七年级数学上册知识点大全
七年级数学上册各章知识点总结
[二]有理数减法法则: 减去一个数,等于 加上这个数的相反数 ,用字母表示为a-
b= a=+[-b] .
一.四有理数的乘除法
[一]有理数乘法法则:
一、两数相乘,同号 得正 ,异号 得负 ,并把 绝对值相
乘
.
二、几个不是0的数相乘,积的符号由负因数的个数决定,当负因
数有偶数个时,积为 正数 ,当负因数有奇数个时,积为 负数 ;
图1
从正面看
从左面看
从上面看
图2
三、立体图形的展开图有些立体图形是有一些平面图形围 成的,把它们的表面适当剪开后在平面上展开得到的平图形 称为立体图形的展开图. [一]圆柱和圆锥的侧面展开图 [二]棱柱和棱锥的展开图 [三]根据展开图判断立体图形的规律: A展开图全是长方形或正方形时------长方体或正方体; B展开图中含有三角形时-----棱锥或棱柱; 若展开图中含有二个三角形三个长方形-----三棱柱; 若展开图中全是三角形[四个]-----[三]棱锥. C展开图中含有圆和长方形-----圆柱; D展开图中含有扇形------圆锥.
-a
a
-5 -4 -3 -2 -1 0 1 2 3 4
有理数的分类
[四]、绝对值:数轴上表示数a的点与原点的距离叫做数a 的绝对4 -3 -2 -1 0 1 2 3 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 ,
0的绝对值是
0
.
注意:一|a|≥0即对任意有理数a,它的绝对值是非负数 二绝对值最小数为0
当a<0时,无解.
五:方程的解与解方程:使方程两边相等的未 知数的值叫做方程的解,求方程解的过程叫 解方程.
六:关于移项:⑴移项实质是等式的基本性质一的 运用. ⑵移项时,一定记住要改变所移项的符号.
七年级上册数学所有知识点
七年级上册数学所有知识点七年级上册数学知识点概述一、数与代数1. 自然数和整数- 自然数的定义与性质- 整数的定义与性质- 正数、负数和零的概念- 整数 operations (加法、减法、乘法、除法)2. 有理数- 有理数的定义- 有理数的分类(正有理数、负有理数、零)- 有理数的加法、减法、乘法和除法规则- 有理数的比较大小3. 代数表达式- 代数表达式的构成- 单项式与多项式的定义- 同类项与合并同类项- 代数式简化4. 一元一次方程- 方程与方程解的概念- 一元一次方程的标准形式- 解一元一次方程的方法(移项、合并同类项、系数化为1)5. 线性不等式- 不等式的基本性质- 线性不等式的解集表示- 不等式的解法(加减法、乘除法)二、几何1. 点、线、面- 点的位置关系- 直线、射线、线段的定义与性质- 平面的基本性质2. 角- 角的定义与度量- 角的分类(锐角、直角、钝角、平角、周角) - 角的比较与运算3. 三角形- 三角形的定义与分类- 三角形的性质(边长关系、内角和定理)- 等腰三角形与等边三角形的性质4. 四边形- 四边形的定义与分类- 矩形、正方形、平行四边形的性质- 四边形的内角和定理5. 圆- 圆的定义与性质- 圆的半径、直径、弦、弧、切线的概念- 圆周角与圆心角的关系三、统计与概率1. 统计- 数据的收集与整理- 频数与频率的概念- 条形图、折线图、饼图的绘制与解读2. 概率- 随机事件的概念- 概率的初步认识- 简单事件的概率计算四、综合应用1. 数学问题解决策略- 问题的理解与分析- 数学建模与解决步骤- 结果的检验与评价2. 数学在生活中的应用- 数学与日常生活的联系- 数学在其他学科中的应用请注意,以上内容仅为七年级上册数学知识点的概述,具体的教学内容和顺序可能会根据不同地区的教学大纲和教材有所差异。
教师和学生应参考具体的教材和课程标准来安排教学和学习计划。
七年级上册数学知识点总结
12、圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。
(4)自然数0和正整数; a>0a是正数; a<0a是负数;
a≥0a是正数或0a是非负数; a≤0a是负数或0a是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c的相反数是-(a-b+c)= -a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;
6、添括号法则
添“+”号和括号,添到括号里的各项符号都不改变;添“-”号和括号,添到括号里的各项符号都要改变。
7、整式的运算:
整式的加减法:(1)去括号;(2)合并同类项。
第四章基本平面图形
1、线段、射线、直线
名称
图形
表示方法
端点
长度
直线
直线AB(或BA)
直线l
无端点
无法度量
射线
射线OM
1个
无法度量
线段
线段AB(或BA)
线段l
2个
可度量长度
2、直线的性质
(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
完整版)七年级上册数学知识点大全
