大学物理光学 ppt课件

合集下载

《大学物理》第十二章 光学

《大学物理》第十二章  光学
位置 (提示:作为洛埃镜干涉分析)
h
结束 返回
解:
=a
acos2
+
2
=
2asin2
=
2
asin =h
sin =4h
a 2
h
结束 返回
12-5 一平面单色光波垂直照射在厚度 均匀的薄油膜上,油 膜 覆盖在玻璃板上, 所用 单色光的波长可以连续变化,观察到 500nm与700nm这两个波长的光在反射 中消失,油的折射率为 1.30,玻璃的折射 率为1.50。试求油膜的厚度 。
第二级明纹的宽度为
Δx
´=
Δx 2
=2.73 (mm)
结束 返回
12-15 一单色平行光束垂直照射在宽 为 1.0mm 的单缝上,在缝后放一焦距为 20m的会其透镜,已知位于透镜焦面处的 屏幕上的中央明条纹宽度为2.5mm。求入 射光波长。
结束 返回
解:
=
aΔx 2D
=
1.0×2.5 2×2.0×103
sinj
=
k (a+b)
sin =0.1786k-0.5000
在 -900 < j < 900 间,
对应的光强极大的角位置列表如下:
k
sinj j
k
sinj j
0
-0.500 -300
1
2
-0.3232 -0.1464
-18051’ -8025’
3
4
0.0304 0.2072
1045’ 11057’
结束 返回
12-22 一光栅,宽为2.0cm,共有
6000条缝。如用钠光(589.3nm)垂直入射,
中央明纹的位置? 共有几级?如钠光与光

《光学》全套课件 PPT

《光学》全套课件 PPT

τ
cosΔ
dt =0
τ0
I = I1 +I2
叠加后光强等与两光束单独照射时的光强之和,
无干涉现象
2、相干叠加 满足相干条件的两束光叠加后
I =I1 +I2 +2 I1I2 cosΔ 位相差恒定,有干涉现象
若 I1 I2
I =2I1(1+cosΔ
)
=4I 1cos2
Δ 2
Δ =±2kπ I =4I1
r2
§1-7 薄膜干涉
利用薄膜上、下两个表面对入射光的反射和 折射,可在反射方向(或透射方向)获得相干光束。
一、薄膜干涉 扩展光源照射下的薄膜干涉
在一均匀透明介质n1中
放入上下表面平行,厚度
为e 的均匀介质 n2(>n1),
用扩展光源照射薄膜,其
反射和透射光如图所示
a
n1
i
a1 D
B
n2
A
n1 C
2、E和H相互垂直,并且都与传播方向垂直,E、H、u三者满 足右螺旋关系,E、H各在自己的振动面内振动,具有偏振性.
3、在空间任一点处
εE = μH
4、电磁波的传播速度决定于介质的介电常量和磁导率,

u= 1 εμ
在真空中u= c =
1 ≈3×108[m ε0μ0
s 1]
5、电磁波的能量
S
=E
×H ,
只对光有些初步认识,得出一些零碎结论,没有形
成系统理论。
二、几何光学时期
•这一时期建立了反射定律和折射定律,奠定了几何光学基础。
•李普塞(1587~1619)在1608年发明了第一架望远镜。
•延森(1588~1632)和冯特纳(1580~1656)最早制作了复 合显微镜。 •1610年,伽利略用自己制造的望远镜观察星体,发现了木星 的卫星。 • 斯涅耳和迪卡尔提出了折射定律

大学物理波动光学PPT课件

大学物理波动光学PPT课件

例2:例11-2
n3 n2 n1
23
n1
氟化镁 n2
玻璃
d
n3 n2
第11页/共44页
11.2 光的衍射
衍射现象: 只有当波长与障碍物的线度可比拟 时,才能观察到明显的衍射现象。
惠更斯-菲涅尔原理 子波干涉 夫琅和费单缝衍射:光源、单缝、屏幕距离无穷远 缝宽a、波长λ、焦距f、衍射角φ
S
L1 R
入射光之间附加了半个波长的波程差,称为半波损失。折射光 没有半波损失。
第7页/共44页
光程
真空中: C、 介质中: C' 、 '
同一束光在不同的介质中频率不变。
C C' '
n C C' '
'
n
2 r 2 nr '
即光在介质中传播r的波程与其在真空中
传播nr的波程产生的相位差相同.
l
dl
I I0

ln I l
I0
I I 0 e l
dl
I0
I
c I I0e cl
朗伯-比尔定律
第29页/共44页
令透射比 吸收度 消光系数
T I e cl I0
A logT cl loge
loge
比色计 分光光度计 光谱分析
A cl
第30页/共44页
本章小结
➢ 干涉:杨氏双缝干涉 薄膜干涉、半波损失、光程
I
0
一级光谱
ab
三级光谱 二级光谱
第40页/共44页
sin
光谱分析
由于不同元素(或化合物)各有自己特定的光谱,所以由谱线的成 分,可分析出发光物质所含的元素或化合物;还可从谱线的强度定量分 析出元素的含量.

