浙教版八年级数学下册第一章测试题(附答案)

合集下载

浙江省八年级数学下册第1章二次根式检测卷新版浙教版

浙江省八年级数学下册第1章二次根式检测卷新版浙教版

教学课件第1章 二次根式检测卷一、选择题(每小题3分,共30分)1. 化简4的结果为( )A . 2B . -2C . ±2D . 22. 下列各根式6、12、7、31,其中最简二次根式的个数有( ) A . 1 B . 2 C . 3 D . 43. (广安中考)要使二次根式42-x 在实数范围内有意义,则x 的取值范围是( )A . x >2B . x ≥2C . x <2D . x=24. 下面计算正确的是( )A .4+3=43B .27÷2=3C .2·3=5D .4=±25. 等式21-+x x =21-+x x 成立的条件是( ) A. x ≥-1B. x <2C. x >2D. x ≥-1且x ≠2 6. 下列二次根式中,能与271合并的是( ) A . 18 B. 34 C. 92 D. 103 7. 化简3-3(1+3)的结果为( )A . 3B . -3C . 3D . -38. 若1-x +y +1=0,则x+y 的值为( )A . -1B . 1C . 0D . 29. 如图,△ABC 中,∠ABC=90°,AB=3,BC=1,且AB 在数轴上,点A 所表示的数是-1,若以点A 为圆心,边AC 的长为半径作弧交数轴的正半轴于点M ,则点M 所表示的数为( )A . 5-1B . 2C . 10-1D . 10 10. (杭州中考)若化简1682+-x x -x -1的结果为5-2x ,则x 的取值范围是( )A . 为任意实数B . 1≤x ≤4C . x ≥1D . x ≤4 二、填空题(每小题3分,共24分)11. 当a=-1时,二次根式a 72-的值为 .12. (湖州中考)计算:2×(1-2)+8= .13. 三角形的三边长分别为20cm ,40cm ,45cm ,则这个三角形的周长为cm .14. 方程23x-2=0的解为 .15. 计算(2+23)(2-23)的结果是 .16. 若n 20是整数,则正整数n 的最小值为 .17. 设5的整数部分为a ,小数部分为b ,则代数a2+ab 的值是 .18. 一个底面为30cm ×30cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10cm 的铁桶中,当铁桶装满水时,容器中的水面下降了20cm ,铁桶的底面边长是 厘米. (保留根号)三、解答题(共46分)19. (12分)计算:(1)(-6)2-25+2)3(-; (2)81-324;(3)(2+3)2; (4)23-+38-+2)2(--2-.20.(6分)已知x=2+1,y=2-1,求代数式x2-3xy+y2的值.21.(6分)如图:面积为48cm2的正方形四个角是面积都为3cm2的小正方形,现将四个角剪掉,制作一个无盖的长方体盒子,求这个长方体的底面边长和高分别是多少?22.(6分)如图,扶梯AB的坡比为4∶3,滑梯CD的坡比为1∶2,设AE=30米,BC=30米,一男孩从扶梯底走到滑梯的顶部,然后从滑梯滑下,共经过了多少路程?23. (8分)如图所示,某人到一个荒岛上去探宝,在A处登陆后,往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北方走到5km处往东一拐,仅1km就找到了宝藏,问:登陆点(A处)到宝藏埋藏点(B处)的直线距离是多少?24. (8分)把一副三角板按如图1摆放(点C与点E重合),点B,C(E),F在同一直线上. ∠ACB=∠DFE=90°,∠A=30°,∠DEF=45°,BC=EF=8cm,点P是线段AB的中点. △DEF从图1的位置出发,以4cm/s的速度沿CB方向匀速运动,如图2,DE与AC相交于点Q,连结PQ. 当点D运动到AC 边上时,△DEF停止运动. 设运动时间为t(s).(1)当t=1时,求 AQ的长;(2)当t为何值时,点A在线段PQ的垂直平分线上?(3)当t为何值时,△APQ是直角三角形?请直接写出满足条件t的值.参考答案第1章 二次根式检测卷 一、选择题1—5. ABBBC 6—10. BBCCB二、填空题11. 312. 213. (55+210) 14. x=66 15. -1016. 5 17. 25 18. 302三、解答题19. (1)4 (2)-42 (3)5+26 (4)-3 20. ∵x=2+1,y=2-1,∴x-y=2,xy=1,∴原式=x 2-2xy+y 2-xy=(x-y )2-xy=22-1=3.21. 底面边长和高分别为23cm 和3cm22. (80+405)米23. 过点B 作BC ⊥AC ,垂足为C ,观察图形可知AC=AF-MF+MC=8-3+1=6,BC=2+5=7,在Rt △ABC 中,AB=22BC AC +=2276+=85km.答:登陆点到宝藏埋藏点的直线距离是21km.24. (1)AQ=(83-4)cm (2)t=23-2 (3)t=3或t=323。

浙教版八年级下数学第一章《二次根式》练习题(含答案)

浙教版八年级下数学第一章《二次根式》练习题(含答案)

二次根式复习1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.B.(2)2=16C.=3D.3.下列各式计算正确的是()A.6﹣=5B.4×2=8C.D.4.若x、y都是实数,且++y=4,则xy的算术平方根为()A.2B.±C.D.不能确定5.若在实数范围内有意义,则x的取值范围是()A.﹣1<x<1B.x≤1C.x<1且x≠0D.x<1且x≠﹣16.化简二次根式(a<0)得()A.B.﹣C.D.﹣7.若=成立,则x的取值范围为()A.x≥0B.0≤x<1C.x<1D.x≥0或x<18.计算()2+的结果是()A.7﹣2x B.﹣1C.2x﹣7D.19.计算的结果估计在()A.7与8之间B.8与9之间C.9与10之间D.10与11之间10.已知x+|x﹣1|=1,则化简+的结果是.11.如果一个三角形的三边长分别是2,3,m,则化简﹣|2﹣2m|﹣7的结果是.12.若是正整数,则整数n的最小值为.13.化简:(b≥0)的结果是.14.实数a、b、c在数轴上的位置如图所示,化简﹣|b﹣c|+的结果为.15.若=x﹣4+6﹣x=2,则x的取值范围为.16.已知等式|a﹣2018|+=a成立,a﹣20182的值为17.计算下列各式:(1);(2)+4﹣+.18.计算:①:②;③(4﹣4+3);④(7+4)(7﹣4)﹣(﹣1)2.19.观察下列各式:请利用你所发现的规律,解决下列问题:(1)第4个算式为:;(2)求的值;(3)诸直接写出的结果.20.在解决问题“已知a=,求2a2﹣8a+1的值”时,小明是这样分析与解答的:∵a===2∴a﹣2=﹣,∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1,∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1.请你根据小明的分析过程,解决如下问题:(1)化简:(2)若a=,求3a2﹣6a﹣1的值.22.阅读下面一道题的解答过程,判断是否正确,如若不正确,请写出正确的解答过程.化简:﹣a2•+解:原式=a﹣a2••+a=a﹣a+a=a.23.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=;(2)利用所探索的结论,填空:13+4=(+)2;(3)若a+6=(m+n)2,且a、m、n均为正整数,求a的值?24.先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质:;(3)先化简,再求值:a+2,其中a=﹣2007.参考答案1.B.2.C.3.D.4.C.5.D.6.A.7.B.8.A.9.A.10.3﹣2x.11.﹣3m.12.3.13..14.﹣b﹣c.15.4≤x≤6.16.2019.17.解:(1)原式=2++2﹣=+2;(2)原式=3+2﹣4+=5﹣.18.解:①原式=3﹣5+=﹣②原式==4;③原式=2﹣2+=2﹣1+3=2+2;④原式=49﹣48﹣(5﹣2+1)=1﹣6+2=2﹣5.19.解:(1)(2)原式====(3)原式====20.解:(1)==;(2)∵a==+1,∴a﹣1=,∴a2﹣2a+1=2,∴a2﹣2a=1∴3a2﹣6a=3∴3a2﹣6a﹣1=2.21.解:错误,正确的是:由二次根式的性质可知,a<0,所以,=,,则原式=﹣a﹣a2•(﹣)﹣a=﹣a.22.解:(1)a=m2+3n2;b=2mn;(2)m2+3n2;2mn;1,2;(3)a=m2+3n2;6=2mn;∴mn=3,而m、n为正整数,∴m=1,n=3或m=3,n=1,∴a=28或a=12.23.解:(1)小亮;(2)=﹣a(a<0);(3)∵a=﹣2007,∴a﹣3=﹣2010<0,则原式=a+2=a+2|a﹣3|=a﹣2(a﹣3)=a﹣2a+6=﹣a+6=2007+6=2013.。