完整版)七年级上册数学知识点大全2)异号两数相加,取绝对值大的符号,并把绝对值相减;3)加数与被加数的顺序可以交换,即满足交换律;4)加法结合律成立,即(a+b)+c=a+(b+c);5)0是加法的零元素,即a+0=a;6)有理数加法满足可逆律,即对于任意有理数a,都有相反数-b,使得a+b=0.8.有理数减法法则:1)a-b=a+(-b);2)减数与被减数的顺序不能交换,即不满足交换律;3)减法不满足结合律,即(a-b)-c≠a-(b-c);4)减法没有零元素;5)有理数减法也满足可逆律,即对于任意有理数a,都有相反数-b,使得a-b=a+(-b)=0.9.有理数乘法法则:1)同号两数相乘,积为正数;2)异号两数相乘,积为负数;3)0乘以任何数都等于0;4)1是乘法的单位元素,即a×1=a;5)乘法满足交换律,即a×b=b×a;6)乘法满足结合律,即(a×b)×c=a×(b×c);7)有理数乘法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.10.有理数除法法则:1)a÷b=a×1/b;2)被除数为0时,无法进行除法运算;3)除数为0时,无意义;4)除法不满足交换律,即a÷b≠b÷a;5)除法不满足结合律,即(a÷b)÷c≠a÷(b÷c);6)有理数除法满足可逆律,即对于任意非零有理数a,都有倒数1/a,使得a×1/a=1.11.分数:1)分数由分子和分母组成,分母不能为0;2)分数可以化为最简分数,即分子和分母没有公因数;3)分数可以比大小,比较分数大小时,可以通分,然后比较分子大小;4)分数可以加减乘除,加减法通分后再进行运算,乘法直接将分子和分母相乘,除法将除数取倒数后再乘以被除数.12.小数:1)小数是有理数的一种表示形式;2)小数可以化为分数,分母为10的正整数的分数;3)小数的加减乘除法与分数的运算法则相同;4)小数可以用数轴表示,小数点左边的数表示整数部分,右边的数表示小数部分;5)小数可以化为百分数,即乘以100,化为千分数即乘以1000等.1.有理数的基本概念:有理数包括正有理数、负有理数和零,可以表示成分数形式,分母不为零。
七年级上册数学知识点大全
七年级上册数学知识点大全两个相反数相加得0,一个数同0相加,仍得这个数。
加法结合律:(a+b)+c=a+(b+c)。
有理数减法法则:减去一个数,等于加上这个数的相反数。
即a-b=a+(-b)。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
乘方:求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
其中,a叫做底数,n叫做指数。
有理数乘方法则:负数的偶次幂是正数,负数的奇次幂是负数。
有理数的除法法则:除以一个不等于0的数,等于乘这个数的倒数。
结合律:(a^m) (a^n)=a^(m+n);有理数的运算顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的,或先去括号再算,有时也可以利用运算律进行简化运算。
有理数的运算定律:交换律、结合律、分配律同样适用于有理数的运算。
在进行有理数运算时,要灵活运用运算律进行简化运算。
在进行有理数运算时,要统一成标准的算式格式,再进行计算。
在进行有理数运算时,要正确地确定结果的符号;对一个数的几次方应先确定符号后,再计算其绝对值。
在进行有理数运算时,要熟练地运用乘法公式;在计算数值较小的算式时,要细心防止因粗心大意造成计算错误;在计算数值较大的算式时,为防止重复计算造成繁琐的计算过程,可发挥估算的作用提前作出判断。
在进行有理数运算时,要养成先定符号的习惯;在解决实际问题时,要实际审清题意进行正确解答。
在进行有理数运算时,要正确书写运算过程的格式;在比较两个有理数的大小时,要注意比较方法的正确使用。
在进行有理数运算时,要注意培养良好的学习习惯;在进行有理数运算时,要认真审题、沉着冷静地进行思考、仔细分析寻求解题途径;在解完题目之后要进行总结并经常性地反思自己的解题过程;在学习与生活中注意适当分类总结并积累一些常用的数学方法与数学思想。
地理课是我们接触到的一门新课程,学习地理课要做哪些准备?答:我们要做好三方面的准备:一是心理上的准备,克服怕学不好或不想学的思想;二是知识上的准备,了解学好地理课的基础知识;三是物质上的准备,上课时必须把课本、练习本、笔等学习用品准备齐全。
七年级上册数学要点
七年级上册数学要点
1. 正负数:正数是大于0的数,负数是小于0的数。
0既不是正数也不是负数。
2. 有理数:有理数是可以表示为两个整数之比的数,包括整数和分数。
整数包括正整数、0和负整数,分数包括正分数和负分数。
3. 数轴:数轴是一条直线,可以用来表示所有的有理数。
数轴上的每一个点都对应一个有理数,反之亦然。
数轴上的点有原点(表示0的点)、正方向和单位长度。
在数轴上,右边的数总比左边的数大。
4. 相反数和绝对值:只有符号不同的两个数互为相反数。
