2021年高三9月月考 数学文试题

合集下载

2021届高三9月月考数学(文)试题+答案

2021届高三9月月考数学(文)试题+答案

2021届高三上学期九月月考文科数学试题一.选择题(每小题5分,共60分)1.若集合{|3},{|2}A x x B x =<=≤,则A B =( )A .{|3}x x <B .{|03}x x ≤<C .{|03}x x <<D .{}|4x x ≤2.若复数21z i=-,则下列结论正确的是( ) A .||2z =B .z 的虚部为iC .1z i =-+D .22z i =3.设,m n R ∈,则“m n >”是112m n-⎛⎫< ⎪⎝⎭的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.已知函数1()3()3x xf x =-,则函数()f x ( )A .是奇函数,且在R 上是增函数B .是偶函数,且在R 上是增函数C .是奇函数,且在R 上是减函数D .是偶函数,且在R 上是减函数5.命题“10,1x lnx x∀>≥-”的否定是( ) A .101x lnx x ∃≤≥-, B .101x lnx x ∃≤<-, C .101x lnx x∃>≥-, D .101x lnx x∃><-, 6.已知()()2,3,4,5A B -,则与AB 共线的单位向量是( )A .31010,e ⎛⎫=- ⎪ ⎪⎝⎭B .31010,e ⎛⎫=- ⎪ ⎪⎝⎭或31010,e ⎛⎫=- ⎪ ⎪⎝⎭C .(6,2)e =-D .()6,2e =-或()6,2e =7.已知函数()()3log 1,01,02019x m x f x x ⎧+-≥⎪=⎨<⎪⎩的图象经过点()3,0,则()()2(f f = )A .2019B .12019C .2D .18.《九章算术》是我国古代数学成就的杰出代表作,其中有这样一个问题:“某贾人擅营,月入益功疾(意思是:某商人善于经营,从第2个月开始,每月比前一月多入相同量的铜钱),3月份入25贯,全年(按12个月计)共入510贯”,则该人1月份的入贯数为( ) A .5B .10C .12D .159.如图,已知A 、B 、C 、D 四点在同一条直线上,且面PAD 与地面垂直,在山顶P 点测得点A 、C 、D 的俯角分别为30︒、60︒、45︒,并测得200AB m =,100CD m =,现欲沿直线AD 开通穿山隧道,则隧道BC 的长为( ) A .100(31)m +B .200(31)m +C . 2003mD .1003m10.如图,过点0(1)M ,的直线与函数()sin π02y x x =≤≤的图象交于A ,B 两点,则()OM OA OB ⋅+等于( ) A .1 B .2 C .3D .411.已知函数f (x )=2sin(x +π6) (x ∈R ),将()y f x =的图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),再将得到的图象上所有点向右平行移动6π个单位长度,得到()y g x =的图象,则以下关于函数()y g x =的结论正确的是( ) A .若1x ,2x 是()g x 的零点,则12x x -是2π的整数倍B .函数()g x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增 C .点3,04π⎛⎫⎪⎝⎭是函数()g x 图象的对称中心 D .3x π=是函数()g x 图象的对称轴12.在ABC ∆中,角A B C ,,的对边分别为a b c ,,,已知c =2sin cos sin sin a C B a A b B =-+sin C ,点O 满足0OA OB OC ++=,3cos 8CAO ∠=,则ABC ∆的面积为( )A .B .C .D .二.填空题(每小题5分,共20分)13. 已知平面向量(1,2),(4,)a b m == ,若a b ⊥,则m =______14.已知定义在R 上的函数()f x 满足f(x +2)=f(x),当0<x ≤1时,()21x f x =-,则f(5)= ___________15.若x 0是函数f (x )=2x +3x 的零点,且x 0∈(a ,a +1),a ∈Z ,则a =_____.16.己知函数()sin cos f x x x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦有以下结论:①()f x 的图象关于直线y 轴对称 ②()f x 在区间35,44ππ⎡⎤⎢⎥⎣⎦上单调递减 ③()f x 的一个对称中心是,02π⎛⎫⎪⎝⎭④()f x 的最大值为12则上述说法正确的序号为__________(请填上所有正确序号) 三.解答题(17题10分,18-22每题12分,共70分) 17.(共10分)已知函数f (x )=sin (2x −π6)+12. (1)求()y f x =的单调减区间; (2)当[,]63x ππ∈时,求()f x 的最大值和最小值.18.(共12分)已知数列{}n a 的前n 项和为2230n S n n =-.(1)求出它的通项公式; (2)求使得n S 最小时n 的值.19. (共12分)已知ABC ∆的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =,(sin ,n B =sin )A ,(2,2)p b a =--.(1)若//m n ,求证:ABC ∆为等腰三角形;(2)若m p ⊥,边长2c =,角π3C =,求ABC ∆的面积.20. (共12分)设函数f(x)=x 2+1−lnx (1)求f(x)的单调区间;(2)求函数g(x)=f(x)−x 在区间[12,2]上的最小值.21.(共12分)已知向量()25cos ,sin ,(cos ,sin ),5a b a b ααββ==-=.(1)求cos()αβ-的值;(2)若0,022ππαβ<<-<<,且5sin 13β=-,求sin α.22.(共12分)已知函数()(sin cos )e x f x x x x =+-,()'f x 为()f x 的导函数.(1)设()()()g x f x f x '=-,求()g x 的单调区间;(2)若0x ≥,证明:()1f x x ≥-.高三上学期9月月考答案 一.选择题1.B2.D3.C4.A5.D6.B7.B8. D9.C 10.B 11.D 12.A 二.填空题 13.−2 14. 1 15.-1 16.②④ 三.解答题17.解:(1)函数f (x )=sin (2x −π6)+12.令3222,262k x k k πππππ+-+∈Z ≤≤,解得5,36k x k k Z ππππ+≤≤+∈则()f x 的单调减区间为5[,]36k k ππππ++,k ∈Z . (2)令26t x π=-,因为[,]63x ππ∈,则,62t ππ⎡⎤∈⎢⎥⎣⎦,即()1sin ,,262f t t t ππ⎡⎤=+∈⎢⎥⎣⎦,由于()sin f t t = 在,62t ππ⎡⎤∈⎢⎥⎣⎦上单调递增,则当6t π=时,()min 1f t =;当2t π=时,()max 32f t =.即()f x 的最大值为32,最小值为1.18. (1)当1n =时,1128a S ==-;当2n ≥时,1n n n a S S -=-22(230)2(1)30(1)n n n n ⎡⎤=-----⎣⎦432n =-1a 也适合此式,432n a n ∴=-.(2)22152252302()22n S n n n =-=--又因为n 是正整数,所以当7n =或8时,n S 最小.19.⑴因为,所以sin sin a A b B =,即··22a ba b R R=,其中R 是ABC ∆的外接圆半径, 所以a b =,所以ABC ∆为等腰三角形.⑵因为m p ⊥,所以()()220a b b a -+-=.由余弦定理可知,()22243a b ab a b ab =+-=+-,即()2340ab ab --= 解方程得:4ab =(1ab =-舍去)所以11sin 4sin 223S ab C π==⨯⨯=20.(1)定义域为(0,+∞),f '(x )=2x −1x ,由f '(x )>0得x >√22,∴f (x )的单调递减区间为(0,√22),单调递增区间为(√22,+∞);(2)g(x)=x 2+1−lnx −x g′(x )=2x −1x −1=(2x+1)(x−1)x,由g′(x )>0得x >1,∴g (x )在(12 , 1)上单调递减,在(1,2)上单调递增, ∴g (x )的最小值为g (1)=1. 21.22.(1)由已知,()(1cos sin )e (sin cos )e (12sin )e xxxf x x x x x x x x '=++++-=++,所以()()()(1sin cos )e x g x f x f x x x =-=++',()(12cos )e xg x x =+',令()0g x '>,得1cos 2x >-,解得2π2π2π2π,33k x k k Z -+<<+∈, 令()0g x '<,得1cos 2x <-,解得2π4π2π2π,33k x k k Z +<<+∈, 故()g x 的单调递增区间是2π2π(2π2π),33k k k -++∈Z ,; 单调递减区间是2π(2π,3k +4π2π),3k k +∈Z . (2)要证()1f x x ≥-,只需证:()10f x x +-≥.设()()1h x f x x =+-,0x ≥,则()()1(12sin )e 1xh x f x x x '+'=-=+-.记()()(12sin )e 1x t x h x x x ==++-',则()(22sin 2cos )e xt x x x x =+'++.当[0,π]x ∈时,sin 0x ≥,又22cos 0x +≥,e 0x >,所以()0t x '; 当(π,)x ∈+∞时,πx >,2sin 2x ≥-,所以2sin π20x x +>->,又22cos 0x +≥,e 0x >,所以()0t x '. 综上,当0x ≥时,()0t x '恒成立,所以()t x 在[0,)+∞上单调递增.所以,()(0)0t x t ≥=,即()0h x '≥,所以,()h x 在[0,)+∞上递增,则()(0)0h x h ≥=,证毕.。

2021-2022年高三9月月考 数学文试题 含答案

2021-2022年高三9月月考 数学文试题 含答案

2021-2022年高三9月月考 数学文试题 含答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.满足,且{}{}12312Ma a a a a =,,,的集合的个数是( )A .1 B .2C .3D .4 2.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上的点P(m ,-2)到焦点的距离为4,则m 的值为( )A .4B .-2C .4或-4D .12或-23.在△ABC 中,sinA ·sinB=cos 2,则△ABC 的形状一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形4.复数的共轭复数是( )A. B. C. D.5.若f(x)=- 12+blnx 在[1, +) 上是减函数,则的取值范围是( ) A . B . C .(-,1] D .6.已知等差数列的前项和为,且则( )A .11B .16C .20D .287、已知命题:函数在为增函数,:函数在为减函数,则在命题:,:,:和:中,真命题是( )A 、,B 、,C 、,D 、,8. 如图是周期为2π的三角函数y =f(x)的图象,那么f(x)可 以写成( )A.f(x)=sin(1+x)B.f(x)=sin(-1-x)C. f(x)=sin(x -1)D. f(x)=sin(1-x)9.下列命题中,是的充要条件的是( )①或;有两个不同的零点;②是偶函数;③;④。

A.①②B.②③C.③④D.①④10.设函数则函数()(log )(01)a g x f x a =<<的单调递增区间是( )A .B .C .D .12.已知函数是定义在上的偶函数,则“是周期函数”的一个充要条件是() A.B.,C.D.,二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13. 已知向量,若与垂直,则______.14. 、是双曲线的焦点,点P在双曲线上,若点P到焦点的距离等于9,则点P到焦点的距离等于 .15.已知函数,则函数的图象在点处的切线方程是 .16.给出下列命题:①函数f(x)=4cos(2x+)的一个对称中心为(,0);②已知函数f(x)=min{sinx,cosx},则f(x)的值域为[-1,];③若α、β均为第一象限角,且α>β,则sinα>sinβ.其中所有真命题的序号是______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. (本小题满分10分)在直角坐标系中,曲线C的参数方程为为参数),以该直角坐标系的原点O为极点,轴的正半轴为极轴的极坐标系下,曲线的方程为.(1)求曲线C 的普通方程和曲线的直角坐标方程;(2)设曲线C 和曲线的交点为、,求.18.(本小题满分12分)设命题P :函数在区间[-1,1]上单调递减;命题q :函数的值域是R.如果命题p 或q 为真命题,p 且q 为假命题,求a 的取值范围.19.(本小题满分12分)在中,(1) 求角B 的大小;(2) 求的取值范围.20. (本小题满分12分)已知,],0(,ln 2)(2e x x ax x f ∈-=其中是自然对数的底 .(1)若在处取得极值,求的值;(2)求的单调区间;21.(本小题满分12分)已知数列的各项均为正数,为其前项和,对于任意的,满足关系式(1)求数列的通项公式;(2)设数列的通项公式是,前项和为,求证:对于任意的正整数,总有22.(本小题满分12分)已知,椭圆C 过点A ⎝ ⎛⎭⎪⎫1,32,两个焦点为(-1,0),(1,0). (1)求椭圆C 的方程;(2)E ,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.一、BCBBC CCDDA AD二、13. 2 14. 17 15.4x-y-8=0 16. ①②_三、17. 解:(1)曲线的普通方程为,曲线的直角坐标方程为.……5分(2)曲线可化为,表示圆心在,半径的圆,则圆心到直线的距离为,所以.……10分18.解: p 为真命题在上恒成立,在上恒成立-------------------------4分q 为真命题恒成立 ---------------6分由题意p 和q 有且只有一个是真命题P 真q 假 p 假q 真32322a a a a a ⎧⇔⇔≤-≤⎨≤-≥⎩或2或综上所述:--------------------------------------12分19.解:(1)由已知得:,即∴∴-----------------------------------------------------------------5分(2)由(1)得:,故2222cos cos()2cos cos(2)31(cos 21)(cos 22)2212cos 2122sin(2)16A A C A A A A A A A A ππ+-=+-=++-+=++=++ 又 ∴的取值范围是------------------------12分20.(1 ) .由已知, 解得.经检验, 符合题意. ---------------------------------------3分(2) .1) 当时,在上是减函数.---------5分2)当时,2()() ()a aa x xa af xx+-'=.①若,即,则在上是减函数,在上是增函数;②若,即,则在上是减函数. ----10分综上所述,当时,的减区间是,当时,的减区间是,增区间是.-----------------12分21.解(1)由已知得故即故数列为等比数列,且又当时,而亦适合上式-----------------------------------6分 (2)所以--------------------------------12分22解:(1)由题意c =1,由定义|F 1A |+|F 2A | =4+94+94=4=2a , ∴a =2,∴b =3,∴椭圆方程为x 24+y 23=1. ……4分 (2)设直线AE 方程为:y =k (x -1)+32,代入x 24+y 23=1 得(3+4k 2)x 2+4k (3-2k )x +4⎝ ⎛⎭⎪⎫32-k 2-12=0 ……6分 设E (x E ,y E ),F (x F ,y F ),因为点A ⎝ ⎛⎭⎪⎫1,32在椭圆上, 所以x E =4⎝ ⎛⎭⎪⎫32-k 2-123+4k 2,y E =kx E +32-k ……7分 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以-k 代k ,可得x F =4⎝ ⎛⎭⎪⎫32+k 2-123+4k 2,y F =-kx F +32+k . ……9分 所以直线EF 的斜率 k EF =y F -y E x F -x E =-k (x F +x E )+2k x F -x E =12,……11分 即直线EF 的斜率为定值,其值为12.……12分` 31527 7B27 笧32143 7D8F 綏P20534 5036 倶0240096 9CA0 鲠# 35184 8970 襰Gb。

2021年高三第一次(9月)月考数学文试卷含答案

2021年高三第一次(9月)月考数学文试卷含答案

2021年高三第一次(9月)月考数学文试卷含答案班级________ _______姓名___________成绩___________一、选择题:(本大题共8小题;每小题5分,共40分,在每小题给出的四个选项中,有且只有一项是符合题目要求的.)1.已知集合,则()A. B. C. D.2.若,则=()A.1B.C.D.3.设,,则“”是“”的()A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件4.若,,则()A.B.C.D.5.函数的部分图像如图所示,则()A.B.C.D.6.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B. C.D.7.执行下图(见下页)的程序框图,如果输入的,那么输出的()A.3B.4C.5D.68.在平面直角坐标系中,为坐标原点,设向量,其中=(3,1),=(1,3).若,且,则点所有可能的位置区域用阴影表示正确的是( )二.填空题(本大题共6个小题,每小题5分,共30分.) 9.已知向量 ,则与夹角的大小为_________. 10.若满足约束条件,则的最小值为 ______.11.已知函数是定义在上的周期为2的奇函数,当时,,则=.12.设锐角△的三内角,所对边的边长分别为,且,则的取值范围为_________________. 13.若函数有3个不同的零点,则实数的取值范围是________________. 14.已知函数的单调递减区间是. (1)实数的值为________;(2)若在上为减函数,则实数的取值范围是________.三.解答题 (本大题共6个小题,共80分.解答应写出文字说明、证明过程或演算步骤.) 15.设函数.(1)求函数的最小正周期及单调递增区间;(2)当时,函数的最大值与最小值的和为32,求实数的值.16.已知函数是奇函数. (1)求实数的值;(2)设,若函数与的图像至少有一个公共点,求实数的取值范围.17.已知数列的前项和,是等差数列,且.(1)求数列的通项公式;(2)令.求数列的前项和.18.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(3)估计居民月均用水量的中位数.19.已知函数.(1)若,求函数的极值,并指出是极大值还是极小值;(2)若,求函数在上的最大值和最小值;(3)若,求证:在区间上函数的图像在函数的图像的下方.20.已知,.(1)令,求的单调区间;(2)已知在处取得极大值,求实数的取值范围.xx届高三年级第一次月考数学(文科)答案一、选择题1. D2.D3.C4.B5.A6.A7.B8.A二、填空题9.10.-5 11. -2 12. 13.(-2,2)14.(1)1/3(2)(0,1/3].三、解答题15.设函数f(x)=3sin x cos x+cos2x+a.(1)求函数f (x )的最小正周期及单调递增区间; (2)当x ∈[-π6,π3]时,函数f (x )的最大值与最小值的和为32,求实数a 的值. 解析 (1)∵f (x )=3sin x cos x +cos 2x +a =32sin2x +12(1+cos2x )+a =32sin2x +12cos2x +a +12=sin(2x +π6)+a +12,∴函数f (x )的最小正周期T =2π2=π. 令-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),解得-π3+k π≤x ≤π6+k π(k ∈Z ). 故函数f (x )的单调递增区间为[-π3+k π,π6+k π](k ∈Z ). (2)∵-π6≤x ≤π3,∴-π6≤2x +π6≤5π6. 当2x +π6=-π6时,函数f (x )取最小值,即f (x )min =-12+a +12=a ; 当2x +π6=π2时,函数f (x )取最大值,即f (x )max =1+a +12=a +32. ∴a +a +32=32,∴a =0.16.已知函数f (x )=4x+m2x 是奇函数.(1)求实数m 的值; (2)设g (x )=2x +1-a ,若函数f (x )与g (x )的图像至少有一个公共点,求实数a 的取值范围.解析 (1)由函数f (x )是奇函数可知f (0)=1+m =0,解得m =-1.(2)函数f (x )与g (x )的图像至少有一个公共点,即方程4x-12x =2x +1-a 至少有一个实根,即方程4x -a ·2x+1=0至少有一个实根.令t =2x>0,则方程t 2-at +1=0至少有一个正根. 方法一:由于a =t +1t≥2,∴a 的取值范围为[2,+∞).方法二:令h (t )=t 2-at +1,由于h (0)=1>0,∴只需⎩⎪⎨⎪⎧Δ≥0,a2>0,解得a ≥2.∴a 的取值范围为[2,+∞). 17.已知数列的前n 项和,是等差数列,且. (I )求数列的通项公式; (II )令.求数列的前n 项和. 【解析】试题分析:(Ⅰ)依题意建立的方程组,即得.18.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5), [0.5,1),……[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I )求直方图中的a 值;(II )设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (Ⅲ)估计居民月均用水量的中位数.解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08×0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5×a +0.5×a , 解得a =0.30.考点:频率分布直方图、频率、频数的计算公式 19.已知函数f (x )=12x 2+a ln x .(1)若a =-1,求函数f (x )的极值,并指出是极大值还是极小值; (2)若a =1,求函数f (x )在[1,e]上的最大值和最小值;(3)若a =1,求证:在区间[1,+∞)上函数f (x )的图像在函数g (x )=23x 3的图像的下方.解析 (1)由于函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=x -1x=x +1x -1x,令f ′(x )=0,得x =1或x =-1(舍去). 当x ∈(0,1)时,函数f (x )单调递减,当x ∈(1,+∞)时,函数f (x )单调递增,所以f (x )在x =1处取得极小值,极小值为12.(2)当a =1时,易知函数f (x )在[1,e]上为增函数,所以f (x )min =f (1)=12,f (x )max =f (e)=12e 2+1.(3)证明:设F (x )=f (x )-g (x )=12x 2+ln x -23x 3,则F ′(x )=x +1x -2x 2=1-x1+x +2x2x,当x >1时,F ′(x )<0,故F (x )在区间(1,+∞)上是减函数.又因为F (1)=-16<0,所以在区间[1,+∞)上F (x )<0恒成立,即f (x )<g (x )恒成立.因此,当a =1时,在区间[1,+∞)上函数f (x )的图像在函数g (x )图像的下方. 20.设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围.可得, 则,当时,时,,函数单调递增; 当时,时,,函数单调递增, 时,,函数单调递减.所以当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为.当时,,单调递减,所以在处取得极大值,合题意.综上可知,实数a的取值范围为.j33427 8293 芓25836 64EC 擬30024 7548 畈# 32257 7E01 縁27707 6C3B 氻27261 6A7D 橽23327 5B1F 嬟_26006 6596 斖28600 6FB8 澸。

