统计量及其抽样分布

合集下载

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

概率论与数理统计第六章统计量,样本及抽样分布

概率论与数理统计第六章统计量,样本及抽样分布

(2) X 1
~
2 (n1 ),
X2
~
2 (n2 ),
X1,
X

2



X 1 X 2 ~ 2 (n1 n2 ).
(3) X ~ 2 (n), E( X ) n, D( X ) 2n,
.
2021/3/11
20
(4). 2分布的分位点
对于给定的正数,0 1,
称满足条件
P
2 2 (n)
k 1
,
X
k 2
,,
X
k n
独立且与X
k同分布,
E
(
X
k i
)
k
k 1,2,,n 再由辛钦大数定律可得上述结论.
再由依概率收敛性质知,可将上述性质推广为
g( A1, A2 ,, Ak ) p g(1,2 ,,k ) 其中g为连续函数.
这就是矩估计法的理论根据.
2021/3/11
18
皮肌炎图片——皮肌炎的症状表现 数理统计
10
3. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体的、确 定的值. 如我们从某班大学生中抽取10人测量身高, 得到10个数,它们是样本取到的值而不是样本. 我 们只能观察到随机变量取的值而见不到随机变量.
2021/3/11
11
总体(理论分布) ?
样本
样本值
统计是从手中已有的资料--样本值,去推断总 体的情况---总体分布F(x)的性质.
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再由函数的性质有
lim h(t)
n
1 et2 2. 2

(概率论与数理统计 茆诗松) 第5章 统计量及其分布

(概率论与数理统计 茆诗松) 第5章 统计量及其分布
例5.3.6 设总体X 的分布为仅取0,1,2的 离散
均匀分布,分布列为
x0 1 2
p 1/3 1/3 1/3
现从中抽取容量为3的样本,其一切可能取值有 33=27种, (表5.3.6)
x0 1 2
p 1/3 1/3 1/3
P(x(1)=0) = ?
ቤተ መጻሕፍቲ ባይዱ
可给出的 x(1) , x(2), x(3) 分布列如下 :
n
(x x ) 0. i i1
定理5.3.2 数据观测值与均值的偏差平方和 最小,即在形如 (xic)2 的函数中,
(xi x)2最小,其中c为任意给定常数。
样本均值的抽样分布:
定理5.3.3 设x1, x2, …, xn 是来自某个总体的样本,
x 为样本均值。
(1) 若总体分布为N(, 2),则
是将样本观测值由小到大排列后得到的第 i 个 观测值。
其中, x(1)=minx1, x2,…, xn称为该样本的最小次序统计量, 称 x(n)=maxx1,x2,…,xn为该样本的最大次序统计量。
在一个样本中,x1, x2,…,xn 是独立同分布的,而 次序统计量 x(1), x(2),…, x(n) 则既不独立,分布也 不相同,看下例。

p R ( r ) 0 1 r n ( n 1 ) [ ( y r ) y ] n 2 d y n ( n 1 ) r n 2 ( 1 r )
这正是参数为(n1, 2)的贝塔分布。
5.3.6 样本分位数与样本中位数
样本中位数也是一个很常见的统计量,它也是 次序统计量的函数,通常如下定义:
在n
不大时,常用
s2
1 n n1i1
(xi
x)2

第6章-统计量及其抽样分布

第6章-统计量及其抽样分布
2、计算出每个样本的统计量值; 3、将来自不同样本的不同统计量值分组排列,把
对应于每个数值的相对出现频数排成另一列, 由此,全部可能的样本统计量值形成了一个概 率分布,这个分布就是我们想要得到的抽样分 布。
样本均值的抽样分布 与中心极限定理
当总体服从正态分布N(μ,σ2)时,来自该总体的所有 容量为n的样本的均值x也服从正态分布,x 的数
1.0 1.5 2.0 2.5 3.0 3.5 4.0 x
样本均值的抽样分布
所有样本均值的均值和1.0 1.5 4.0 16
2.5 m
n
(xi mx )2
s
2 x
i 1
M
M为样本数目
(1.0 2.5)2
(4.0 2.5)2
s2
0.625
16
n
1. 样本均值的均值(数学期望)等于总体均值 2. 样本均值的方差等于总体方差的1/n
从检查一部分得知全体。
复习 抽样方法
抽样方式
概率抽样
非概率抽样
简单随机抽样 整群抽样
多阶段抽样
分层抽样 系统抽样
方便抽样 自愿样本 配额抽样
判断抽样 滚雪球抽样
6.2.1 抽样分布 (sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
在重复选取容量为n的样本时,由该统计量的所有可 能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
抽样分布的形成过程 (sampling
distribution)