2022-2023学年浙教版八年级数学下册《第1章二次根式》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学下册《第1章二次根式》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学下册《第1章二次根式》单元综合测试题(附答案)一.选择题(共7小题,满分28分)1.下列式子是最简二次根式的是()A.B.C.D.2.下列无理数中,与相乘积为有理数的是()A.B.C.D.3.二次根式有意义,则x满足的条件是()A.x<2B.x>2C.x≥2D.x≤24.实数a,b在数轴上的位置如图所示,则化简﹣﹣的结果是()A.﹣2b B.﹣2a C.2b﹣2a D.05.已知点B(2m+1,4m+)在第四象限,化简的结果为()A.3m+2B.﹣m﹣8C.m+8D.﹣2﹣3m6.计算:(﹣4)2020(+4)2021的结果是()A.B.6C.+4D.﹣﹣4 7.若x=1﹣,则代数式x2﹣2x+1的值是()A.2021B.2022C.﹣2021D.﹣2022二.填空题(共7小题,满分28分)8.已知实数m、n满足,则=.9.若y=++4,则x2+y2的平方根是.10.化简:+()2=.11.计算|1﹣|﹣+2=.12.若a=3﹣,b=,则a b(用“<”,“>”或“=”填空).13.若长方形的周长是(30+16)cm,一边长是(﹣2)cm,则它的面积是cm2.14.已知2、5、m是某三角形三边的长,则=.三.解答题(共6小题,满分64分)15.计算:(1)(+1)(﹣1)+﹣()0;(2)(﹣)×+|﹣2|﹣()﹣1.16.计算:.17.已知,,求下列代数式的值:(1);(2)x2+xy+y2.18.问题解决:已知x=+2,求代数式x2﹣4x﹣7的值.小敏的做法是:根据x=+2得(x﹣2)2=5,∴x2﹣4x+4=5,得:x2﹣4x=1.把x2﹣4x作为整体代入:得x2﹣4x﹣7=1﹣7=﹣6.即:把已知条件适当变形,再整体代入解决问题.迁移应用:已知x=﹣2,求代数式x2+4x﹣10的值;19.阅读材料:把根式进行化简,若能找到两个数m、n,是m2+n2=x且mn=,则把x±2变成m2+n2±2mn=(m±n)2开方,从而使得化简.例如:化简解:∵3+2=1+2+2=12+()2+2×1×=(1+)2∴==1+;请你仿照上面的方法,化简下列各式:(1);(2).20.某居民小区有块形状为矩形ABCD的绿地,长BC为米,宽AB为米,现在要矩形绿地中修建两个形状大小相同的长方形花坛(即图中阴影部分),每个长方形花坛的长为米,宽为米.(1)求矩形ABCD的周长.(结果化为最简二次根式)(2)除去修建花坛的地方,其它地方全修建成通道,通道上要铺上造价为6元/平方米的地砖,要铺完整个通道,则购买地砖需要花费多少元?参考答案一.选择题(共7小题,满分28分)1.解:A、原式=2,故该选项不符合题意;B、原式=,故该选项不符合题意;C、原式=2,故该选项不符合题意;D、是最简二次根式,故该选项符合题意;故选:D.2.解:∵,又,∴与相乘积为有理数的是.故选:D.3.解:根据题意得:x﹣2>0,解得,x>2.故选:B.4.解:由数轴可知:a<0<b,∴a﹣b<0,∴原式=|a|﹣|b|﹣|a﹣b|=﹣a﹣b+(a﹣b)=﹣a﹣b+a﹣b=﹣2b,故选:A.5.解:由题意可知:,∴<m<﹣,∴m﹣3<0,2m+5>0,∴原式=﹣(m﹣3)+(2m+5)=﹣m+3+2m+5=m+8,故选:C.6.解:(﹣4)2020(+4)2021=(﹣4)2020(+4)2020×()=[(﹣4)×(+4)]2020×()=(15﹣16)2020×()=(﹣1)2020×()=,故选:C.7.解:∵x=1﹣,∴x﹣1=﹣,∴(x﹣1)2=(﹣)2,即x2﹣2x+1=2022,故选:B.二.填空题(共7小题,满分28分)8.解:∵,∴,解得,∴.故答案为:.9.解:∵2﹣x≥0,x﹣2≥0,∴x=2,∴y=4,故x2+y2=22+42=20,∴x2+y2的平方根是:±=±2.故答案为:±2.10.解:原式=﹣a+(﹣a)=﹣2a.故答案为:﹣2a.11.解:原式=﹣1﹣3+2×=﹣1﹣3+=﹣1﹣.故答案为:﹣1﹣.12.解:∵a=3﹣,b===3﹣,∴a=b.故答案为:=.13.解:∵长方形的周长是(30+16)cm,一边长是(﹣2)cm,∴长方形的另一条边为[30+16﹣2(﹣2)]=(17+7)cm,∴它的面积=(﹣2)×(17+7)=(1+3)cm2,故答案为:(1+3)14.解:由三角形的三边关系可知:3<m<7,∴m﹣3>0,m﹣7<0,原式=|m﹣3|+|m﹣7|=m﹣3﹣(m﹣7)=m﹣3﹣m+7=4,故答案为:4.三.解答题(共6小题,满分64分)15.解:(1)原式=3﹣1+2﹣1=2+1;(2)原式=﹣+2﹣﹣2=﹣2+2﹣﹣2=﹣3.16.解:原式=3﹣4﹣(2﹣2+1)=3﹣4﹣3+2=﹣4+2.17.解:∵,,∴x+y=2,xy=﹣1,∴(1)===;(2)x2+xy+y2=(x+y)2﹣xy=(2)2﹣(﹣1)=12+1=13.18.解:∵x=﹣2,∴x+2=,∴(x+2)2=()2,即x2+4x+4=5,∴x2+4x=1,∴x2+4x﹣10=1﹣10=﹣9.19.解:(1)∵5+2=3+2+2=()2+()2+2××=(+)2,∴==+;(2)∵7﹣4=4+3﹣4=22+()2﹣2×2×=(2﹣)2,∴==2﹣.20.解:(1)(+)×2=(8+5)×2=13×2=26(米),答:矩形ABCD的周长为26米;(2)×﹣2×(+1)×(﹣1)=8×5﹣2×(13﹣1)=80﹣24=56(平方米),6×56=336(元),答:购买地砖需要花费336元.。

浙教版八年级下册数学《第一章二次根式》单元检测卷含答案

浙教版八年级下册数学《第一章二次根式》单元检测卷含答案

第一章二次根式单元检测卷姓名:__________ 班级:__________一、选择题(共10小题;每小题4分,共40分)1. 下列二次根式中属于最简二次根式的是()A. B. C. D.2. 使有意义的x的取值范围是()A. x≠1B. x≥1C. x>1D. x≥03.关于式子,下列说法正确的是()A. 当a≥1时它是二次根式B. 它是a﹣1的算术平方根C. 它是a﹣1的平方根D. 它是二次根式4.若1<x<2,则|x﹣3|+ 的值为()A. 2x﹣4B. 2C. 4﹣2xD. ﹣25.下列各组二次根式中,不能合并的是()A. 和B. 和C. 或D. 和6.若最简二次根式与是同类二次根式,则a的值为( )A. B. C. D.7.下列二次根式中与是同类二次根式的是()A. B. C. D.8.化简的结果是()A. B. 2 C. D. 19.下列运算正确的是()A. 3﹣2=1B. +1=C. ﹣=D. 6+=710.代数式有意义的x取值范围是( )A. x>B. xC. x<D. x≠二、填空题(共10题;共30分)11.计算:(+ )(- )=________12.已知x+y=﹣2,xy=3,则代数式+ 的值是________.13.计算:÷(﹣)﹣1﹣()0=________ ,2÷(﹣)=________ .14.已知x=3,y=4,z=5,那么÷ 的最后结果是________.15.化简的结果是________.16.计算:=________.17.化简:3 =________.18.计算:=________.19.计算(5+)(﹣)=________.20.=________三、解答题(共3题;共30分)21.已知a=3﹣,b=3+,试求﹣的值.22.已知:a= ,求+的值.23.当x是怎样的实数时,在实数范围内有意义,请再写出一个含x的二次根式,使x为任何实数时均有意义.参考答案一、选择题D B A B C C D C D A二、填空题11.-3 12.﹣13.﹣2;3+314.15.16.3 17.18.7 19.20.3三、解答题21.解:∵a=3﹣,b=3+,∴﹣=-=﹣=.22.解:原式=+=|a+|+|a﹣|,∵a=﹣,∴0<a<1,∴原式=a++﹣a==2(+)=2+2.23.解:由2﹣x≥0得,x≤2,所以,当x≤2时,在实数范围内有意义;x为任何实数时均有意义.。

浙教版八年级数学下册《第一章二次根式》单元达标测试卷-附含答案

浙教版八年级数学下册《第一章二次根式》单元达标测试卷-附含答案

浙教版八年级数学下册《第一章二次根式》单元达标测试卷-附含答案一、单选题1.下列运算正确的是( )A 235=B .334=C 2323=D .4222=2.下列计算正确的是( )A .3333=B .23333=C .332=D 325=33的倒数是( )A .3B .3C .-3D 34.△ABC 的两边的长分别为 3 53 则第三边的长度不可能为( )A .33B .3C .3D .635.下列计算正确的是( )A 12=12B 4-3=1C 63=2D 8=2±6.下列各组数互为相反数的是( )A .5和 ()25-B .﹣(﹣5)和|﹣5| C .﹣5和3125D .﹣5和 15-7.有下列各式(1)()22a b +(224x -2x +⋅2x -(33a b 13ab b其中一定成立的有( ) A .0个B .1个C .2个D .3个8.2、6、m 是某三角形三边的长 ()()2248m m --等于( ).A .212m -B .122m -C .12D .4-二、填空题9.计算:12733 .10.函数y=23x x --x 的取值范围是 11.若一个长方体的长为 26cm 宽为3 cm 高为2 cm 则它的体积为 cm 3.12.12m m 的最小值为 .三、计算题13.计算:3612)327-四、解答题14.1x +(1)求使得该二次根式有意义的x 的取值范围 (21x + 52①求x 的值 ②1x +5215.若a=1﹣2 先化简再求 2222121a a a a a a a--+++-的值. 16.若x y 是实数 且41x -14x -13 求yx的值. 五、综合题17.拦河坝的横断面是梯形 如图 其上底是8m 下底是 32m 高是 3 m.(1)求横断面的面积(2)若用300 m 3的土 可修多长的拦河坝?18.先阅读 后解答:332-= ()332(32)32-+= 36+=3+6像上述解题过程中 3 ﹣2 与 3+ 2相乘 积不含有二次根式 我们可将这两个式子称为互为有理化因式 上述解题过程也称为分母有理化 (13的有理化因式是5+2的有理化因式是(2)将下列式子进行分母有理化:5 = 36+ = . (3)已知a=23+ b=2﹣3 比较a 与b 的大小关系.19.小明在学习二次根式后 发现一些含根号的式子可以写成另一个式子的平方 如:3+2(2212= 善于思考的小明进行了以下探索:设a +(222m =+ (其中a 、b 、m 、n 均为整数)则有:a +22222m n mn =++ ∴a =m 2+2n 2 b =2mn 这样小明就找到了一种把类似a +2 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时 若a +(233m =+ 用含m 、n 的式子分别表示a 、b 得:a = b =(2)利用所探索的结论 用完全平方式表示出:7+4 3 = .(3)请化简:1263-.答案解析部分1.【答案】D【解析】【解答】A. 23不能计算故不符合题意B. 43333=故不符合题意C. 236=故不符合题意D. 42822==故符合题意故答案为:D.【分析】根据二次根式的运算法则即可判断.2.【答案】B【解析】【解答】解:A、33不能合并故该选项不符合题意B、原式33=故该选项符合题意C、原式3=故该选项不符合题意D32不是同类二次根式不能合并故该选项不符合题意.故答案为:B.【分析】几个二次根式化为最简二次根式后若被开方数相同则为同类二次根式据此判断A、D 二次根式的加减法就是合并同类二次根式合并同类二次根式的时候只把同类二次根式的系数相加减根号部分不变据此可判断B、C.3.【答案】D【解析】3的倒数33 3=故答案为:D.【分析】根据倒数的定义得出33再分母有理化即可得出答案.4.【答案】A【解析】【解答】因为5 3-2 3=3 3 5 3+2 3=7 3所以第三边在大于3 3且小于7 3故答案为:A。