2021年高三上学期9月月考数学试卷(文科)含解析

2021年高三上学期9月月考数学试卷(文科)含解析

2021年高三上学期9月月考数学试卷(文科)含解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设等差数列{an }的公差为非零常数d,且a1=1,若a1,a3,a13成等比数列,则公差d=()A.1 B.2 C.3 D.52.已知各项均为正数的等比数列{an }中,lg(a3•a8•a13)=6,则a1•a15的值等于()A.10000 B.1000 C.100 D.103.已知数列{an },an=2n+1,则=()A.B.1﹣2n C.D.1+2n4.已知数列{an }中a1=1以后各项由公式an=an﹣1+(n≥2)给出,则a4=()A.B.﹣C.D.5.已知数列﹣1,a1,a2,﹣4成等差数列,﹣1,b1,b2,b3﹣4成等比数列,则的值是()A.B.C.或D.6.已知Sn 为等比数列{an}的前n项和,a1=2,若数列{1+an}也是等比数列,则Sn等于()A.2n B.3n C.2n+1﹣2 D.3n﹣17.数列{a n}满足a1=1,a2=,且(n≥2),则a n等于()A. B.()n﹣1C.()n D.8.若S n为等差数列{a n}的前n项和,S9=﹣36,S13=﹣104,则a5与a7的等比中项为()A. B. C. D.329.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值10.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=n(n+1)(2n+1)吨,但如果年产量超过150吨,会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是()A.5年B.6年C.7年D.8年二、填空题(本大题共5小题,每小题5分,共25分.请把答案填在题中横线上)11.已知数列{a n}的前n项和S n和通项a n满足S n=(1﹣a n),则数列{a n}的通项为.12.已知{a n}为等差数列,且a3=﹣6,a6=0.等比数列{b n}满足b1=﹣8,b2=a1+a2+a3,则{b n}的前n项和S n=.13.已知数列{a n}的前n项和为S n,a1=1,若n≥2时,a n是S n与S n的等差中项,则S5=.﹣1=f(a n),则a xx=.14.已知函数f(x)对应关系如表所示,数列{a n}满足a1=3,a n+1x 1 2 3f(x) 3 2 12=p(n≥2,n∈N×,p为常数),则称{a n}为“等方差数列”,15.在数列{a n}中,若a n2﹣a n﹣1下列是对“等方差数列”的判断;①若{a n}是等方差数列,则{a n2}是等差数列;②{(﹣1)n}是等方差数列;③若{a n}是等方差数列,则{a}(k∈N,k为常数)也是等方差数列;+④若{a n}既是等方差数列,又是等差数列,则该数列为常数列.其中正确命题序号为.(将所有正确的命题序号填在横线上)三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)=4a n﹣2,且a1=2.16.已知数列{a n}的前n项和为S n,S n+1﹣2a n为常数C,并求出这个常数C;(Ⅰ)求证:对任意n∈N*,a n+1(Ⅱ)如果,求数列{b n}的前n项的和.17.在等比数列{a n}中,a n>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.(Ⅰ)求数列{a n}的通项公式;+log2a n(n=1,2,3…),求数列{b n}的前n项和S n.(Ⅱ)若数列{b n}满足b n=a n+118.设{a n}是等差数列,{b n}是各项都为正数的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(Ⅰ)求{a n}、{b n}的通项公式;(Ⅱ)求数列的前n项和S n.19.已知数列{a n}的前n项和为S n,对任意的n∈N*,点(a n,S n)都在直线2x﹣y﹣2=0的图象上.(1)求{a n}的通项公式;(2)是否存在等差数列{b n },使得a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•2n +1+2对一切n ∈N *都成立?若存在,求出{b n }的通项公式;若不存在,说明理由. 20.已知数列{a n }满足a 1=3,a n +1﹣3a n =3n (n ∈N +).数列{b n }满足b n =3﹣n a n . (1)求证:数列{b n }是等差数列;(2)设S n =+++…+,求满足不等式<<的所有正整数n 的值. 21.已知等差数列{a n }的前5项和为105,且a 10=2a 5. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .xx学年山东省潍坊市临朐中学高三(上)9月月考数学试卷(文科)(1)参考答案与试题解析一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设等差数列{a n}的公差为非零常数d,且a1=1,若a1,a3,a13成等比数列,则公差d=()A.1 B.2 C.3 D.5【考点】等比数列的性质;等差数列的通项公式.【分析】由a1,a3,a13成等比数列,利用等比数列的性质列出关系式,又数列{a n}为等差数列,利用等差数列的通项公式化简所得的关系式,把a1的值代入得到关于d的方程,根据d不为0,即可得到满足题意的d的值.【解答】解:∵a1,a3,a13成等比数列,∴a32=a1•a13,又数列{a n}为等差数列,∴(a1+2d)2=a1•(a1+12d),又a1=1,∴(1+2d)2=1+12d,即d(d﹣2)=0,由d≠0,可得d=2.故选B2.已知各项均为正数的等比数列{a n}中,lg(a3•a8•a13)=6,则a1•a15的值等于()A.10000 B.1000 C.100 D.10【考点】等比数列的性质.【分析】由等比数列和对数可得a8=100,进而可得a1•a15=a82=10000【解答】解:由题意可得lg(a3•a8•a13)=lg(a83)=3lga8=6,解得lga8=2,a8=100,∴a1•a15=a82=10000故选:A3.已知数列{a n},a n=2n+1,则=()A. B.1﹣2n C. D.1+2n【考点】等比数列的前n项和.【分析】先求出数列的第n项=,然后根据等比数列的求和公式进行求解即可.【解答】解:a n﹣a n=2n+1+1﹣(2n+1)=2n+1∴=∴=++…+=故选C.4.已知数列{a n}中a1=1以后各项由公式a n=a n+(n≥2)给出,则a4=()﹣1A. B.﹣C. D.【考点】数列递推式.【分析】因为,由此可知,,.【解答】解:∵,∴,,.故选A.5.已知数列﹣1,a1,a2,﹣4成等差数列,﹣1,b1,b2,b3﹣4成等比数列,则的值是()A. B. C.或D.【考点】等比数列的性质;等差数列的性质.【分析】由等差数列的通项公式可得﹣4=﹣1+3d,求得公差d=a2﹣a1的值,由等比数列的通项公式可得﹣4=﹣1q4,求得q2的值,即得b2的值,从而求得的值.【解答】解:∵数列﹣1,a1,a2,﹣4成等差数列,由﹣4=﹣1+3d,求得公差d=a2﹣a1==﹣1.∵﹣1,b1,b2,b3,﹣4成等比数列,由﹣4=﹣1q4,求得q2=2,∴b2=﹣1q2=﹣2.则==,故选A.6.已知S n为等比数列{a n}的前n项和,a1=2,若数列{1+a n}也是等比数列,则S n等于()A.2n B.3n C.2n+1﹣2 D.3n﹣1【考点】等比数列的性质;数列的求和.【分析】根据{a n}为等比数列可知a1a3=a22,由数列{a n+1}也是等比数列可知(a1+1)(a3+1)=(a2+1)2,两式联立可得a1=a3,推断{a n}是常数列,每一项是2,进而可得S n.【解答】解:{a n}为等比数列,则a1a3=a22,数列{a n+1}也是等比数列,则(a1+1)(a3+1)=(a2+1)2得:a1+a3=2a2∴(a1+a3)2=4(a2)2=4(a1a3)∴(a1﹣a3)2=0∴a1=a3即{a n}是常数列,a n=a1=2{a n+1}也是常数列,每一项都是3故S n=2n故答案选A7.数列{a n}满足a1=1,a2=,且(n≥2),则a n等于()A. B.()n﹣1C.()n D.【考点】数列递推式.【分析】将递推公式变形,得到一个新的等差数列,再求它的通项公式,然后求a n.【解答】解:∵(n≥2),∴∵a1=1,a2=,∴∴数列{}是以1为首项,以公差的等差数列,∴=∴故答案选A8.若S n为等差数列{a n}的前n项和,S9=﹣36,S13=﹣104,则a5与a7的等比中项为()A. B. C. D.32【考点】等差数列的前n项和;等比数列的性质.【分析】利用等差数列的求和公式及S9=﹣36,S13=﹣104可求首项及公差d,进而可求a5与a7,等比中项为A,则A2=a5•a7,代入可求【解答】解:设等差数列的首项为a1,公差为d由题意可得,解可得,a1=4,d=﹣2设a5与a7的等比中项为A,则A2=a5•a7=(﹣4)×(﹣8)=32所以,故选:C9.设{a n}(n∈N*)是等差数列,S n是其前n项的和,且S5<S6,S6=S7>S8,则下列结论错误的是()A.d<0 B.a7=0C.S9>S5D.S6与S7均为S n的最大值【考点】等差数列的前n项和.,易推出a6>0,a7=0,a8<0,然后逐一分析各【分析】利用结论:n≥2时,a n=s n﹣s n﹣1选项,排除错误答案.【解答】解:由S5<S6得a1+a2+a3+…+a5<a1+a2++a5+a6,即a6>0,又∵S6=S7,∴a1+a2+…+a6=a1+a2+…+a6+a7,∴a7=0,故B正确;同理由S7>S8,得a8<0,∵d=a7﹣a6<0,故A正确;而C选项S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由结论a7=0,a8<0,显然C 选项是错误的.∵S5<S6,S6=S7>S8,∴S6与S7均为S n的最大值,故D正确;故选C.10.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f(n)=n(n+1)(2n+1)吨,但如果年产量超过150吨,会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是()A.5年B.6年C.7年D.8年【考点】函数模型的选择与应用.【分析】先化简得到第n年的产量函数,再令第n年的年产量小于等于150,即可求得该厂这条生产线拟定最长的生产期限.【解答】解:第n年的年产量y=∵∴f(1)=3,当n ≥2时,,∴f (n )﹣f (n ﹣1)=3n 2. n=1时,也满足上式, ∴第n 年的年产量为y=3n 2. 令3n 2≤150, ∴n 2≤50, ∵n ∈N ,n ≥1 ∴1≤n ≤7∴n max =7. 故选C .二、填空题(本大题共5小题,每小题5分,共25分.请把答案填在题中横线上) 11.已知数列{a n }的前n 项和S n 和通项a n 满足S n =(1﹣a n ),则数列{a n }的通项为 a n =()n .【考点】数列递推式.【分析】由S n =(1﹣a n )知,当n ≥2时,a n =S n ﹣S n ﹣1=﹣a n +a n ﹣1,整理可得=,由S 1=a 1=(1﹣a 1)⇒a 1=,从而可知数列{a n }是首项为,公比为的等比数列,于是可求得数列{a n }的通项.【解答】解:因为S n =(1﹣a n ),所以,当n ≥2时,a n =S n ﹣S n ﹣1=(1﹣a n )﹣(1﹣a n ﹣1)=﹣a n +a n ﹣1, 化简得2a n =﹣a n +a n ﹣1,即=.又由S 1=a 1=(1﹣a 1),得a 1=,所以数列{a n }是首项为,公比为的等比数列. 所以a n =×()n ﹣1=()n .故答案为:a n =()n12.已知{a n }为等差数列,且a 3=﹣6,a 6=0.等比数列{b n }满足b 1=﹣8,b 2=a 1+a 2+a 3,则{b n }的前n 项和S n = 4(1﹣3n ) . 【考点】等比数列的前n 项和.【分析】利用等差数列与等比数列的通项公式与求和公式即可得出. 【解答】解:设等差数列{a n }的公差为d , ∵a 3=﹣6,a 6=0,∴, 解得a 1=﹣10,d=2,∴a n =﹣10+(n ﹣1)•2=2n ﹣12.设等比数列{b n }的公比为q ,∵b 2=a 1+a 2+a 3=﹣24,b 1=﹣8, ∴﹣8q=﹣24,即q=3,∴{b n }的前n 项和为S n ==4(1﹣3n ). 故答案为:4(1﹣3n ).13.已知数列{a n }的前n 项和为S n ,a 1=1,若n ≥2时,a n 是S n 与S n ﹣1的等差中项,则S 5= 81 .【考点】数列的求和.【分析】根据已知条件推知数列{a n }的通项公式,从而易求S 5的值. 【解答】解:由题意知n ≥2时,2a n =S n +S n ﹣1,①∴2a n +1=S n +1+S n ,②由②﹣①得:2a n +1﹣2a n =a n +1+a n , ∴a n +1=3a n (n ≥2),又n=2时,2a 2=S 2+S 1, ∴a 2=2a 1=2,∴数列{a n }中,a 1=1,a 2=2,a n =2×3n ﹣2(n ≥2), ∴S 5=81.故答案是:81.14.已知函数f (x )对应关系如表所示,数列{a n }满足a 1=3,a n +1=f (a n ),则a xx = 3 . x 1 2 3 f (x ) 3 2 1 【考点】函数的对应法则.【分析】根据表格中给出的值,归纳得到f (x )的函数式,把a n 和a n +1代入后得到递推式以a n +1=﹣a n +4,把n 换成n +1得另外一个式子,两式作差后得出数列{a n }的规律,从而求出a xx .【解答】解:由表可知:f (1)=3,f (2)=2,f (3)=1, 所以f (x )=﹣x +4, 因为a n +1=f (a n ),所以a n +1=﹣a n +4① 则a n +2=﹣a n +1+4②②﹣①得:a n +2=a n ,则a xx =a 2011=…=a 1=3. 故答案为3.15.在数列{a n }中,若a n 2﹣a n ﹣12=p (n ≥2,n ∈N ×,p 为常数),则称{a n }为“等方差数列”,下列是对“等方差数列”的判断;①若{a n }是等方差数列,则{a n 2}是等差数列; ②{(﹣1)n }是等方差数列;③若{a n }是等方差数列,则{a }(k ∈N +,k 为常数)也是等方差数列; ④若{a n }既是等方差数列,又是等差数列,则该数列为常数列. 其中正确命题序号为 ①②③④ .(将所有正确的命题序号填在横线上) 【考点】等差数列的性质.【分析】根据等差数列的性质及题中的等方差数列的新定义,即可判断出正确的答案. 【解答】解:①因为{a n }是等方差数列,所以a n 2﹣a n ﹣12=p (n ≥2,n ∈N ×,p 为常数)成立,得到{a n 2}为首项是a 12,公差为p 的等差数列;②因为a n 2﹣a n ﹣12=(﹣1)2n ﹣(﹣1)2n ﹣1=1﹣(﹣1)=2,所以数列{(﹣1)n }是等方差数列;③数列{a n }中的项列举出来是:a 1,a 2,…,a k ,a k +1,a k +2,…,a 2k ,…,a 3k ,… 数列{a kn }中的项列举出来是:a k ,a 2k ,a 3k ,…因为a k +12﹣a k 2=a k +22﹣a k +12=a k +32﹣a k +22=…=a 2k 2﹣a k 2=p所以(a k +12﹣a k 2)+(a k +22﹣a k +12)+(a k +32﹣a k +22)+…+(a 2k 2﹣a 2k ﹣12)=a 2k 2﹣a k 2=kp , 类似地有a kn 2﹣a kn ﹣12=a kn ﹣12﹣a kn ﹣22=…=a kn +32﹣a kn +22=a kn +22﹣a kn +12=a kn +12﹣a kn 2=p 同上连加可得a kn +12﹣a kn 2=kp ,所以,数列{a kn }是等方差数列;④{a n }既是等方差数列,又是等差数列,所以a n 2﹣a n ﹣12=p ,且a n ﹣a n ﹣1=d (d ≠0),所以a n +a n ﹣1=,联立解得a n =+,所以{a n }为常数列,当d=0时,显然{a n }为常数列,所以该数列为常数列. 综上,正确答案的序号为:①②③④ 故答案为:①②③④三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.已知数列{a n }的前n 项和为S n ,S n +1=4a n ﹣2,且a 1=2.(Ⅰ) 求证:对任意n ∈N *,a n +1﹣2a n 为常数C ,并求出这个常数C ; (Ⅱ)如果,求数列{b n }的前n 项的和. 【考点】数列递推式;数列的求和. 【分析】(Ⅰ) 利用S n +1=4a n ﹣2,与S n =4a n ﹣1﹣2,推出a n +1﹣2a n =(a 2﹣a 1)•2n ﹣1. 通过a 2+a 1=4a 1﹣2,a 1=2,推出a 2=4.得到C=0.(Ⅱ)利用,求出数列{b n }的通项公式,然后求出数列前n 项的和. 【解答】解:(Ⅰ)∵S n +1=4a n ﹣2,且S n =4a n ﹣1﹣2,相减得:a n +1=4(a n ﹣a n ﹣1), a n +1﹣2a n =2(a n ﹣a n ﹣1),∴a n +1﹣2a n =(a 2﹣2a 1)•2n ﹣1. 又a 2+a 1=4a 1﹣2,∵a 1=2,∴a 2=4.∴a n +1﹣2a n =0. ∴C=0.… (Ⅱ)∵, ∴=. ,所以数列{b n }是等比数列, ∴=…17.在等比数列{a n }中,a n >0(n ∈N *),且a 1a 3=4,a 3+1是a 2和a 4的等差中项. (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若数列{b n }满足b n =a n +1+log 2a n (n=1,2,3…),求数列{b n }的前n 项和S n . 【考点】等差数列与等比数列的综合;数列的求和. 【分析】(I )求数列{a n }的通项公式,设出公比为q ,由a 1a 3=4,a 3+1是a 2和a 4的等差中项,这两个方程联立即可求出首项与公比,通项易求. (II )若数列{b n }满足b n =a n +1+log 2a n (n=1,2,3…),由(I )知求数列{b n }的前n 项和S n 要用分组求和的技巧. 【解答】解:(I )设等比数列{a n }的公比为q . 由a 1a 3=4可得a 22=4, 因为a n >0,所以a 2=2 依题意有a 2+a 4=2(a 3+1),得2a 3=a 4=a 3q 因为a 3>0,所以,q=2.. 所以数列{a n }通项为a n =2n ﹣1 (II )b n =a n +1+log 2a n =2n +n ﹣1 可得=18.设{a n }是等差数列,{b n }是各项都为正数的等比数列,且a 1=b 1=1,a 3+b 5=21,a 5+b 3=13. (Ⅰ)求{a n }、{b n }的通项公式; (Ⅱ)求数列的前n 项和S n .【考点】等差数列的通项公式;等比数列的通项公式;数列的求和. 【分析】(Ⅰ)设{a n }的公差为d ,{b n }的公比为q ,根据等比数列和等差数列的通项公式,联立方程求得d 和q ,进而可得{a n }、{b n }的通项公式.(Ⅱ)数列的通项公式由等差和等比数列构成,进而可用错位相减法求得前n 项和S n . 【解答】解:(Ⅰ)设{a n }的公差为d ,{b n }的公比为q ,则依题意有q >0且 解得d=2,q=2.所以a n =1+(n ﹣1)d=2n ﹣1,b n =q n ﹣1=2n ﹣1.(Ⅱ), ,① S n =,②①﹣②得S n =1+2(++…+)﹣, 则===.19.已知数列{a n }的前n 项和为S n ,对任意的n ∈N *,点(a n ,S n )都在直线2x ﹣y ﹣2=0的图象上.(1)求{a n }的通项公式;(2)是否存在等差数列{b n },使得a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•2n +1+2对一切n ∈N *都成立?若存在,求出{b n }的通项公式;若不存在,说明理由. 【考点】数列与函数的综合;数列的求和. 【分析】(1)由题意得2a n ﹣S n ﹣2=0可得当n ≥2时由2a n ﹣S n ﹣2=0,2a n ﹣1﹣S n ﹣1﹣2=0两式相减可得即a n =2a n ﹣1可证(2)假设存在等差数列b n ,使得a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•2n +1+2对一切n ∈N *都成立,则n=1时,b 1,当n ≥2时由a 1b 1+a 2b 2+…+a n b n =(n ﹣1)•2n +1+2,a 1b 1+a 2b 2+a n ﹣1b n ﹣1=(n ﹣1﹣1)•2n +2,两式相减可求 【解答】解:(I )由题意得2a n ﹣S n ﹣2=0 当n=1时,2a 1﹣S 1﹣2=0得a 1=2当n ≥2时由2a n ﹣S n ﹣2=0(1)得2a n ﹣1﹣S n ﹣1﹣2=0(2) (1)﹣(2)得2a n ﹣2a n ﹣1﹣a n =0即a n =2a n ﹣1 因为a 1=2所以,所以a n 是以2为首项,2为公比的等比数列 所以a n =2•2n ﹣1=2n(2)假设存在等差数列b n ,使得a 1b 1+a 2b 2++a n b n =(n ﹣1)•2n +1+2对一切n ∈N *都成立 则当n=1时,a 1b 1=(1﹣1)•21+2得b 1=1当n ≥2时由a 1b 1+a 2b 2++a n b n =(n ﹣1)•2n +1+2(3) 得a 1b 1+a 2b 2+a n ﹣1b n ﹣1=(n ﹣1﹣1)•2n +2(4) (3)﹣(4)得a n b n =n •2n 即b n =n 当n=1时也满足条件,所以b n =n因为为等差数列{b n },故存在b n =n (n ∈N *)满足条件20.已知数列{a n }满足a 1=3,a n +1﹣3a n =3n (n ∈N +).数列{b n }满足b n =3﹣n a n . (1)求证:数列{b n }是等差数列;(2)设S n =+++…+,求满足不等式<<的所有正整数n 的值.【考点】数列递推式;数列与不等式的综合.【分析】(1)由b n =3﹣n a n 得a n =3n b n ,则a n +1=3n +1b n +1.由此入手,能够证明数列{b n }是等差数列;(2)因为数列{b n }是首项为b 1=3﹣1a 1=1,公差为等差数列,所以,a n =3n b n =(n +2)×3n ﹣1.由此能手能够求出满足不等式的所有正整数n 的值.【解答】(1)证明:由b n =3﹣n a n 得a n =3n b n ,则a n +1=3n +1b n +1. 代入a n +1﹣3a n =3n 中,得3n +1b n +1﹣3n +1b n =3n ,即得.所以数列{b n }是等差数列.(2)解:因为数列{b n }是首项为b 1=3﹣1a 1=1,公差为等差数列, 则,则a n =3n b n =(n +2)×3n ﹣1.从而有,故.则,由,得.即3<3n <127,得1<n ≤4.故满足不等式的所有正整数n 的值为2,3,4.21.已知等差数列{a n }的前5项和为105,且a 10=2a 5.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m .求数列{b m }的前m 项和S m .【考点】数列的求和;等差数列的前n 项和;等差数列的性质.【分析】(I )由已知利用等差数列的通项公式及求和公式代入可求a 1,d ,从而可求通项 (II )由(I )及已知可得,则可得,可证{b m }是等比数列,代入等比数列的求和公式可求【解答】解:(I )由已知得:解得a 1=7,d=7,所以通项公式为a n =7+(n ﹣1)•7=7n .(II )由,得n ≤72m ﹣1,即.∵=49∴{b m }是公比为49的等比数列,∴.xx年11月30日35664 8B50 譐27542 6B96 殖-W(26288 66B0 暰36557 8ECD 軍/L`-823162 5A7A 婺(26372 6704 朄。

