对自变量2x 和4x 进行取e 的对数即2x e 和4x e 来对变量进行研究看拟合效果得到下表.表3.5下面对表3.5进行变量分析与研究,通过对非线性模型中的变量的研究来了解多元回归分析中变量的选取与使用,同时对自变量进一步进行分析.3.2 调整后变量的相关分析3.2.1 散点图对y与各个变量作出散点图x与淘宝网交易总额y的相关性散点图:(1)淘宝注册人数1图3.5(2)e的网络普及度次方2x e与淘宝网交易总额y的相关性检验:图3.6x与淘宝交易额y的相关性检验:(3)我国居民消费水平3图3.7(4)e的第二产业增加值的次方4x e对淘宝交易额y的影响:图3.8由以上四个散点图可知,其所有的点均落在了左上至右下的一条直线上,表明了数据之间存在显著相关关系. 所以我们还需要对数据进行进一步的分析,得到确切的答案.3.2.2 计算相关系数(1)复相关系数r 是用来衡量回归直线对于观察值配合的密切程度,即用来衡量因变量y 与自变量1x ,2x e ,3x ,4x e 之间相关的密切程度. 以下是用SPSS 对数据进行相关性分析,得到如下的相关系数图表3.6图中有带“**”号的结果表明有关的两变量在0.01的显著性水平下显著相关,由上图可知,y 与1x 的相关系数为0.987>0,表示变量之间存在线性关系,其相关系数检验对应的概率P 值为0.000,低于显著性水平0.05,说明淘宝交易额与淘宝注册人数之间相关性显著. y 与2x e 的相关系数为0.979>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与我国网络普及度之间相关性显著.y 与3x 的相关系数为0.963>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明淘宝交易额与居民消费水平之间相关性显著. y 与4x e 的相关系数为0.997>0,表示变量之间存在线性关系,其对应P 值为0.000,小于显著性水平0.05,说明我国第二产业增加值与居民消费水平之间相关性显著.综上所述通过SPSS 得出的相关系数的矩阵得到为:=1yx r 0.987 ,=2yx r 0.979 ,=3yx r 0.963 ,=4yx r 0.997 .由以上数据可以看出,各列之间存在正相关关系. 即淘宝网注册人数1x 、e 的我国网络普及度2x e 、我国居民消费水平3x 、e 的我国第二产业增加值次方4x e 与淘宝交易总额y 存在显著的相关关系.(2)计算偏相关系数:下面是用SPSS 作出的偏相关系数:① 消除我国网络普及度、第二产业增加值和居民消费水平的影响后,计算淘宝注册人数与淘宝交易额的偏相关系数为:表3.7由上可知,淘宝注册人数与淘宝交易额的偏相关系数为0.795.②消除淘宝交易额、第二产业增加值和居民消费水平的影响后,我国网络普及度和淘宝交易额的偏相关系数为:表3.8由上可知我国网络普及度与淘宝交易额的偏相关系数为0.733.③消除淘宝注册人数、第二产业增加值和我国网络普及度的影响后,我国居民消费水平和淘宝交易额的偏相关系数:表3.9由上可知,我国居民消费水平和淘宝交易额的偏相关系数为-0.932.④消除淘宝注册人数、我国网络普及度和居民消费水平的影响后,计算第二产业增加值与淘宝交易额的偏相关系数:表3.10由上可知,e的第二产业增加值次方与淘宝交易额的偏相关系数为0.946.⑤下表为各个变量之间的偏相关系数表,为方便,这里直接变各变量之间的偏相关系数:r y 1x 2x e3x 4x e y 0.795 0.773 -0.9320.946 1x 0.795 -0.611 0.758 -0.592x e0.773 -0.611 0.702 -0.521 3x-0.932 0.758 0.702 0.818 4x e 0.946 -0.59 -0.521 0.818表3.11这里我们对变量2x 和4x 采用的是其指数幂,是因为在对变量的相关性进行检验时,通过散点图可以看出2x 和4x 与因变量之间呈的是指数线性关系,是非线性关系所以对数据进行了处理,因为原始变量之间存在的非线性关系得出的结果不具有代表性. 可以通过散点图看到从以上的偏相关系数来看,如果2x e ,3x 和4x e 保持不变,y 与1x 之间存在相关关系,当1x ,3x 和4x e 的保持不变时,2x e 和y 之间存在相关关系,其他关系同上,在这里就不进行一一解释.我们也可以通过以上的偏相关系数表可以看出各个自变量之间也存在一定的偏相关关系,但是相对于自变量与因变量之间的偏相关关系较小,说明这些变量之间的选择比较显著.但是其关系强度较前者略低,所以经过以上系数得到的偏相关系数可以看出,其相关程度较原关系的强度低,应采用原数据的自变量和因变量. 即所采用的自变量和因变量保持不变.通过复相关系数的计算和偏相关系数的计算结果可以看出,复相关系数的取值在0-1之间,偏相关系数的取值在-1到1之间,由上数据便可看出偏相关系数与复相关系数之间的差距相差甚大,有的甚至改变了符号. 从上可以看出通过复相关系数不能很好的确定变量之间的相关关系,不能明确的解释变量,而偏回归系数可以看出变量是否符合要求. 