《大学物理光学》PPT课件

《大学物理光学》PPT课件

3
光学仪器的发展趋势 随着光学技术的不断发展,光学仪器正朝着高精 度、高灵敏度、高分辨率和自动化等方向发展。
03
波动光学基础
Chapter
波动方程与波动性质
波动方程
描述光波在空间中传播的数学模型,包括振幅、频率、波长等参现象,是波动光学的基础。
偏振现象及其产生条件
干涉仪和衍射仪使用方法
干涉仪使用方法
通过分束器将光源发出的光波分成两束,再经过反射镜反射后汇聚到一点,形成干涉图样。通过调整反射镜的位 置和角度,可以观察不同干涉现象。
衍射仪使用方法
将光源发出的光波通过衍射光栅或单缝等衍射元件,观察衍射现象。通过调整光源位置、衍射元件参数等,可以 研究光的衍射规律。
光的反射与折射现象
光的反射
光在两种介质的分界面上改变传播方向又返回原来 介质中的现象。反射定律:反射光线、入射光线和 法线在同一平面内,反射光线和入射光线分居法线 两侧,反射角等于入射角。
光的折射
光从一种介质斜射入另一种介质时,传播方向发生 改变的现象。折射定律:折射光线、入射光线和法 线在同一平面内,折射光线和入射光线分居法线两 侧,折射角与入射角的正弦之比等于两种介质的折 射率之比。
了解干涉条纹的形成和特点。
衍射光栅测量光谱线宽度
03
使用衍射光栅测量光谱线的宽度,掌握衍射光栅的工作原理和
测量方法。
量子光学实验项目注意事项
单光子源的制备与检测 了解单光子源的概念、制备方法及其检测原理,注意实验 过程中的光源稳定性、探测器效率等因素对实验结果的影 响。
量子纠缠态的制备与观测 熟悉量子纠缠态的基本概念和制备方法,掌握纠缠态的观 测和度量方法,注意实验中的环境噪声、探测器暗计数等 因素对纠缠态的影响。

《大学物理光学》PPT课件 (2)

《大学物理光学》PPT课件 (2)

• 注意区分:
界面;入射面;振动面
n1
E P 光矢量的p分量-平行于入射面振动 n2
E S 光矢量的s分量-垂直于入射面振动
i1 i1'
i2
r—是在界面上的任一点的位置矢量。
图1.2-3 光在两种介质分界面上的反射与折射
1 波动光学基础
1.5.1 光在介质界面的反射与折射
E1s E1's E2s
A 1 s e i ( k x 1 r p t ) A ] 1 's [ e i ( k x 1 ' r p 1 't ) A ] 2 [ s e i ( k x 2 r p 2 t )] [
1. 1 1' 2
2.
k1rk1 ' rk2r
(k1' k1) r 0 (k2 k1) r 0
1、rp、r
均为复数
s
rp rs 1, RP RS 1
S 0 p,P 0 p 2、1 C时,s p 0,不改变偏振态 1 C时,s p 0 p,改变偏振态
二、倏逝波
1、等幅面是平行于界面的平面, 等相面是垂直于界面的平面。
2、入射波透入介质2约一个波长的深度, 透射波沿界面传播约半个波长, 然后返回介质1。
R
wp
0
0
30
1.5.5 反射光与透射光的半波损失(相位突变)
结论: ① 自然光自疏(快)介质向密(慢)介质入射时,反射光相对入射光 存在半波损失(p 相位突变),反之不存在。
② 透射光在任何情况下都不存在半波损失。
1 波动光学基础
1.5.6 全反射现象与应用
1.5.6 全反射现象与应用
• 一、反射系数及反射相移