2021-2022年高三9月月考数学文试题 含答案

2021-2022年高三9月月考数学文试题 含答案

2021-2022年高三9月月考数学文试题含答案一、选择题 (本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填填写在答题卷上)1.设集合,,则等于()A. B. C. D.2. 已知,则“是的等比中项”为“是的等差中项”的 ( )A.充分不必要条件 B. 充要条件 C. 必要不充分条件 D.既不充分也不必要条件3.已知复数是虚数单位,则复数的虚部是 ( )A. B. C. D.4. 函数的定义域为()A. B.C. D.5. 右面的程序框图输出S的值为()A.2 B.6 C.14 D.306.函数的零点所在的大致区间是()A.(3,4)B.(2,e) C.(1,2) D.(0,1)7.某同学根据自己的样本数据研究变量之间的关系,求得,对的线性回归方程为.请你根据已知数据估计当时的值为()A.1.5B.1.6C.1.7D.1.88.函数与在同一直角坐标系下的图像大致是( )9.对于任意,则满足不等式的概率为()A. B. C. D. 开始否是输出结10.定义在上的函数为偶函数且关于对称,当时,,则=+⋅⋅⋅+++)9()2()1()0(f f f f ( )A 、0B 、1C 、2D 、3第Ⅱ卷(主观题 共100 分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案写在相应位置上)11.对数函数2014)2013(log 2++=x y 的恒过定点为 。

12. 已知,且,则 。

13.已知为钝角,且,则 。

14.已知函数,则15. 已知函数, 若, 则实数的取值范围 .三、解答题(解答应写出文字说明,证明过程或演算步骤.) 16.(本题满分13分)设函数x x x x x f cos )cos(3cos sin )(π+-=17、(本题满分13分)在中,内角对边分别是,已知向量1),2sin 2,2(cos ),2sin ,2cos 2(-=⋅-==→→→→n m A A n A A m . (1)求的值;(2)若,求的值.18.(本题满分13分)某学校进行体检,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50人身材均介于到之间),现将抽取结果按如下方式分成八组:第一组,第二组,……,第八组,并按此分组绘制如下图所示的频率分布直方图,其中,第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第六组的人数为4人。

2021年高三数学9月月考试题 文(含解析)

2021年高三数学9月月考试题 文(含解析)

2021年高三数学9月月考试题文(含解析)【试卷综析】注重基础知识,基本技能的考查,符合新课程标准和命题的意图及宗旨。

解答题中,梯度明显,考查的都是集合与函数中的基本概念和基本方法,在关注学生基本能力的考查的同时,仍然紧扣双基。

总体感觉试题对学生双基的考查既全面又突出重点,对教师的教和学生的学检测到位,同时对后续的教与学又起到了良好的导向和激励.第1卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.【题文】1.设集合M={1,2,3},N={x|),则=( )A.{3} B.{2,3} C.{1,3} D.{1,2,3}【知识点】解不等式;集合运算. E1 A1【答案解析】A 解析:N={x|x>2},所以={3},故选A.【思路点拨】解出集合N中的不等式,从而求得.【题文】2.已知等比数列{}满足:.等,则=( )A. B. C.± D.±【知识点】等比数列的性质. D3【答案解析】B 解析:,所以,所以cos=,故选B.【思路点拨】由等比数列的性质得,所以cos=.【题文】3.已知,则的值为( )A. B. C. D.【知识点】诱导公式;二倍角公式. C2 C6【答案解析】D 解析:由得,所以,故选D.【思路点拨】由诱导公式得,再由二倍角公式得.【题文】4.已知命题,命题,则( )A.命题是假命题 B.命题是真命题C.命题是真命题 D.命题是假命题【知识点】基本逻辑连结词及量词. A3【答案解析】C 解析:因为命题p是真命题,命题q是假命题,所以命题是真命题,所以命题是真命题,故选C.【思路点拨】先判断题干中各命题的真假,再确定正确选项.【题文】5.若x>0, y>0且,则的最小值为( )A.3 B. C.2 D.3+【知识点】基本不等式求最值. E6【答案解析】D 解析:因为,所以x=-2y+1,即x+2y=1,又x>0, y>0,所以=(x+2y)()=3+,当且仅当时等号成立,故选D.【思路点拨】由已知条件得到x+2y=1,又x>0, y>0,所以=(x+2y)()=3+,当且仅当时等号成立.【题文】6.函数的大致图象是( )【知识点】导数的应用. B12【答案解析】B 解析:因为函数的定义域,所以得,经检验在上递增,在上递减,且最大值,故选B.【思路点拨】利用导数确定函数的单调性和最大值,从而求得正确选项.【题文】7.若是奇函数,且是函数的一个零点,则一定是下列哪个函数的零点( ) A. B. C. D.【知识点】奇函数定义;函数零点的意义. B4 B9【答案解析】C 解析:因为是函数的一个零点,所以,把,代入个选项得,选项C中,成立,故选C.【思路点拨】由已知得,把,代入个选项得,选项C正确.【题文】8.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知,,则cosA=( ) A. B. C. D.【知识点】解三角形. C8【答案解析】A 解析:由已知得,代入得,故选A.【思路点拨】根据已知条件可得a,b关于c的表达式,将其代入得所求结果.【题文】9.已知为区域内的任意一点,当该区域的面积为4时,的最大值是( )A.6 B.0 C.2 D.【知识点】线性规划. E5【答案解析】A 解析:画出可行域,由可行域面积为4得a=2,平移目标函数为0的直线y=2x,得使目标函数取得最大值的最优解是点(2,-2),所以的最大值是6,故选A.【思路点拨】画出可行域,根据已知得a=2,平移目标函数为0的直线y=2x,得使目标函数取得最大值的最优解是点(2,-2),所以的最大值是6.【题文】10.在△ABC中,E,F分别在边AB,AC上,D为BC的中点,满足,,则 cos A = ( ) A.0 B. C. D.【知识点】向量的线性运算;向量的数量积. F1 F3【答案解析】D 解析:AC=b, ,则AB=2b,根据题意得:= ,同理,因为,所以,整理得,即,所以,故选D.【思路点拨】把已知中涉及到的线段所对应的向量,都用向量表示,再用,得向量间的等量关系,从而求得cos A的值.第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小l15分,共25分,把答案填写在答题卡相应位置上.【题文】11.已知,其中i为虚数单位,则=____________.【知识点】复数的运算. L4【答案解析】5 解析:由得,所以a=2,b=3,所以a+b=5.【思路点拨】利用复数乘法变形已知等式,得,所以a=2,b=3,所以a+b=5.【题文】12.已知等差数列{}的前n项和为,若,则=____________.【知识点】等差数列的性质及前n项和公式. D2【答案解析】36 解析:由已知得,所以.【思路点拨】利用等差数列的性质及前n项和公式求解.【题文】13.已知为单位向量,,则____________.【知识点】向量的坐标运算. F2【答案解析】23 解析:设,因为为单位向量,所以①,又,所以②,由①②得3x+4y=23,所以3x+4y=23.【思路点拨】设,利用已知得到关于x,y的方程组求得x,y的值,或x,y的关系,代入关于x,y的表达式即可.【题文】14.设m,n,p∈R,且,,则p的最大值和最小值的差为__ __.【知识点】直线与圆有公共点的条件. H4【答案解析】解析:把m,n看成变量p看成字母常数,则方程有解的条件是,把直线代入圆消去n整理得:,由判别式得,解得,所以p的最大值和最小值的差为.【思路点拨】把m,n看成变量p看成字母常数,利用直线与圆有公共点的条件得p的最大值与最小值,从而求得p的最大值和最小值的差.【题文】15.函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<-≤≤>-=,1)21(2,2sin2),1(log)(2015xxxxxxfxπ,若a,b,c,d是互不相等的实数,且,则a+b+c+d的取值范围为___ .【知识点】分段函数. B1【答案解析】(4,xx) 解析:设=m,a<b<c<d,由函数的图像可知,平移直线y=m可得:当m趋向于0时,a、b都趋向于0,c、d都趋向于2,a+b+c+d趋向于0+0+2+2=4;当m趋向于1时,a趋向于-1,b、c都趋向于1,而d趋向于xx,a+b+c+d趋向于-1+1+1+xx=xx,所以a+b+c+d的取值范围为(4,xx).【思路点拨】作函数的图像,设=m,a<b<c<d,由函数的图像可知,平移直线y=m可得结论. 三.解答题:本大题6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.【题文】16.(13分)等差数列{}满足:,,其中为数列{}前n项和.(I)求数列{}通项公式;(II)若,且,,成等比数列,求k值.【知识点】等差数列;等比数列. D2 D3【答案解析】(Ⅰ)n;(Ⅱ)4. 解析:(Ⅰ)由条件,;(Ⅱ),∵22329(21)4 k k ka a S k k k k k=⋅⇒=⋅+⇒=.【思路点拨】(Ⅰ)把等差数列的通项公式、前n项和公式,代入已知等式得关于的方程组,求得,进而求;(Ⅱ)利用等差数列的通项公式、前n项和公式,求得,,,代入得关于k的方程解出k值.【题文】17.(13分)某中学高二年级的甲、乙两个班中,需根据某次数学预赛成绩选出某班的5名学生参加数学竞赛决赛,已知这次预赛他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班5名学生成绩的平均分是83,乙班5名学生成绩的中位数是86.求出x,y的值,且分别求甲、乙两个班中5名学生成绩的方差、,并根据结果,你认为应该选派哪一个班的学生参加决赛?(II)从成绩在85分及以上的学生中随机抽取2名.求至少有1名来自甲班的概率.【知识点】茎叶图;一组数据的数字特征;古典概型;I2 K2【答案解析】(Ⅰ)x=5,y=6,,,应选甲班参加;(Ⅱ) .解析:(Ⅰ)甲班的平均分为1748284(80)908355xx x+++++==⇒=,易知.;又乙班的平均分为,∴;∵,,说明甲班同学成绩更加稳定,故应选甲班参加.(Ⅱ) 分及以上甲班有人,设为;乙班有人,设为,从这人中抽取人的选法有:,共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为.【思路点拨】(Ⅰ)根据平均数、中位数、方差的计算公式求得各值,通过比较平均数、方差得选派参加比赛的班;(Ⅱ) 分及以上甲班有人,乙班有人,用列举法写出,从这人中抽取人的选法共种,其中甲班至少有名学生的选法有种,则甲班至少有名学生被抽到的概率为. 【题文】18.(13分)已知函数(I)当a=2时,求曲线在点A(1,f(1))处的切线方程;(II)讨论函数f(x)的单调性与极值.【知识点】导数的应用. B12【答案解析】(Ⅰ);(Ⅱ)①当时,在上单调递增,无极值;②当时,在上单调递减,在上单调递增,,无极大值.解析:(Ⅰ)时,,,∴,又,故切线方程为:即.(Ⅱ)函数的定义域为,令①当时,在上单调递增,无极值;②当时,在上单调递减,在上单调递增,,无极大值.【思路点拨】(Ⅰ)根据导数的几何意义求得曲线在点A处切线的斜率,从而写出切线方程;(Ⅱ)先确定函数的定义域,再求函数的导函数,由导函数大于0得,所以,①当时,在上单调递增,无极值;②当时,在上单调递减,在上单调递增,,无极大值.【题文】19.(12分)设函数)0(41coscos)6sin()(2>-+⋅-=ϖϖϖπϖxxxxf图像上的一个最高点为A,其相邻的一个最低点为B,且|AB|=.(I)求的值;(II)设△ABC的内角A、B、C的对边分别为a、b、c,且b+c=2,,求的值域.【知识点】函数的图像与性质;解三角形. C4 C8【答案解析】(Ⅰ) ;(Ⅱ) . 解析:(Ⅰ) ,由条件得,.(Ⅱ)由余弦定理:bcbccbAbccba343)(cos22222-=-+=-+=又,故,又,故由,,所以的值域为.【思路点拨】(Ⅰ)由二倍角公式、两角和与差的三角函数得,再由相邻最高点与最低点间距离为得周期T=2,从而求得的值;(Ⅱ)由已知条件及余弦定理得,又,故,又,故,由,,所以的值域为:.【题文】20.(12分)已知数列{}的前n 项和为,且满足.(I)证明:数列为等比数列,并求数列{}的通项公式;(II)数列{}满足,其前n 项和为,试求满足的最小正整数n .【知识点】数列综合问题. D5【答案解析】(Ⅰ)证明数列为等比数列.略, ;(Ⅱ)8.解析:(Ⅰ)当时,;当时,1111212221(1)2n nn n n n n n n S n a a a a a a S n a ----+=⎫⇒+=-⇒=+⎬+-=⎭;即(),且,故为等比数列().(Ⅱ)设 ………………① 23121222(1)22n n n K n n +=⨯+⨯++-⨯+⨯… …………② ①②:231112(12)222222(1)2212n n n n n n K n n n +++--=++++-⨯=-⨯=-⨯--…∴, ∴,21(1)22201582n n n n T n n +++=-⨯+>⇒≥,∴满足条件的最小正整数【思路点拨】(Ⅰ)利用公式将已知递推公式转化为关于的递推公式,从而证得数列为等比数列,由此进一步求得;(Ⅱ)由条件求得,从而求得数列的前n 项和,所以21(1)22201582n n n n T n n +++=-⨯+>⇒≥,∴满足条件的最小正整数.【题文】21.(12分)对于函数与常数a ,b ,若恒成立,则称(a ,b )为函数的一个“P 数对”:设函数的定义域为,且f(1)=3.(I)若(a ,b )是的一个“P 数对”,且,,求常数a ,b 的值;(Ⅱ)若(1,1)是的一个“P 数对”,求;(Ⅲ)若()是的一个“P 数对”,且当时,,求k 的值及在区间上的最大值与最小值.【知识点】函数综合问题. B14【答案解析】(Ⅰ);(Ⅱ);(Ⅲ)当时,在上的最大值为,最小值为3;当且为奇数时,在上的最大值为,最小值为;当为偶数时,在上的最大值为,最小值为.解析:(Ⅰ)由题意知,即,解得:(Ⅱ)由题意知恒成立,令,可得,∴是公差为1的等差数列故,又,故.(Ⅲ)当时,,令,可得,解得,所以,时,,故在上的值域是.又是的一个“数对”,故恒成立,当时,,…,故为奇数时,在上的取值范围是;当为偶数时,在上的取值范围是.所以当时,在上的最大值为,最小值为3;当且为奇数时,在上的最大值为,最小值为;当为偶数时,在上的最大值为,最小值为.【思路点拨】(Ⅰ)根据“P数对”的定义及已知得,关于a,b的方程组,求得a,b值;(Ⅱ)因为(1,1)是的一个“P数对”,所以恒成立,令,可得,∴是公差为1的等差数列,因为,故.(Ⅲ)因为当时,,又f(1)=3,所以,所以,时,,故在上的值域是.又是的一个“数对”,故恒成立,当时,,…,故为奇数时,在上的取值范围是;当为偶数时,在上的取值范围是.所以当时,在上的最大值为,最小值为3;当且为奇数时,在上的最大值为,最小值为;当为偶数时,在上的最大值为,最小值为. 22768 58F0 声J21875 5573 啳29828 7484 璄i 34377 8649 虉j 34293 85F5 藵25978 657A 敺20705 50E1 僡 +。