浙教版八年级数学下册第一章单元测试卷(含答案)

浙教版八年级数学下册第一章单元测试卷(含答案)

浙教版八年级数学下册第一章单元测试卷(含答案)一、单选题1.计算4√12+3√13−√8的结果是()A.√3+√2B.√3C.√33D.√3−√22.已知是正整数,则实数n的最大值为()A.12B.11C.8D.33.如果最简根式√3a−8与√17−2a是同类二次根式,那么使√4a−2x有意义的x的取值范围是()A.x≤10B.x≥10C.x<10D.x>104.已知a=√2+1,b=√2−1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等5.已知x为实数,化简√−x3−x√−1x的结果为()A.(x−1)√−x B.(−1−x)√−x C.(1−x)√−x D.(1+x)√−x6.如果√−53−x是二次根式,那么x 应适合的条件是()A.x ≥3B.x ≤3C.x >3D.x <37.若等腰三角形的两边长分别为√50和√72,则这个三角形的周长为()A.11√2B.16√2或17√2C.17√2D.16√28.若√x−1+√x+y=0,则x2005+y2005的值为:()A.0B.1C.-1D.29.设等式√a(x−a)+√a(y−a)=√x−a−√a−y在实数范围内成立,其中a、x、y是两两不同的实数,则3x2+xy−y2x2−xy+y2的值是()A.3B.13C.2D.5 310.“分母有理化”是我们常用的一种化简的方法,2+√32−√3=(2+√3)(2+√3)(2−√3)(2+√3)=7+4√3,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于√3+√5√3−√5,设x= √3+√5√3−√5,易知√3+√5> √3−√5,故x>0,由x2= (√3+√5−√3−√5)2= 3+√5+3−√5−2√(3+√5)(3−√5)=2,解得x= √2,即√3+√5−√3−√5=√2。

根据以上方法,化简√3−√2√3+√2√6−3√3√6+3√3后的结果为()A.5+3 √6B.5+ √6C.5-√6D.5-3 √6二、填空题11.化简√14−8√3=12.化简√−a3=.13.若实数a=12−√3,则代数式a2−4a+4的值为.14.已知,y=√(x−3)2+4−x,当x分别取1,2,3,…,2021时,所对应的y值的总和是. 15.已知实数a满足|2014-a|+ √a−2015=a,那么a-20142+1的值是.16.若实数a,b,c满足关系式√a−9+b+√9−a−b=√4a−c+4b,则c的平方根为. 17.观察下列等式:①√3+1=√3−1(√3+1)(√3−1)=√3−12;②1√5+√3=√5−√3(√5+√3)(√5−√3)=√5−√32③√7+√5=√7−√5(√7+√5)(√7−√5)=√7−√52…参照上面等式计算方法计算:1+√3√3+√5√5+√7+⋯3√11+√101=.18.如果(x﹣√x2−2008)(y﹣√y2−2008)=2008,求3x2﹣2y2+3x﹣3y﹣2007=.19.已知a、b为有理数,m、n分别表示5−√7的整数部分和小数部分,且amn+bn2=1,则2a+b=.20.若实数x,y,m满足等式√3x+5y−3−m+(2x+3y−m)2=√x+y−2−√2−x−y,则m+4的算术平方根为.三、计算题21.先化简,再求值:[(√x+√y)(√x−√y)√x+√y√xy(√y−√x)÷√x−√y√xy,其中x=1,y=2.22.已知:x=√3+√2√3−√2,y=√3−√2√3+√2,求x3−xy2x4y−2x3y2+x2y3的值.四、综合题23.设a= √8−x,b=2,c= √6.(1)当a有意义时,求x的取值范围;(2)若a,b,c为直角三角形ABC的三边长,试求x的值.24.解答题.(1)已知x=√7+1,x的整数部分为a,小数部分为b,求ab的值.(2)已知a−b=√3+√2,b−c=√3−√2,求a2+b2+c2−ab−bc−ca的值.25.王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题.(1)小青编的题,观察下列等式:√3+1=√3(√3+1)(√3−1)=2(√3−1)(√3)2−12=2(√3−1)3−1=√3−1√5+√3=√5√3)(√5+√3)(√5−√3)=2(√5−√3)(√5)2−(√3)2=2(√5−√3)5−3=√5−√3直接写出以下算式的结果:√7+√5=;√2n+1+√2n−1(n为正整数)=;(2)小明编的题,由二次根式的乘法可知:(√3+1)2=4+2√3,(√5+√3)2=8+2√15,(√a+√b)2=a+b+2√ab(a≥0,b≥0)再根据平方根的定义可得√4+2√3=√3+1,√8+2√15=√5+√3,√a+b+2√ab=√a+√b(a≥0,b≥0)直接写出以下算式的结果:√6+2√5=,√4−2√3=,√7+4√3=:(3)王老师编的题,根据你的发现,完成以下计算:(√3+1√5+√3+√7+√5+√9+√7√11+√9)⋅√12+2√1126.阅读下列解题过程:例:若代数式√(2−a)2+√(a−4)2=2,求a的取值.解:原式=|a﹣2|+|a﹣4|,当a<2时,原式=(2﹣a)+(4﹣a)=6﹣2a=2,解得a=2(舍去);当2≤a<4时,原式=(a﹣2)+(4﹣a)=2,等式恒成立;当a≥4时,原式=(a﹣2)+(a﹣4)=2a﹣6=2,解得a=4;所以,a的取值范围是2≤a≤4.上述解题过程主要运用了分类讨论的方法,请你根据上述理解,解答下列问题:(1)当3≤a≤7时,化简:√(3−a)2+√(a−7)2=;(2)请直接写出满足√(a−1)2+√(a−6)2=5的a的取值范围;(3)若√(a+1)2+√(a−3)2=6,求a的取值.27.阅读下列材料,然后回答问题,在进行二次根式的化简与运算时,我们有时会碰上如如2√3+1一样的式子,其实我们还可以将其进一步化简:√3+1=2×(√3−1)(√3+1)(√3−1)=2(√3−1)(√3)2−12=√3−1(1)以上这种化简的步骤叫做分母有理化.√3+1还可以用以下方法化简:2√3+1=3−1√3+1=(√3)2−12√3+1=(√3+1)(√3−1)√3+1=√3−1(2)(1)请参照(1)(2)的方法用两种方法化简:√7+√5方法一:√7+√5=方法二:2√7+√5=(2)直接写出化简结果:2√13+√11=2√15+√13=(3)计算:2√5+√2+2√8+√5+2√11+√8+…+2√32+√29+2√35+√3228.甲是第七届国际数学教育大会的会徽,会徽的主体图案是由图乙中的一连串直角三角形演化而成的,其中OA1=A1A2=A2A3=…=A7A8=1.细心观察图形,认真分析下列各式,然后解答问题:(√1)2+1=2,S1=√12;(√2)2+1=3,S2=√22;(√3)2+1=4,S3=√32;….(1)请用含有n(n是正整数)的等式表示上述变化规律,并计算出OA10的长;(2)求出S12+S22+S32+⋯+S102的值.参考答案1.【答案】B2.【答案】B3.【答案】A4.【答案】C5.【答案】C6.【答案】C7.【答案】B8.【答案】A9.【答案】B10.【答案】D11.【答案】2√2−√612.【答案】−a √−a .13.【答案】314.【答案】202715.【答案】201616.【答案】±617.【答案】√101−1218.【答案】119.【答案】2.520.【答案】321.【答案】解: [4(√x+√y)(√x−√y)√x+√y √xy(√y−√x)÷√x−√y √xy= [4x−y √x+√y √xy(√y−y ⃗⃗ )]×√xy √x−√y= 4x−y ×√xy √x−√y √x+√y √xy(√x−√y)√xy √x−√y = √xy (√x−√y)(x−y)√x+√y(√x−√y)2= √xy (√x−√y)(x−y)(√x+√y)2(√x−√y)2(√x+√y)= √xy−(√x+√y)2(√x−√y)(x−y)= √x−√y)2(√x−√y)(x−y)= −(√x−√y)x−y= √y−√xx−y;将x=1,y=2代入得:原式= √2−11−2=1−√2.22.【答案】解:x=5+2 √6,y=5-2 √6,xy=1,x+y=10,x-y=4 √6,原式=x+yxy(x−y)=512√623.【答案】(1)解:8- x≥0,∴x≤8(2)解:若a是斜边,则有(√8−x)2=22 +(√6)2,8-x=10,解得x=-2.若a为直角边,则有( √8−x)2+22=( √6)2,∴8-x+4=6,解得x=6.∵x都满足x≤8,∴x的值为-2或6.24.【答案】(1)解:∵22<(√7)2<32,∴2<√7<3,∴3<√7+1<4,∵x的整数部分是a,小数部分是b,∴a=3,b=√7+1−3=√7−2,∴ab=√7−2=√7(√7−2)(√7+2)=√7+2(2)解:∵a−b=√3+√2,b−c=√3−√2,∴a−c=√3+√2+√3−√2=2√3,∴a2+b2+c2−ab−bc−ac=12(2a2+2b2+2c2−2ab−2bc−2ac) =12[(a−c)2+(a−b)2+(b−c)2]=12[(2√3)2+(√3+√2)2+(√3−√2)2]=12×(12+3+2√6+2+3−2√6+2)=12×22=11.25.【答案】(1)√7−√5;√2n+1−√2n−1(n为正整数)(2)√5+1;√3−1;2+√3(3)解:(2√3+1+2√5+√32√7+√52√9+√7+2√11+√9)⋅√12+2√11=(√3−1+√5−√3+√7−√5+√9−√7+√11−√9)(√11+1)=(√11−1)(√11+1)=10 26.【答案】(1)4(2)1≤a≤6(3)解:原式=|a+1|+|a﹣3|,当a<﹣1时,原式=﹣(a+1)+(3﹣a)=2﹣2a=6,解得a=﹣2;当﹣1≤a<3时,原式=(a+1)+(3﹣a)=4,等式不成立;当a≥3时,原式=(a+1)+(a﹣3)=2a﹣2=6,解得a=4;所以,a的值为﹣2或4.27.【答案】(1)√7−√5;√7−√5(2)√13−√11;√15−√13(3)解:√5+√2+√8+√5+√11+√8+…+√32+√29+√35+√32=2(√5−√2)3+2(√8−√5)3+2(√11−√8)3+···+2(√32−√29)3+2(√35−√32)3 =23(√5−√2+√8−√5+√11−√8+···+√32−√29+√35−√32)=23(√35−√2)=2√35−2√2328.【答案】(1)解:∵OA1=1= √1,OA1=A1A2=A2A3=…=A7A8=1,∴OA22= OA12+A1A22=1+1=2,∴OA2= √2,S1=12⋅OA1⋅A1A2=12×√1×1=√12,∵OA32= OA22+A2A32=(√2)2+1=3,∴OA3=√3,S2=12⋅OA2⋅A2A3=12×√2×1=√22,∵OA42= OA32+A3A42=(√3)2+1=4,∴OA4=2,S3=12⋅OA3⋅A3A4=12×√3×1=√32,⋯,∴OA n2=OA n−12+A n−1A n2=(√(n−1))2+1=n,S n=12⋅OA n⋅A n A n+1=12×√n×1=√n2,∴OA102= (√(10−1))2+1=10,∴OA10= √10,∴含有n (n 是正整数)的等式表示上述变化规律为: (√(n −1))2+1=n ,OA 10的长为 √10 ; (2)解:由(1)知: S n =√n 2, ∴S 1=√12 , S 2=√22 , S 3=√32 , ⋯ , S 10=√102 , ∴S 12+S 22+S 32+⋯+S 102 = (√12)2+(√22)2+(√32)2+⋯+(√102)2 = 554 .。