大学物理课件光学

大学物理课件光学
康普顿效应
当X射线或γ射线与物质相互作用时,光子将部分能量转移 给电子,使电子获得动能并从原子中逸出。康普顿效应进 一步证实了光的粒子性。
02
光的干涉现象及应用
双缝干涉实验及原理
双缝干涉实验装置与步骤
介绍双缝干涉实验的基本装置,包括 光源、双缝、屏幕等,以及实验的操 作步骤。
双缝干涉现象观察
双缝干涉原理分析
光的偏振现象
横波特有的现象,纵波不发生偏振。 光的偏振证明了光是一种横波。
光的量子性描述
光子概念
光是由一份份不连续的能量子组成的,每一份能量子称为 一个光子。光子具有能量ε=hν和动量p=h/λ,其中h为普 朗克常量,ν为光的频率,λ为光的波长。
光电效应 当光照在金属表面时,金属中的电子会吸收光子的能量并 从金属表面逸出,形成光电流。光电效应实验证明了光的 量子性。
大学物理课件光学
目录
• 光学基本概念与理论 • 光的干涉现象及应用 • 光的衍射现象及应用 • 光的偏振现象及应用 • 现代光学技术与发展趋势 • 实验方法与技巧
01
光学基本概念与理论
光的本质和特性
01 光是一种电磁波
光具有波粒二象性,既可以表现为波动性质,也 可以表现为粒子性质。
02 光速不变原理
偏振光
光振动在某一特定方向的光,在垂直于传播方向的平面 上,只沿某个特定方向振动。
马吕斯定律和布儒斯特角
马吕斯定律
描述线偏振光通过检偏器后透射光强与检偏器透振方向夹角的关系,即透射光强与夹角的余弦值的平方成正比。
布儒斯特角
当自然光在两种各向同性媒质分界面上反射、折射时,反射光和折射光都是部分偏振光。反射光中垂直振动多于 平行振动,折射光中平行振动多于垂直振动。当入射角满足某种条件时,反射光中垂直振动的光完全消失,只剩 下平行振动的光,这种光是线偏振光,而此时的入射角叫做布儒斯特角。

物理光学基础知识ppt课件

物理光学基础知识ppt课件

04
光源与光谱分析
光源类型及特性
1 2 3
热辐射光源
通过加热物体产生光辐射,如白炽灯、黑体辐射 源等。具有连续的光谱分布,色温与发光体温度 相关。
气体放电光源
利用气体放电产生光辐射,如荧光灯、钠灯等。 光谱分布与放电物质及条件有关,可实现特定波 长的光输出。
激光光源
通过受激辐射产生相干光,具有单色性、方向性 和高亮度等特点。广泛应用于科研、工业、医疗 等领域。
光谱分析原理及方法
光谱分析原理
01
不同物质具有不同的光谱特征,通过对物质发射、吸收或散射
的光进行分析,可以了解物质的成分、结构等信息。
光谱分析方法
02
包括发射光谱分析、吸收光谱分析、拉曼光谱分析、荧光光谱
分析等。各种方法具有不同的特点和适用范围。
光谱仪器
03
常用的光谱仪器有分光光度计、光谱仪、原子发射光谱仪等。
衍射现象
单缝衍射
单色光通过单缝时,在屏幕上形成中央亮纹、两侧明暗相 间的衍射条纹,表明光在传播过程中遇到障碍物或小孔时 会发生偏离直线传播的现象。
圆孔衍射
单色光通过小圆孔时,在屏幕上形成明暗相间的圆环状衍 射条纹,揭示了光的波动性。
泊松亮斑
当单色光照射到不透光的小圆板上时,在圆板后面的屏幕 上会出现一个亮斑,即泊松亮斑,这是光的衍射现象的一 个著名实例。
于携带和使用。
智能化
结合人工智能和机器学习技术 ,实现光学设备的自动化和智 能化操作。
多功能化
将多种光学功能集成在一个设 备上,提高设备的综合性能。
高精度化
提高光学设备的测量精度和稳 定性,满足高精度测量和实验
需求。
06
总结与展望