2021年高三上学期9月月考数学试卷含解析

2021年高三上学期9月月考数学试卷含解析

2021年高三上学期9月月考数学试卷含解析一、填空题:(每题5分,共计70分)1.已知A={﹣1,0,2},B={﹣1,1},则A∪B= .2.已知复数z=,(i为虚数单位)则复数z的实部为.3.写出命题:“若x=3,则x2﹣2x﹣3=0”的否命题:.4.一位篮球运动员在最近的5场比赛中得分的茎叶图如图,则他在这5场比赛中得分的方差是.5.如图所示的流程图,输出的n= .6.已知抛物线y2=8x的焦点是双曲线的右焦点,则双曲线的渐近线方程为.7.若实数x,y满足不等式组,则z=x+2y的最大值为.8.已知圆柱的轴截面是边长为2的正方形,则圆柱的表面积为.9.在等差数列{a n}中,S n为其前n项的和,若a3=8,S3=20,则S5= .10.将y=sin2x的图象向右平移φ单位(φ>0),使得平移后的图象仍过点(),则φ的最小值为.11.若直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,则a= .12.已知函数f(x)=,为奇函数,则不等式f(x)<4的解集为.13.在三角形ABC中,已知AB=3,A=120°,△ABC的面积为,则•的值= .14.设点P,M,N分别在函数y=2x+2,y=,y=x+3的图象上,且=2,则点P横坐标的取值范围为.二、解答题:(满分90分,作答请写出必要的解答过程)15.已知f(x)=sinx+acosx,(1)若a=,求f(x)的最大值及对应的x的值.(2)若f()=0,f(x)=(0<x<π),求tanx的值.16.已知三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,D为PB中点,E为PC的中点,(1)求证:BC∥平面ADE;(2)求证:平面AED⊥平面PAB.17.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)18.已知椭圆C:+=1(a>b>0)的离心率为,且过点A(1,).(1)求椭圆C的方程;(2)若点B在椭圆上,点D在y轴上,且=2,求直线AB方程.19.已知数列{a n}满足a1=1,a2=a>0,数列{b n}满足b n=a n•a n+1(1)若{a n}为等比数列,求{b n}的前n项的和s n;(2)若b n=3n,求数列{a n}的通项公式;(3)若b n=n+2,求证:++…+>2﹣3.20.已知函数f(x)=e x,g(x)=lnx,(1)求证:f(x)≥x+1;(2)设x0>1,求证:存在唯一的x0使得g(x)图象在点A(x0,g(x0))处的切线l与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得|﹣1|<a成立.xx学年江苏省淮安市淮阴中学高三(上)9月月考数学试卷参考答案与试题解析一、填空题:(每题5分,共计70分)1.已知A={﹣1,0,2},B={﹣1,1},则A∪B= {﹣1,0,1,2} .考点:并集及其运算.专题:集合.分析:利用并集的性质求解.解答:解:∵A={﹣1,0,2},B={﹣1,1},∴A∪B{﹣1,0,1,2},故答案为:{﹣1,0,1,2}.点评:本题考查并集的求法,是基础题,解题时要认真审题.2.已知复数z=,(i为虚数单位)则复数z的实部为 1 .考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、实部的定义即可得出.解答:解:∵复数z===i+1.∴复数z的实部为1.故答案为:1.点评:本题考查了复数的运算法则、实部的定义,属于基础题.3.写出命题:“若x=3,则x2﹣2x﹣3=0”的否命题:“若x≠3则x2﹣2x﹣3≠0”.考点:四种命题.专题:简易逻辑.分析:若原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,然后再通过方程根的有关结论,验证它们的真假即可.解答:解:原命题的形式是“若p,则q”,它的否命题是“若非p,则非q”,∴命题:“若x=3,则x2﹣2x﹣3=0”的否命题是“若x≠3则x2﹣2x﹣3≠0”.故答案为:“若x≠3则x2﹣2x﹣3≠0”.点评:写四种命题时应先分清原命题的题设和结论,在写出原命题的否命题、逆命题、逆否命题,属于基础知识.4.一位篮球运动员在最近的5场比赛中得分的茎叶图如图,则他在这5场比赛中得分的方差是 2 .考点:茎叶图.专题:概率与统计.分析:先求得数据的平均数,再利用方差计算公式计算.解答:解:==10,∴方差Dx=×(4+1+0+1+4)=2.故答案为:2.点评:本题考查了由茎叶图求数据的方差,熟练掌握方差的计算公式是解题的关键.5.如图所示的流程图,输出的n= 4 .考点:程序框图.专题:算法和程序框图.分析:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.解答:解:当n=1时,S=1,不满足退出循环的条件,故n=2,S=4;当S=4,不满足退出循环的条件,故n=3,S=9;当S=9,不满足退出循环的条件,故n=4,S=16;当S=16,满足退出循环的条件,故输出的n值为4,故答案为:4点评:本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.6.已知抛物线y2=8x的焦点是双曲线的右焦点,则双曲线的渐近线方程为.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的方程,算出它的焦点为F(2,0),即为双曲线的右焦点,由此建立关于a的等式并解出a值,进而可得此双曲线的渐近线方程.解答:解:∵抛物线方程为y2=8x,∴2p=8,=2,可得抛物线的焦点为F(2,0).∵抛物线y2=8x的焦点是双曲线的右焦点,∴双曲线的右焦点为(2,0),可得c==2,解得a2=1,因此双曲线的方程为,可得a=1且b=,∴双曲线的渐近线方程为y=x,即.故答案为:点评:本题给出双曲线的右焦点与已知抛物线的焦点相同,求双曲线的渐近线方程.着重考查了抛物线的简单性质、双曲线的标准方程与简单几何性质等知识,属于基础题.7.若实数x,y满足不等式组,则z=x+2y的最大值为 6 .考点:简单线性规划.专题:计算题;不等式的解法及应用.分析:作出题中不等式组对应的平面区域如图,将直线l:z=x+2y进行平移,并观察它在轴上截距的变化,可得当l经过区域的右上顶点A时,z达到最大值.由此求出A点坐标,不难得到本题的答案.解答:解:作出不等式组对应的平面区域如右图,是位于△ABO及其内部的阴影部分.将直线l:z=x+2y进行平移,可知越向上平移,z的值越大,当l经过区域的右上顶点A时,z达到最大值由解得A(2,2)∴z max=F(2,2)=2+2×2=6故答案为:6点评:本题给出线性约束条件,求目标函数的最大值,着重考查了二元一次不等式组表示的平面区域和简单线性规划等知识点,属于基础题.8.已知圆柱的轴截面是边长为2的正方形,则圆柱的表面积为6π.考点:棱柱、棱锥、棱台的侧面积和表面积.专题:计算题;空间位置关系与距离.分析:由圆柱的轴截面是边长为2的正方形可得圆柱底面圆的直径长为2,高为2.解答:解:∵圆柱的轴截面是边长为2的正方形,∴圆柱底面圆的直径长为2,高为2.则圆柱的表面积S=2•π•2+2•π•12=6π.故答案为6π.点评:考查了学生的空间想象力.9.在等差数列{a n}中,S n为其前n项的和,若a3=8,S3=20,则S5= 40 .考点:等差数列的前n项和.专题:等差数列与等比数列.分析:设出等差数列的首项和公差,由已知列式求出首项和公差,则答案可求.解答:解:设等差数列{a n}的首项为a1,公差为d,由若a3=8,S3=20,得,解得:.∴.故答案为:40.点评:本题考查了等差数列的前n项和,考查了等差数列的通项公式,是基础的计算题.10.将y=sin2x的图象向右平移φ单位(φ>0),使得平移后的图象仍过点(),则φ的最小值为.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.专题:计算题.分析:利用正弦函数的函数值相等,结合三角函数的图象的平移,判断平移的最小值即可.解答:解:因为y=sin2×=sin=,所以函数y=sin2x的图象向右平移单位,得到的图象仍过点(),所以φ的最小值为.故答案为:.点评:本题考查三角函数的值与函数的图象的平移,考查计算能力.11.若直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,则a= ﹣2 .考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由圆的方程,得到圆心与半径,根据直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,可得直线l:y=x+a过圆心,即可求出a的值.解答:解:∵圆(x﹣2)2+y2=1,∴圆心为:(2,0),半径为:1∵直线l:y=x+a被圆(x﹣2)2+y2=1截得的弦长为2,∴直线l:y=x+a过圆心,∴a=﹣2.故答案为:﹣2.点评:本题主要考查直与圆的位置关系及其方程的应用,是常考题型,属中档题.12.已知函数f(x)=,为奇函数,则不等式f(x)<4的解集为(﹣∞,4).考点:其他不等式的解法.专题:函数的性质及应用.分析:根据函数奇偶性的定义,求出a,b,即可得到结论.解答:解:若x>0,则﹣x<0,则f(﹣x)=bx2+3x,∵f(x)是奇函数,∴f(﹣x)=﹣f(x),即bx2+3x=﹣x2﹣ax,则b=﹣1,a=﹣3,即f(x)=,若x≥0,则不等式f(x)<4等价x2﹣3x<4,即x2﹣3x﹣4<0,解得﹣1<x<4,此时0≤x<4,若x<0,不等式f(x)<4等价﹣x2﹣3x<4,即x2+3x+4>0,此时不等式恒成立,综上x<4.即不等式的解集为(﹣∞,4).点评:本题主要考查不等式的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.13.在三角形ABC中,已知AB=3,A=120°,△ABC的面积为,则•的值= .考点:平面向量数量积的运算.专题:解三角形.分析:利用三角形面积公式列出关系式,将c,sinA及已知面积代入求出b的值,再利用余弦定理列出关系式,把b,c,cosA的值代入计算即可求出a的值,然后利用余弦定理求cosB,结合数量积的定义求•的值.解答:解:∵AB=c=3,A=120°,△ABC的面积为,∴S△ABC=bcsinA=b=,即b=5,由余弦定理得:a2=b2+c2﹣2bccosA=25+9+15=49,则BC=a=7.由余弦定理得cosB=•=accosB=7×3×=.点评:此题考查了余弦定理,三角形的面积公式以及向量的数量积的运算,熟练掌握定理及公式是解本题的关键.14.设点P,M,N分别在函数y=2x+2,y=,y=x+3的图象上,且=2,则点P横坐标的取值范围为..考点:向量数乘的运算及其几何意义.专题:平面向量及应用.分析:如图所示,由=2,可得点P是线段MN的中点.设M(x1,y1),P(x,y),N(x2,y2).可得,,,(0≤x1≤4),y2=x2+3,y=2x+2.化为2x=﹣1﹣x1(0≤x1≤4).令f(t)=(0≤t≤4).利用导数研究其单调性极值与最值,即可得出.解答:解:如图所示,∵=2,∴点P是线段MN的中点.设M(x1,y1),P(x,y),N(x2,y2).∴,,,(0≤x1≤4),y2=x2+3,y=2x+2.化为2x=﹣1﹣x1(0≤x1≤4).令f(t)=(0≤t≤4).f′(t)=﹣1,当2≤t≤4时,f′(t)<0,函数f(t)单调递减.当0≤t<2时,f′(t)=0,解得,则当时,函数f(t)单调递增;当时,函数f(t)单调递减.而极大值即最大值=﹣3,又f(0)=﹣1,f(4)=﹣5.∴点P横坐标的取值范围为.故答案为:.点评:本题考查了利用导数研究函数的单调性极值与最值、向量的共线、分类讨论思想方法,考查了推理能力和计算能力,属于难题.二、解答题:(满分90分,作答请写出必要的解答过程)15.(14分)(xx秋•泗洪县校级期中)已知f(x)=sinx+acosx,(1)若a=,求f(x)的最大值及对应的x的值.(2)若f()=0,f(x)=(0<x<π),求tanx的值.考点:两角和与差的正弦函数;三角函数线.专题:三角函数的求值;三角函数的图像与性质.分析:(1)a=时,利用两角和的正弦值化简f(x),求出x取何值时f(x)有最大值;(2)由f()=0求出a的值,再由f(x)=,求出cosx、sinx的值,从而求出tanx的值.解答:解:(1)a=时,f(x)=sinx+cosx=2sin(x+),…(2分)当sin(x+)=1,即x+=+2kπ(k∈Z),∴x=+2kπ(k∈Z)时,f(x)有最大值2;…(6分)(2)∵f()=sin+acos=+a=0,∴a=﹣1;…(8分)∴f(x)=sinx﹣cosx=,∴,∴,即(cosx+)cosx=;整理得,25cos2x+5cosx﹣12=0,解得,cosx=,或cosx=﹣;当cosx=时,sinx=,当cosx=﹣时,sinx=﹣;又∵x∈(0,π)∴取;∴tanx=.…(14分)点评:本题考查了三角恒等变换的应用问题以及三角函数求值的问题,也考查了一定的计算能力,是较基础题.16.已知三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,D为PB中点,E为PC的中点,(1)求证:BC∥平面ADE;(2)求证:平面AED⊥平面PAB.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:证明题;空间位置关系与距离.分析:(1)由中位线定理和线面平行的判定定理,即可得证;(2)由线面垂直的性质和判定定理,以及通过面面垂直的判定定理,即可得证.解答:(1)证明:∵PE=EC,PD=DB,∴DE∥BC,∵DE⊂平面ADE,BC⊄平面ADE,∴BC∥平面ADE;(2)证明:∵PA⊥平面PAC,BC⊂平面PAC,∴PA⊥CB,∵AB⊥CB,AB∩PA=A,∴BC⊥平面PAB,∵DE∥BC∴DE⊥平面PAB,又∵DE⊂平面ADE,∴平面ADE⊥平面PAB.点评:本题考查线面平行的判定定理和线面垂直的判定和性质,以及面面垂直的判定定理,注意定理的条件的全面,属于基础题.17.小张于年初支出50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小张在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售收入为25﹣x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小张获得的年平均利润最大?(利润=累计收入+销售收入﹣总支出)考点:根据实际问题选择函数类型;基本不等式.专题:综合题;函数的性质及应用.分析:(1)求出第x年年底,该车运输累计收入与总支出的差,令其大于0,即可得到结论;(2)利用利润=累计收入+销售收入﹣总支出,可得平均利润,利用基本不等式,可得结论.解答:解:(1)设大货车运输到第x年年底,该车运输累计收入与总支出的差为y万元,则y=25x﹣[6x+x(x﹣1)]﹣50=﹣x2+20x﹣50(0<x≤10,x∈N)由﹣x2+20x﹣50>0,可得10﹣5<x<10+5∵2<10﹣5<3,故从第3年,该车运输累计收入超过总支出;(2)∵利润=累计收入+销售收入﹣总支出,∴二手车出售后,小张的年平均利润为=19﹣(x+)≤19﹣10=9当且仅当x=5时,等号成立∴小张应当在第5年将大货车出售,能使小张获得的年平均利润最大.点评:本题考查函数模型的构建,考查基本不等式的运用,考查学生的计算能力,属于中档题.18.已知椭圆C:+=1(a>b>0)的离心率为,且过点A(1,).(1)求椭圆C的方程;(2)若点B在椭圆上,点D在y轴上,且=2,求直线AB方程.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(1)由已知得,,由此能求出椭圆方程.(2)设B(x0,y0),D(0,m),则,,由此能求出直线方程.解答:解:(1)∵椭圆C:+=1(a>b>0)的离心率为,且过点A(1,),∴,∴a=2c,…(2分)∴b2=a2﹣c2=3c2设椭圆方程为:,∴∴椭圆方程为:…(7分)(2)设B(x0,y0),D(0,m),则,,∴﹣x0=2,m﹣y0=3﹣2m,即x0=﹣2,y0=3m﹣3,代入椭圆方程得m=1,∴D(0,1),…(14分)∴.…(16分)点评:本题主要考查椭圆方程的求法,考查直线方程的求法,考查直线与椭圆等知识,同时考查解析几何的基本思想方法和运算求解能力.19.已知数列{a n}满足a1=1,a2=a>0,数列{b n}满足b n=a n•a n+1(1)若{a n}为等比数列,求{b n}的前n项的和s n;(2)若b n=3n,求数列{a n}的通项公式;(3)若b n=n+2,求证:++…+>2﹣3.考点:数列与不等式的综合;数列的求和;数列递推式.专题:等差数列与等比数列;不等式的解法及应用.分析:(1)分a=1和a≠1求出等比数列{a n}的通项公式,进一步求得{b n}是等比数列,则其前n项和s n可求;(2)把b n=3n代入b n=a n•a n+1,然后分n为奇数和偶数得到数列{a n}的偶数项和奇数项为等比数列,由等比数列的通项公式得答案;(3)由b n=n+2得到a n a n+1=n+2,进一步得到,代入++…+整理后利用基本不等式证得结论.解答:(1)解:由a1=1,a2=a>0,若{a n}为等比数列,则,∴.当a=1时,b n=1,则s n=n;当a≠1时,.(2)解:∵3n=a n•a n+1,∴3n﹣1=a n﹣1•a n(n≥2,n∈N),∴.当n=2k+1(k∈N*)时,∴;当n=2k,(k∈N*)时,∴.∴.(3)证明:∵a n a n+1=n+2 ①,∴a n﹣1a n=n+1(n≥2)②,①﹣②得∴=(a3﹣a1)+(a4﹣a2)+…+(a n+1﹣a n﹣1)=a n+a n+1﹣a1﹣a2∴=.∵,∴>﹣3.点评:本题是数列与不等式综合题,考查了等比关系的确定,考查了首项转化思想方法,训练了放缩法证明数列不等式,是压轴题.20.已知函数f(x)=e x,g(x)=lnx,(1)求证:f(x)≥x+1;(2)设x0>1,求证:存在唯一的x0使得g(x)图象在点A(x0,g(x0))处的切线l与y=f(x)图象也相切;(3)求证:对任意给定的正数a,总存在正数x,使得|﹣1|<a成立.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.分析:(1)构造函数F(x)=e x﹣x﹣1,求函数的导数即可证明f(x)≥x+1;(2)求函数的导数,利用导数的几何意义即可证明存在唯一的x0使得g(x)图象在点A (x0,g(x0))处的切线l与y=f(x)图象也相切;(3)求函数的导数,利用导数和不等式之间的关系即可证明对任意给定的正数a,总存在正数x,使得|﹣1|<a成立.解答:解:(1)令F(x)=e x﹣x﹣1,x∈R,∵F'(x)=e x﹣1=0得x=0,∴当x>0时F'(x)>0,F(x)递增;当x<0时F'(x)<0,F(x)递减;∴F(x)min=F(0)=0,由最小值定义得F(x)≥F(x)min=0即e x≥x+1.(2)g(x)在x=x0处切线方程为①设直线l与y=e x图象相切于点,则l:②,由①②得,∴⑤下证x0在(1,+∞)上存在且唯一.令,,∴G(x)在(1,+∞)上递增.又,G(x)图象连续,∴存在唯一x0∈(1,+∞)使⑤式成立,从而由③④可确立x1.故得证.(1)由(1)知即证当a>0时不等式e x﹣1﹣x<ax即e x﹣ax﹣x﹣1<0在(0,+∞)上有解.令H(x)=e x﹣ax﹣x﹣1,即证H(x)min<0,由H'(x)=e x﹣a﹣1=0得x=ln(a+1)>0.当0<x<ln(a+1)时,H'(x)<0,H(x)递减,当x>ln(a+1)时,H'(x)>0,H(x)递增.∴H(x)min=H(ln(a+1))=a+1﹣aln(a+1)﹣ln(a+1)﹣1.令V(x)=x﹣xlnx﹣1,其中x=a+1>1则V'(x)=1﹣(1+lnx)=﹣lnx<0,∴V(x)递减,∴V(x)<V(1)=0.综上得证.点评:本题主要考查导数的综合应用,综合性较强,运算量较大.25479 6387 掇36279 8DB7 趷h31814 7C46 籆31899 7C9B 粛c>37172 9134 鄴638874 97DA 韚21629 547D 命Q23777 5CE1 峡。