统计学 统计量及其抽样分布

统计学 统计量及其抽样分布

定义:设随机变量X1,X2,…Xn相互独立,且Xi
服从标准正态分布N(0,1),则它们的平方和 n

X
2 i
服从自由度为n的c2分布。
i 1
c2分布主要适用于拟合优度的检验、独立性检 验以及对总体方差的估计和检验。
卡尔·皮尔逊(Karl Pearson)是英国著名的统 计学家、生物统计学家、 应用数学家,又是名副其 实的历史学家、科学哲学 家、伦理学家、民俗学家 、人类学家、宗教学家、 优生学家、弹性和工程问 题专家、头骨测量学家, 也是精力充沛的社会活动 教育改革家、社会主义 家、律师、自由思想者、 者、妇女解放的鼓吹者、 婚姻和性问题的研究者, 亦是受欢迎的教师、编 辑、文学作品和人物传 记的作者.

(n 1)s 2 ~ c 2 (n 1) 2
6.7.2 两个样本方差比的分布
1. 两 个 总 体 都 为 正 态 分 布 , 即 X1~N(μ1 ,σ12) , X2~N(μ2 ,σ22 )
2. 从两个总体中分别抽取容量为n1和n2的独立样本
3. 两个样本方差比的抽样分布,服从分子自由度为 (n1-1),分母自由度为(n2-1) 的F分布,即
复抽样条件下,共有42=16个样本。所有样本的 结果如下表
所有可能的n = 2 的样本(共16个)
第一个
第二个观察值
观察值
1
2
3
4
1
1,1 1,2 1,3 1,4
2
2,1 2,2 2,3 2,4
3
3,1 3,2 3,3 3,4
4
4,1 4,2 4,3 4,4
计算出各样本的均值,如下表。并给出样 本均值的抽样分布
n
x

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

贾俊平《统计学》课后习题及详解(统计量及其抽样分布)【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数? 答:(1)设是从总体中抽取的容量为的一个样本,如果由此样本构造一个函数,不依赖于任何未知参数,则称函数是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?12n X X X ,,…,X n 12()n T X X X ,,…,12()n T X X X ,,…,1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故、是统计量,、不是统计量。

3.什么是次序统计量?答:设是从总体中抽取的一个样本,称为第个次序统计量,它是样本满足如下条件的函数:每当样本得到一组观测值…,时,其由小到大的排序中,第个值就作为次序统计量的观测值,而称为次序统计量,其中和分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

统计量加工过程中一点信息都不损失的统计量通常称为充分统计量。

5.什么是自由度?答:统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的变量的个数。

统计学 第6章 统计量及其抽样分布

统计学  第6章  统计量及其抽样分布
样本均值,样本比例,样本方差等
1. 样本统计量的概率分布,是一种理论分布

2. 随机变量是样本统计量

3. 结果来自容量相同的所有可能样本 4. 提供了样本统计量长远而稳定的信息,是进行 推断的理论基础,也是抽样推断科学性的重要 依据
6 - 8 / 55
统计学
STATISTICS (第五版)
重要统计量
1.样本均值:
n 1 若X ~ N(, 2), X X i, n i 1
1 n 1 则E X EX i ,D X 2 n i 1 n 2.样本方差:
n 1 2 S2 ( X X ) i n 1 i 1
1 1 2 2 DX i 2 n n n i 1
X ~ (n)
2
6 - 13 / 55
统计学
STATISTICS (第五版)
2分布
(图示)
n=1 n=4 n=10
n=20
6 - 14 / 55
不同容量样本的抽样分布
2
统计学
STATISTICS (第五版)
2 分布:
定理:如果随机变量 X1, X 2, , X n 相互独立,且都服从 同一正态分布
6.1.1 6.1.2 6.1.3 6.1.4
6 - 4 / 55
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设 X1,X2,…,Xn 是从总体 X中抽取的容量为 n的一个样本,如果由此样本构造一个函 数 T(X1,X2,…,Xn) ,不依赖于任何未知参 数,则称函数 T(X1,X2,…,Xn) 是一个统计 量
6 - 2 / 55
统计学
STATISTICS (第五版)