《大学物理物理光学》PPT课件

《大学物理物理光学》PPT课件
第九章 波动光学
(Wave optics)
Introduction
Review of history
The period of Ancient optics
The period of geometric optics The period of wave optics The period of quantum optics
橙 622~597 4 .8 110 ~ 45 .0 110 4 610
黄 597~577 5 .0 110 ~ 45 .4 110 4 570
绿 577~492 5 .4 110 ~ 46 .1 110 4 540
青 492~470 6 .1 110 ~ 46 .4 110 4 480
相干条件:
(1)振动方向相同
(2)频率相同
(3)有恒定的位精相选pp差t
14
相干光的获得
分波阵面法:
在光源发出的 同一波阵面上 取两个点光源, 该两个点光源 发出的光为相 干光(杨氏实 验)
波阵面分割法
s1
光源 *
s2
精选ppt
15
分振幅法:
利用反射或 折射把一束 光的振幅分 成两部分, 这两部分光 为相干光 (薄膜干涉)
独立性:各原子各次发光相互独立,各波列互不相干.
非相干(不同原子发的光)
非相干(同一原子先后发的光)
精选ppt
11
激光属于受激辐射
• E2 • E1
2.激光
波列
E 2 E 1 /h
光波的相位、频率、振动方向以及传播方向都和原 来的入射光相同,即它们具有好
谱线宽度
例:普通单色光
: 10-2 10 0A
0

大学物理光学PPT演资料

大学物理光学PPT演资料

反射的规律
如果让光线逆着反射光线的方向照射到平面镜上, 可以看见光,这说明:在反射现象中,光路是可逆 的。
镜面反射和漫反射
平行光射到平面镜上,反射光仍平行,这个反射叫 镜面反射。
平行光照到白纸上,反射光向各个不同的方向,这 种反射叫漫反射。
镜面反射和漫反射都遵循光的反射定律。
牛 顿 环
牛顿环的应用———检测透镜质量
将标准验规覆盖于待测透镜表面,两者之间形成空气膜, 因此可观察到牛顿圈。如圈数越多,说明误差越大。如牛 顿圈偏离圆形,说明透镜表面不规则。
惠更斯的波动说
光是在充满整个空间的特殊介质“以太”中 传播的某种弹性波
惠更斯只是在前人的基础上进一步发展了光的波动理论 ,得到了著名的惠更斯原理.用这个原理他成功地推导出 反射定律和折射定律,此外还说明了冰洲石的双折射现 象.惠更斯发现了光的偏振现象.不过在那个年代因为牛 顿支持光的粒子学说,所以光的波动说没有被普遍接受. 直到19世纪杨氏双缝实验的成功,光的波动理论才开始 逐渐被人们接受.
牛顿在光学上的贡献
牛顿是这样认为的:光是由一颗颗像小弹丸一样的机械微粒所组成的粒子 流,发光物体接连不断地向周围空间发射高速直线飞行的光粒子流,一旦 这些光粒子进入人的眼睛,冲击视网膜,就引起了视觉,这就是光的微粒 说.牛顿用微粒说轻而易举地解释了光的直进、反射和折射现象.由于微 粒说通俗易懂,又能解释常见的一些光学现象,所以很快获得了人们的承 认和支持.
动是各子波在此产生的振动的叠加 .
由子波相干叠加得到在 P点的合振动为:
E
S
dE
C
S
K
(
)
dS r
cos(t
2 nr
)dS
光的反射

大学物理光学部分ppt

大学物理光学部分ppt

薄膜的最小厚度对应 k 0 ,所以 emin 4n
在镀膜工艺中,常把 ne 称为薄膜的光学厚度,镀膜时控 制厚度e,使膜的光学厚度等于入射光波长的1/4。
注意: 一定的膜厚只对应一定波长的单色光,照相机镜头常
取 550 n黄m绿光
来计算镀膜的厚度。在白光
下观看此薄膜的反射光,因缺少黄绿色光而表面呈蓝紫色。
相对光强 I E 2 E是电场强度振幅
2、光源
光 是原子或分子的运动
状态变化时辐射出来 大量处的于激发态的原子自发地 跃迁到低激发态或基态时就辐 射电磁波(光波)。
- 1.5 e V - 3.4 e V
波列
- 13.6 e V 氢原子的发光跃迁
原子发光的特性
间歇性 每个原子或分子的辐射是断续的、无规则的,每
1 m . 若第 1 级明纹到第 4 级明纹的距离为 7.5 mm ,求光波 波长。
解 d 0.2 mm
D 1m
x D
d
r2
P
s1
d
r1
o
s2
D
x 7.5 2.5 mm 3
所以 d x 500 nm
D
例2 用云母片( n = 1.58 )覆盖在杨氏双缝的一条缝上,
这时屏上的零级明纹移到原来的第 7 级明纹处。若光波波长 为 550 nm ,求云母片的厚度。
§10.1 光的相干性
1、光的电磁理论要点
光速
光波是电磁波, 电磁波在真空中的传播速度
c
1
00
, 介质中 v
c
r r

c n v
rr
可见光的波长范围
400 nm — 760 nm
1 nm =10-9 m

【精品】物理光学PPT课件(完整版)