从下面的回归分析中继续对变量进行研究.3.3 多元线性回归分析对数据进行回归分析,得到如下结果:表3.12复相关系数为1,判定系数为0.999,调整系数为0.999,估计值的标准误差为0.03296.表3.13由上面结果的看其显著性检验结果为,回归平方和为9.993,残差平方和0.007,总平方和10.000, F 统计量的值为2.299E3,对应的概率P 值为0.000,小于显著性水平0.05,即:淘宝交易总额y 与淘宝网注册人数1x 、e 的我国网络普及度次方2x e 、我国居民消费水平3x 和e 的我国第二产业增加值次方4x e 之间存在线性关系,所以可认为所建立的回归方程有效.表3.14由上表可知,因变量y 与常数项和自变量1x ,2x e ,3x ,4x e 的回归的标准化回归系数分别为-1.119,0.244,0.107,-0.321,0.615. 3个回归系数B 的显著性水平均小于0.05,这里可以认为自变量1x ,2x e ,3x ,4x e 对因变量y 有显著性影响. 于是得到回归方程为:42615.0321.0107.0244.0119.131x x e x e x y +-++-= , 由上图可知对数据进行t 值检验,在给定的05.0=α,自由度9211=-=n 的临界值时,查表得=9025.0t 2.262,因为1x ,2x e ,3x ,4x e 的参数对应的t 统计量的绝对值均大于2.262,这说明%5的显著性水平下,斜率系数均显著不为0,表明淘宝网注册人数1x ,e 的我国网络普及度次方2x e ,我国居民消费水平3x ,e 的我国第二产业增加值次方4x e 等变量联合起来对该商品的消费支出有显著的影响.P 检验:由上表可以看出各自变量以及常数项的P 值分别为:0.00,0.018,0.039,0.001及0.000,可以看出其P 值均小于0.05,均通过检验综上所述,四个自变量对因变量都有显著性影响,并都通过了检验可以得到最优方程式为:。
《2024年多元线性回归建模以及SPSS软件求解》范文
《多元线性回归建模以及SPSS软件求解》篇一多元线性回归建模及SPSS软件求解一、引言多元线性回归分析是一种统计学中常用的方法,用于研究多个自变量与一个因变量之间的关系。
在社会科学、经济学、医学等多个领域中,多元线性回归模型被广泛用于预测和解释现象。
本文将详细介绍多元线性回归建模的步骤,并使用SPSS软件进行求解和分析。
二、多元线性回归建模1. 模型设定多元线性回归模型的设定需要基于研究问题和数据特点。
首先,确定因变量和自变量,并假设它们之间存在线性关系。
其次,建立数学模型,表示因变量和自变量之间的关系。
2. 假设条件多元线性回归模型需要满足一些假设条件,包括线性关系、无多重共线性、误差项的独立性等。
这些假设条件是模型有效性的基础。
3. 参数估计参数估计是多元线性回归建模的关键步骤。
通过最小二乘法等方法,估计模型中的系数和常数项。
这些参数反映了自变量对因变量的影响程度。
三、SPSS软件求解1. 数据导入与整理将数据导入SPSS软件,并进行必要的整理和清洗。
确保数据格式正确、无缺失值、无异常值等。
2. 多元线性回归分析在SPSS软件中,选择“回归”菜单,进行多元线性回归分析。
在分析过程中,需要设置因变量和自变量,并选择适当的统计量。
3. 结果解读SPSS软件将输出多元线性回归分析的结果,包括系数、标准误、t值、P值等。
根据这些结果,可以判断自变量对因变量的影响程度,以及模型的显著性和可靠性。
四、案例分析以某地区房价为例,探讨多元线性回归建模及SPSS软件求解的应用。
首先,确定因变量为房价,自变量包括地区、房屋面积、房龄等。
然后,建立多元线性回归模型,使用SPSS软件进行求解和分析。
最后,根据分析结果,可以得出地区、房屋面积、房龄等因素对房价的影响程度,为房地产市场的预测和决策提供依据。
五、结论多元线性回归建模是一种有效的统计分析方法,可以用于研究多个自变量与一个因变量之间的关系。
SPSS软件作为一种常用的统计分析工具,可以方便地进行多元线性回归分析。
SPSS 论文--回归分析
河南省财政收入与经济增长的回归模型分析【摘要】经济发展对中国来说是一个持久的问题,研究经济发展是中国不变的主题。
根据中国地域广阔的特点,各个地区的发展必有其独特的特征,特对河南省的经济增长做了研究。
财政收入与经济增长之间存在着高度的相关性,因此在相关经济学理论的基础上,对河南省近些年财政收入与经济增长的关系,通过回归分析的方法做了分析,发现了河南省财政收入与经济增长之间存在的一些问题以及特点,同时可以为政府提供经济发展方面的决策数据。
【关键词】财政收入;GDP;相关1引言财政收入是政府部门的公共收入,是国民收入分配中用于保证政府行使其公共职能、实施公共政策及提供公共服务的资金需求。
其主要有资源配置、收入再分配和宏观经济调控三大职能。
财政收入的增长情况关系着一个国家经济的发展和社会的进步。
因此,研究财政收入的增长就显得尤为必要。
在西方经济学教科书中,国内生产总值(GDP)是指经济社会(即一国或一地区)在一定时期内运用生产要素所生产的全部最终产品(物品和劳务)的市场价值,是国民经济活动最终成果的总量指标。
财政收入的增长受到多方面因素的影响,但最根本的原因是经济的总体发展态势,即GDP的增长。