正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
5. 倒数:乘积为1的两个数互为倒数。
0没有倒数。
6. 直线、射线和线段:直线可以向两侧无限延伸,没有端点。
射线有一个端点,可以向一侧无限延伸。
线段有两个端点,长度有限。
7. 角:角是由有公共端点的两条射线组成的图形。
这个公共端点是角的顶点,两条射线是角的两边。
角的度、分、秒是60进制的,即1度等于60分,1分等于60秒。
七年级上册数学知识点汇总
七年级上册数学知识点汇总一、有理数1. 正负数正数:大于 0 的数。
负数:小于 0 的数。
0 既不是正数也不是负数。
2. 有理数的分类按定义分:有理数分为整数(正整数、0、负整数)和分数(正分数、负分数)。
按性质分:有理数分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴定义:规定了原点、正方向和单位长度的直线。
数轴上的点与有理数的关系:数轴上的点与有理数一一对应。
4. 相反数定义:只有符号不同的两个数互为相反数。
性质:互为相反数的两个数之和为 0。
5. 绝对值定义:数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值。
性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0。
6. 有理数的大小比较正数大于 0,0 大于负数,正数大于负数。
两个负数,绝对值大的反而小。
7. 有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得 0;一个数同 0 相加,仍得这个数。
运算律:加法交换律 a + b = b + a;加法结合律 (a + b) + c = a + (b + c)8. 有理数的减法法则:减去一个数,等于加上这个数的相反数。
9. 有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与 0 相乘,都得 0。
运算律:乘法交换律 ab = ba;乘法结合律 (ab)c =a(bc);乘法分配律 a(b + c) = ab + ac10. 有理数的除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。
11. 有理数的乘方定义:求 n 个相同因数 a 的积的运算叫做乘方,记作aⁿ,其中 a 叫做底数,n 叫做指数。
性质:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0 的任何正整数次幂都是 0。
12. 科学记数法把一个大于 10 的数表示成a×10ⁿ的形式(其中 a 大于或等于 1 且小于 10,n 是正整数)。
七年级上册数学知识点 (全册)
七年级上册数学知识点 (全册)单元一:数的概念和认识
- 自然数、整数、有理数、无理数的概念及其表示方法- 数轴的认识和使用
- 数的比较和大小的判断方法
- 数的分类和性质
单元二:整数的加减法
- 整数的加法和减法运算规则
- 整数的加减法计算方法
- 整数加减法的应用
单元三:小数的认识和运算
- 小数的概念和表示方法
- 小数和分数的转换
- 小数的加减乘除运算法则
- 小数的应用问题
单元四:比例与相等
- 比例的概念和性质
- 比例的表示方法和比例的简化- 比例的相等和比例的应用
单元五:百分数
- 百分数的概念和表示方法
- 百分数与比例的关系
- 百分数的转化和运算法则
- 百分数的应用问题
单元六:图形的认识
- 几何图形的基本概念和性质- 点、线、面、体的认识
- 常见平面图形的名称和特征
- 三角形的分类和性质
单元七:平面图形的性质和计算
- 四边形的分类和性质
- 平行四边形的性质和判定方法
- 直角、等腰和等边三角形的性质
- 平面图形的周长和面积的计算方法
单元八:数据的收集和整理
- 数据的收集方法和调查问题的设计
- 数据的整理和分类
- 数据的统计和分析
- 数据的应用和解读
以上是七年级上册数学的主要知识点,通过学习这些内容,你可以打下坚实的数学基础。
希望你在学习中能够发现数学的乐趣,不断提升自己的数学能力。
加油!。
初中数学七年级上册知识点总结(最新最全)
提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。
3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数;a >0 ⇔ a 是正数;a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数;a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级上册数学上册知识点大全
七年级上册数学上册知识点大全一、整数1. 整数的概念:表示物体个数的数,包括正整数、负整数和零。
2. 整数的运算:加法、减法、乘法、除法和取余数。