【精品】物理光学PPT课件(完整版)
② 可以简化运算。
三维简谐波的复指数表示
复振幅:
下面讨论一下平面简谐波投射在一个平面上,这个平面上
的光场分布。
x
波矢k的方向余弦为
在z=0(XOY)平面上光场复振幅:
O
z
这表明,z=0平面上任意两点的位相差仅 仅由Δx来决定。
如图所示: x
O
z 4π

0 -2π
可以利用复振幅方便-4地π 求光强度,
• 对光导纤维的研究形成了光纤光学或导波光学; • 导波光学,电子学和通讯理论的结合使得光通信得到迅
速发展和应用,成为人类在20世纪最重要的科技成就; • 非线性光学,信息光学及集成光学等理论与技术的结合
可能会导致新一代计算机—光计算机的诞生.
2. 物理光学的应用
测控,通信,医疗,信息处理,光学设计。
• 薄膜光学的建立,源于光学薄膜的研究和薄膜技 术的发展;
• 傅立叶光学的建立源于数学、通讯理论和光的衍 射的结合;它利用系统概念和频谱语言来描述光 学变换过程,形成了光学信息处理的内容.
• 集成光学源于将集成电路的概念和方法引入光学 领域;
• 非线性光学源于高强度激光的出现、它研究当介质已不 满足线性叠加原理时所产生的一些新现象,如倍频,混 频,自聚焦等;
• 基本问题:在各种条件下的传播问题。 • 基本原理:惠更斯-菲涅耳原理。 • 波前:原为等相面,现泛指波场中的 任一曲面,
更多的是指一个平面。
• 主要方法:如何描述、识别、分解、改造、记录 和再现波前,构成了波动光学的主要方法。
量子光学:研究光与物质的相互作用的问题。
• 把光视为一个个分立的粒子(光子),它主要用于 分析辐射、光发射以及光与物质的相互作用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 波涵数 (波的运动学方程)
描述波线上各质元集体振动规律
满足 y f (x,t) f [(x x), (t t)] 式中x ut , y — 振动位移, x — 质元位置
2. 平面简谐波 ( 一维 )
简谐运动(波源) 均匀、无吸收介质 最基本波 u
ppt课件
Q
P
x0
x
6
6.
设波沿 x 轴正向(或负向)传播
x 2 u
x
与 滞后
x —— 波程差
d. 对任一质元 v y t
a
2 y t 2
[讨论] 如已知质元Q(x0)振动规律
yQ Acos( t Q )
设波沿 x 轴正向传播 , 求波函数 .
u
o
Q ppt课件
x
9
9.
分析:
a. Ⅰ法
设波函数为
y
A cos[ (t
-
x u
)
0
]
将 x = x0代入与y Q比较
空间
二.横波与纵波
1. 横波
切变 固体
2. 纵波
体变 固、液 、气
对复杂波动
包含上述两种成分(如水ppt课波件 )
2
2.
三. 波长 波的周期和频率 波速
1. 波长
一个周期 波传播的距离 (一个完整波形长度)
或 相邻( = 2) 两个振动质元间距
2. 周期与频率
y
A
u
T : 传播一个 所需的时间 O
(2)该曲线表示质元 P处(x = 10m)的振动规律.
分析:
a. 设
y
A cos[ (t
x) 2
0
]
y (×10-2m)
4
由y-t 曲线 — 特征量
A ,T(
2
T
6
,0)
0
1 *
- 2*
- 4*
7 13
* * t(s)
*
b. 可由旋矢法求0或 ( P )
y0 -A / 2 , v0 0
42
y
O
3. x,t 均变化 “传播” “行波”
y t 时刻的波形 u
t+t时刻的波形
O
x
x
x
满足 y(x x,t t) y(x,t)
x ut ppt课件
11
11 .
[例1] 已知 一平面简谐波
y 0.05cos π(2.5t 0.1x 0.5)(SI)
求: 、T、u、 ,向何方向传播?
分析: a. 比较法 化为标准式后比较
第十章 波动
概述
振动 状态 传播 波动 机械波(含声波)
能量
电磁波(含光波)
机械波
波源 介质
(一维)简谐振动
(平面)简谐波
复杂振动
复波
波的共性 — 反射,折射pp,t课件干涉,衍射,偏振(横1波)
1.
10-1 机械波的几个概念
一.机械波的形成
振源(波源)
时间
波动(集体振动)
双重周期性
弹性介质(固、液 、气 )
x
-A
: 单位时间 传播完整波的数目
注 a. 波源 S 相对介质静止 T = TS =S
b. 对线性波 (如机械波)
T 、 与介质无ppt关课件,只与波源有关 3 3.
3. 波速u (相速) 单位时间 状态(相位) 传播距离
与介质性质有关,与波源无关
4. 相互关系 u 或 u