第六章 统计量及其抽样分布

第六章 统计量及其抽样分布

样本均值的抽样分布
样本均值的抽样分布
1. 容量相同的所有可能样本的样本均值的概率分 布
2. 一种理论概率分布 3. 进行推断总体总体均值的理论基础
样本均值的抽样分布
(例题分析)
【例】设一个总体,含有4个元素(个体) ,即总体单位 数N=4。4 个个体分别为x1=1、x2=2、x3=3 、x4=4 。 总体的均值、方差及分布如下

第 一
16个样本的均值(x)

第二个观察值
观 察值1 2
3
4
11
1.
20.

52. 0.
5
21
2.
25.

03. 5.
0
23
2.
30.

53. 0.
5
24
3.
35.

04. 5.
0
.3 P (X ) .2 .1 0
1.0 1.5 2.0 2.5 3.0 3.5 4.0 X
第六章 统计量及其抽样分布
抽样理论依据: 1、大数定律 (1)独立同分布大数定律:证明当N足够大时,平均数据有稳定性,为用样本平 均数估计总体平均数提供了理论依据。 (2)贝努力大数定律:证明当n足够大时,频率具有稳定性,为用频率代替概率 提供了理论依据 2、中心极限定律 (1)独立同分布中心极限定律:设从均值为u、方差为s2(有限)的任意一个总体 中抽取样本量为n的样本,但n充分大时,样本均值X的抽样分布近似服从均值为u, 方差为s2/n的正态分布。 (2)德莫佛-拉普拉斯中心极限定律:证明属性总体的样本数和样本方差,在n足 够大时,同样趋于正态分布。
(central limit theorem)

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

贾俊平《统计学》(第5版)课后习题-第6章 统计量及其抽样分布【圣才出品】

第6章 统计量及其抽样分布一、思考题1.什么是统计量?为什么要引进统计量?统计量中为什么不含任何未知参数?答:(1)设12n X X X ,,…,是从总体X 中抽取的容量为n 的一个样本,如果由此样本构造一个函数12()n T X X X ,,…,,不依赖于任何未知参数,则称函数12()n T X X X ,,…,是一个统计量。

(2)在实际应用中,当从某总体中抽取一个样本后,并不能直接应用它去对总体的有关性质和特征进行推断,这是因为样本虽然是从总体中获取的代表,含有总体性质的信息,但仍较分散。

为了使统计推断成为可能,首先必须把分散在样本中关心的信息集中起来,针对不同的研究目的,构造不同的样本函数。

(3)统计量是样本的一个函数。

由样本构造具体的统计量,实际上是对样本所含的总体信息按某种要求进行加工处理,把分散在样本中的信息集中到统计量的取值上,不同的统计推断问题要求构造不同的统计量,所以统计量不包含未知参数。

2.判断下列样本函数哪些是统计量?哪些不是统计量?1121021210310410()/10min()T X X X T X X X T X T X μμσ=+++==-=-…,,…,()/答:统计量中不能含有未知参数,故1T 、2T 是统计量,3T 、4T 不是统计量。

3.什么是次序统计量?答:设12n X X X ,,…,是从总体X 中抽取的一个样本,()i X 称为第i 个次序统计量,它是样本12()n X X X ,,…,满足如下条件的函数:每当样本得到一组观测值12X X ,,…,n X 时,其由小到大的排序(1)(2)()()i n X X X X ≤≤≤≤≤……中,第i 个值()i X 就作为次序统计量()i X 的观测值,而(1)(2)()n X X X ,,…,称为次序统计量,其中(1)X 和()n X 分别为最小和最大次序统计量。