财政收入与经济增长密切相关,财政是从国民经济增长中取得收入,经济发展水平高,国民生产总值就多,财政收入总额多;而财政收入对于满足经济发展的需要,支撑政府职能的实现,保证经济社会稳定协调发展,具有相当重要的作用。
因此财政收入与经济增长之间存在着相互依存、相互制约的关系,正确认识二者之间的关系,对促进我省经济增长有重要作用。
2理论分析及说明经济增长可以用GDP来表示,建立计量经济模型,解释财政收入与经济增长之间的关系。
对于一个地区或一个国家要保持经济的可持续增长,财政收入与经济增长之间应形成相依相存的长期稳定关系。
对生产总值GDP与财政收入关系进行描述和分析,以寻求GDP和财政收入之间相互适应的增长程度和相对合理的比例界限,为在宏观层面上判断经济现象之间的数量关系作一些新的探索,为政府决策和经济管理提供参考。
用SPSS做回归分析
用SPSS做回归分析回归分析是一种统计方法,用于研究两个或多个变量之间的关系,并预测一个或多个因变量如何随着一个或多个自变量的变化而变化。
SPSS(统计软件包的统计产品与服务)是一种流行的统计分析软件,广泛应用于研究、教育和业务领域。
要进行回归分析,首先需要确定研究中的因变量和自变量。
因变量是被研究者感兴趣的目标变量,而自变量是可能影响因变量的变量。
例如,在研究投资回报率时,投资回报率可能是因变量,而投资额、行业类型和利率可能是自变量。
在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,并导入数据:首先打开SPSS软件,然后点击“打开文件”按钮导入数据文件。
确保数据文件包含因变量和自变量的值。
2.选择回归分析方法:在SPSS中,有多种类型的回归分析可供选择。
最常见的是简单线性回归和多元回归。
简单线性回归适用于只有一个自变量的情况,而多元回归适用于有多个自变量的情况。
3.设置因变量和自变量:SPSS中的回归分析工具要求用户指定因变量和自变量。
选择适当的变量,并将其移动到正确的框中。
4.运行回归分析:点击“运行”按钮开始进行回归分析。
SPSS将计算适当的统计结果,包括回归方程、相关系数、误差项等。
这些结果可以帮助解释自变量如何影响因变量。
5.解释结果:在完成回归分析后,需要解释得到的统计结果。
回归方程表示因变量与自变量之间的关系。
相关系数表示自变量和因变量之间的相关性。
误差项表示回归方程无法解释的变异。
6.进行模型诊断:完成回归分析后,还应进行模型诊断。
模型诊断包括检查模型的假设、残差的正态性、残差的方差齐性等。
SPSS提供了多种图形和统计工具,可用于评估回归模型的质量。
回归分析是一种强大的统计分析方法,可用于解释变量之间的关系,并预测因变量的值。
SPSS作为一种广泛使用的统计软件,可用于执行回归分析,并提供了丰富的功能和工具,可帮助研究者更好地理解和解释数据。
通过了解回归分析的步骤和SPSS的基本操作,可以更好地利用这种方法来分析数据。
《应用回归分析》(spss软件的应用)论文剖析
楚雄师范学院2012年《应用回归分析》期末论文题目影响成品钢材需求量的回归分析姓名韩金伟系(院)数学系09级01班专业数学与应用数学学号200910211352012 年 6 月23日题目:影响成品钢材需求量的回归分析摘要:随着社会经济的不断发展,科学技术的不断进步,统计方法越来越成为人们必不可收的工具盒手段。
应用回归分析是其中的一个重要分支,本着国家经济水平的不断提高,我们采用回归分析的方法对我国成品钢材的需求量进行分析应用。
为了使分析的模型具有社会实际意义,我们引用了1980——1998年的成品钢材、原油、生铁、原煤、发电量、铁路货运量、固定资产投资额、居民消费、政府消费9个不同的量来进行回归分析。
通过建立回归模型充分说明成品钢材需求量与其他8个变量的关系,以及我国社会经济的实际发展情况和意义。
关键字:线性回归回归分析社会经济回归模型成品钢材投资多元回归国家经济社会发展目录第1章题目叙述 (1)第2章问题假设 (1)第3章问题分析 (2)第4章数据的预处理 (3)4.1 曲线统计图 (3)4.2 散点统计图................................................................................. 错误!未定义书签。
4.3 样本的相关系数 (4)第5章回归模型的建立 (5)第6章回归模型的检验 (6)6.1 F检验 (6)6.2 T检验及模型的T检验分析 (7)6.2.1 T检验 (7)6.2.2 T检验分析 (7)6.3 偏相关性 (10)第7章违背模型基本假设的情况 (11)7.1 异方差性的检验 (11)7.1.1 残差图检验 (11)7.1.2 怀特(White)检验 (12)7.2 自相关性的检验 (12)7.3 多元加权最小二乘估计 (12)7.3.1 权函数自变量的选取 (13)7.3.2 Weight Estimate估计幂指数m (13)7.3.3 加权最小二乘估计拟合 (14)第8章自变量选择与逐步回归 (15)8.1 前进逐步回归 (15)8.2 后退逐步回归 (17)第9章多重共线性的情形及处理 (18)9.1 多重共线性的诊断 (18)9.2 多重共线性的消除 (20)第10章回归模型总结 (24)参考文献 (25)第1章 题目叙述理论上认为影响成品钢材的需求量的因素主要有经济发展水平、收入水平、产业发展、人民生活水平提高、能源转换技术等因素。