2020-2021学年上海市杨浦区控江中学高三(上)9月月考数学试卷

2020-2021学年上海市杨浦区控江中学高三(上)9月月考数学试卷

2020-2021学年上海市杨浦区控江中学高三(上)9月月考数学试卷试题数:21,总分:01.(填空题,0分)设集合A={1,2,3,4},B={x|x>1},则A∩B=___ .2.(填空题,0分)已知复数z满足z(1-2i)=5(i为虚数单位),则|z|=___ .3.(填空题,0分)若函数f(x)=2x-3,则f-1(1)=___ .4.(填空题,0分)已知x∈(0,π2),则方程|2sinx112cosx|=0的解集是___ .5.(填空题,0分)已知某圆锥体的底面半径为r=3,沿圆锥体的母线把侧面展开后得到一个圆心为2π3的扇形,则该圆锥体的母线长是___ .6.(填空题,0分)函数f(x)=cos2x−sin2x−13,x∈(0,π)的单调递增区间是___ .7.(填空题,0分)设F1、F2分别为双曲线x2a2 - y2b2=1(a>0,b>0)的左、右焦点,若在双曲线右支上存在点P,满足|PF1|-|PF2|= 35|F1F2|,则该双曲线的渐近线方程为___ .8.(填空题,0分)在(1+x)n的二项展开式中,若a n是所有二项式系数的和,则n→∞(1a1+1a2+⋯+1a n) =___ .9.(填空题,0分)控江中学高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,若选出的人中至少有一名女生,则共有___ 种不同的选法.10.(填空题,0分)设θ∈(−π2,π2),若函数f(x)=sin(x+θ)+√3cos(x+θ)是奇函数,则θ=___ .11.(填空题,0分)已知α:1≤x≤4,β:log22x-4a•log4x+1≤0,若α是β成立的必要条件,则实数a的取值范围是___ .12.(填空题,0分)设m∈R.若对于任意实数a,都存在x∈[-2,2]满足|x2-1|+|x-a|>m,则m的取值范围是___ .13.(单选题,0分)已知向量a⃗、b⃗⃗,则“ a⃗=±b⃗⃗”是“ |a⃗|=|b⃗⃗|”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件14.(单选题,0分)将函数 y =sin (x −π6) 的图象上所有的点向右平移 π4 个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A. y =sin (2x −5π12) B. y =sin (x2+π12) C. y =sin (x2−5π12) D. y =sin (x2−5π24)15.(单选题,0分)若等比数列{a n }的公比为q (q≠0),则关于x 、y 的二元一次方程组 {a 1x +a 3y =4a 2x +a 4y =−3的解,下列说法中正确的是( ) A.对任意q∈R (q≠0),方程组都有无穷多组解 B.对任意q∈R (q≠0),方程组都无解 C.当且仅当 q =−34时,方程组无解D.当且仅当 q =−34 时,方程组有无穷多组解16.(单选题,0分)已知f (x ),g (x )都是定义在R 上的函数,下列两个命题: ① 若f (x )、g (x )都不是单调函数,则f (g (x ))不是增函数.② 若f (x )、g (x )都是非奇非偶函数,则f (g (x ))不是偶函数.则( ) A. ① ② 都正确 B. ① 正确 ② 错误 C. ① 错误 ② 正确 D. ① ② 都错误17.(问答题,0分)在棱长为2的正方体ABCD-A 1B 1C 1D 1中,(如图)E 是棱C 1D 1的中点,F 是侧面AA 1D 1D 的中心. (1)求三棱锥A 1-D 1EF 的体积;(2)求EF 与底面A 1B 1C 1D 1所成的角的大小.(结果可用反三角函数表示)18.(问答题,0分)已知等差数列{a n }中,a 2=5,a 5=14,设数列{b n }的前n 项和为S n ,且S n =2b n -1.(1)求a n ,b n 的通项公式;(2)设数列{c n }满足c n =a n +b n ,求{c n }的前n 项和T n .19.(问答题,0分)如图,一艘湖面清运船在A 处发现位于它正西方向的B 处和北偏东30°方向上的C 处分别有需要清扫的垃圾,红外线感应测量发现机器人到B 的距离比到C 的距离少40米,于是选择沿A→B→C 路线清扫.已知清运船的直线行走速度为2米/秒,总共用了100秒钟完成了清扫任务(忽略清运船打捞垃圾及在B 处转向所用时间). (1)B 、C 两处垃圾的距离是多少?(2)清运船此次清扫行走路线的夹角∠B 是多少?(用反三角函数表示)20.(问答题,0分)已知直线l 与圆锥曲线C 相交于两点A ,B ,与x 轴,y 轴分别交于D 、E 两点,且满足 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ EB ⃗⃗⃗⃗⃗⃗=λ2BD⃗⃗⃗⃗⃗⃗⃗ (1)已知直线l 的方程为y=2x-4,抛物线C 的方程为y 2=4x ,求λ1+λ2的值; (2)已知直线l :x=my+1(m >1),椭圆C :x 22+y 2 =1,求1λ1+1λ2的取值范围; (3)已知双曲线C : x 23−y 2=1,λ1+λ2=6 ,求点D 的坐标.21.(问答题,0分)已知函数y=f (x ),x∈D ,如果对于定义域D 内的任意实数x ,对于给定的非零常数P ,总存在非零常数T ,恒有f (x+T )<P•f (x )成立,则称函数f (x )是D上的P级递减周期函数,周期为T.若恒有f(x+T)=P•f(x)成立,则称函数f(x)是D 上的P级周期函数,周期为T.(1)已知函数f(x)=x2+a是[2,+∞)上的周期为1的2级递减周期函数,求实数a的取值范围;(2)已知T=1,y=f(x)是[0,+∞)上P级周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数P的取值范围;(3)是否存在非零实数k,使函数f(x)=(12)x•coskx是R上的周期为T的T级周期函数?请证明你的结论.2020-2021学年上海市杨浦区控江中学高三(上)9月月考数学试卷参考答案与试题解析试题数:21,总分:01.(填空题,0分)设集合A={1,2,3,4},B={x|x>1},则A∩B=___ .【正确答案】:[1]{2,3,4}【解析】:进行交集的运算即可.【解答】:解:∵A={1,2,3,4},B={x|x>1},∴A∩B={2,3,4}.故答案为:{2,3,4}.【点评】:本题考查了列举法、描述法的定义,交集的定义及运算,考查了计算能力,属于基础题.2.(填空题,0分)已知复数z满足z(1-2i)=5(i为虚数单位),则|z|=___ .【正确答案】:[1] √5【解析】:根据(1-2i)z=5,可得z= 51−2i,由此能求出结果.【解答】:解:∵(1-2i)z=5,∴z= 51−2i = 5(1+2i)(1−2i)(1+2i)= 5(1+2i)5=1+2i,故|z|= √1+4 = √5,故答案为:√5.【点评】:本题考查两个复数代数形式的除法,两个复数相除,分子和分母同时乘以分母的共轭复数,考查复数求模问题,是一道基础题.3.(填空题,0分)若函数f(x)=2x-3,则f-1(1)=___ .【正确答案】:[1]2【解析】:根据反函数的性质只需令f(x)=1,解出x的解即为所求.【解答】:解:令2x-3=1,解得x=2,所以根据反函数的性质可得f-1(1)=2,故答案为:2.【点评】:本题考查了反函数的性质,属于基础题.4.(填空题,0分)已知x∈(0,π2),则方程|2sinx112cosx|=0的解集是___ .【正确答案】:[1]{ π12,5π12}【解析】:利用行列式的定义及二倍角公式化简已知等式可得sin2x= 12,可解得x=kπ+ π12,或x=kπ+ 5π12,k∈Z,结合范围x∈(0,π2)即可求解.【解答】:解:因为|2sinx112cosx|=0,可得4sinxcosx-1=0,即sin2x= 12,所以2x=2kπ+ π6,或2x=2kπ+ 5π6,k∈Z,解得x=kπ+ π12,或x=kπ+ 5π12,k∈Z,又因为x∈(0,π2),所以x= π12,或5π12,即方程|2sinx112cosx|=0的解集是{ π12,5π12}.故答案为:{ π12,5π12}.【点评】:本题主要考查了行列式的定义及二倍角公式在三角函数化简求值中的应用,考查了转化思想和函数思想,属于基础题.5.(填空题,0分)已知某圆锥体的底面半径为r=3,沿圆锥体的母线把侧面展开后得到一个圆心为2π3的扇形,则该圆锥体的母线长是___ .【正确答案】:[1]9【解析】:设圆锥体的母线长为R,根据底面圆周长等于展开图扇形的弧长,列方程求出R的值.【解答】:解:某圆锥体的底面半径为r=3,沿圆锥体的母线把侧面展开后得到一个圆心为2π3的扇形,设圆锥体的母线长为R,则2πr= 2π3• 12π•2πR,解得R=3r=9,∴圆锥体的母线长为9.故答案为:9.【点评】:本题考查了圆锥体的底面圆周长与侧面展开图的应用问题,是基础题. 6.(填空题,0分)函数 f (x )=cos 2x −sin 2x −13 ,x∈(0,π)的单调递增区间是___ . 【正确答案】:[1][ π2 ,π)【解析】:由已知利用二倍角公式可得f (x )=cos2x- 13 ,可求范围2x∈(0,2π),利用余弦函数的单调性即可求解.【解答】:解:因为 f (x )=cos 2x −sin 2x −13 =cos2x- 13 , 又x∈(0,π),2x∈(0,2π), 令π≤2x <2π,解得 π2 ≤x <π,可得f (x )的单调递增区间是[ π2 ,π). 故答案为:[ π2 ,π).【点评】:本题主要考查了二倍角的余弦函数公式及余弦函数的单调性,考查了函数思想,属于基础题.7.(填空题,0分)设F 1、F 2分别为双曲线 x 2a 2 - y 2b 2 =1(a >0,b >0)的左、右焦点,若在双曲线右支上存在点P ,满足|PF 1|-|PF 2|= 35 |F 1F 2|,则该双曲线的渐近线方程为___ . 【正确答案】:[1] y =±43x【解析】:利用双曲线的定义,结合条件,确定a ,b ,c 的关系,即可求出双曲线的渐近线方程.【解答】:解:∵|PF 1|-|PF 2|= 35 |F 1F 2|, ∴2a= 35•2c , ∴a= 35 c , ∴b= 45 a ,∴双曲线的渐近线方程为y=± ba x ,即 y =±43x ; 故答案为: y =±43x .【点评】:本题考查双曲线的渐近线方程,考查双曲线的定义,考查学生的计算能力,比较基础.8.(填空题,0分)在(1+x)n的二项展开式中,若a n是所有二项式系数的和,则n→∞(1a1+1a2+⋯+1a n) =___ .【正确答案】:[1]1【解析】:由已知可得a n=2n,再由等比数列的求和公式求得1a1+1a2+⋯+1a n,取极限得答案.【解答】:解:由题意,a n=2n,则1a1+1a2+⋯+1a n= 12+122+⋯+12n=12(1−12n)1−12= 1−12n.∴n→∞(1a1+1a2+⋯+1a n) = limn→∞(1−12n)=1.故答案为:1.【点评】:本题考查二项式系数的性质,考查等比数列的前n项和及数列极限的求法,是基础题.9.(填空题,0分)控江中学高三(1)班班委会由4名男生和3名女生组成,现从中任选3人参加上海市某社区敬老服务工作,若选出的人中至少有一名女生,则共有___ 种不同的选法.【正确答案】:[1]31【解析】:根据题意,用间接法分析:先计算从7名学生中任选3人的选法,再排除其中没有女生,即全部为男生的选法,即可得答案.【解答】:解:根据题意,共有4名男生和3名女生,共7名学生,从中选出3人,由C73=35种选法,若没有女生,即全部为男生,有C43=4种选法,则至少有一名女生的选法有35-4=31种,故答案为:31.【点评】:本题考查排列组合的应用,注意用间接法分析,避免分类讨论,属于基础题.10.(填空题,0分)设θ∈(−π2,π2),若函数f(x)=sin(x+θ)+√3cos(x+θ)是奇函数,则θ=___ .【正确答案】:[1] −π3【解析】:由题意利用两角和差的三角公式花简函数的解析式,再利用三角函数的奇偶性可得θ+ π3 =kπ,k∈Z ,∴由此求得θ的值.【解答】:解:设 θ∈(−π2,π2) ,若函数 f (x )=sin (x +θ)+√3cos (x +θ) =2sin (x+θ+ π3 )是奇函数,故θ+ π3 =kπ,k∈Z ,∴k=0,θ=- π3 , 故答案为:- π3 .【点评】:本题主要考查两角和差的三角公式,三角函数的奇偶性,属于基础题.11.(填空题,0分)已知α:1≤x≤4,β:log 22x-4a•log 4x+1≤0,若α是β成立的必要条件,则实数a 的取值范围是___ . 【正确答案】:[1] (−∞,54]【解析】:α是β成立的必要条件则{x|log 22x-4a•log 4x+1≤0}⊆{x|1≤x≤4},利用换元法可得 {t|a ≥12(t +1t )}⊆[0,2] ,结合图象可得实数a 的取值范围.【解答】:解:由题意,{x|log 22x-4a•log 4x +1≤0}⊆{x|1≤x≤4} 令t=log 2x ,则β即t 2-2at+1≤0(*),由题意转化为关于t 的不等式(*)的解集是集合{t|0≤t≤2}的子集, ① 若不等式(*)的解集为∅,此时 △=4a 2-4<0,解得-1<a <1;② 若不等式(*)的解集不为∅,令f (t )=t 2-2at+1,对称轴为x=a , 则 {Δ⩾00⩽a ⩽2f (0)⩾0f (2)⩾0 ,解得 1≤a ≤54 .综上所述a 的取值范围(-1, 54], 故答案为:(-1, 54].【点评】:本题考查了必要条件与集合之间的关系,考查了数形结合求解运算能力,属于中档题.12.(填空题,0分)设m∈R .若对于任意实数a ,都存在x∈[-2,2]满足|x 2-1|+|x-a|>m ,则m 的取值范围是___ . 【正确答案】:[1](-∞,5)【解析】:记f (x )=|x 2-1|+|x-a|,x∈[-2,2],易得f (x )max =max{f (-2),f (2)},然后求出[f (x )max ]min ,再根据条件得到m 的取值范围.【解答】:解:记f (x )=|x 2-1|+|x-a|,x∈[-2,2],易得f (x )max =max{f (-2),f (2)}=max{3+|2-a|,3+|2+a|}, ∵当a≥0时,3+|2+a|1≥3+|2-a|,当a <0时,3+|2+a|<3+|2-a|,∴ f (x )max ={3+|2+a |=a +5,a ≥03+|2−a |=−a +5,a <0 ,∴当a=0时,[f (x )max ]min =5,∵任意实数a ,都存在x∈[-2,2]满足|x 2-1|+|x-a|>m , ∴[f (x )max ]min =5>m , ∴m 的取值范围是(-∞,5).【点评】:本题考查了绝对值不等式有解问题,考查了分类讨论思想,属中档题. 13.(单选题,0分)已知向量 a ⃗ 、 b ⃗⃗ ,则“ a ⃗=±b ⃗⃗ ”是“ |a ⃗|=|b ⃗⃗| ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件 【正确答案】:A【解析】:借助向量的概念,根据充分条件和必要条件的定义即可判断.