3. 绝对值的概念:一个数距离0的距离,用绝对值表示。
4. 相反数的概念:两个数的和为0,这两个数互为相反数。
5. 有理数的概念:可以表示为两个整数之比的数。
二、分数1. 分数的概念:表示部分的数,由两部分组成,分子和分母。
2. 分数的性质:分数的大小与分子、分母的大小有关,分子越大,分数越大;分母越大,分数越小。
3. 分数的运算:加法、减法、乘法、除法。
4. 最简分数:分子和分母没有公因数的分数。
5. 分数与小数的关系:分数可以转化为小数,小数也可以转化为分数。
三、代数式1. 代数式的概念:用字母表示数的式子。
2. 代数式的运算:加法、减法、乘法、除法。
3. 代数式的简化:合并同类项、提取公因式等方法简化代数式。
4. 代数式的值:将代数式中的字母代入数值后得到的数。
四、方程与不等式1. 方程的概念:含有未知数的等式。
2. 方程的解:使方程成立的未知数的值。
3. 一元一次方程的解法:移项、合并同类项、系数化为1等方法。
4. 一元一次不等式的解法:移项、合并同类项、系数化为1等方法。
5. 二元一次方程组的解法:消元法、代入法等方法。
6. 二元一次不等式组的解法:交集法、并集法等方法。
五、几何图形1. 点、线、面的概念。
2. 直线、射线、线段的概念及性质。
3. 角的概念:两条射线的公共端点所夹的部分。
4. 角的分类:锐角、直角、钝角、平角、周角等。
5. 三角形的概念:由三条边和三个内角组成的图形。
6. 三角形的性质:等边三角形、等腰三角形、直角三角形等。
7. 四边形的概念:由四条边和四个内角组成的图形。
8. 四边形的性质:平行四边形、矩形、正方形等。
七年级上册数学知识点总结大全
七年级上册数学知识点总结-1第一章有理数1.1正数和负数①把0以外的数分为正数和负数。
0是正数与负数的分界。
②负数:比0小的数正数:比0大的数0既不是正数,也不是负数1.2有理数1.2.1有理数①正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
②所有正整数组成正整数集合,所有负整数组成负整数集合。
正整数,0,负整数统称整数。
1.2.2数轴①具有原点,正方向,单位长度的直线叫数轴。
1.2.3相反数①只有符号不同的数叫相反数。
②0的相反数是0 正数的相反数是负数负数的相反数是正数1.2.4绝对值①绝对值|a|②性质:正数的绝对值是它的本身负数的绝对值的它的相反数0的绝对值的01.2.5数的大小比较①数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
②正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
1.3有理数的加减法1.3.1有理数的加法①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,去绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
④加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a⑤加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=(a+c)+b1.3.2有理数的减法①减去一个数,等于加这个数的相反数。
a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法①两数相乘,同号得正,异号的负,并把绝对值相乘。
②任何数同0相乘,都得0。
③乘积是1的两个数互为倒数。
④几个不是0的数相乘,负因数的个数的偶数时,积是正数;负因数的个数是奇数时,积是负数。
⑤乘法交换律:两个数相乘,交换因数的位置,积相等。
ab=ba⑥乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
七年级上册数学所有知识点
一、算数与式子。
1.加减乘除,理解计算机的运算原则;
2.练习应用常用算法;
3.掌握正确的表达和计算顺序,如先乘除后加减;
4.掌握顺序计算、列式、竖式等求解方法;
5.加减乘除的正负数运算;
6.四则运算中借位、退位的处理;
7.分数的定义、分式的化简;
8.常用方程的解法。
二、几何。
1.理解几何图形的基本概念,如:点、线、面等;
2.理解直角三角形、等腰三角形等,掌握其各自的属性,及相应的计算公式;
3.理解等比例,掌握等比比例的计算过程;
4.理解四边形、正多边形的属性及其计算;
5.了解立体几何的概念,理解立体图形的各类属性;
6.掌握正方体、长方体、球体、圆柱体的表面积与体积公式;
7.理解图形之间的关系及相应的构图与结论判断;
8.了解用直线线段、圆弧、圆锥、圆柱棱等来构成几何图形;
9.了解坐标系及其特性,掌握直线方程和圆的方程;
三、概率。
1.理解概率的概念;
2.熟悉面积比相关的概率计算;
3.掌握抛硬币试验、抛骰子试验等实际概率事件的计算;