浙教版八年级数学下册单元测试卷附答案第一章二次根式

浙教版八年级数学下册单元测试卷附答案第一章二次根式

浙教版八年级数学下册单元测试卷附答案第一章二次根式一、选择题(共14小题;共56分)1. 下列根式中是最简二次根式的是B. C. D.2. 下列运算一定正确的是A.C.3. 等式成立的的取值范围在数轴上可表示为A. B.C. D.4. 若式子有意义,则点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 二次根式中的取值范围是A. B. C. D.6. 与数轴上的点相距个单位的点是A. B. 或 C. D.7. 若,则的结果是A. C. 或 D.8. 对于任意正数,定义运算※为:,计算的结果为A. B. C. D.9. 要使二次根式有意义,必须满足A. B. C. D.10. 化简的结果是A. C. D.11. 若,都是实数,且,则的值为A. C. D. 不能确定12. 下列运算错误的是A. C. D.13. 将一组数,,,,,,,按下面的方式进行排列:,,,,;,,,,;若的位置记为,的位置记为,则这组数中最大的有理数的位置记为A. B. C. D.14. 实数在数轴上的位置如图所示,则化简后为A. C. D. 无法确定二、填空题(共8小题;共32分)15. 已知,则化简的结果是.16. 已知为整数,且满足,则.17. 代数式当时,代数式有最大值是.18. 与最简二次根式是同类二次根式,则.19. 已知,则的值为.20. 使得代数式有意义的的取值范围是.21. 能使得成立的所有整数的和是.22. 已知实数,在数轴上的位置如图所示,则化简的结果是.三、解答题(共5小题;共62分)23. 当分别取下列值时,求二次根式的值.(1).(2).(3).24. ;;.按照以上的规律,写出接下来的一个式子,并计算.25. 如图,一个圆形花坛的面积是,求这个花坛的半径(用二次根式表示).若,半径是多少?26. 已知,求的值.27. 计算:(1).(2).(3).(4).。

浙教版八年级下册数学《第一章二次根式》单元检测卷含答案

浙教版八年级下册数学《第一章二次根式》单元检测卷含答案

第一章二次根式单元检测卷姓名:__________ 班级:__________一、选择题(共10小题;每小题4分,共40分)1. 下列二次根式中属于最简二次根式的是()A. B. C. D.2. 使有意义的x的取值范围是()A. x≠1B. x≥1C. x>1D. x≥03.关于式子,下列说法正确的是()A. 当a≥1时它是二次根式B. 它是a﹣1的算术平方根C. 它是a﹣1的平方根D. 它是二次根式4.若1<x<2,则|x﹣3|+ 的值为()A. 2x﹣4B. 2C. 4﹣2xD. ﹣25.下列各组二次根式中,不能合并的是()A. 和B. 和C. 或D. 和6.若最简二次根式与是同类二次根式,则a的值为( )A. B. C. D.7.下列二次根式中与是同类二次根式的是()A. B. C. D.8.化简的结果是()A. B. 2 C. D. 19.下列运算正确的是()A. 3﹣2=1B. +1=C. ﹣=D. 6+=710.代数式有意义的x取值范围是( )A. x>B. xC. x<D. x≠二、填空题(共10题;共30分)11.计算:(+ )(- )=________12.已知x+y=﹣2,xy=3,则代数式+ 的值是________.13.计算:÷(﹣)﹣1﹣()0=________ ,2÷(﹣)=________ .14.已知x=3,y=4,z=5,那么÷ 的最后结果是________.15.化简的结果是________.16.计算:=________.17.化简:3 =________.18.计算:=________.19.计算(5+)(﹣)=________.20.=________三、解答题(共3题;共30分)21.已知a=3﹣,b=3+,试求﹣的值.22.已知:a= ,求+的值.23.当x是怎样的实数时,在实数范围内有意义,请再写出一个含x的二次根式,使x为任何实数时均有意义.参考答案一、选择题D B A B C C D C D A二、填空题11. -3 12. ﹣13. ﹣2;3+314. 15.16. 3 17. 18. 7 19. 20. 3三、解答题21. 解:∵a=3﹣,b=3+,∴﹣=-=﹣=.22. 解:原式=+=|a+|+|a﹣|,∵a=﹣,∴0<a<1,∴原式=a++﹣a==2(+)=2+2.23. 解:由2﹣x≥0得,x≤2,所以,当x≤2时,在实数范围内有意义;x为任何实数时均有意义.。

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)

八年级数学下册第一章《二次根式》综合测试题-浙教版(含答案)一.选择题(共7小题,满分28分)1.下列二次根式中,能与合并的是()A.B.C.D.2.要使二次根式有意义,那么x的取值范围是()A.x≥1B.x>1C.x<1D.x≥﹣13.下列计算中,正确的是()A.=±5B.=﹣3C.÷=2D.=50 4.下列二次根式中,属于最简二次根式的是()A.B.C.D.5.已知一个矩形面积是,一边长是,则另一边长是()A.12B.C.D.6.已知,则的值为()A.﹣2B.2C.2D.﹣27.若,则代数式x2﹣6x﹣8的值为()A.2005B.﹣2005C.2022D.﹣2022二.填空题(共7小题,满分28分)8.计算﹣的结果是.9.若b=﹣+6,则=.10.化简:(a>0)=.11.计算:=.12.一个三角形的三边长分别为,,2,则这个三角形的面积为.13.已知a,b,c为△ABC三边的长,化简=.14.已知+|b+1|=0,则=.三.解答题(共6小题,满分64分)15.计算:(1)﹣+;(2)÷﹣.16.计算下列各题:(1);(2).17.已知,x=+,y=﹣.求:(1)x+y和xy的值;(2)求x2﹣xy+y2的值.18.在一个长为,宽为的矩形内部挖去一个边长为的正方形,求剩余部分的面积.19.王老师在小结时总结了这样一句话“对于任意两个正数a,b,如果a>b,那么”,然后讲解了一道例题:比较和2的大小.解:=×200=8,(2)2=4×3=12.∵8<12,∴<2.参考上面例题的解法,解答下列问题:(1)比较﹣5与﹣6的大小;(2)比较+1与的大小.20.像,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如:₅与+1与,与2﹣3₅等都是互为有理化因式,进行二次根式计算时,利用有理化因式,可以化去分母中的根号,请回答下列问题:(1)化简:①=.②=;(2)计算:.参考答案一.选择题(共7小题,满分28分)1.解:A、与不能合并,故A不符合题意;B、与不能合并,故B不符合题意;C、=3,与不能合并,故C不符合题意;D、=2,与能合并,故D符合题意;故选:D.2.解:由题意得,2x﹣2≥0,解得,x≥1,故选:A.3.解:A.=5,故A选项错误;B.=3,故B选项错误;C.==2,故C选项正确;D.=20,故D选项错误.故选:C.4.解:A、=,故A不符合题意;B、=2,故B不符合题意;C、=|x|,故C不符合题意;D、是最简二次根式,故D符合题意;故选:D.5.解:÷===2,故选:B.6.解:∵x=+1,y=﹣1,∴x+y=2,xy=1,∴+===2,故选:B.7.解:∵,∴x2﹣6x﹣8=x2﹣6x+9﹣8﹣9=(x﹣3)2﹣17=(3﹣﹣3)2﹣17=(﹣)2﹣17=2022﹣17=2005,故选:A.二.填空题(共7小题,满分28分)8.解:===,故答案为:.9.解:由题意得:,解得a=3,所以b=6,所以.故答案为:.10.解:∵﹣ab3≥0,a>0,∴b≤0.∴==|b|=﹣b.故答案为:﹣b.11.解:=×4﹣3+6=2﹣3+6=5,故答案为:5.12.解:∵三角形的三边长分别为,,2,∴()2+()2=(2)2,∴这个三角形是直角三角形,斜边长为2,∴这个三角形的面积为××=,故答案为:.13.解:∵a,b,c为△ABC三边的长,∴b+c>a,a+c>b,∴=|a﹣b﹣c|+|b﹣a﹣c|=﹣(a﹣b﹣c)﹣(b﹣a﹣c)=﹣a+b+c﹣b+a+c=2c.故答案为:2c.14.解:∵+|b+1|=0,∴a﹣2=0,b+1=0,∴a=2,b=﹣1,∴=×+=×+=+2,故答案为:+2.三.解答题(共6小题,满分64分)15.解:(1)﹣+=3=0;(2)÷﹣=4﹣=4+.16.解:(1)==12;(2)=6﹣2﹣(4﹣4+3)=4﹣7+4=4﹣3.17.解:(1)∵x=+,y=﹣,∴x+y=()+()=2,xy=()×(﹣)=3﹣2=1;(2)∵x+y=2,xy=1,∴x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×1=12﹣3=9.18.解:由题意可得,=.即剩余部分的面积为10+8.19.解:(1)(﹣5)2=25×6=150,(﹣6)2=36×5=180,∵150<180,∴﹣5>﹣6;(2)(+1)2=7+2+1=8+2=8+,(+)2=5+2+3=8+2=8+,∵<,∴+1<+.20.解:(1)①==,==,故答案为:,;(2)原式=﹣1+﹣+﹣+......+﹣=﹣1.。