【解答】:解:“ a ⃗=±b ⃗⃗ ”一定能推出“ |a ⃗|=|b⃗⃗| ”,反之则不能, 例如 a ⃗ =(1,0), b ⃗⃗ =(0,1),则满足“ |a ⃗|=|b ⃗⃗| ”,不满足“ a ⃗=±b ⃗⃗ ”, 故“ a ⃗=±b ⃗⃗ ”是“ |a ⃗|=|b ⃗⃗| ”的充分不必要条件, 故选:A .【点评】:本题考查了向量的概念和充分条件必要条件的概念,属于基础题.14.(单选题,0分)将函数 y =sin (x −π6) 的图象上所有的点向右平移 π4 个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( )A. y =sin (2x −5π12)B. y =sin (x 2+π12) C. y =sin (x 2−5π12)D. y =sin (x 2−5π24) 【正确答案】:C【解析】:根据三角函数图象平移法则,即可写出平移变换后的函数解析式.【解答】:解:函数 y =sin (x −π6) 的图象上所有的点向右平移 π4 个单位长度,得y=sin[(x- π4 )- π6 ]=sin (x- 5π12 )的图象,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),得y=sin ( 12 x- 5π12 )的图象;∴函数的解析式为y=sin ( x 2 - 5π12 ).故选:C .【点评】:本题考查了三角函数图象平移法则的应用问题,是基础题.15.(单选题,0分)若等比数列{a n }的公比为q (q≠0),则关于x 、y 的二元一次方程组 {a 1x +a 3y =4a 2x +a 4y =−3的解,下列说法中正确的是( ) A.对任意q∈R (q≠0),方程组都有无穷多组解B.对任意q∈R (q≠0),方程组都无解C.当且仅当 q =−34 时,方程组无解D.当且仅当 q =−34 时,方程组有无穷多组解【正确答案】:D【解析】:对原方程组利用加减消元法得到:0=4q+3,求得q 的值,即可得到正确选项.【解答】:解:由题设知: {a 1x +a 3y =4①a 2x +a 4y =−3②, 由 ① ×q - ② 得:0=4q+3,解得:q=- 34 ,∴方程组有无穷多组解⇔q=- 34 ,故选:D .【点评】:本题主要考查等比数列与一元二次方程组的综合及充要条件,属于基础题.16.(单选题,0分)已知f(x),g(x)都是定义在R上的函数,下列两个命题:① 若f(x)、g(x)都不是单调函数,则f(g(x))不是增函数.② 若f(x)、g(x)都是非奇非偶函数,则f(g(x))不是偶函数.则()A. ① ② 都正确B. ① 正确② 错误C. ① 错误② 正确D. ① ② 都错误【正确答案】:D【解析】:根据题意,对于两个命题,举出反例可得两个命题都错误,即可得答案.【解答】:解:根据题意,对于① ② 两个命题:① 的反例:f(x)=g(x)={1x,x≠00,x=0,则f(g(x))=x,② 的反例:f(x)=(x+1)2,g(x)=x-1,则① ② 都错误,故选:D.【点评】:本题考查函数奇偶性的性质以及应用,注意举出反例进行分析,属于基础题.17.(问答题,0分)在棱长为2的正方体ABCD-A1B1C1D1中,(如图)E是棱C1D1的中点,F是侧面AA1D1D的中心.(1)求三棱锥A1-D1EF的体积;(2)求EF与底面A1B1C1D1所成的角的大小.(结果可用反三角函数表示)【正确答案】:【解析】:(1)由已知中棱长为2的正方体ABCD-A1B1C1D1中,E是棱C1D1的中点,F是侧面AA1D1D的中心,我们利用等体积法,可得三棱锥A1-D1EF的体积等于三棱锥E-D1A1F的体积,分别求出其底面面积和高,代入棱锥的体积公式,即可得到答案.(2)取A1D1的中点G,易得FG⊥平面A1B1C1D1,根据线面夹角的定义可得∠GEF即为EF与底面A1B1C1D1所成的角的平面角,解Rt△GEF即可得到EF与底面A1B1C1D1所成的角的大小.【解答】:解:(1)V A1−D1EF =V E−A1D1F=13•1•1=13.(6分)(体积公式正确3分)(2)取A1D1的中点G,则FG⊥平面A1B1C1D1,EF在底面A1B1C1D1的射影为GE,所求的角的大小等于∠GEF的大小,(8分)在Rt△GEF中tan∠GEF=√22,所以EF与底面A1B1C1D1所成的角的大小是arctan√22.(12分)【点评】:本题考查的知识点是棱锥的体积,直线与平面所成的角,其中(1)的关键是利用等体积法,将求三棱锥A1-D1EF的体积转化为求三棱锥E-D1A1F的体积,降低运算的难度,(2)的关键是确定出∠GEF即为EF与底面A1B1C1D1所成的角的平面角.18.(问答题,0分)已知等差数列{a n}中,a2=5,a5=14,设数列{b n}的前n项和为S n,且S n=2b n-1.(1)求a n,b n的通项公式;(2)设数列{c n}满足c n=a n+b n,求{c n}的前n项和T n.【正确答案】:【解析】:(1)直接利用等差数列的性质的应用和递推关系式的应用求出数列的通项公式;(2)利用(1)的通项公式,进一步利用分组法求出数列的和.【解答】:解:(1)等差数列{a n}中,设首项为a1,公差为d,由于a2=5,a5=14,所以{a1+d=5a1+4d=14,解得{a1=2d=3,故a n=2+3(n-1)=3n-1.数列{b n}的前n项和为S n,且S n=2b n-1 ① ,当n=1时,解得b1=1,当n≥2时,S n-1=2b n-1-1 ② ,① - ② 得:b n=2b n-2b n-1,整理得b n=2b n-1,即b nb n−1=2(常数),所以数列{b n}是以1为首项,2为公比的等比数列.所以b n=2n−1(首项符合通项),故b n=2n−1.(2)由(1)得:c n=a n+b n=(3n−1)+2n−1,故T n=2+20+5+21+⋯+(3n−1)+2n−1,=(2+5+…+3n-1)+(20+21+…+2n-1),= n(2+3n−1)2+(2n−1)2−1,= 3n2+n2+2n−1.【点评】:本题考查的知识要点:数列的通项公式的求法,数列的求和,分组法求数列的和,主要考查学生的运算能力和转换能力及思维能力,属于基础题.19.(问答题,0分)如图,一艘湖面清运船在A处发现位于它正西方向的B处和北偏东30°方向上的C处分别有需要清扫的垃圾,红外线感应测量发现机器人到B的距离比到C的距离少40米,于是选择沿A→B→C路线清扫.已知清运船的直线行走速度为2米/秒,总共用了100秒钟完成了清扫任务(忽略清运船打捞垃圾及在B处转向所用时间).(1)B、C两处垃圾的距离是多少?(2)清运船此次清扫行走路线的夹角∠B是多少?(用反三角函数表示)【正确答案】:【解析】:(1)由题意C 在A 处北偏东30°方向上,可得∠CAB=90°+30°=120°,及|AB|,|AC|与|BC|的关系,在三角形ABC 中由余弦定理可得|BC|的值.(2)由(1)可得|BC|,|AC|,∠BAC=120°,由正弦定理可得sin∠B 的值.【解答】:解:(1)由题意可得|AB|+|BC|=2×100=200,|AC|-|AB|=40,所以|AC|+|BC|=240,|AB|=200-|BC|,|AC|=240-|BC|,因为C 在A 处北偏东30°方向上,所以∠CAB=90°+30°=120°,在三角形ABC 中,∠BAC=120°,由余弦定理可得|BC|2=|AB|2+|AC|2-2|AB||AC|cos120°=(200-|BC|)2+(240-|BC|)2+(200-|BC|)(240-|BC|),整理可得|BC|2-660|BC|+72800=0,解得|BC|=140,或|BC|=520(舍),所以B 、C 两处垃圾的距离是140米;(2)由(1)可得|BC|=140,|AC|=240-140=100,∠CAB=120°, 由正弦定理可得 |AC|sin∠B = |BC|sin∠CAB ,所以sin∠B= |AC||BC| •sin120°= 100140 × √32 = 5√314 ,可得∠B=arcsin 5√314 .【点评】:本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和数形结合思想的应用,属于中档题.20.(问答题,0分)已知直线l 与圆锥曲线C 相交于两点A ,B ,与x 轴,y 轴分别交于D 、E两点,且满足 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ EB ⃗⃗⃗⃗⃗⃗=λ2BD⃗⃗⃗⃗⃗⃗⃗ (1)已知直线l 的方程为y=2x-4,抛物线C 的方程为y 2=4x ,求λ1+λ2的值;(2)已知直线l :x=my+1(m >1),椭圆C : x 22+y 2 =1,求 1λ1+1λ2 的取值范围; (3)已知双曲线C : x 23−y 2=1,λ1+λ2=6 ,求点D 的坐标.【正确答案】:【解析】:(1)通过直线l 的方程可得D 、E 坐标,将y=2x-4代入y 2=4x 可得点A 、B 坐标,利用 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ 、 EB ⃗⃗⃗⃗⃗⃗=λ2BD⃗⃗⃗⃗⃗⃗⃗ ,计算即可; (2)通过联立x=my+1(m >1)与 x 22+y 2 =1,利用韦达定理、 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ 、 EB ⃗⃗⃗⃗⃗⃗=λ2BD ⃗⃗⃗⃗⃗⃗⃗ ,计算即得结论;(3)通过设直线l 的方程并与双曲线C 方程联立,利用韦达定理、 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ , EB ⃗⃗⃗⃗⃗⃗=λ2BD⃗⃗⃗⃗⃗⃗⃗ ,计算即可.【解答】:解:(1)将y=2x-4代入y 2=4x ,求得点A (1,-2),B (4,4),又∵D (2,0),E (0,-4),且 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ ,∴(1,2)=λ1(1,2)=(λ1,2λ1),即λ1=1,同理由 EB ⃗⃗⃗⃗⃗⃗=λ2BD⃗⃗⃗⃗⃗⃗⃗ ,可得λ2=-2, ∴λ1+λ2=-1;(2)联立x=my+1(m >1)与 x 22+y 2 =1,消去x 可得:(2+m 2)y 2+2my-1=0,由韦达定理可得:y 1+y 2=-2m 2+m 2 ,y 1y 2=- 12+m 2 , ∵D (1,0),E (0,- 1m ),且 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ ,∴y 1+ 1m =-λ1y 1,∴λ1=-(1+ 1m •1y 1 ), 同理由 EB ⃗⃗⃗⃗⃗⃗=λ2BD ⃗⃗⃗⃗⃗⃗⃗ ,可得y 2+ 1m =-λ2y 2,∴λ2=-(1+ 1m •1y 2 ), ∴λ1+λ2=-(1+ 1m •1y 1 )-(1+ 1m •1y 2 )=-2- 1m •y 1+y 2y 1y 2 =-2- 1m •2m =-4,∴ 1λ1+1λ2 =- 4λ1λ2 = 4λ12+4λ1= 4(2+λ2)2−4 , ∵m >1,∴点A 在椭圆上位于第三象限的部分上运动,由分点的性质可得λ1∈( √2−2 ,0),∴ 1λ1+1λ2∈(-∞,-2); (3)设直线l 的方程为:x=my+t ,代入双曲线C 方程,消去x 得:(-3+m 2)y 2+2mty+(t 2-3)=0,由韦达定理可得:y 1+y 2=- 2mt m 2−3 ,y 1y 2=- t 2−3m 2−3 ,∴ 1y 1 + 1y 2=- 2mt t 2−3 ,由 EA ⃗⃗⃗⃗⃗⃗=λ1AD ⃗⃗⃗⃗⃗⃗ , EB ⃗⃗⃗⃗⃗⃗=λ2BD ⃗⃗⃗⃗⃗⃗⃗ 可得:-(λ1+λ2)=2+ t m •( 1y 1 + 1y 2 ), ∵λ1+λ2=6,∴2+ t m •(- 2mt t 2−3 )=-6,解得t=±2,∴点D (±2,0);当直线l 与x 轴重合时,λ1=- a t+a ,λ2= a t−a 或者λ1= a t−a ,λ2=- a t+a ,∴都有λ1+λ2= 2a 2t 2−a 2 =6也满足要求,∴在x 轴上存在定点D (±2,0).【点评】:本题是一道直线与圆锥曲线的综合题,考查运算求解能力,注意解题方法的积累,属于中档题.21.(问答题,0分)已知函数y=f (x ),x∈D ,如果对于定义域D 内的任意实数x ,对于给定的非零常数P ,总存在非零常数T ,恒有f (x+T )<P•f (x )成立,则称函数f (x )是D 上的P 级递减周期函数,周期为T .若恒有f (x+T )=P•f (x )成立,则称函数f (x )是D 上的P 级周期函数,周期为T .(1)已知函数f (x )=x 2+a 是[2,+∞)上的周期为1的2级递减周期函数,求实数a 的取值范围;(2)已知T=1,y=f (x )是[0,+∞)上P 级周期函数,且y=f (x )是[0,+∞)上的单调递增函数,当x∈[0,1)时,f (x )=2x ,求实数P 的取值范围;(3)是否存在非零实数k ,使函数 f (x )=(12)x •coskx 是R 上的周期为T 的T 级周期函数?请证明你的结论.【正确答案】:【解析】:(1)由题意可得f (x+1)<2f (x ),即a >-x 2+2x+1对x∈[2,+∞)恒成立,求得-x 2+2x+1的最大值,可得结论.(2)由题意可得x∈[n ,n+1)时,f (x )=P n •2x-n ,n∈N *,P >0且P n •2n-n ≥P n-1•2n-(n-1),由此求得p 的范围.(3)根据题意,cosk (x+T )=T•2T coskx 对一切实数x 恒成立,故T•2T =±1,分类讨论,得出结论.【解答】:解:(1)由题意,函数f(x)=x2+a是[2,+∞)上的周期为1的2级递减周期函数可知:f(x+1)<2f(x),即(x+1)2+a<2x2+2a对x∈[2,+∞)恒成立,也即a>-x2+2x+1对x∈[2,+∞)恒成立,∵y=-x2+2x+1=-(x-1)2+2在x∈[2,+∞)上单调递减,∴ (−x2+2x+1)max=−22+2•2+1=1,∴a>1.(2)已知T=1,y=f(x)是[0,+∞)上P级周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,∴当x∈[1,2)时,f(x)=Pf(x-1)=P•2x-1,当x∈[n,n+1)时,f(x)=Pf(x-1)=P2f(x-2)=…=P n f(x-n)=P n•2x-n,即x∈[n,n+1)时,f(x)=P n•2x-n,n∈N*,∵f(x)在[0,+∞)上单调递增,∴P>0且P n•2n-n≥P n-1•2n-(n-1),即P≥2.(3)由已知,应有f(x+T)=Tf(x)对一切实数x恒成立,即(12)x+T•cosk(x+T)=T•(12)x•coskx对一切实数x恒成立,也即cosk(x+T)=T•2T coskx对一切实数x恒成立,当k≠0时,∵x∈R,∴kx∈R,kx+kT∈R,于是coskx∈[-1,1],cos(kx+kT)∈[-1,1],故要使cosk(x+T)=T•2T coskx恒成立,只有T•2T=±1,① 当T•2T=1时,即2T=1T(*)时,由函数y=2x与y=1x的图象存在交点,故方程(*)有解;此时cos(kx+kT)=coskx恒成立,则kT=2mπ,m∈Z,k=2mπT,m∈Z;② 当T•2T=-1(**)时,类似① 中分析可得,方程(**)无解;综上,存在k=2mπT,m∈Z,符合题意,其中T满足T•2T=1.【点评】:本题主要考查新定义,函数的恒成立问题,函数的周期性,关键是等价转化,属于中档题.。