4.理解机械计算概率的方式;。
七年级上册数学知识点 (全册)
七年级上册数学知识点 (全册)第一章:数的认识1.1 整数1.1.1 整数的定义与性质- 整数包括正整数、0 和负整数。
- 整数具有加法、减法、乘法和除法等基本运算性质。
1.1.2 整数的分类- 自然数:正整数和0。
- 整数:包括自然数、负整数和0。
1.2 分数1.2.1 分数的定义与性质- 分数是整数比上整数,形式为 a/b,其中 a 和 b 是整数,b 不为0。
- 分数具有加法、减法、乘法和除法等基本运算性质。
1.2.2 分数的分类- 正分数:分子大于分母的分数。
- 负分数:分子小于分母的分数。
- 零分数:分子等于分母的分数。
1.3 小数1.3.1 小数的定义与性质- 小数是十进制数的一种,由整数部分和小数部分组成,用小数点分隔。
- 小数具有加法、减法、乘法和除法等基本运算性质。
1.3.2 小数的分类- 有限小数:小数部分有限的小数。
- 无限小数:小数部分无限的小数。
第二章:代数式2.1 代数式的定义与性质2.1.1 代数式的定义- 代数式是由数字、变量和运算符组成的表达式。
2.1.2 代数式的性质- 代数式具有加法、减法、乘法和除法等基本运算性质。
2.2 变量2.2.1 变量的定义与性质- 变量是代数式中的未知数,用字母表示。
- 变量可以取不同的数值。
2.3 代数式的运算2.3.1 代数式的加减法- 同类项:变量和它们的指数相同的代数式。
- 代数式的加减法:同类项之间进行加减运算。
2.3.2 代数式的乘除法- 代数式的乘除法:将代数式与数字相乘或相除。
第三章:一元一次方程3.1 一元一次方程的定义与性质3.1.1 一元一次方程的定义- 一元一次方程是形如 ax + b = 0 的方程,其中 a 和 b 是常数,x 是变量。
3.1.2 一元一次方程的性质- 一元一次方程的解是使方程成立的变量 x 的值。
3.2 一元一次方程的解法3.2.1 解法概述- 一元一次方程的解法有代入法、移项法、消元法等。
七年级上册数学必备重难点知识总结大全
七年级上册数学必备重难点知识总结大全七年级上册数学重难点知识1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不全表示有理数。
3、相反数只有符号不同的两个数互为相反数。
(如2的相反数是-2,0的相反数是0)4、绝对值(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2.将两个数绝对值不等的不同符号相加,取绝对值较大的加数的符号,用绝对值较大的减去绝对值较小的。
两个相反的数相加等于0。
3.当一个数加到0上,你还是得到这个数。
加法的交换律和结合律。
有理数减法法则:减去一个数等于加上这个数的倒数。
1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
乘法交换律、结合律、分配律。
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
七年级上册数学书知识点
七年级上册数学书知识点七年级上册数学书知识点1一、正数与负数1.在实际中表示意义相反的量上升5米记为5米; -8米则表示下降8米。
2.正数:大于0的数。
3.负数:在正数的前面加上“-”。
4.0的含义:①既不是正数也不是负数;②0在计数时表示没有,比如0元;③0表示某种量的基准,比如0℃表示温度的基准5.有理数的分类分数概念(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...“非”的概念非负数:正数和0非正分数:负分数非正数:负数和0非负分数:正分数非负整数:正整数和0非正整数:负整数和0二、数轴1.三要素:原点、正方向、单位长度。
通常原点用“O”表示,向右的方向为正方向,单位长度为1.2.如何画数轴①画直线(一般画成水平的),定原点,标出原点“O”;②取原点向右的方向为正方向,并标出箭头;③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3各点。
3.数轴上的点与有理数:(1)数轴上的点与有理数一一对应(2)左边的数<右边的数三、相反数①只有符号不同的两个数,叫做互为相反数。
0的相反数是0。
②a的相反数-a③a与b互为相反数:a+b=0④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b⑥求一个数的相反数方法:在这个数的前面加“-”号.⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
四、绝对值1.几何意义:从数轴上表示a的点到原点的距离即为|a|2. ①一个正数的绝对值等于它本身;当a是正数时,|a|=a;②一个负数的绝对值等于它的相反数;当a是负数时,|a|=-a;③0的绝对值等于0。
当a=0时,|a|=0。