回归分析的模型SPSS概要
回归分析的模型SPSS概要回归分析是一种用于研究两个或多个变量之间关系的统计分析方法。
它通过建立数学模型来预测一个变量(因变量)或解释一系列变量对另一个变量(自变量)的影响。
在SPSS软件中,可以使用回归分析模块进行回归分析的计算和结果输出。
回归分析的基本假设包括线性关系、常态性、独立性和同方差性。
线性关系指因变量和自变量之间的关系符合线性模型的假设;常态性指回归模型的残差满足正态分布;独立性指回归模型的残差之间相互独立;同方差性指回归模型的残差在不同自变量取值下具有相同的方差。
在SPSS中进行回归分析的步骤如下:1.打开SPSS软件,加载数据文件:在“文件”菜单中选择“打开”命令,选择所需的数据文件,然后点击“打开”按钮。
2.进入回归分析模块:在“分析”菜单中选择“回归”子菜单,然后选择“线性回归...”(用于线性回归)或“非线性回归...”(用于非线性回归)。
3.选择变量:在回归分析对话框中,将因变量和自变量从左侧的变量列表中拖动到右侧的“因变量”和“自变量”文本框中。
4.指定模型:选择回归模型的类型和形式。
对于线性回归,可以选择标准型、层级型或正交型;对于非线性回归,可以选择指数、对数、幂函数等形式。
5.设置选项:根据需要,设置其他选项,如常态性检验、变量选择等。
6.运行回归分析:点击“确定”按钮,SPSS将根据所选的变量、模型和选项进行回归分析计算,并显示结果。
回归分析结果的主要输出包括模型拟合度、回归系数、显著性检验结果和残差分析等。
模型拟合度可以通过判别系数R²来评估,其值越接近1表示模型拟合得越好;回归系数表示自变量对因变量的影响程度,可以用于解释和预测;显著性检验结果用于验证模型的显著性,包括F检验、t 检验和P值等;残差分析用于检验模型的假设前提,如常态性、独立性和同方差性等。
总之,回归分析是一种有效的统计方法,可以用于研究变量之间的关系和预测未知值。
在SPSS软件中,可以方便地进行回归分析,并获取相关结果和图表,帮助研究人员更好地理解数据和进行决策。
应用SPSS软件进行多分类Logistic回归分析
应用SPSS软件进行多分类Logistic回归分析应用SPSS软件进行多分类Logistic回归分析一、简介Logistic回归是一种常用的统计分析方法,在很多领域中都有广泛的应用。
它主要用于预测一个分类变量的可能性或概率,例如判断一个疾病的患病风险、判断学生成绩的优劣、预测金融市场的涨跌等。
本文将介绍如何使用SPSS软件进行多分类Logistic回归分析,并以一个具体案例来说明其应用。
二、SPSS软件介绍SPSS软件是统计分析的常用工具之一,它具有友好的用户界面和丰富的分析功能。
在进行Logistic回归分析时,SPSS可以帮助我们进行数据处理、模型建立、模型拟合、模型评估等步骤,并输出详细的分析结果。
三、案例描述我们假设有一份数据集,包含了500个样本和5个自变量,要根据这些自变量对样本进行多分类。
自变量包括性别、年龄、教育水平、收入和职业。
而多分类的目标变量是购买冰淇淋的偏好,包括三个分类:喜欢巧克力口味、喜欢草莓口味和喜欢香草口味。
四、数据处理首先,我们需要对数据进行处理。
SPSS可以读取各种文件格式,如Excel、CSV等。
我们将数据导入SPSS后,可以进行缺失值处理、异常值处理等预处理步骤。
这些步骤是为了保证后续的分析结果的准确性和可靠性。
五、模型建立在SPSS中,我们可以使用多分类Logistic回归模型进行建模。
它采用最大似然估计方法来估计模型参数,以便进行分类预测。
我们需要将自变量和目标变量进行指定,SPSS会自动计算出各个自变量对目标变量的系数和统计学意义。
六、模型拟合在模型拟合阶段,SPSS会对模型进行拟合优度的检验,包括卡方拟合优度检验、Hosmer-Lemeshow检验等。
这些检验可以帮助我们评估模型的拟合程度和可靠性。
如果模型的拟合程度不好,我们可以对模型进行进一步调整和改进。
七、模型评估在模型评估阶段,SPSS提供了一系列的统计指标和图表,用于评估多分类Logistic回归模型的性能。
回归分析的模型SPSS
步进回归是前向选择和后向选择的结合,它通过增加和删除自变量来优化模型,同时考 虑了模型的显著性和预测能力。
回归线性假设检验
1
线性假设
线性假设是指自变量与结果变量之间的关系是线性的。
2
显著性检验
显著性检验是用来检验模型各项参数是否显著的方法。通常是通过检验t值和p值 来判断。
3
统计量检验
结构方程模型
1 什么是结构方程模型? 2 结构方程模型的公式
3 结构方程模型的应用
结构方程模型是一种将因果 关系和回归分析相结合的统 计方法,常用于探究变量间 的因果关系。
结构方程模型可以视为多个 回归方程的组合,在模型中 既有回归方程的变量之间的 关系,还有因果关系的方程。
结构方程模型可以应用于心 理学、管理学等领域,例如 研究个体工作满意度和组织 变量对工作绩效的影响。
面板数据回归分析
什么是面板数据回归分 析?