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析

四川省资阳市乐至县吴仲良中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知命题“,有成立”,则为A. ,有成立B. ,有成立C. ,有成立D. ,有成立参考答案:C略2. 设△ABC的内角A,B,C所对的边分别为a,b,c,且C=,a+b=12,则△ABC面积的最大值为()A.8 B.9 C.16 D.21参考答案:B【考点】三角形中的几何计算.【分析】根据基本不等式求得ab的范围,进而利用三角形面积公式求得.【解答】解:∵ab≤()2=36,当且仅当a=b=6时,等号成立,∴S△ABC=absinC≤×36×=9,故选:B.3. 若函数y=log2(x2-2x-3)的定义域、值域分别是M、N,则()A.[-1, 3] B.(-1, 3) C.(0, 3] D.[3, +∞)参考答案:A略4. 下列函数中,在其定义域内既是偶函数又在上单调递增的函数是()A. B. C. D.参考答案:C5. 的值是A. B.C. D.参考答案:C6. 若复数z=2i+,其中i是虚数单位,则复数z的模为( )A.B.C.D.2参考答案:C【考点】复数求模.【专题】数系的扩充和复数.【分析】化简复数为a+bi的形式,然后求解复数的模.【解答】解:复数z=2i+=2i+=2i+1﹣i=1+i.|z|=.故选:C.【点评】本题考查复数的乘除运算,复数的模的求法,考查计算能力.7. 不等式的解集是()A. B.C.(1,2) D.参考答案:答案:B8. 已知函数有且仅有两个不同的零点,,则( ) A .当时,, B .当时,,C .当时,,D .当时,,参考答案:B略9. 刘徽的《九章算术注》中有这样的记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也.”意思是说:把一块立方体沿斜线分成相同的两块,这两块叫做堑堵,再把一块堑堵沿斜线分成两块,大的叫阳马,小的叫鳖臑,两者体积比为2:1,这个比率是不变的,如图是一个阳马的三视图,则其表面积为( )A .2B .2+C .3+D .3+参考答案:B【考点】由三视图求面积、体积.【分析】根据几何体的三视图知该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,结合图形求出它的表面积. 【解答】解:根据几何体的三视图知,该几何体是底面为正方形, 且一侧棱垂直于底面的四棱锥,如图所示; 根据图中数据,计算其表面积为 S=S 正方形ABCD +S △PAB +S △PBC +S △PCD +S △PAD =12+×1×1+×1×+×1×+×1×1=2+.故选:B .10. 已知命题p :?x∈R,x 2﹣3x+2=0,则?p 为( ) A .?x ?R ,x 2﹣3x+2=0 B .?x∈R,x 2﹣3x+2≠0 C .?x∈R,x 2﹣3x+2=0 D .?x∈R,x 2﹣3x+2≠0参考答案:D【考点】四种命题;命题的否定.【分析】根据命题p :“?x∈R,x 2﹣3x+2=0”是特称命题,其否定为全称命题,将“存在”改为“任意的”,“=“改为“≠”即可得答案.【解答】解:∵命题p :“?x∈R,x 2﹣3x+2=0”是特称命题 ∴?p:?x∈R,x 2﹣3x+2≠0故选D .二、 填空题:本大题共7小题,每小题4分,共28分 11. 已知,且的夹角为锐角,则的取值范围是______。

高三数学9月月考试题文含解析试题

高三数学9月月考试题文含解析试题

师范大学附中2021届高三数学9月月考试题 文〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题〔本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的〕{A x y ==,集合 {}ln cosB x y x ==,那么A B =〔 〕A. 2,2()42k k k Z ππππ⎛⎫++∈ ⎪⎝⎭B. 2,2()42k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭C. 2,2()4k k k Z ππππ⎛⎫++∈ ⎪⎝⎭D. 2,2()4k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭【答案】B 【解析】 【分析】先化简集合,A B 再求交集即可 【详解】由题5sin cos 022,44x xkx kk Z ,故522,44A x k x k k Z ππππ⎧⎫=+≤≤+∈⎨⎬⎩⎭ cos 02222x kx k,故2222B x k x k k Z ππππ⎧⎫=-<<+∈⎨⎬⎩⎭, A B =2,2()42k k k Z ππππ⎡⎫++∈⎪⎢⎣⎭应选:B【点睛】此题考察集合的交集运算,纯熟求解三角不等式是关键,是根底题2.a 与b 均为单位向量,它们的夹角为60︒,那么3a b -等于〔 〕A. 7B. 10C. 13D. 4【答案】A 【解析】此题主要考察的是向量的求模公式。

由条件可知==,所以应选A 。

sin()cos()()22y x x ϕϕϕπ=++<的图象沿x 轴向左平移8π个单位后,得到一个奇函数的图象,那么ϕ的值是( )A. -34πB. -4π C.4π D.2π 【答案】B 【解析】 【分析】利用倍角公式变形,再由函数图象的平移求得平移后的函数解析式,结合奇函数g 〔0〕=0求解φ的取值. 【详解】y =sin 〔x 2ϕ+〕cos 〔x 2ϕ+〕()122sin x ϕ=+, 沿x 轴向左平移8π个单位,得g 〔x 〕1224sin x πϕ⎛⎫=++ ⎪⎝⎭.由g 〔0〕0=,得4π+φk π=,即φ4k ππ=-+,k ∈Z .当k =0时,φ4π=-; ∴φ的取值是4π-.应选:B .【点睛】此题主要考察函数y =A sin 〔ωx +φ〕的图象变换规律,考察正弦函数的性质,属于根底题.4.1213a ⎛⎫= ⎪⎝⎭,1ln2b =,,那么〔 〕 A. a bc >>B. c a b >>C. b a c >>D.b c a >>【答案】B 【解析】 【分析】由1213a ⎛⎫= ⎪⎝⎭∈〔0,1〕,b =ln12=-ln 2<0,103221c =>=,即可得出大小关系. 【详解】1213a ⎛⎫= ⎪⎝⎭∈〔0,1〕,b =ln12=-ln 2<0,103221c =>= ∴b <a <c . 应选:B .【点睛】此题考察了指数与对数运算性质及其指数对数函数的单调性,考察了推理才能与计算才能,属于根底题.sin 0f x x在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,那么ω的取值范围是( )A. 0≤ω≤23B. 0≤ω≤32C.23≤ω≤3 D.32≤ω≤3 【答案】D 【解析】 【分析】利用正弦函数的单调减区间,确定函数的单调减区间,根据函数f 〔x 〕=sin ωx 〔ω>0〕在区间32ππ⎡⎤⎢⎥⎣⎦,上单调递减,建立不等式,即可求ω取值范围. 【详解】令22k ππ+≤ωx 322k ππ≤+〔k ∈Z 〕,那么22k ππωω+≤x 322k ππωω≤+ ∵函数f 〔x 〕=sin ωx 〔ω>0〕在区间32ππ⎡⎤⎢⎥⎣⎦,上单调递减,∴223k πππωω+≤且3222k πππωω+≥ 当0k =满足题意,∴332ω≤≤ 应选:D .【点睛】此题考察正弦函数的单调性,考察解不等式,考察学生的计算才能,属于根底题.R 上的偶函数()f x 满足(2)()f x f x +=,且在[]3,2--上是增函数,假设,αβ是锐角三角形的两个内角,那么〔 〕 A. (cos )(cos )f f αβ> B. (sin )(sin )f f αβ< C. (sin )(cos )f f αβ> D. (sin )(cos )f f αβ<【答案】D 【解析】 【分析】根据f 〔x +2〕=f 〔x 〕,得函数的周期为2,在[﹣3,﹣2]上是减函数,可得f 〔x 〕在[﹣1,0]上为减函数,由f 〔x 〕为偶函数,得f 〔x 〕在[0,1]上为单调增函数.再根据α,β是锐角三角形的两个内角,利用三角函数诱导公式化简可得答案. 【详解】由题意:可知f 〔x +2〕=f 〔x 〕, ∴f 〔x 〕是周期为2的函数, ∵f 〔x 〕在[﹣3,﹣2]上为减函数,∴f 〔x 〕在[﹣1,0]上为减函数,又∵f 〔x 〕为偶函数,根据偶函数对称区间的单调性相反, ∴f 〔x 〕在[0,1]上为单调增函数. ∵在锐角三角形中,π﹣α﹣β2π<∴π﹣α﹣β2π<,即2ππαβ+>>,∴2π>α2>π-β>0, ∴sin α>sin 〔2πβ-〕=cos β;∵f 〔x 〕在[0,1]上为单调增函数. 所以f 〔sin α〕>f 〔cos β〕, 应选:D .【点睛】此题主要考察了函数的奇偶性和周期性的应用,以及三角函数的图象和性质,综合性较强,涉及的知识点较多.属于中档题.7.四个函数:①sin y x x =;②cos y x x =;③cos y x x =;④2xy x =⋅的图象(局部)如下,但顺序被打乱,那么按照从左到右将图象对应的函数序号安排正确的一组是A. ④①②③B. ①④②③C. ③④②①D.①④③② 【答案】B 【解析】 【分析】先分析四个函数奇偶性,再讨论函数对应区间上函数值正负,即可进展判断选择. 【详解】①sin y x x =为偶函数,所以对应第一个图; ②cos y x x =为奇函数,且3,22x ππ⎛⎫∈⎪⎝⎭时函数值为负,所以对应第三个图; ③cos y x x =为奇函数,且0x >时函数值恒非负,所以对应第四个图; ④2x y x =⋅为非奇非偶函数,所以对应第二个图.【点睛】此题考察函数奇偶性以及函数数值,考察根本分析与判断求解才能,属基此题.()()sin f x A x =+ωϕ,0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的局部图象如下图,那么使()()0f a x f a x +--=成立的a 的最小正值为〔 〕A.3πB.4π C.6π D.12π【答案】C 【解析】 【分析】结合图象由最值可求A ,由f 〔0〕=2sin φ=1,可求φ,结合图象及五点作图法可知,ω11126ππ⨯+=2π,可求ω,再求出函数的对称轴方程即可求解. 【详解】结合图象可知,A =2,f 〔x 〕=2sin 〔ωx +φ〕, ∵f 〔0〕=2sin φ=1,∴sin φ12=, ∵|φ|2π<,∴φ6π=,f 〔x 〕=2sin 〔ωx 6π+〕,结合图象及五点作图法可知,ω11126ππ⨯+=2π, ∴ω=2,f 〔x 〕=2sin 〔2x 6π+〕,其对称轴x 162k ππ=+,k ∈Z ,∵f 〔a +x 〕﹣f 〔a ﹣x 〕=0成立,∴f 〔a +x 〕=f 〔a ﹣x 〕即f 〔x 〕的图象关于x =a 对称,结合函数的性质,满足条件的最小值a 6π=应选:B .【点睛】此题主要考察了由y =A sin 〔ωx +φ〕的图象求解函数解析式,解题的关键是正弦函数性质的灵敏应用.2,0()21,0x e x f x x x x -⎧≤=⎨--+>⎩,假设2(1)(1)f a f a -≥-+,那么实数a 的取值范围是〔 〕A. [2,1]-B. [1,2]-C. (,2][1,)-∞-+∞D. (,1][2,)-∞-+∞【答案】A 【解析】 【分析】由函数()2,021,0x e x f x x x x -⎧≤=⎨--+>⎩的表达式即可判断()f x 在R 上递减,利用单调性可得:211a a -≤-+,解不等式即可。

2021年高三九月月考数学文试题

2021年高三九月月考数学文试题

2021年高三九月月考数学文试题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的;请将正确的选项填在答题卡内,否则不得分(每题5分,共60分)1.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合为( )A .B .C .D . 2.“是假命题”是“为真命题”的( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.函数的定义域是 ( )A .B .(-2,0)C .(-2,-1)D .4.为了得到函数的图象,可以把函数的图象 ( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度5.某班有50人,其中男生30名,现调查平均身高,已知男、女生身高明显不同,抽取一个容量为10的样本,则抽出的男、女生人数之差为 ( )A .5B .4C .3D .26.函数的单调递减区间是 ( )A .[0,2]B .C .D .[2,3]7.已知且的值是 ( )A .0B .1C .-1D .8.若函数,则等于 ( )A .B .3C .D .49.已知函数在区间上有最大值3,最小值2,则的取值范围为( )A .B .C .D .10.已知是定义在R 上的偶函数,且是周期为2的周期函数,当时,的值是( )A .B .C .D .11.已知,若,则的取值范围是 ( )A .(-∞,0)B .(0,2)C .(2,+∞)D .(-∞,0)∪(0,2)12.已知函数的定义域是,则函数的定义域为 ( )A .B .C .D .二、填空题:把答案填在答题卡相应题号后的横线上(每小题5分,共20分)13.已知集合{|(3)(3)0},{|(2)(4)0}A x x x B x x x =+->=--<,则A ∪B=14.已知是奇函数,当时,,则时,15.已知为常数)在上有最小值,则上的最大值为16.设函数的定义域是*,()()(),(1)1N f x y f x f y xy f +=++=且,则三、解答题:本大题共6小题,解答下列各题必须写出必要的步骤(共70分)17.(10分)求下列函数的定义域。

2021年高三数学上学期9月月考试卷 文

2021年高三数学上学期9月月考试卷 文

2021年高三数学上学期9月月考试卷文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、室试号、座位号填写在答题卷2.考生务必用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷的各题目指定区域内的相关位置上。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的。

1.已知集合,集合,则=( )A. B. C. D.2.在复平面内,复数的虚部为( )A. B. C. D.3.下列有关命题的说法错误的是( )A.命题“若,则”的逆否命题为:“若则”B.“ ”是“”的充分不必要条件C.若为假命题,则、均为假命题D.对于命题使得,则均有4.已知等差数列中,( )A. B. C.30 D.155.若抛物线的焦点坐标是(0,1),则( )A.1B.C.2D.6.的极大值点是()A. B. C. D.7.执行如图所示的程序框图,输出的T=( )A.17B.29C.44D.528.下列函数中,最小正周期为,且图象关于直线对称的是( )A. B.C. D.9.已知函数是定义在的增函数,则满足的的取值范围是( )A.(,)B.[,)C.(,)D.[,)10.一个几何体的三视图如图所示,则该几何体的体积是( )A.64B.72C.80D.11211.函数(且)的图象可能( )12.设函数在区间上恒为正值,则实数的取值范围是( )A. B. C. D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分13.函数的定义域为 .14.若变量满足约束条件,则的最大值为_________.15.已知且则 .16.设数列满足,,则该数列的前项的乘积_________.三、解答题:本大题共7小题,考生作答6小题,共70分。

解答应写出文字说明、证明过程或演算步骤。

淮安市2021届高三上学期9月月考语文试题

淮安市2021届高三上学期9月月考语文试题

淮安市2021届高三上学期9月月考试题语文阅读下面的文字,完成各题。

材料一:《流浪地球》的票房奇迹,加上此前《三体》的热销,刘慈欣的作品影响巨大,但社会各界的评价却颇有两极分化之势。

刘慈欣的大多数作品都没有精巧的剧情或百转千回的人物感情,更多是直接甩出一个个宏大震撼的设定,靠设定本身为读者带来审美快感。

在笔下,主人公与他人的情感联结不过是宇宙规律中很小的部分,和人类命运、宇宙洪荒相比,根本不值一提。

刘慈欣自称是“一个疯狂的技术主义者”,他坦承自己“喜欢文学因素较少、科幻因素较多的科幻作品,一直认为,透视现实和剖析人性不是科幻小说的任务,更不是它的优势”,甚至有过“把科幻从文学剥离出来”的激进想法。

在写作的过程中,刘慈欣却逐渐意识到需要保持“科学性与文学性的平衡、思想性与可读性的平衡、作为文学的科幻与作为商品的科幻的平衡”,他后来的作品“正是这些平衡的结果”,这“或多或少地背叛了自己的科幻理念”。

刘慈欣对文笔也并不是没有自觉。

他评价阿西莫夫的文笔,“平直、单色调、刚硬、呆板……几乎所有这类文学上的负面词都可以用来形容他的文笔”,却又话锋一转,表示“这种笔调无论如何是不适合文学的,但却很适合科幻,也使他的小说风靡世界”。

刘慈欣对于他敬仰的阿西莫夫的描述,显然也适用于他自己的文风。

(摘编自冰村《刘慈欣:黄金年代的守望者》)材料二:为什么有人认为科幻小说欠缺文学性?科幻小说描绘幻想世界,我们当然能够发现幻想世界与现实世界的某些相似性,但是在细节设置和整体结构方面,幻想世界是超出我们现在的社会结构和人的行为心理的。

一般的小说在进行情节描绘的时候,存在一种天然的便利性,作者不用浪费笔墨在整个世界的构想上,细节的描绘和推陈出新就成了这些小说的长处。

作家也不必为新的人际关系、社会行为、世界结构负责,只需直接去描绘既有世界下细微的情感波澜和社会反应即可。

相比而言,每一部科幻小说都是在创造一个新世界,每个细节都牵涉新世界的结构,要为人物的行动设计好相应情境,因此他们必须不断插入结构因素的解释。

2021年高三数学9月月考试题 文理

2021年高三数学9月月考试题 文理

2021年高三数学9月月考试题 文理一、选择题 (本大题共12个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,则的子集中含有元素2的子集共有 ( )A. 2个B. 4个C. 6个D. 8个 2.定义在R 上的函数在(-∞,2)上是增函数,且的图象关于轴对称,则( )A .B .C .D .3.函数图象必经过点( )A .B .C .D .4.若方程在(-1,1)上有实根,则的取值范围为( ) A . B . C . D . 5.设,则等于( )A .B .C .D . 6.已知函数,,它在上单调递减,则的取值范围是( )A .B .C .D . 7.函数在区间内有零点,则( )A .B .的符号不定C .D .8.设与(且≠2)具有不同的单调性,则与的大小关系是( )A .M<NB .M=NC .M>ND .M ≤N 9.定义在上的函数满足且时,则( )A. 1 B .45 C .1 D .4510.(文)现有四个函数:①;②;③;④的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是( )正xxxyy yxyA.①④③②B.③④②①C.④①②③ D.①④②③10.(理)函数,正实数满足且。

若实数是方程的一个解,那么下列四个判断:①②③④中有可能成立的个数为()A.1 B.2 C.3 D.4第Ⅱ卷(非选择题共90分)二、填空题 (本大题共4个小题,每小题5分,共28分,把正确答案填在题中横线上) 11.已知函数f(x)= 则f[f()]的值是____________.12. 若是函数的零点,则属于区间____________.13.已知函数在上具有单调性,则的范围是____________.14.方程的解____________.15.11.若命题,则是 .16.已知函数则的值是.17.定义域为的单调函数,对任意的,都有,若是方程的一个解,且,则_ _三、解答题 (本大题共5个小题,共72分,解答应写出文字说明,证明过程或演算步骤) 18.(14分)设函数是定义在上的减函数,并且满足,(1)求,,的值,(2)如果,求x的取值范围。