4.什么是充分统计量?答:在统计学中,假如一个统计量能把含在样本中有关总体的信息一点都不损失地提取出来,那对保证后边的统计推断质量具有重要意义。

抽样分布样本统计量的分布及其应用

抽样分布样本统计量的分布及其应用

抽样分布样本统计量的分布及其应用在统计学中,抽样是一种数据分析的方法,它通过对总体中的一部分个体进行观察和测量来推断总体的特征。

而抽样分布是指抽取相同样本量的多个样本后得到的统计量的分布。

样本统计量是对样本数据进行计算得到的统计指标,它可以用来估计总体参数,并进行假设检验。

1. 抽样分布的基本概念抽样分布具有一些基本性质,首先是无偏性。

当样本容量趋向于总体容量时,样本统计量的期望值会无限接近总体参数的真实值。

其次是有效性,即样本统计量的方差趋近于零,它可以用来估计总体参数的精确度。

最后是一致性,样本统计量在样本容量逐渐增大时趋近于总体参数。

2. 抽样分布的常见形式常见的抽样分布有正态分布、t分布和卡方分布。

其中正态分布应用最为广泛,它在中心极限定理的作用下,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。

而t分布则适用于当总体标准差未知、样本容量较小的情况下,它的形状比正态分布要略扁平一些。

卡方分布则主要用于样本方差的估计与检验。

3. 抽样分布的应用抽样分布的应用非常广泛,常用于以下几个方面:3.1 参数估计通过抽样分布,我们可以利用样本统计量对总体参数进行估计。

例如,可以利用样本均值估计总体均值,利用样本标准差估计总体标准差。

通过计算置信区间,我们可以得到对总体参数的范围估计。

3.2 假设检验假设检验是统计学中非常重要的一项工具,用于判断样本数据是否支持某个假设。

基于抽样分布,我们可以计算统计量的P值,进而判断样本数据与假设的一致性。

常用的假设检验有均值检验、方差检验、比例检验等。

3.3 质量控制在生产过程中,质量控制是非常关键的。

通过对样本数据进行分析,可以判断生产过程是否正常。

例如,可以通过控制图分析样本均值的变化情况,以判断过程是否处于控制状态。

3.4 统计决策在实际决策中,我们往往需要依据样本数据来进行判断。

抽样分布提供了一种基于统计的决策依据。

例如,在市场调研中,我们可以通过对样本数据进行分析,对市场潜力进行预测,从而指导营销策略的制定。

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

2021统计学原理-《统计学》第五章统计量及其抽样分布试题(精选试题)

统计学原理-《统计学》第五章统计量及其抽样分布试题1、智商的得分服从均值为100,标准差为16的正态分布。

从总体中抽取一个容量为n的样本,样本均值的标准差为2,样本容量为____________。

2、样本均值与总体均值之间的差被称作____________。

3、从均值为50,标准差为5的无限总体中抽取容量为30的样本,则抽样分布的超过51的概率为____________。

4、某校大学生中,外国留学生占10%。

随机从该校学生中抽取100名学生,则样本中外国留学生比例的标准差为____________。

5、假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( )。

A.服从非正态分布B.近似正态分布C.服从均匀分布D.服从x²分布6、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差( )。

A.保持不变B.增加C.减小D.无法确定7、总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分别为( )。

A.50,8B.50,1C.50,4D.8,88、某厂家生产的灯泡寿命的均值为60小时,标准差为4小时。

如果从中随机抽取30只灯泡进行检测,则样本均值( )。

A.抽样分布的标准差为4小时B.抽样分布近似等同于总体分布C.抽样分布的中位数为60小时D.抽样分布近似等同于正态分布,均值为60小时9、假设某学校学生的年龄分布是右偏的,均值为23岁,标准差为3岁。

如果随机抽取100名学生,下列关于样本均值抽样分布描述不正确的是( )。

A.抽样分布的标准差等于3B.抽样分布近似服从正态分布C.抽样分布的均值近似为23D.抽样分布为非正态分布10、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的数学期望是( )。