浙教版八年级(下册)数学第一章二次根式测试题及答案

浙教版八年级(下册)数学第一章二次根式测试题及答案

浙教版八年级(下册)数学第一章二次根式检测题(时间:100分钟 满分:120分) 题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(共10小题 每3分 共30分) 1、使二次根式243+-x x有意义的x 的取值范围是( ) A .43≥x B .43≤x 且x ≠-2 C .34≥x D .34≤x 且x ≠-2 2、下列二次根式中,能与6合并的是( ).A .60B .12C .24D .363、256的算术平方根为( ). A .-4 B .±4 C .2D .-24、下列各式计算正确的是( ) A .2541254125=⨯= B .4940940922=+=+ C .a a a a a --=---=--11)1(11)1(2 D .63136=⨯÷ 5、一次函数y =ax +b 的图象如图所示,则化简22222b b ab a a ++--的结果为( ) A .2bB .-2aC .2(a -b )D .2(b -a )6、已知n 是正整数,n 117是整数,则n 的最小值是为( ) A .3B .5C .9D .137、已知25+=a ,ab =1则代数式622-+b a 的值是( ). A .23 B .4 C .14 D .32 8、若实数m 满足02=+m m ,则m 的取值范围是( )A .m ≥0B .m ≤0C .m >0D .m <09、若代数式173)(16222----x x x 有意义,而0222173)(16⎪⎪⎭⎫⎝⎛----x x x 无意义,则x 的值为( ) A. 4± B. 4C.-4D. ±2第5题图10、化简262625+++的结果是( ) A .6B .26-C .62D .2二、填空题(共10小题 每题3分 共30分) 11、当x=3时,222212x x x --= . 12、计算365aa ÷的结果是 . 13、方程333322+=x 的解是 . 14、已知最简二次根式23432+-a 与2722-a 是同类二次根式,则a 的值为 . 15、若x ,y 分别为811-整数部分和小数部分,则2xy -y 2= . 16、一个长方形的面积为6283+,其中一边长为22,则另一边为 .17、已知22)3(83)6(38m n n m n ---=++-,则一次函数y =mx +n 的图象与坐标轴相交构成的三角形的面积是 .18、若xx x x y 15252522---+-=,则(-y -x )的平方根是 .19、化简1532102356--+-= .20、如图,将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n +1)的一条腰长为 .三、解答题(共6题 共60分)21、(满分9分)比较下列四个算式结果的大小:(在横线上选填“>”、“<”或“=” ) (1) ①22)3()2(-+______)3(22-⨯⨯;②22)32()23(+______32232⨯⨯;第20题图③22)6()6(+______662⨯⨯.(2)通过观察归纳,写出反映这一规律的一般结论.通过观察上述关系式发现,等式的左边都是两个数的平方和的形式,右边是前面两数不平方乘积的2倍,通过几个例子发现两个数的平方的和大于等于这两个数乘积的2倍.设两个实数a 、b ,则a 2 +b 2 ≥2ab . 22、(满分10分)计算: (1)6)4872(23223÷+--⨯÷(2) )41(3)64(35ab abab b a a b a b ---23、(满分10分)先阅读理解下面的材料,再按要求解答问题:形如n m 2±的化简,只要找到两个数a ,b ,且a +b =m ,ab =n ,使得m b a =+22)()(,n b a =⋅,那么便有n m 2±=b a b a ±=±2)((a >b ).例如:化简625+.解∵625+=2623+-, ∴m =+22)2()3(,n =⨯23∴625+=2623++=.23)23(2+=+ 利用上述方法化简下列各式: (1) 124-; (2) 215-.24、(满分10分)已知3535+-=x ,3535-+=y ,求下列各式的值:(1)x 2y +xy 2; (2) x 2+y 2-3xy .25、(满分9分)物体自由下落时,下落距离h (m )与物体所经过的时间t (s )之间的关系是5ht =.一个物体从240m 高的塔顶自由下落,落到地面需要多久(精确到0.1s )?26、(满分12分)在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3km 和2km ,AB =a km (a >1),现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水。

浙教版八年级数学下册单元测试题全套(含答案)

浙教版八年级数学下册单元测试题全套(含答案)

浙教版八年级数学下册单元测试题全套(含答案)第1章达标检测卷(满分100分时间60分钟)一、选择题(每小题4分,共20分)1 .若t 3 - m为二次根式,则m的取值范围为()A . m< 3 B. m<3 C. m>3 D. m> 32 .下列式子中,二次根式的个数是()⑴ J—;⑵ J—3 ;⑶一J x +1 :⑷ V8 :⑸ J(—):⑹— x(x > 1);'3 3⑺ x22x 3.A . 2B . 3 C. 4 D. 53 •下列二次根式,与'24是同类二次根式的是()A. 18B. - 30C. - 48D. 544.下列计算正确的有()①..口)(二9) = -4-^6 :②、(二4)(二9) = • 4 • 9 =6 ;③\ 52 _42=「5+4 r5_4 =1 :④ \:52— 42= 丁52—(42 = 1A . 1个B. 2个C. 3个D. 4个5 .在根式① Ja2 +b , ②J孑,③J x2 -xy ,④J27abc中最简二次根式是()A .①②B .③④C .①③ D.①④二、填空题(每小题4分,共20分)6 .化简:.8a2b(a :: 0) = ____2&在实数范围内分解因式:2x - 3二______________________9. ------------------------------------------ 比较大小:_5・7_6\5 (填“〉”“<”或“=”)10. 一个三角形的三边长分别为'、8cm, J2cm, JBcm,则它的周长是 __________ c m.三、解答题(共60分)11. 计算:(每小题5分,共25分)(1)x18m2n(3) 一... 3 (-16)(-36)(5)、45 、“8 ,12512. (8分)已知一个矩形的长和宽分别是J0和2 2,求这个矩形的面积13. (8分)已知::''a - b + 6与和■'a + b - 8互为相反数,求a • b的值14. (9分)已知x = 2 —V3 ,旳二2 3,求代数式x ■ xy ■ y的值.15. (10分)实数p在数轴上的位置如图,化简J(1-P)2+(J百丫参考答案一、 选择题 I.A 2. C 3. D 4. A 5. C二、 填空题6. -2aj2b7. 空屈8.V 3) 9.> 10. 5^2 + 2"9三、 解答题 II.(1) 3m . 2n (2) 6 ( 3) -24、3(4) 2a 2b 2(5) 8.5.、2第2章 达标检测卷 (100分60分钟)一、选择题(本大题共 9个小题,每小题 3分,共27分) 1. 下列方程,是关于 x 的一元二次方程的是()•21 1A. 3(x 1)2 =2(x 1)B. 22=0x x2 2 2C. ax bx c = 0D. x 2x = x -122. 方程 4(x —3 ) +x (x —3 ) = 0 的根为( ).C.有两个相同的实数根D.不能确定23.解下列方程:(1)( x —2)=5 ,(2) x 2—3x —2=0,( 3) x 2+2x+仁0,较适当的方法分别为 ( ).A. (1)直接开平法方,(2)因式分解法,(3)配方法B. (1)因式分解法,(2)公式法,(3)直接开平方法C. (1)公式法,(2 )直接开平方法,(3)因式分解法D. (1)直接开平方法,(2)公式法,(3)因式分解法 4.方程x 2 • 2x -3 =0的两根的情况是()A.没有实数根B. 有两个不相等的实数根 A. X =3 B.12 x 二5C.x^ -3,x 212 5D.5.若2x 1与2x -1互为倒数,则实数x为(A._1B. _1C.D. _、22 26. 如果x「X2是方程X2-2X-1=0的两个根,那么X i X2的值为( ).A. -1B. 2C. 1-2D. 127. 若方程2x2 _5x,m=0有两个相等的实数根,则m=( ).1A. -2B. 0C. 2D. 388. 某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,那么根据题意,列出方程为( ).A.X(X 1)=1035B. x(x-1)=1035 2C. x(x -1) =1035D. 2x(x 1) =10359. 某厂今年一月份的总产量为500吨,三月份的总产量达到为720吨.若平均每月增率是X ,则可以列方程为( ).A. 500(1 2x) =720B. 500(1 x)2=720C. 500(1 x2) =720D. 720(1 x)2=500二、填空题(本大题共8个小题,每小题3分,共24分)10. 方程x2 -3x • 1 =0的解是.11. 如果二次三项式x2-2( m+1)x+16是一个完全平方式,那么m的值是________ .12. 如果一元二方程(m —2)x2• 3x • m2—4 = 0有一个根为0,那么m =.13. 若方程x2• px • q = 0的两个根是-2和3,则p,q的值分别为.14. 已知最简二次根式J2x? -X与J4x-2是同类二次根式,则x= ____________________ .15. 已知方程x2• kx - 2 = 0的一个根是1,则另一个根是,k的值是.16. 若一元二次方程ax2 +bx +c =0 有两根1 和—1,则a+b+c= ________ , a-b+c= _____ .x17. 若2x2—5xy —12y2 = 0,则一= ___________ .y三、解答题(共49分)18. (9分)用适当的方法解下列方程:(1) 6x2+7x-3=0 ;(2) 2x2+5x-1 = 0.19. (10分)已知x2 3xy _4y2 =0(y =0),求匕丄的值. x + y20. (10分)已知关于x的方程x2 _2(m+1)x+m2 = 0(1) 当m取何值时,方程有两个实数根;(2) 为m选取一个适合的整数,使方程有两个不相等的实数根,并求出这两个实数根21. ( 10分)美化城市,改善人们的居住环境已成为城市建设的一项重要内容.我市近几年来,通过拆迁旧房,植草,栽树,修公园等措施,使城区绿地面积不断增加(如图)(1) 根据图中所提供的信息回答下列问题:2018年底的绿地面积为平方米,比2017年底增加了平方米;在2016年,2017年,2018年这三年中,绿地面积增加最多的是年•(2) 为满足城市发展的需要,政府加大绿化投入,到2020年底城区绿地面积达到72.6平方米,试问这两年绿地面积的年平均增长率是多少22. ( 10分)阅读诗词解题:(通过列方程式,算出周瑜去世时的年龄) 大江东去浪涛尽,千古风流数人物;而立之年睿东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符;哪位学子算的快,多少年华属周瑜?参考答案19.[解]原方程可变形为:(x • 4y)(x - y) = 0T ,U-yx + y -4y + y=020. [解]⑴依题意得:即 4(m 1)2 -4m 2> 0整理得:8m 4 > 0解得:当m — -丄2⑵ 当m =4时,原方程可化为: x 2 -10x 76 =0解得:X 1 = 2, X 2 = 821. (1) 60平方米 4平方米 2017年.(2) 10%22. 解:设周瑜逝世时的年龄的个位数字为 x,则十位数字为x-3,依题意得,X 2=10(X -3)+X ;即x 2-11x+30=0 ; 解得X 1=5,x 2=6;当X 1=5时,周瑜的年龄是25岁,非而立之年,不合题意舍去;当x 2=6时,周瑜的年龄是 36岁,完全符合题意.答:周瑜去世时的年龄是 36岁.第3章达标检测卷 (时间:90分钟 满分:120分)一、选择题1.A2.D3.D4.B5.A6.B7.D _、填空题10.3 二、511. mn - -5,m 2 : =32114. 2或215. X ? - -2, k = 1三、解答题18. [解]⑴ 为=],X 2 =-3 .3 28. B 9.B12. m = -2 13. p - -1,q - -6316. 0, 017. 4 或 2(2) x^5_23,x^^-^344即(x 4y) = 0或(x -y)=0••• x-_4y 或x = y一、精心选一选(每小题3分,共30分)1.某校对九年级6个班学生平均一周的课外阅读时间进行了统计, 分别为(单位:h ): 3.5,4, 3.5, 5,5, 3.5•这组数据的众数是()A . 3B . 3.5C . 4D . 52 •在端午节到来之前,学校食堂推荐了 A , B , C 三家粽子专卖店,对全校师生爱吃哪家店的粽子做 调查,以决定最终向哪家店采购•下面的统计量,最值得关注的是()A .方差B .平均数C .中位数D .众数2 1 2 2 23 .在样本方差的计算公式 S = 10[(x i — 20) +(X 2— 20) +…+ (X i 。