2021年高三9月月考 文科数学试题

2021年高三9月月考 文科数学试题

2021年高三9月月考文科数学试题一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设P和Q是两个集合,定义集合=,如果,那么等于()A.{x|0<x<1} B.{x|0<x≤1} C.{x|1≤x<2} D.{x|2≤x<3}2. 若f(cosx)=,x∈[0,π],则f(-)等于()A.cos B.C.D.3. 设且,则“函数在上是减函数”,是“函数在上是增函数”的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件4.已知等比数列的前n项和为,且,则()A.54 B.48 C.32 D.165.函数的图象按向量平移到,的函数解析式为当为奇函数时,向量可以等于( )6.边长为5、7、8的三角形的最大角与最小角之和为( )A.90 B.120 C.135D.1507.在中,已知向量,,则的面积等于()A.B.C.D.8.已知函数满足且时,则与的图象的交点的个数为()A.3个B.4个C.5个D.6个9.已知向量,.若向量满足,,则()A. B. C. D.10.已知方程的两个实数根是,且,则等于()A.B.C.或D.11.一个样本容量为的样本数据,它们组成一个公差不为的等差数列,若,且成等比数列,则此样本的中位数是( )A.B.C.D.12.已知f(x)=x³-6x²+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f(1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是( )A.①③B.①④C.②③D.②④高三阶段检测数学试题(文)第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.曲线在点处的切线方程为___________;14.在中,角的对边分别是,已知,则的形状是.15.若向量=,=,且,的夹角为钝角,则的取值范围是______________.16.已知为上的偶函数,对任意都有,当且时,有成立,给出四个命题:①;② 直线是函数的图象的一条对称轴;③ 函数在上为增函数;④ 函数在上有四个零点.其中所有正确命题的序号为______________.(请将正确的序号都填上)三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤. 17.(本题满分12分)已知函数.(Ⅰ) 求函数的最小值和最小正周期;(Ⅱ)已知内角的对边分别为,且,若向量与共线,求的值.18.(本小题满分12分)设数列的前项和为.已知,,.(Ⅰ)设,求数列的通项公式;(Ⅱ)若,,求的取值范围.19.(本小题满分12分)已知函数在处取得极值为(Ⅰ)求a、b的值;(Ⅱ)若有极大值28,求在上的最大值和最小值.20.(本题满分12分)定义在R上的单调函数满足对任意x,y均有,且(Ⅰ)求的值,并判断的奇偶性;(Ⅱ)解关于x的不等式:21.(本小题满分12分)设数列前项和为,数列的前项和为,满足,.(Ⅰ)求的值;(Ⅱ)求数列的通项公式.22. (本题满分14分)已知函数,.(Ⅰ)当时,求的图像在处的切线方程;(Ⅱ)讨论的单调性.高三阶段检测数学(文)参考答案一、选择题:本大题共12小题.每小题5分,共60分.BBAD BBAB DBAC二、填空题:本大题共4小题,每小题4分,共16分.13. ; 14.直角三角形;15. (-∞,-1/3)∪(-1/3,0)∪(4/3,+∞); 16.②④三、解答题:(本大题共6小题,共52分. 解答应写出文字说明,证明过程或演算步骤.)17.【解析】(Ⅰ)211()cos cos 2cos 2122f x x x x x x =--=-- ……………………………………………………3分∴ 的最小值为,最小正周期为. ………………………………5分(Ⅱ)∵ , 即∵ ,,∴ ,∴ . ……7分∵ 共线,∴ .由正弦定理 , 得 ①…………………………………9分∵ ,由余弦定理,得, ②……………………10分解方程组①②,得. …………………………………………12分18.【解析】(Ⅰ)依题意,,即,由此得. ··························································································································· 4分 因此,所求通项公式为,.① ································································································································· 6分 (Ⅱ)由①知,,于是,当时,,,当时,.又.综上,所求的的取值范围是. ························································································· 12分19.【解析】(Ⅰ)因 故 由于 在点 处取得极值故有即 ,化简得解得---------------4分(Ⅱ)由(Ⅰ)知 ,令 ,得当时,故在上为增函数;当 时, 故在 上为减函数当 时 ,故在 上为增函数。

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析

广东省江门市陈经纶中学2021-2022学年高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知集合,,则()A.B.C.D.参考答案:D略2. 已知S n是数列{a n}的前n项和,且,则()A. 20B. 25C. 30D. 35参考答案:D【分析】先由得到数列是等差数列,再根据,即可求出结果.【详解】因为是数列的前项和,且,所以,因此数列是公差为的等差数列,又,所以,因此.故选D【点睛】本题主要考查等差数列的性质、以及等差数列的前项和,熟记等差数列的性质以及前项和公式即可,属于常考题型.3. 从4名男生和3名女生中选出4人参加市中学生知识竞赛活动,若这4人中必须既有男生又有女生,不同的选法共有(A)140种(B)120种(C)35种(D)34种参考答案:D 略4. 如右图,某几何体的三视图均为边长为l的正方形,则该几何体的体积是()A. B. C.1 D.参考答案:A5. 设全集.已知四棱锥的三视图如右图所示,则四棱锥的四个侧面中的最大面积是A.B.C. D.参考答案:A四棱锥如图所示:,,所以四棱锥的四个侧面中的最大面积是6.6. 已知是定义在R上的奇函数,它的最小正周期为T,则的值为A.0 B. C.TD.参考答案:A解析:因为的周期为T,所以,又是奇函数,所以,所以则7. 已知,现有下列命题:其中的所有正确命题的序号是()(A)(B)(C)(D)参考答案:C 8. 用C(A)表示非空集合A中的元素个数,定义.若,,且|A-B|=1,由a的所有可能值构成的集合为S,那么C(S)等于( )A.1 B.2 C.3 D.4参考答案:A略9. 在等比数列{}中,若是方程则=()A. B .- C. D. 3参考答案:C略10.已知等比数列{a n}的前n项为S n,S3 = 3,S6 = 27,则此等比数列的公比q等于()A.2 B.-2 C. D.-参考答案:答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知向量=(2,1),=(x,﹣6),若⊥,则|+|= .参考答案:5【考点】平面向量数量积的运算.【专题】方程思想;分析法;平面向量及应用.【分析】由向量垂直的条件:数量积为0,可得x=3,再由向量模的公式,计算即可得到所求.【解答】解:向量=(2,1),=(x,﹣6),若⊥,则?=2x﹣6=0,解得x=3,即有+=(5,﹣5),则|+|==5,故答案为:5.【点评】本题考查向量的垂直的条件:数量积为0,考查向量的模的计算,属于基础题.12. 已知f(x)是定义域为R的偶函数,当x≥0时,那么,不等式的解集是.参考答案:13. 、若函数的最小值为3,则实数=参考答案:或略14. 已知则的最大值是_____________.;参考答案:略15. 方程表示焦点在轴的椭圆时,实数的取值范围是____________ 参考答案:16. 若关于,的不等式组(为常数)所表示的平面区域的面积等于2,则的值为 .参考答案:317. 在△ABC中,a=1,b=2,cosC=,sinA= .参考答案:【考点】余弦定理;正弦定理.【专题】转化思想;综合法;解三角形.【分析】利用余弦定理可得c,cosA,再利用同角三角函数基本关系式即可得出.【解答】解:由余弦定理可得:c2=12+22﹣=4,解得c=2.∴cosA===,又A∈(0,π),∴sinA===.故答案为:.【点评】本题考查了余弦定理、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.三、解答题:本大题共5小题,共72分。

2021年高三九月考试卷(数学文)07.9.29

2021年高三九月考试卷(数学文)07.9.29

2021年高三九月考试卷(数学文)07.9.29一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题意要求的)1.设全集U =R ,A x x x B x x =<-≥=-<<{|}{|}3215或,,则集合是( )A.B. C. D.2.复数( )A 、B 、1C 、D 、324.已知,,且,则向量与向量的夹角是( )A .B .C .D .5. 设, 则有 ( )A. B. C. D.6.已知函数是R 上的偶函数,且在上是增函数,若,那么的解集是( )A .B .C .D .7.函数在[0,1]上是减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D . 8.对于函数)]([)(,)],([)()],([)(11)(1232x f f x f x f f x f x f f x f x x x f n n ===+-=+ ,设 ,令集合,则集合M 为 ( )A .空集B .实数集C .单元素集D .二元素集二、填空题:(本题共8小题,每小题5分,共40分)9.幂函数的图象经过点,则的解析式是__.10.已知命题:,则命题┐是11.log2.56.25+lg+ln+=12.若,,,则的值等于13.若不等式对于任意的实数x都成立,则实数a的取值范围是_______.14.已知函数是偶函数,并且对于定义域内任意的,满足,若当时,,则=__________ ______.15.对于每一个正整数,抛物线与轴交于两点,则的值为______________.16.给出四个命题:①若函数y=f(2x-1)为偶函数,则y=f(2x)的图象关于x=对称;②函数与都是奇函数;③函数的图象关于点对称;④函数是周期函数,且周期为2;⑤等差数列前项和是关于项数的二次函数(不含常数项)或一次函数(不含常数项);其中所有正确的序号是三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知复数z满足(z-2)i=4+i,且求复数z以及。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高三9月月考数学文试题题号一二三总分得分一、选择题3.某三棱锥的侧视图和俯视图如图所示,则该三棱锥的体积为()A.4 B.8 C.12 D.244.设命题:,命题:一元二次方程有实数解.则是的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数的单调减区间为()A、,B、,C、,D、,6.已知函数y=的最大值为M,最小值为m,则的值为()A、B、 C、D、7.已知函数在一个周期内的图象如图所示.则的图象可由函数y=cosx的图象(纵坐标不变)()A、先把各点的横坐标缩短到原来的倍,再向左平移个单位B、先把各点的横坐标缩短到原来的倍,再向右平移个单位C、先把各点的横坐标伸长到原来的2倍,再向左平移个单位D、先把各点的横坐标伸长到原来的2倍,再向右平移个单位8.设m>1,在约束条件下,目标函数z=x+my的最大值小于2,则m的取值范围为( )A.(1,1+) B.(1+,+∞)C.(1,3) D.(3,+∞)9.一个盛满水的密闭三棱锥容器S-ABC,不久发现三条侧棱上各有一个小洞D,E,F,且知SD∶DA=SE∶EB=CF∶FS=2∶1,若仍用这个容器盛水,则最多可盛原来水的()A. B. C. D.10.下列函数图象中不正确...的是()11.给出如下四个命题:①若“且”为假命题,则、均为假命题;②若等差数列的前n项和为则三点共线;③“∀x∈R,x2+1≥1”的否定是“x∈R,x2+1≤1”;④在中,“”是“”的充要条件.其中正确..的命题的个数是()A.4 B.3 C. 2 D. 1 12.利用导数,可以判断函数在下列哪个区间内是增函数()A. B.C. D.第II 卷(非选择题)二、填空题13.在极坐标系中,直线经过圆的圆心且与直线平行,则直线与极轴的交点的极坐标为_________.14.已知程序框图如右,则输出的= .K15.已知,则的值为__________.16.已知则的值为 .三、解答题 17.(本小题满分12分)如图所示多面体中,⊥平面,为平行四边形,分别为的中点,,,. (1)求证:∥平面; (2)若∠=90°,求证;(3)若∠=120°,求该多面体的体积.18.(本小题满分13分)已知函数. (1)若为的极值点,求实数的值;(2)若在上为增函数,求实数的取值范围; (3)当时,方程有实根,求实数的最大值. 19.(本小题满分12分)已知函数,, (1)求函数的最值;(2)对于一切正数,恒有成立,求实数的取值组成的集合。

20.(本小题满分10分)选修4-5:不等式选讲开始1S =结束3i =100?S ≥i 输出2i i =+*S S i=是否设函数.(Ⅰ)求不等式的解集; (Ⅱ),使,求实数的取值范围. 21.(本小题满分9分)设三角形的内角的对边分别为 ,. (1)求边的长;(2)求角的大小;(3)求三角形的面积。

参考答案1.A【解析】由题意知. 2.A【解析】因为集合,集合,则集合,选A3.A【解析】解:由三视图的侧视图和俯视图可知:三棱锥的一个侧面垂直于底面, 三棱锥的高是,它的体积为,故选A 4.A【解析】因为命题:,命题:一元二次方程有实数解.等价于1-4m,因此可知,则:m<是:m 的充分不必要条件,选A 5.D【解析】因为()2sin 22sin(2)2sin(2)33=-=-=--+f x x x x x ππ,那么利用复合函数单调性可知,,化简得到结论为,,故选D6.C【解析】因为由题意,函数的定义域是[-3,1]y=由于-x 2-2x+3在[-3,1]的最大值是4,最小值是0,因此可知m,和M 的值分别是2,,因此可知比值为,选C7.B【解析】根据图像先求解A=1周期为,w=2,然后代点(-,0)得到=-的值,可知该函数图像是由y=cosx的图象先把各点的横坐标缩短到原来的倍,再向右平移个单位得到,选B8.A【解析】解:解:作出不等式组所表示的平面区域如图所示作L:x+my=0,向可行域内平移,越向上,则Z的值越大,从而可得当直线L过B时Z最大而联立x+y=1,与y=mx可得点B(),代入可得2max1mz m12,m12m1,m+1m12+=∴><->∴>或故选B9.D【解析】解:如右图所示,过DE作与底面ABC平行的截面DEM,则M为SC的中点,F为SM 的中点.过F作与底面ABC平行的截面FNP,则N,P分别为SD,SE的中点.设三棱锥S-ABC的体积为V,高为H,S-DEM的体积为V1,高为h,则h:H=2:3,v1:v=8:27三棱锥F-DEM的体积与三棱锥S-DEM的体积的比是1:2(高的比),∴三棱锥F-DEM的体积4v:27三棱台DEM-ABC的体积=V-V1=19v:27,∴最多可盛水的容积23v:27故最多所盛水的体积是原来的,选D10.D【解析】因为根据函数的定义可知,对于任意的自变量x,都有一个唯一的值与其相对应,那么可知选项A符合,选项B符合,选项C,利用关于x轴对称变换得到符合,选项D,应该是偶函数,所以不成立,故选D.11.C【解析】因为命题1中,且命题为假,则一假即假,因此错误,命题2中,因为是等差数列,因此成立。

命题3,否定应该是存在x,使得x2+1<1”,命题4中,应该是充要条件,故正确的命题是4个。

选C.12.B【解析】因为cos sin'cos sin cos siny x x x y x x x x x x=-∴=--=-可知在四个选项中逐一判定可知函数的导函数的符号,可知其单调性递增。

选B. 13.(1,0)【解析】由可知此圆的圆心为(1,0),直线是与极轴垂直的直线,所以所求直线的极坐标方程为,所以直线与极轴的交点的极坐标为(1,0). 14.9【解析】因为,所以当S=105时退出循环体,因而此时i=9,所以输出的i 值为9. 15.3/2.【解析】因为根据函数解析式可知f()=f()+1= f()+2=3/2. 16.16/17 【解析】因为22222221cos 116tan cos 2sin 1sin cos 4cos sin 1tan 17ααααααααα=∴+=-====++ 17.(Ⅰ)见解析;(Ⅱ)见解析;(Ⅲ)该五面体的体积为 。

【解析】(Ⅰ)取PC 的中点为O ,连FO ,DO ,可证FO ∥ED ,且FO=ED ,所以四边形EFOD 是平行四边形,从而可得EF ∥DO ,利用线面平行的判定,可得EF ∥平面PDC ; (Ⅱ)先证明PD ⊥平面ABCD ,再证明BE ⊥DP ;(Ⅲ)连接AC ,由ABCD 为平行四边形可知△ABC 与△ADC 面积相等,所以三棱锥P-ADC 与三棱锥P-ABC 体积相等,即五面体的体积为三棱锥P-ADC 体积的二倍. (Ⅰ)取PC 的中点为O ,连FO,DO ,∵F,O 分别为BP ,PC 的中点, ∴∥BC ,且,又ABCD 为平行四边形,∥BC ,且, ∴∥ED ,且∴四边形EFOD 是平行四边形 --------------------------------2分 即EF ∥DO 又EF 平面PDC ∴EF ∥平面PDC . ---------------------- 4分 (Ⅱ)若∠CDP =90°,则PD ⊥DC ,又AD ⊥平面PDC ∴AD ⊥DP, ∴PD ⊥平面ABCD, ------------- 6分∵BE 平面ABCD ,∴BE ⊥DP ------------ 8分 (Ⅲ)连结AC,由ABCD 为平行四边形可知与面积相等, 所以三棱锥与三棱锥体积相等,即五面体的体积为三棱锥体积的二倍.∵AD ⊥平面PDC ,∴AD ⊥DP,由AD=3,AP=5,可得DP=4又∠CDP =120°PC=2, 由余弦定理并整理得, 解得DC=2 ------------------- 10分 ∴三棱锥的体积∴该五面体的体积为 -------------------- 12分 18.(1).(2)的取值范围为.(3)当时,有最大值0. 【解析】(1)根据建立关于a 的方程求出a 的值. (2)本小题实质是()()()2221442021x ax a x a f x ax ⎡⎤+--+⎣⎦'=≥+在区间上恒成立,进一步转化为在区间上恒成立,然后再讨论a=0和两种情况研究. (2) 时,方程可化为,,问题转化为223ln (1)(1)ln b x x x x x x x x x x =--+-=+-在上有解,即求函数的值域,然后再利用导数研究g(x)的单调区间极值最值,从而求出值域,问题得解. 解:(1).………1分因为为的极值点,所以.………………………2分 即,解得.…………………………………3分 又当时,,从而的极值点成立.…………4分 (2)因为在区间上为增函数,所以()()()2221442021x ax a x a f x ax ⎡⎤+--+⎣⎦'=≥+在区间上恒成立.…5分①当时,在上恒成立,所以上为增函数,故符合题意.…………………………6分②当时,由函数的定义域可知,必须有对恒成立,故只能,所以222(14)(42)0[3,)ax a x a x +--+≥∈+∞对上恒成立.……………7分 令,其对称轴为,……………8分因为所以,从而上恒成立,只要即可, 因为, 解得. u u ……………………………………9分 因为,所以.综上所述,的取值范围为.…………………………………10分 (3)若时,方程可化为,.问题转化为223ln (1)(1)ln b x x x x x x x x x x =--+-=+-在上有解,即求函数的值域.……………………11分 以下给出两种求函数值域的方法: 方法1:因为,令,则 ,…………………………………12分 所以当,从而上为增函数,当,从而上为减函数,………………………13分 因此. 而,故,因此当时,取得最大值0.…………………………………………14分 方法2:因为,所以. 设,则. 当时,,所以在上单调递增; 当时,,所以在上单调递减; 因为,故必有,又, 因此必存在实数使得, ,所以上单调递减; 当,所以上单调递增; 当上单调递减;又因为)41(ln )(ln ln )(232+≤-+=-+=x x x x x x x x x x x g ,当,则,又.因此当时,取得最大值0.……………………………14分 19.(1)函数在(0,1)递增,在递减。

的最大值为. (2)。

【解析】本试题主要是考查了导数在研究函数中的运用。

相关文档
最新文档