A.150B.200C.100D.25011、从均值为200,标准差为50的总体中抽取容量为100的简单随机样本,样本均值的标准差是( )。

贾俊平《统计学》章节题库(统计量及其抽样分布)详解【圣才出品】

贾俊平《统计学》章节题库(统计量及其抽样分布)详解【圣才出品】

第6章统计量及其抽样分布一、单项选择题1.在抽样推断中,样本统计量是()。

[中央财经大学2015研]A.未知但确定的量B.一个已知的量C.随机变量D.惟一的【答案】C【解析】统计量是用来描述样本特征的概括性数字度量。

它是根据样本数据计算出来的一个量,由于抽样是随机的,因此统计量是样本的函数,是随机变量。

2.在一个饭店门口等待出租车的时间是左偏的,均值为12分钟,标准差为3分钟。

如果从饭店门口随机抽取100名顾客并记录他们等待出租车的时间,则该样本均值的分布服从()。

[山东大学2015研]A.正态分布,均值为12分钟,标准差为0.3分钟B.正态分布,均值为12分钟,标准差为3分钟C.左偏分布,均值为12分钟,标准差为3分钟D.左偏分布,均值为12分钟,标准差为0.3分钟【答案】A【解析】中心极限定理:设从均值为μ、方差为σ2(有限)的任意一个总体中抽取样本量为n 的样本,当n 充分大(通常是大于36)时,样本均值X 的抽样分布近似服从均值为μ、方差为σ2/n 的正态分布。

故即使总体是左偏分布,该样本均值仍服从正态分布,其均值为12,标准差为3/10=0.3。

3.设总体X ~N (2,σ2),X 1,…,X 16是来自总体X 的样本,161116i i X X ==∑,则48X σ-服从的分布是( )。

[对外经济贸易大学2015研]A .t (15)B .t (16)C .χ2(15)D .N (0,1)【答案】D【解析】由题可知样本均值2~(2,)16X N σ则 ()2/4~01X N -,σ即()18~04N X -,σ4.1000名学生参加某课程的考试,平均成绩是82分,标准差是8分,从学生中随机抽取100个同学作为样本,则样本均值的数学期望和抽样分布的标准差分别为()。

[华中农业大学2015研]A.82,8B.82,0.8C.82,64D.86,1【答案】B【解析】由中心极限定理得,在大样本条件下,样本均值X的抽样分布近似服从均值为μ方差为σ2/n的正态分布。

应用统计硕士(MAS)专业学位研究生入学统一考试科目《432统计学》题库-统计学(第4~5章)【圣才

应用统计硕士(MAS)专业学位研究生入学统一考试科目《432统计学》题库-统计学(第4~5章)【圣才

D.N(μ,σ2/n)
【答案】A
【解析】设样本标准差为 s,则在正态总体下,有
n
Y i1
Xi X 2
n 1 s2
2
~
2 n 1
5.设 X~N(0,σ2),则服从 t(n-1)的随机变量为( )。[山东大学 2016 研]
A. n X S
B. n 1X S
C. n X S2
D. n 1X S2
【答案】A
【解析】设 X1,X2,…,Xn 是来自正态分布 N(0,σ2)的一个样本,则有
X
1 n
n i 1
Xi,S2
1 n 1
n i 1
Xi X
2
因此
n X 0
nX ~ t(n 1)
S
S
6.在抽样推断中,样本统计量是( )。[中央财经大学 2015 研]
3 / 91
圣才电子书

3.设总体X~N(μ,σ2),其中μ已知,σ2未知,X1,X2,X3是从总体中抽取的样本, 下列各项不是统计量的是( )。[浙江工商大学2017研]
A.X1+X2-2X3 B.X2+3μ C.max(X1,X2,X3) D.(X1+X2)/σ 【答案】D 【解析】统计量是不含未知参数的样本的函数。ABC 三项均不含参数,而 D 项中,σ 为未知参数。
分布为( )。[中国科学技术大学 2013 研] A.自由度为 1,1 的 F 分布 B.自由度 1,2 的 F 分布 C.自由度为 2,1 的 F 分布 D.自由度 2,2 的 F 分布 【答案】A
2
A.均值为μ,方差为
n
μ
2
B.均值为 ,方差为
n
n
μ
C.均值为 ,方差为