面板数据回归分析是将多个时 间序列数据和多个交叉数据结 合起来进行建模和分析的统计 方法。
面板数据回归模型
面板数据回归模型同时考虑了 时间序列和交叉数据的影响, 通常使用固定效应模型和随机 效应模型进行建模。
面板数据回归分析的应用
面板数据回归分析可以用来研 究时间序列数据和交叉数据相 互作用的影响,例如研究地区 发展和人口迁移的关系。
多层次回归分析
什么是多层次回归分析?
多层次回归模型
多层次回归分析是研究多个层面上 变量对结果变量的影响的统计方法, 例如研究学生的个人特征和学校因 素对学科成绩的影响。
多层次回归模型包含了多个层次的 自变量和结果变量,通常是用分层 回归的形式来表示。
多层次回归分析的应用
多层次回归分析可以用来研究影响 某些群体或组织的因素,例如研究 学生的家庭背景和学校因素对学科 成绩的影响。
用SPSS做回归分析
当自变量和 因变量选好 后,点击 OK 键
结果说明——常用统计量:
P (1 R 2 ) R R N P 1 ( P为 自 变 量 个 数 ,为 样 本 数 N )
2 a 2
1. Model为回归方程模型编号(不同方法对应不同模型) 2. R为回归方程的复相关系数 3. R Square即R2系数,用以判断自变量对因变量的影响有 多大,但这并不意味着越大越好——自变量增多时,R2 系数会增大,但模型的拟合度未必更好 4. Adjusted R Square即修正R2,为了尽可能确切地反映模 型的拟合度,用该参数修正R2系数偏差,它未必随变量 个数的增加而增加 5. Std. Error of the Estimate是估计的标准误差
xi yi
y 106.3094 1.7172ln x
112
首先绘出散点图:
步骤: Graphs →Scatter… →Simple
111
110
109
108
ð ô ¬ ¿ ½ ʺ Á
0 10 20
107 106
à ë ¾ À
根据散点图的形态可以认为变量X与Y之间具 有对数曲线类型的回归方程:
y a b ln x
操作步骤:Analyze→Regression →Curve Estimation… 通过点击右键观看选择适当的 类型:Logarithmic 结果如右:
例. 《概率论与数理统计》P280 例9.3.1
在汽油中加入两种化学添加剂,观察它们对汽车消 耗1公升汽油所行里程的影响,共进行9次试验,得到 里程Y与两种添加剂用量X1、X2之间数据如下: xi1 0 1 0 1 2 0 2 3 1 xi2 0 0 1 1 0 2 2 1 3 yi 15.8 16.0 15.9 16.2 16.5 16.3 16.8 17.4 17.2 试求里程Y关于X1、X2的经验线性回归方程,并求 误差方差σ2的无偏估计值。
回归分析的模型SPSS概要
回归分析的模型SPSS概要回归分析是一种统计分析方法,用于研究因变量与一个或多个自变量之间的关系。
它可以用来预测因变量的值,解释因变量的变化,以及确定与因变量最相关的自变量。
SPSS(统计分析软件)是一款经典的统计分析软件,具有强大的数据处理和分析功能,能够进行多种回归分析。
在进行回归分析之前,需要明确确定因变量和自变量,以及数据的类型(连续型或分类型)。
常用的回归分析方法有简单线性回归、多元线性回归、逻辑回归等。
简单线性回归模型是最基本的回归模型,用于研究因变量与一个自变量之间的关系。
该模型假设因变量与自变量之间存在线性关系,可以通过一条直线来表示。
模型的方程可以写为:Y=β0+β1X+ε,其中Y为因变量,X为自变量,β0和β1为模型的参数,ε为误差项。
多元线性回归模型是用于研究因变量与多个自变量之间的关系。
该模型假设因变量与自变量之间存在线性关系,可以通过多个自变量的线性组合来表示。
模型的方程可以写为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y为因变量,X1、X2、..、Xn为自变量,β0、β1、β2、..、βn为模型的参数,ε为误差项。
逻辑回归模型是用于研究因变量为二分类变量(如成功与失败、存在与不存在等)与一个或多个自变量之间的关系。
该模型假设因变量服从二项分布,并且通过logistic函数来建模。
模型的方程可以写为:log(p/(1-p)) = β0 + β1X1 + β2X2 + ... + βnXn,其中p为因变量为1的概率,X1、X2、..、Xn为自变量,β0、β1、β2、..、βn为模型的参数。
SPSS可以通过数据的输入和处理来进行回归分析。
首先,将数据导入SPSS软件中,然后选择适当的回归分析模型和方法,设置因变量和自变量,以及其他相关参数。
接下来,进行模型的拟合和参数的估计,得到回归方程和相应的统计结果。
最后,进行模型的诊断和解释,评估模型的拟合度和预测效果。
模拟建模论文(应用回归分析)spss
楚雄师范学院2012年数学建摸模拟论文题目应用回归分析姓名韩金伟系(院)数学系09级01班专业数学与应用数学2012 年8月22 日题目:应用回归分析摘要:随着社会经济的不断发展,科学技术的不断进步,统计方法越来越成为人们必不可少的工具和手段。
应用回归分析是其中的一个重要分支,数据处理,数据检验,模型的建立和检验都是回归分析不可缺少的部分。
针对多组数据的多个变量样本,我们通常都会对它建立回归模型,在此建模过程中我们就要对给定的数据做合理化检验分析,找出数据的规律,再对数据进行分类建模。
当然,因为各变量之间或多或少都会存在强影响的变量,所以通常都要做剔除性检验和重新建模,最后建立出一个合理化的模型。