八年级数学下册第一章单元测试卷-浙教版(含答案)

八年级数学下册第一章单元测试卷-浙教版(含答案)

八年级数学下册第一章单元测试卷-浙教版(含答案)时间:100分钟满分:120分班级:________姓名:________一、选择题(每小题3分,共30分)1.下列各式一定是二次根式的是()A.-7B.32m C.a2+b2D.ab2.下列二次根式中,最简二次根式是( )A.15B.0.5 C. 5 D.503.若式子m+2(m-1)2有意义,则实数m的取值范围是( )A.m>-2 B.m>-2且m≠1 C.m≥-2 D.m≥-2且m≠1 4.下面计算正确的是( )A.3+3=3 3 B.27÷3=3 C.2·3= 5 D.(-2)2=-2 5.若a<1,化简(a-1)2-1=( )A.a-2 B.2-a C.a D.-a6.方程|4x-8|+x-y-m=0,当y=1时,m的值是( )A.-2 B.-1 C.1 D.27.如图,一个小球由地面沿着坡比为1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( )A.5 m B.103m C.4 5 m D.2 5 m8.如果x+y=2xy,那么yx的值为( )A.-1 B.1 C.2 D.以上答案都不对9.下列选项错误的是( )A.3-2的倒数是3+ 2B.x2-x一定是非负数C.若x<2,则(x-1)2=1-x;D.当x<0时,-2x在实数范围内有意义10.如图,数轴上A,B两点对应的实数分别是1和3,若A点关于B点的对称点为点C,则点C所对应的实数为( )A.23-1 B.1+ 3 C.2+ 3 D.23+1【解析】设点C所对应的实数是x.则有x-3=3-1,x=23-1.二、填空题(每小题4分,共24分)11.18-8=___.12.已知矩形的长为2 5 cm,宽为10 cm,则面积为____ cm2.13.对于任意不相等的两个数a,b,定义一种运算※如下:a※b=a+ba-b,如3※2=3+23-2=5,那么12※4=____.14.已知a,b为等腰三角形的两条边长,且a,b满足b=3-a+2a-6+4,则此三角形的周长为____.15.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a,b,c,则该三角形的面积为S=14[a2b2-(a2+b2-c22)2].现已知△ABC的三边长分别为1,2,5,则△ABC的面积为_____.16.若|2 021-a|+a-2 022=a,则a-2 0212=___.三、解答题(共66分)17.(12分)计算:(1)(-144)×(-169);(2)-1 3225;(3)-12 1 024×5;(4)18m2n.18.(8分)(1)解方程:(3+1)(3-1)x=72-18.(2)先化简,再求值:(1x+1-1)÷x2-xx+1,其中x=2+1.19.(8分)作图题:如图,是一个边长为1的正方形网格,请在网格中画出一个边长为22,5和3的三角形.(要求三角形的顶点在小格的顶点处).20.(8分)如图,港口A在观测站O的正东方向,OA=4 km.某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向.求该船航行的距离AB的长(结果保留根号).21.(10分)细心观察图形,认真分析各式,然后解答问题.如图,OA22=(1)2+1=2,S1=12;OA23=12+(2)2=3,S2=22;OA24=12+(3)2=4,S3=3 2;…(1)请用含有n(n为正整数)的等式表示上述变化规律:OA2n=________;S n=________;(2)若一个三角形的面积是22,计算说明它是第几个三角形?(3)求出S21+S22+S23+…+S29的值.22.(10分)某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在的直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC =∠CDE=30°,DE=80 cm,AC=165 cm.求:(1)支架CD的长;(2)真空热水管AB的长(结果保留根号).23.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+22mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a,b,得:a=________,b=________;(2)若a+63=(m+n3)2,且a,m,n均为正整数,求a的值.参考答案一、选择题(每小题3分,共30分)1.C2.C3.D4.B5.D6.C7.D8.B9.C10.A二、填空题(每小题4分,共24分)11.212.10213.214.10或1115.116.2 022【解析】由题意可得a-2 022≥0,解得a≥2 022,∴2 021-a<0,∴a-2 021+a-2 022=a,∴原式=2 022.三、解答题(共66分)17.解:原式=144×169=144×169=12×13=156;(2)-13225;解:原式=-13×15=-5;(3)-12 1 024×5; 解:原式=-12322×5=-12×325=-165; =3|m |2n=±3m 2n .(4)18m 2n .解:原式=32×m 2×2n18.(8分)(1)解方程:(3+1)(3-1)x =72-18.解:2x =62-32x =322.(2)先化简,再求值:(1x +1-1)÷x 2-x x +1,其中x =2+1. 解:原式=1-(x +1)x +1·x +1x (x -1)=1-x -1x (x -1)=-x x (x -1) =11-x . 当x =2+1时,原式=11-2-1=-22. 19.(8分)作图题:【解析】22看作是2,2为直角边的直角三角形的斜边.5可看作是以2和1为直角边的直角三角形的斜边,从而可画出三角形.AB=22,AC=5,BC=3.△ABC符合要求.20.解:如图,过点A作AD⊥OB于点D.∵∠ADO=90°,∠AOD=30°,OA=4 km,∴AD=12OA=2(km).∵∠ADB=90°,∠B=∠CAB-∠AOB=45°,∴BD=AD=2(km).∴AB=22+22=22(km).∴该船航行的距离(即AB的长)为2 2 km. 21.解:(1)∵每一个三角形都是直角三角形,由勾股定理,得OA1=1,OA2=2,OA3=3,OA n=n,∴OA2n=n,S n=12·1·n=n2;(2)当S n=22时,有22=n2,解得n=32,即说明它是第32个三角形;(3)原式=14+24+…+94=454.即S21+S22+S23+…+S29的值为454.22.解:(1)在Rt△CDE中,∵∠CDE=30°,DE=80 cm,∴CE=12DE=40 cm,∴CD=802-402=403(cm).(2)在Rt△OAC中,∵∠BAC=30°,∴OA=2OC.设OC=x(cm),则OA=2x(cm).由勾股定理,得OC2+AC2=OA2,即x2+1652=(2x)2,解得x=553,∴OC=55 3 cm,∴OD=OC-CD=553-403=153(cm),∴AB=AO-OB=2OC -OD=2×553-153=953(cm).23.解:(1)(m+n3)2=m2+3n2+23mn,∴a=m2+3n2,b=2mn;(2)a=m2+3n2,2mn=6,∵a,m,n均为正整数,∴m=3,n=1或m=1,n=3,当m=3,n=1时,a=9+3=12,当m=1,n=3时,a=1+3×9=28,∴a的值为12或28.。

浙教版八年级(下册)数学全套单元测试题(附答案)

浙教版八年级(下册)数学全套单元测试题(附答案)

浙教版八年级(下册)数学第1章二次根式测试题(时间:100分钟 满分:120分) 题号 1 2 3 4 5 6 7 8 9 10 答案一、选择题(共10小题 每3分 共30分) 1、使二次根式243+-x x有意义的x 的取值范围是( ) A .43≥x B .43≤x 且x ≠-2 C .34≥x D .34≤x 且x ≠-2 2、下列二次根式中,能与6合并的是( ).A .60B .12C .24D .363、256的算术平方根为( ). A .-4 B .±4 C .2D .-24、下列各式计算正确的是( ) A .2541254125=⨯= B .4940940922=+=+ C .a a a a a --=---=--11)1(11)1(2 D .63136=⨯÷ 5、一次函数y =ax +b 的图象如图所示,则化简22222b b ab a a ++--的结果为( ) A .2bB .-2aC .2(a -b )D .2(b -a )6、已知n 是正整数,n 117是整数,则n 的最小值是为( ) A .3B .5C .9D .137、已知25+=a ,ab =1则代数式622-+b a 的值是( ). A .23 B .4 C .14 D .32 8、若实数m 满足02=+m m ,则m 的取值范围是( )A .m ≥0B .m ≤0C .m >0D .m <09、若代数式173)(16222----x x x 有意义,而0222173)(16⎪⎪⎭⎫⎝⎛----x x x 无意义,则x 的值为( ) A. 4± B. 4C.-4D. ±2第5题图10、化简262625+++的结果是( ) A .6B .26-C .62D .2二、填空题(共10小题 每题3分 共30分) 11、当x=3时,222212x x x --= . 12、计算365aa ÷的结果是 . 13、方程333322+=x 的解是 . 14、已知最简二次根式23432+-a 与2722-a 是同类二次根式,则a 的值为 . 15、若x ,y 分别为811-整数部分和小数部分,则2xy -y 2= . 16、一个长方形的面积为6283+,其中一边长为22,则另一边为 .17、已知22)3(83)6(38m n n m n ---=++-,则一次函数y =mx +n 的图象与坐标轴相交构成的三角形的面积是 .18、若xx x x y 15252522---+-=,则(-y -x )的平方根是 .19、化简1532102356--+-= .20、如图,将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为 ;同上操作,若连续将图1的等腰直角三角形折叠n 次后所得到的等腰直角三角形(如图n +1)的一条腰长为 .三、解答题(共6题 共60分)21、(满分9分)比较下列四个算式结果的大小:(在横线上选填“>”、“<”或“=” ) (1) ①22)3()2(-+______)3(22-⨯⨯;②22)32()23(+______32232⨯⨯;第20题图③22)6()6(+______662⨯⨯.(2)通过观察归纳,写出反映这一规律的一般结论.通过观察上述关系式发现,等式的左边都是两个数的平方和的形式,右边是前面两数不平方乘积的2倍,通过几个例子发现两个数的平方的和大于等于这两个数乘积的2倍.设两个实数a 、b ,则a 2 +b 2 ≥2ab . 22、(满分10分)计算: (1)6)4872(23223÷+--⨯÷(2) )41(3)64(35ab abab b a a b a b ---23、(满分10分)先阅读理解下面的材料,再按要求解答问题:m b a =+22)()(,n b a =⋅,那么便有n m 2±=b a b a ±=±2)((a >b ).例如:化简625+.解∵625+=2623+-, ∴m =+22)2()3(,n =⨯23∴625+=2623++=.23)23(2+=+ 利用上述方法化简下列各式: (1) 124-; (2) 215-.24、(满分10分)已知3535+-=x ,3535-+=y ,求下列各式的值:(1)x 2y +xy 2; (2) x 2+y 2-3xy .25、(满分9分)物体自由下落时,下落距离h (m )与物体所经过的时间t (s )之间的关系是5ht =.一个物体从240m 高的塔顶自由下落,落到地面需要多久(精确到0.1s )?26、(满分12分)在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3km 和2km ,AB =a km (a >1),现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水。