T
*a. 波速公式
可得
0
Q
x0 u
Q
2
x0
b. Ⅱ法 由相位超前或滞后关系直接求0
0
Q
x0 u
u
oQ
x
上方(超前) 下方(滞后)
c. 如 x0< 0 不影响最终结果
结论:
y
Acos[(t x
ppt课件
- x0 u
)
Q ]
10
10 .
二. 波函数的物理含义
1. x一定,y f (t) x处质元的振动规律
2. t一定, y f (x) 波形图 (各质元空间位移分布)
u : π(2.5t1 0.1x1 0.5) π(2.5t2 0.1x2 0.5)
u (x2 - x1) /p(ptt课1件- t2 ) 25 (ms -1)
12
12 .
[例2] 已知波沿 x 轴负向传播, u = 2 ms-1, 波线上
任一点质元的振动规律如图所示,求下列情况下
的波函数: (1)该曲线表示原点O处的振动规律;
7 13
* * t(s)
*
u
x
P
14
14 .
[例3] 已知波沿 x 轴正向传播, u = 2.0ms-1, t时刻波形
图如图所示,求下列情况下的波函数: y (×10-2m)
(1) t = 0s ; (2) t = 1s .
b. 意义法( 、T、u )
— 理解波的双重周期性和传播特性
: π(2.5t 0.1x2 0.5) - π(2.5t 0.1x1 0.5) 2
x2 - x1 20 (m)x 0.5) 2
T t2 - t1 0.8 (s)
“ ” — 传播方向与 x 轴正向
一致 “ - ” 相反 “ ”
b. 波的相位
[(t
x u
)
0
]

[ t 2
x 0]
其中 t = 0 x 处质元初相位
t = 0 x = 0 原点ppt课O件处的初相位( 0 )
8
8.
c. 相位差
同一列波
同一质元不同时刻 t
区分 超前
同一时刻不同质元
u
原点O处 (不一定是波源S )
Q
O 处质元: yO
Acost 0
( 教材设 0 = 0 )
O
x0
P
x
对任一质元
y
P(x):
PA
cos[
(t
-
x u
)
0
]
x
如图 ( x > 0 ) P 滞后O
[讨论]
时间 t x u
相位 x 2 x u
下列两种情况下, P与O两质元超前或滞后关系
(1)波沿x轴正向传播 P处质元 ( x < 0 )
固体 u G (横) u E (纵)
液、气体 u
K
(纵)
b. 双重周期性 (n)T
p(pnt课)件
= (n) 2
4
4.
四. 波线 波面 波前 —几何描绘
波线 — 传播方向 波面 — 同相面
平面波(一维) 球面波(三维)
ppt课件
5
5.
10-2 平面简谐波的波涵数
一. 平面简谐波的波函数
0或
(
P )
4
3ppt课件
13 13 .
c. 对(2)

y
4 10-2
cos[
6
(t
x) 2
0
](SI)
Ⅰ法 比较法
y (×10-2m)
由y-t 曲线 知
yP
4 10-2
cos(
6
t
4
3
)
4
0
1 *
- 2*
- 4*
将xP = 10m 代入与yP 比较 ,

0
2
O
Ⅱ法 相差法
0
P
-
x u
2
ppt课件
(2)波沿x轴负向传播 x ppt课件 > 0 , x < 0
7
7.
一般 波函数标准形式
y

A
cos[(t
x u
)
0
]
Acos(t kx 0 )
Acos[2 (t x k 2 角波数
)
0 ]
a. 形式 — 与坐标系选择有关(原点、正向)
特征量( A、、u、 ……)
关键 0 —原点O处质元的初相位( x = 0 , t = 0 )
相关文档
最新文档