关键词:回归分析相关性自相关残差异常点正态性杠杆值一、问题重述(10.1 附录一)中给定了一些关于自变量654321,,,,,x x x x x x 与因变量y 的一些数据,请按所给的要求对给定的数据进行分析: 要求:1.检测强影响点,并求出杠杆值. 2.正态性检验. 3.相关性检验.4.自变量的多重共线性检测,若有多重共线性,试消除,再建模.5.残差的自相关性分析,模型的合理性分析.6.预测T X )225,7,13,50,82,81,470(0=时Y 的预测值.二、问题分析本题是要针对一组数据做合理化的线性分析,先后要求对数据做了异常值的检验和剔除,各变量的正态性检验,在从相关性的角度对各变量做相关性检验,得出数据是否适合做多元线性规划模型。
为了使建立的模型具有很好的拟合效果和实际意义,又要求对各变量做相关性检验的同时进而做多重共线性的诊断,从中发现自变量之间是否存在着多重共线性。
在有多重共线性的情况下,为了消除多重共线性的影响,我们又要做剔除不合理的变量再做回归模型。
当然在做好的模型中,我们又要剔除不能通过t 检验的变量,最后建立没有强多重共线性,没有异常点且通过了F 检验,t 检验的合理化模型,再对给定的数据做出预测。
实用回归分析论文(SPSS实验结果)
我国农民人均生活收入及消费支出分析学院:理学院班级:统计1001班姓名:***中国农民人均生活收入及消费支出简要分析论文摘要:通过本学期对实用回归分析课程的学习,对于一些实际问题作出以下分析。
实用回归分析中的方法在经济、管理、医学及心理学等方面的研究起着很重要的作用,在我国的国民经济问题中,增加农民收入是我国扩大内需与真正走向共同富裕的关键,通过运用SPSS软件分析方法对我国农民的收入及消费支出进行了各种细致分析, 以便能够更好地了解我国农村居民的收入结构和消费结构与消费行为等。
关键词:农民生活收入消费支出多元线性回归分析正文:一、农民人均生活收入及消费支出分析近年来,全国上下认真贯彻落实科学发展观,以农业增产、农民增收为目的,加大各项惠农政策措施落实力度,多措并举做好农村劳动力转移就业工作,克服金融危机和严重干旱等自然灾害带来的不利影响,使全市农村经济保持了稳定发展的良好态势,农民现金收入持续增长,生活消费水平继续提高。
我国是一个农业大国,至今仍有9亿农村人口,占全国人口总数的70%,农民是我国最大的群体,农村消费能力的提升直接关系到国民经济的全局。
从农村市场看,中国有近六成人口生活在农村。
农村城镇化的进程对经济增长的带动作用是非常明显的,世界上还没有哪个国家有规模如此巨大的城镇化。
农村居民的收入虽然低于城市居民,但是基数巨大,且农村人口的收入也在稳定增长。
随着经济的发展,我国农民的收入水平和消费水平的结构也发生了很大变化,农民生活水平的提高和消费的增加对于实现国民经济又好又快发展、正确处理好内需和外需的关系至关重要。
但从总体来看,农民消费水平仍然较低,调查显示有的地区都不及城市居民人均消费支出的三分之一。
而且消费结构不合理,局限于食品类等生存基本需求品,消费在衣着装饰等方面的极少。
而影响农民消费水平的根本原因是农民的收入。
农民生活消费支出主要包括食品、衣着、医疗卫生、教育文化、家庭设备、交通等方面,本文只挑选了四种典型的消费支出作为代表来分析农村居民的消费结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
楚雄师范学院2012年数学建摸模拟论文题目应用回归分析姓名韩金伟系(院)数学系09级01班专业数学与应用数学2012 年8月22 日题目:应用回归分析摘要:随着社会经济的不断发展,科学技术的不断进步,统计方法越来越成为人们必不可少的工具和手段。
应用回归分析是其中的一个重要分支,数据处理,数据检验,模型的建立和检验都是回归分析不可缺少的部分。
针对多组数据的多个变量样本,我们通常都会对它建立回归模型,在此建模过程中我们就要对给定的数据做合理化检验分析,找出数据的规律,再对数据进行分类建模。
当然,因为各变量之间或多或少都会存在强影响的变量,所以通常都要做剔除性检验和重新建模,最后建立出一个合理化的模型。
关键词:回归分析相关性自相关残差异常点正态性杠杆值一、问题重述(10.1 附录一)中给定了一些关于自变量654321,,,,,x x x x x x 与因变量y 的一些数据,请按所给的要求对给定的数据进行分析: 要求:1.检测强影响点,并求出杠杆值. 2.正态性检验. 3.相关性检验.4.自变量的多重共线性检测,若有多重共线性,试消除,再建模.5.残差的自相关性分析,模型的合理性分析.6.预测T X )225,7,13,50,82,81,470(0=时Y 的预测值.二、问题分析本题是要针对一组数据做合理化的线性分析,先后要求对数据做了异常值的检验和剔除,各变量的正态性检验,在从相关性的角度对各变量做相关性检验,得出数据是否适合做多元线性规划模型。
为了使建立的模型具有很好的拟合效果和实际意义,又要求对各变量做相关性检验的同时进而做多重共线性的诊断,从中发现自变量之间是否存在着多重共线性。
在有多重共线性的情况下,为了消除多重共线性的影响,我们又要做剔除不合理的变量再做回归模型。
当然在做好的模型中,我们又要剔除不能通过t 检验的变量,最后建立没有强多重共线性,没有异常点且通过了F 检验,t 检验的合理化模型,再对给定的数据做出预测。
三、模型假设假设y 为因变量,654321,,,,,x x x x x x 为自变量,y 因变量y ,X1 自变量x1,X2 自变量x2,X3 自变量x3,X4 自变量x4,X5 自变量x5,X6 自变量x6,i e 第i 个值的残差,i SER 第i 个值的学生化残差,)(i e 第i 个值的删除残差,)(i SRE 第i 个值的删除学生化残差,)(i ch 第i 个值的杠杆值,h c 平均杠杆值。