浙教版 初二数学八年级下册 第1章二次根式 单元同步测试卷 含答案

浙教版 初二数学八年级下册 第1章二次根式 单元同步测试卷 含答案

第1章检测题(时间:100分钟 满分:120分)一、精心选一选(每小题3分,共30分)1.要使式子a +2a有意义,a 的取值范围是( D ) A .a ≠0 B .a >-2 C .a >-2或a ≠0 D .a ≥-2且a ≠0 2.下列根式中,是最简二次根式的是( C ) A.0.2b B.12a -12b C.x 2-y 2 D.5ab 2 3.下列计算正确的是( C ) A.5+2=7 B.a 2-b 2=a -b C .a x -b x =(a -b )x D.6+82=3+4=3+2 4.把代数式(a -1)11-a的a -1移到根号内,那么这个代数式等于( A ) A .-1-a B.a -1 C.1-a D .-a -1 5.若18x +2x 2+x 2x=10,则x 的值等于( A ) A .2 B .±2 C .4 D .±46.设a =19-1,a 在两个相邻整数之间,则这两个整数是( C ) A .1和2 B .2和3 C .3和4 D .4和57.当a =5+2,b =5-2时,a 2+ab +b 2的值是( B ) A .10 B .19 C .15 D .188.若x <2,化简(x -2)2+|3-x|的正确结果是( D ) A .-1 B .1 C .2x -5 D .5-2x9.k ,m ,n 为正整数,若135=k 15,450=15m ,180=6n ,则下列有关k ,m ,n 的大小关系,正确的是( D )A .k <m =nB .m =n <kC .m <n <kD .m <k <n10.已知a +1a =10,则a -1a 的值为( D )A .±2 2B .8 C. 6 D .± 6二、细心填一填(每小题3分,共24分)11.计算:23-1=.12.化简:-12b =. 13.若|a -b +1|与a +2b +4互为相反数,则a =__-2__,b =__-1__.14.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1∶2,则AB 的长是.15.对于X ,Y 定义一种新运算“*”:X*Y =aX +bY ,其中a ,b 为常数,等式右边是通常的加法和乘法的运算.若a -2-8-4a +a b =12成立,那么2*3=__1__.16.若a -5+5-a =b +2+|2c -6|,则b c +a 的值为__-3__. 17.若实数m 满足|4-m|+m -7=m ,则m =__23__.18.计算下列各式的值:92+19;992+199;9992+1 999;9 9992+19 999,观察所得结果,总结存在的规律,运用得到的规律可得99 (92)2 017个9+199…92,2 017个9) )=__100…0,\s\up6(2 017个0)) .三、耐心做一做(共66分) 19.(16分)计算: (1)(48-418)-(313-20.5); (2)(2-3)99·(2+3)100-2|-32|-(-3)0; 解:3 3 解:1(3)2b ab 5·(-32a 3b )÷3b a ; (4)96-54÷3+(3-3)(1+13). 解:-a 2b ab 解:36+220.(7分)如图,字母b 的取值如图所示,化简|b -2|+b 2-10b +25.解:原式=321.(8分)已知x=3+1,y=3-1,求下列各式的值:(1)2x2+5xy+2y2; (2)x3y+xy3.解:原式=2(x+y)2+xy=26 解:x3y+xy3=xy[(x+y)2-2xy]=1622.(7分)已知:x,y为实数,且y<x-1+1-x+3,化简:|y-3|-y2-8y+16. 解:由已知得x=1,y<3,|y-3|-y2-8y+16=-123.(8分)已知:x=3+23-2,y=3-23+2,求x3-xy2x4y-2x3y2+x2y3的值.解:x=5+26,y=5-26,xy=1,x+y=10,x-y=46,原式=x+yxy(x-y)=512 624.(10分)如图,方格纸中小正方形的边长为1,△ABC 的三个顶点都在小正方形的顶点处.(1)求AB 的长;(2)求点C 到AB 边的距离.解:(1)AB =25 (2)S △ABC =7,设点C 到AB 边的距离为h ,则12×25·h =7,∴h=755,即点C 到AB 边的距离为75525.(10分)观察下列各式及一些验证过程: 12-13=1223;12(13-14)=1338;13(14-15)=14415. 验证:12-13=12×3=222×3=1223,12(13-14)=12×3×4=32×32×4=1338. (1)按上述等式及验证过程的基本思想,猜想14(15-16)的变形结果并进行验证; (2)针对上述各式反映的规律写出用n(n ≥1的自然数)表示的等式,并验证. 解:(1)14(15-16)=15524,验证:14(15-16)=14×5×6=54×52×6=15524(2)1n (1n +1-1n +2)=1n +1n +1(n +1)2-1,验证:1n (1n +1-1n +2)=1n (n +1)(n +2)=n +1n (n +1)2(n +2)=1n +1n +1n (n +2)=1n +1n +1(n +1)2-1。