3.互为相反数的两个数的绝对值相等。
五、有理数的大小比较1.正数>0>负数;2.两个负数比较①右边的点表示的数比左边的点表示的数大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册知识点汇总1.有理数:(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)自然数⇔0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0(a 是非负数);a ≤0 ⇔ a 是负数或0(a 是非正数).(4)最大的负整数是-1,最小的正整数是12.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;如1.5的相反数是-1.5,-12的相反数是12,a 的相反数是-a,0的相反数还是0;(2)注意:3.14-π的相反数是π-3.14;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0,即:a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1(除0外).(5)相反数的绝对值相等。
4.绝对值:(1)正数的绝对值等于它本身,例如:|5|=5, |π-3.14|=π-3.140的绝对值是0,负数的绝对值等于它的相反数;例如:|-5|=5, |3.14-π|=-(3.14-π)注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;6.倒数:乘积为1的两个数互为倒数;例如:1.2的倒数是5/6,-4/7的倒数是-7/4注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数;等于本身的数汇总: (1)相反数等于本身的数:0(2)倒数等于本身的数:1,-1 (3)绝对值等于本身的数:正数和0(4)平方等于本身的数:0,1 (5)立方等于本身的数:0,1,-1.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;例如:-2-1=-3,(-2-1可理解为+号省略读作-2,-1的和,也可读作-2减1)(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;例如:-1+2=1,-2+1=-1, 7-9=-2(7-9读为7与-9的和)(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;例如4-(-5)=4+5.10 有理数乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个不为零因数连乘,积的符号由负因式的个数决定.奇数个负数为负,偶数个负数为正。
4×(-6)×(-8)×12×(-9)=-4×6×8×12×911 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .(简便运算)12.有理数除法法则:(1)除以一个数等于乘以这个数的倒数;例如:7÷(-4/5)=7×(-5/4)(2)两数相除,同号得正,异号得负,并把绝对值相除;0除以任何非零数都得0。
(注意:零不能做除数,)13.有理数的乘方:(1)求n个相同因数a的积的运算,叫做乘方;即a n=a.a.....a(2)乘方中,相同的因数a叫做底数,相同因数的个数n叫做指数,乘方的结果叫做幂;(3)|a|,a2是非负数,即|a|,a2≥0;若(a-2)2+|b+4|=0 a-2=0,b+4=0(即a=2,b=-4);(4)正数的任何次幂都是正数;例如:1n=1(5)负数的奇次幂是负数;例如:(-1)2n+1=-1 负数的偶次幂是正数;(-1)2n=1(6)(-3)2 与-32的区别:(-3)2=(-3)×(-3)=9;-32=-3×3.=-914.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.15.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位例如:23.4精确到0.1或精确到十分位,5.78×104(5.78万)精确到百位。
16.有效数字:从左边第一个不为零的数字起,到末位数字止,所有数字,都叫这个近似数的有效数字.例如:0.0403有三个有效数字:4,0,3.17.混合运算法则:先乘方,再乘除,后加减;如果有括号,先算括号,同一级运算,从左到右进行.注意:不省过程,不跳步骤。
18.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。
整式的加减19.单项式:表示数与字母的乘积的式子,单独的一个数或字母也叫单项式。