四、符号说明符号 意义 符号 意义id 序列号 i cook 第i 个值的库克距离 y 因变量y iMahar 第i 个值的马氏距离 X1 自变量x1 ik条件数 X2 自变量x2 X矩阵 X3 自变量x3 i β系数 X4 自变量x4 VIF 方差扩大因子 X5 自变量x5 DWDW 检验 X6自变量x6 i k 条件索引 i e第i 个值的残差FF 检验i SER第i 个值的学生化残差 tT 检验 )(i e第i 个值的删除残差 β平均数 )(i SRE 第i 个值的删除学生化残差 t ε 随机序列项 )(i ch第i 个值的杠杆值 S 样本偏度系数 h c平均杠杆值B样本峰度系数五、模型建立和求解1、问题一的求解1.1 检测数据中的强影响点1.1.1 对数据中的强影响点进行初略的箱图检从绘制的箱图来看数据存在着强影响点,初步可以看出强影响点分别在3x 的3号位和12号位,6x 的34号位。
为了进一步的检测出强影响点的位置和数据,减小强影响点对整体数据的影响,我们进一步对强影响点进行分析。
1.1.2 异常值分析为了更好的检测出异常值,我们分别用计算机计算出数据的普通残差i e ,学生化残差i SRE ,删除残差)(i e ,删除化学生化残差)(i SRE ,杠杆值ii ch ,库克距离)(i D ,见下表。
行id 普通残差ie学生化残差iSER删除残差)(ie删除学生化残差)(iSRE杠杆值iich库克距离icookMaHar距离iMahar18.865560.259810.009270.25610.089270.00124 3.48134 2-5.93733-0.18289-7.40626-0.180190.173340.00118 6.76013 3 2.674990.09436 4.376020.092930.363720.0008114.18495 425.371510.7401628.387170.734980.081230.0093 3.1681 5 6.598250.197257.752070.194350.123840.00097 4.82977 60.28040.00830.323250.008180.107530 4.19383 78.898680.2753311.199710.271440.180450.00287.0377 8-2.35542-0.0775-3.35246-0.076320.272410.0003610.62387 9-40.22151-1.19949-47.02746-1.207790.119720.03478 4.66919 10-0.56327-0.01819-0.77195-0.017910.245330.000029.56781 1111.046830.3203512.213210.315950.07050.00155 2.74957 1239.75055 1.2902255.05605 1.303830.2530.091579.86694 13-18.80111-0.56615-22.41318-0.560240.136160.0088 5.31018 14-0.09178-0.00285-0.11614-0.00280.1847107.20365 15-121.51298-3.92016-166.26646-5.28110.244170.808569.52252 16-11.86591-0.36065-14.41086-0.355850.15160.00399 5.91237 1746.77492 1.3912454.40184 1.412040.11520.04509 4.49265 18-17.50514-0.52083-20.37286-0.5150.115760.00635 4.51472 19 5.516740.15861 5.994850.156240.054750.00031 2.13536 2041.5721 1.1765543.77636 1.183680.025350.010490.98876 2126.445230.7680929.328840.763210.073320.00919 2.85948 2216.9460.5143220.522030.508510.149250.00797 5.82088 23-7.2257-0.217-8.56757-0.213840.131620.00125 5.13328 24-51.78403-1.51739-58.45459-1.549250.089120.04237 3.47549 2544.58808 1.2792948.25486 1.292210.050990.01923 1.98853 26 3.031760.09371 3.808070.092290.178860.00032 6.97558 27-33.32922-0.93683-34.61906-0.935040.012260.004850.47806 28-10.30989-0.32055-13.10228-0.316140.188120.003987.33676 29-10.61974-0.31957-12.64242-0.315180.134990.00278 5.26468 3010.37850.3000911.407760.295920.065220.00128 2.54373 3140.57435 1.1709144.42389 1.177760.061650.01858 2.40454 3218.002930.5198619.735870.514040.062810.00372 2.44946 3324.066170.7400729.919910.73490.170650.01903 6.65523 340.80778 1.300162751.19133 1.314420.97471822.2361938.01355 3520.165160.5873122.488160.581390.07830.00568 3.05365 36-27.726-0.82321-32.13335-0.81910.112160.01539 4.37417 37 4.907220.1436 5.524770.141460.086780.00037 3.38432 3856.71032 1.7063167.4956 1.759680.134790.0791 5.2569 39-44.43245-1.28994-49.23352-1.303540.072520.02569 2.82814 40-59.69256-1.72471-65.51344-1.780520.063850.04144 2.49016从上表中我们可以看到,绝对值最大的学生化残差为92006.315=SRE ,大于3,因而根据学生化残差诊断认为数据存在异常值。