浙教版数学八年级下《第1章二次根式》单元测试卷含答案

浙教版数学八年级下《第1章二次根式》单元测试卷含答案

浙教版八年级下册《第1章二次根式》单元测试一、选择题1.化简的结果是()A.2 B.﹣2 C.2或﹣2 D.42.下列计算正确的是()A.B.C.D.3.化简得()A.1 B.C.D.4.能使=成立的取值范围是()A.a>3 B.a≥0 C.0≤a<3 D.a<3或a>35.下列各式计算正确的是()A.2•3=6B.=2C.( +)2=2+3=5 D.﹣•=﹣6.化简﹣得()A.2 B.C.﹣2 D.47.已知x,y为实数,且y=++,则的值为()A.﹣ B.C.D.28.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:,坝顶宽CD为3m,坝高CF为10m,则坝底宽AB约为()(≈1.732,保留3个有效数字)A.32.2 m B.29.8 m C.20.3 m D.35.3 m9.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0 B.1 C.﹣1 D.10.化简(﹣2)2008×(2+)2009的结果是()A.﹣l B.﹣2 C. +2 D.﹣﹣2二、填空题11.若是二次根式,则x的取值范围是.12.=;(﹣)2﹣=.13.=;=.14.化简:﹣3的结果是.15.计算:=.16.在平面直角坐标系中点A到原点的距离是.17.如图,自动扶梯AB段的长度为20m,BC=10m,则AC=m.18.比较大小:32;﹣﹣.19.若(x﹣)2+=0,则=.20.已知的小数部分为a,则a(a+2)=.三、解答题21.计算:(1)﹣+;(2)()2﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.22.如图,实数a、b在数轴上的位置,化简﹣﹣.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.25.观察下列各式:=2,=3,=4请你将发现的规律用含自然数n(n≥1)的等式表示出来.浙教版八年级下册《第1章二次根式》单元测试参考答案与试题解析一、选择题1.化简的结果是()A.2 B.﹣2 C.2或﹣2 D.4【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的性质进行化简即可.【解答】解:=2.故选A.【点评】本题考查了二次根式的性质与化简.解题的关键是要知道开方出来的数是一个≥0的数.2.下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式加减,乘除运算法则与二次根式的化简的知识,即可求得答案.【解答】解:A、,故本选项错误;B、=2﹣,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选C.【点评】此题考查了二次根式的混合运算.解题的关键是掌握二次根式加减,乘除运算法则与二次根式的化简.3.化简得()A.1 B.C.D.【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简.【解答】解:原式=2=,故选B.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.4.能使=成立的取值范围是()A.a>3 B.a≥0 C.0≤a<3 D.a<3或a>3【考点】二次根式的乘除法.【分析】根据平方根有意义,必须被开方数≥0,分母不能为0求解即可.【解答】解:∵=成立,∴,解得a>3,故选:A.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.5.下列各式计算正确的是()A.2•3=6B.=2C.( +)2=2+3=5 D.﹣•=﹣【考点】二次根式的乘除法.【分析】运用二次根式的乘除法法则判定即可.【解答】解:A、2•3=6,故A选项错误;B、=3,故B选项错误;C、(+)2=2+3+2=5+2,故C选项错误;D、﹣•=﹣,故D选项正确.故选:D.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.6.化简﹣得()A.2 B.C.﹣2 D.4【考点】二次根式的混合运算.【分析】先去括号,再合并同类二次根式即可.【解答】解:原式=2﹣2﹣2=﹣2.故选C.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.7.已知x,y为实数,且y=++,则的值为()A.﹣ B.C.D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,6x﹣1≥0且1﹣6x≥0,解得x≥且x≤,所以,x=,y=,所以,==.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.8.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:,坝顶宽CD为3m,坝高CF为10m,则坝底宽AB约为()(≈1.732,保留3个有效数字)A.32.2 m B.29.8 m C.20.3 m D.35.3 m【考点】解直角三角形的应用﹣坡度坡角问题.【专题】应用题.【分析】根据坡比的定义可分别求出BF、AE,继而根据AB=BF+FE+AE即可得出答案.【解答】解:在Rt△BCF中,∵CF:BF=1:1.5,CF=10m,∴BF=15m,在Rt△BCF中,∵DE:AE=1:,DE=10m,∴BF=10m,故可得AB=BF+FE+AE=15+3+10≈35.3m.故选D.【点评】本题考查了坡度、坡角的知识,关键是理解坡度的定义,分别求出BF、AE的长度.9.若a=3﹣,则代数式a2﹣6a﹣2的值是()A.0 B.1 C.﹣1 D.【考点】完全平方公式;实数的运算.【分析】先根据完全平方公式整理,然后把a的值代入计算即可.【解答】解:a2﹣6a﹣2,=a2﹣6a+9﹣9﹣2,=(a﹣3)2﹣11,当a=3﹣时,原式=(3﹣﹣3)2﹣11,=10﹣11,=﹣1.故选C.【点评】熟记完全平方公式:(a﹣b)2=a2﹣2ab+b2,利用完全平方公式先化简再代入求值更加简便.10.化简(﹣2)2008×(2+)2009的结果是()A.﹣l B.﹣2 C. +2 D.﹣﹣2【考点】二次根式的混合运算.【专题】计算题.【分析】先根据积的乘方得到原式=[(﹣2)(+2)]2008•(+2),然后利用平方差公式计算即可.【解答】解:原式=[(﹣2)(+2)]2008•(+2)=(3﹣4)2008•(+2)=+2.故选C.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.二、填空题11.若是二次根式,则x的取值范围是x≤.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣4x≥0,解得x≤.故答案为:x≤.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.=;(﹣)2﹣=0.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化为最简二次根式,然后约分即可;根据二次根式的性质计算(﹣)2﹣.【解答】解:=×=;(﹣)2﹣=21﹣21=0.故答案为,0.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.13.=﹣1;=35.【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行化简即可.【解答】解:=﹣1;==35.故答案为:﹣1;35.【点评】本题考查了二次根式的性质,=|a|=.14.化简:﹣3的结果是.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.15.计算:=2.【考点】二次根式的乘除法;平方差公式.【分析】本题是平方差公式的应用,是相同的项,互为相反项是﹣与.【解答】解:( +)(﹣)=5﹣3=2.【点评】运用平方差公式(a+b)(a﹣b)=a2﹣b2计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.16.在平面直角坐标系中点A到原点的距离是2.【考点】勾股定理;点的坐标.【专题】计算题.【分析】根据平面直角坐标系中点A,其中横坐标为﹣,纵坐标为﹣,利用勾股定理即可求出点A到原点的距离.【解答】解:∵在平面直角坐标系中,点A,∴点A到原点的距离为:=2.故答案为:2.【点评】此题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.17.如图,自动扶梯AB段的长度为20m,BC=10m,则AC=10m.【考点】二次根式的应用.【分析】根据勾股定理求解即可.【解答】解:AC===10.故答案为:10.【点评】本题考查了二次根式的应用,解答本题的关键是根据勾股定理求出AC 的长度.18.比较大小:3>2;﹣>﹣.【考点】实数大小比较.【分析】先求出两数的平方,再比较即可;求出两个数的倒数,根据倒数求出即可.【解答】解:∵(3)2=18,(2)2=12,∴3>2,∵=+,=+,又∵>,∴﹣>﹣,故答案为:>,>.【点评】本题考查了实数的大小比较的应用,解此题的关键是能选择适当的方法比较两个实数的大小.19.若(x﹣)2+=0,则=.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:∵(x﹣)2+=0,∴,解得,∴==.故答案为.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.20.已知的小数部分为a,则a(a+2)=2.【考点】估算无理数的大小.【分析】先根据的范围求出a的值,代入后进行计算即可.【解答】解;∵1<<2,∴a=﹣1,∴a(a+2)=(﹣1)(﹣1+2)=(﹣1)(+1)=3﹣1=2,故答案为:2.【点评】本题考查了估算无理数的大小,二次根式的混合运算,平方差公式的应用,解此题的关键是求出a的值.三、解答题21.计算:(1)﹣+;(2)()2﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的性质得到原式=﹣,然后约分后进行减法运算;(3)利用完全平方公式计算;(4)先利用平方差公式计算,然后进行乘法运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=0;(3)原式=12﹣12+18=30﹣12;(4)原式=(7++7﹣)(7+﹣7+)=14×2=28.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.如图,实数a、b在数轴上的位置,化简﹣﹣.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】根据数轴表示数的方法得到a<0<b,再根据二次根式的性质得原式=|a|﹣|b|﹣|a﹣b|,然后去绝对值后合并即可.【解答】解:∵a<0<b,∴原式=|a|﹣|b|﹣|a﹣b|=﹣a﹣b+a﹣b=﹣2b.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了实数与数轴.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.【考点】二次根式的应用.【分析】根据点D为AB的中点,三角形ABC为等腰三角形,可得CD⊥AB,并且求出AD和BD的长度,在Rt△ACD中求出AC的长度,同理可求出BC的长度,继而以求得△ABC的周长及面积.【解答】解:在等腰三角形ABC中,∵点D是边AB的中点,∴CD⊥AB,AD=BD=,在Rt△ACD中,∵AD=,CD=2,∴AC==3,同理可得,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.【点评】本题考查了二次根式的应用以及勾股定理的应用,解答本题的关键是得出CD为三角形ABC的高,并且运用勾股定理求出等腰三角形的腰长,难度一般.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.【考点】二次根式的化简求值.【分析】先把原式化为x2+y2﹣2xy+xy=(x﹣y)2+xy,再求出x﹣y和xy的值,整体代入即可.【解答】解:∵x=+1,y=﹣1,∴x﹣y=(+1)﹣(﹣1)=+1﹣+1=2,xy=(+1)(﹣1)=()2﹣12=2﹣1=1;∴原式x2+y2﹣2xy+xy=(x﹣y)2+xy=22+1=5.【点评】本题考查了二次根式的化简求值,以及分母有理化和数学的整体思想,是基础知识要熟练掌握.25.观察下列各式:=2,=3,=4请你将发现的规律用含自然数n(n≥1)的等式表示出来=(n+1)(n≥1).【考点】二次根式的性质与化简.【专题】规律型.【分析】观察分析可得:=(1+1);=(2+1)则将此题规律用含自然数n(n≥1)的等式表示出来是=(n+1)(n≥1).【解答】解:由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来为=(n+1)(n≥1).故答案为:=(n+1)(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).。

浙教版数学八年级下第1章《二次根式》综合练习含答案

浙教版数学八年级下第1章《二次根式》综合练习含答案

第1章 二次根式时间:45分钟 分数:100分一、选择题(每小题2分,共20分)1.下列说法正确的是( )A .若a a -=2,则a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是52.二次根式13)3(2++mm 的值是( )A .23B .32C .22D .03.化简)0(||2<<--y x x y x 的结果是( )A .x y 2-B .yC .y x -2D .y -4.若b a是二次根式,则a ,b 应满足的条件是( )A .a ,b 均为非负数B .a ,b 同号C .a≥0,b>0D .0≥b a5.(湖北武汉)已知a<b ,化简二次根式b a 3-的正确结果是() A .ab a -- B .ab a -C .ab aD .ab a -6.把m m 1-根号外的因式移到根号内,得( )A .mB .m -C .m --D .m -7.下列各式中,一定能成立的是( )A .22)5.2()5.2(=-B .22)(a a =C .122+-x x =x-1D .3392+⋅-=-x x x8.若x+y=0,则下列各式不成立的是( )A .022=-y xB .033=+y xC .022=-y xD .0=+y x9.当3-=x 时,二次根7522++x x m 式的值为5,则m 等于( )A .2B .22C .55 D .5 10.已知1018222=++x x x x ,则x 等于( ) A .4 B .±2 C .2 D .±4二、填空题(每小题2分,共20分)11.若5-x 不是二次根式,则x 的取值范围是 。

12.(江西)已知a<2,=-2)2(a 。

13.当x= 时,二次根式1+x 取最小值,其最小值为 。

14.计算:=⨯÷182712 ;=÷-)32274483( 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版八年级数学下册第一章测试题(附答案)
一、单选题
1.下列式子中,是二次根式的是()
A. B. C. D.
2.下列计算正确的是().
A. B. =1
C. D.
3.下列等式成立的是()
A. B. C. D.
4.下列各式,运算正确的是()
A. B. C. D.
5.下列式子中,属于最简二次根式的是()
A. B. C. D.
6.若,化简二次根式的结果是()
A. B. C. D.
7.若有意义,则m满足()
A. B. C. D.
8.下列计算正确的是()
A. - =
B. =-3
C. =
D.
9.使有意义的x的取值范围是()
A. B. C. D.
10.要使二次根式有意义,字母x必须满足的条件是()
A. x≥
B. x>-
C. x≥-
D. x>
11.要使有意义,则x的取值范围是()
A. B. C. D.
12.下列式子属于最简二次根式的是()
A. B. C. D.
二、填空题(共6题;共6分)
13.若式子在实数范围内有意义,则x的取值范围是________.
14.若与最简二次根式可以合并,则实数a的值是________.
15.化简二次根式的结果是________.
16.化简=________.
17.已知实数a,b满足,则化简的结果是________
18.化简=________.
三、计算题
19.计算:
20.计算:
21.计算(1). (2)
四、综合题(共3题;共27分)
22.如图所示,从一个大矩形中挖去面积为和的两个小正方形.
(1)求大矩形的周长;
(2)若余下部分(阴影部分)的面积与一个边长为的正方形的面积相等,求的值.
23.若最简二次根式和是同类二次根式.
(1)求x、y的值;(2)求的值.
24.二次根式中也有这种相辅相成的“对子”.如:,=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式
除法可以这样理解:如:,.像这样,通过
分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
解决问题:
(1)3-的有理化因式是________,的分母有理化得________;(2)计算:
①已知:,,求的值;
② .
答案
一、单选题
1. C
2. D
3. C
4. C
5. A
6. D
7. C
8. C
9. D 10. C 11. D 12. A
二、填空题
13. 14. 15. 16. 5 17. b-2a 18. 0
三、计算题
19. 解:原式= =2
20. 解:原式=
21. (1)解:原式
(2)解:原式
四、综合题
22. (1)解:∵两个小正方形面积为50cm2和32cm2,
∴大矩形的长为:cm,大矩形的宽为:cm,
∴大矩形的周长为2× +2× =28 cm,
(2)解:余下的阴影部分面积为:× -50-32=8(cm2),∴a2=8,∴a=2 ,即的值2 .
23. (1)解:由题意得:3x-10=2 ,2x+y-5=x-3y+11,
解得x=4,y=3.
(2)解:当x=4,y=3时= =5
24. (1)3+ (或-3-);-6-3 ;
(2)解:①当,
时,
x2+y2=(x+y)2−2xy=(2++2− )2−2×(2+)×(2− )=16−2×1=14. ②
==.=。

相关文档
最新文档