例如:单项式:3xy, a, -3ab/2, 0, -7, 不是单项式:a/c, (m+n)/2, ab+ac20.单项式的系数与次数:单项式中的数字因数,称单项式的系数;例如:-32xy, a, -3ab/2,πa2b 的系数分别是-32,1,-3/2,π单项式中所有字母指数的和,叫单项式的次数.例如:-32xy, a, πa2b的次数分别是2,1,321.多项式:几个单项式的和叫多项式.22.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;例如:-x2y+5xy-2x-1是三次四项式,其中,三次项是-x2y,三次项系数是-1,二次项是5xy,二次项系数是5,一次项是-2x,一次项系数是-2,常数项是-123.单项式与多项式统称整式.24.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.25.合并同类项法则:系数相加,字母与字母的指数不变.不是同类项不能合并。
26.去(添)括号法则:把括号和括号前面的符号去掉若括号前边是“+”号,括号里的各项都不变号;+(a-b+c)=a-b+c若括号前边是“-”号,括号里的各项都要变号. -(a-b+c)=-a+b-c27.整式的加减:一找(同类项):(划线);二加(系数相加)三合(字母部分不变)28.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).经典例题透析类型一:用字母表示数量关系1.填空题:(1)香蕉每千克售价3元,m千克售价____________元。
(2)温度由5℃上升t℃后是__________℃。
(3)每台电脑售价x元,降价10%后每台售价为____________元。
(4)某人完成一项工程需要a天,此人的工作效率为__________。
思路点拨:用字母表示数量关系,关键是理解题意,抓住关键词句,再用适当的式子表达出来。
举一反三:[变式] 某校学生给“希望小学”邮寄每册元的图书240册,若每册图书的邮费为书价的5%,则共需邮费______________元。
类型二:整式的概念2.指出下列各式中哪些是整式,哪些不是。
(1)x+1;(2)a=2;(3)π;(4)S=πR2;(5);(6)总结升华:判断是不是整式,关键是了解整式的概念,注意整式与等式、不等式的区别,等式含有等号,不等式含有不等号,而整式不能含有这些符号。
举一反三:[变式]把下列式子按单项式、多项式、整式进行归类。
x2y,a-b,x+y2-5,,-29,2ax+9b-5,600xz,axy,xyz-1,。
分析:本题的实质就是识别单项式、多项式和整式。
单项式中数和字母、字母和字母之间必须是相乘的关系,多项式必须是几个单项式的和的形式。
答案:单项式有:x2y,-,-29,600xz,axy多项式有:a-b,x+y2-5,2ax+9b-5,xyz-1整式有:x2y,a-b,x+y2-5,-,-29,2ax+9b-5,600xz,axy,xyz-1。
类型三:同类项3.若与是同类项,那么a,b的值分别是()(A)a=2, b=-1。
(B)a=2, b=1。
(C)a=-2, b=-1。
(D)a=-2, b=1。
思路点拨:解决此类问题的关键是明确同类项定义,即字母相同且相同字母的指数相同,要注意同类项与系数的大小没有关系。
解析:由同类项的定义可得:a-1=-b,且2a+b=3,解得a=2, b=-1,故选A。
举一反三:[变式]在下面的语句中,正确的有( )①-a2b3与a3b2是同类项;②x2yz与-zx2y是同类项;③-1与是同类项;④字母相同的项是同类项。
A、1个B、2个C、3个D、4个解析:①中-a2b3与a3b2所含的字母都是a,b,但a的次数分别是2,3,b的次数分别是3,2,所以它们不是同类项;②中所含字母相同,并且相同字母的指数也相同,所以x2yz与-zx2y是同类项;不含字母的项(常数项)都是同类项,③正确,根据①可知④不正确。
故选B。
类型四:整式的加减4.化简m-n-(m+n)的结果是()(A)0。
(B)2m。
(C)-2n。
(D)2m-2n。
思路点拨:按去括号的法则进行计算,括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项都改变符号。
解析:原式=m-n-m-n=-2n,故选(C)。
举一反三:[变式] 计算:2xy+3xy=_________。
分析:按合并同类项的法则进行计算,把系数相加所得的结果作为系数,字母和字母的指数不变。
注意不要出现5x2y2的错误。
答案:5xy。
5.(化简代入求值法)已知x=-,y=-,求代数式(5x2y-2xy2-3xy)-(2xy+5x2y -2xy2)思路点拨:此题直接把x、y的值代入比较麻烦,应先化简再代入求值。
解析:原式=5x2y-2xy2-3xy-2xy-5x2y+2xy2=-5xy当x=-,y=-时,原式=-5×。
总结升华:求代数式的值的第一步是“代入”,即用数值替代整式里的字母;第二步是“求值”,即按照整式中指明的运算,计算出结果。