绝对值最大的删除学生化残差为2811.5)15(=DRE ,同样在第15号位,因而根据学生化残差和删除学生化残差诊断认为第15个数据为异常值。
其中心化杠杆值24417.0=ii ch 位居第五,库克距离80856.0=i D 。
再根据删除残差19133.275134=e ,库克距离23619.82234=D ,马氏距离01355.3834=Mahar 都出现了相当大的不合理性,因此我们认为第34个数据为异常值。
1.2 求解杠杆值由中心化的帽子矩阵主对角线元素可得:n h ch ii ii /1-=因此,∑==ni iip ch1,中心化杠杆值ii ch 的平均值是npch n h c n i ii ==∑=11故:1)、第15号位的中心化杠杆值为24417.0=ii ch ,平均杠杆值为13333.0152===n p h c ; 2)、第34号位的中心化杠杆值为23619.82234=D ,平均杠杆值为0.0588342===n p h c ; 1.3 消除异常值在前面我们检测出了异常值在第15号位和34号位,具体如下表:id Y X1 X2 X3 X4 X5 X6 C00k 距离 Mahal 距离 1 443 49 79 76 8 15 205 0.00124 3.48134 2 290 27 70 31 6 6 129 0.00118 6.76013 3 676 115 92 130 0 9 339 0.00081 14.18495 4 536 92 62 92 5 8 247 0.0093 3.1681 5 481 67 42 94 16 3 202 0.00097 4.82977 6 296 31 54 34 14 11 119 0 4.19383 7 453 105 60 47 5 10 212 0.0028 7.0377 8 617 114 85 84 17 20 285 0.00036 10.62387 9 514 98 72 71 12 -1 242 0.03478 4.66919 10 400 15 59 99 15 11 174 0.00002 9.56781 11 473626281912070.001552.7495712 157 25 11 7 9 9 45 0.09157 9.8669413 440 45 65 84 19 13 195 0.0088 5.3101814 480 92 75 63 9 20 232 0 7.2036515 136 27 26 82 4 17 134 0.80856 9.5225216 530 111 52 93 11 13 256 0.00399 5.9123717 610 78 102 84 5 7 266 0.04509 4.4926518 617 106 87 82 18 7 276 0.00635 4.5147219 600 97 98 71 12 8 266 0.00031 2.1353620 480 67 65 62 13 12 196 0.01049 0.9887621 279 38 26 44 10 8 110 0.00919 2.8594822 446 56 32 99 16 8 188 0.00797 5.8208823 450 54 100 50 11 15 205 0.00125 5.1332824 335 53 55 60 8 0 170 0.04237 3.4754925 459 61 53 79 6 5 193 0.01923 1.9885326 630 60 108 104 17 8 273 0.00032 6.9755827 483 83 78 71 11 8 233 0.00485 0.4780628 617 74 125 66 16 4 265 0.00398 7.3367629 605 89 121 71 8 8 283 0.00278 5.2646830 388 64 30 81 10 10 176 0.00128 2.5437331 351 34 44 65 7 9 143 0.01858 2.4045432 366 71 34 56 8 9 162 0.00372 2.4494633 493 88 30 87 13 0 207 0.01903 6.6552334 648 112 105 123 5 12 34 822.23619 38.0135535 449 57 69 72 5 4 200 0.00568 3.0536536 340 61 35 55 13 0 152 0.01539 4.3741737 292 29 45 47 13 13 123 0.00037 3.3843238 688 82 105 81 20 9 268 0.0791 5.256939 408 80 55 61 11 1 197 0.02569 2.8281440 461 82 88 54 14 7 225 0.04144 2.49016为了使模型的数据不存在异常点,我们取它附近数据的平均值代替异常值,重新组合数据,组合后的数据在(10.2 附录二),(原始数据中没有小数,为了保持一致性和合理性,我们对所求平均值按四舍五入法取数)。