第六章 统计量及其

第六章 统计量及其
E( X (1) X ( 2) ) E( X (1) ) E( X ( 2) ) (1) ( 2)
D( X (1) X ( 2) ) D( X (1) ) D( X ( 2) ) n1 n2 2 2 X1 X 2 ~ N ( 1 2 , 1 2 ) n1 n2
解:设600份报表中至少有一处错误的报表所 ˆ ,由题意知: p 占的比例为 p ˆ 0.02
p ˆ (1 )
n 0.02 (1 0.02) 0.0057 600
由中心极限定理, 有 (1 ) 2 ˆ N ( , ) p ˆ 即 ~ N (0.02,0.0057 ) p~ n 从而所求概率为:
即该统计人员所填写的报表中至少有一处错误的报 表所占的比例在0.025~0.070之间的概率为 19.02%。
第六节两个样本均值之差的分布
• 两个正态总体 2 (1) (1) (1) N ( ,1 )的一个 设 X 是独立地抽自总体 X ~ ) X ( 2是是独立地 容量为n1 的样本的样本均值, 抽自总体 X ( 2) ~N ( (1) , 2 2 ) 的一个容量为 n2 的样本的样本均值, 则有
(1)
( 2)
D( X
(1)
( 2)
) D( X ) D( X
(1)
( 2)
)

2 1
n1


2 2
n2
例6.8 甲、乙两所高校在某年录取新生时,甲 校的平均分为655分,且服从正态分布,标 准差为20分;乙校的平均分为625分,也服 从正态分布,标准差为25分.现从甲乙两校 各随机抽取8名新生计算其平均分数,出现 甲校比乙校的平均分低的可能性有多大? 解:因为两个总体均为正态分布,所以8名新 生的平均成绩X (1) , X (2) 也分别为正态分布, X (1) X ( 2 ) 也为正态分布,且 2 2 X (1) X ( 2 ) ~ N ( (1) ( 2) , 1 2 )

概率论与数理统计教案统计量和抽样分布

概率论与数理统计教案统计量和抽样分布

一、统计量和抽样分布的概念介绍1.1 统计量的定义讲解统计量的概念,即根据样本数据所定义的量,用来描述样本的某些特征。

例如,样本均值、样本方差等。

1.2 抽样分布的定义解释抽样分布是指在一定的抽样方法下,统计量的概率分布。

例如,正态分布、t分布等。

二、统计量的估计方法2.1 点估计介绍点估计的概念,即用一个具体的数值来估计总体参数。

例如,用样本均值来估计总体均值。

2.2 区间估计讲解区间估计的方法,即根据样本数据,给出总体参数估计的一个区间,该区间以一定的概率包含总体参数。

例如,置信区间。

三、抽样分布的性质及应用3.1 抽样分布的性质讲解抽样分布的一些基本性质,如独立性、对称性、无偏性等。

3.2 抽样分布的应用介绍抽样分布在实际问题中的应用,如利用抽样分布来判断总体均值的假设检验问题。

四、假设检验的基本概念和方法4.1 假设检验的定义解释假设检验是一种统计推断方法,通过观察样本数据,对总体参数的某个假设进行判断。

4.2 假设检验的方法讲解常见的假设检验方法,如单样本t检验、双样本t检验、卡方检验等。

4.3 假设检验的判断准则介绍假设检验的判断准则,如P值、显著性水平等,并解释其含义和作用。

六、正态分布及其应用6.1 正态分布的定义与性质详细介绍正态分布的概念、概率密度函数、累积分布函数以及其性质,如对称性、钟形曲线等。

6.2 标准正态分布解释标准正态分布的概念,即均值为0,标准差为1的正态分布。

讲解标准正态分布表的使用方法。

6.3 正态分布的应用介绍正态分布在实际问题中的应用,如利用正态分布来分析和估计总体均值、方差等参数。

七、t 分布及其应用7.1 t 分布的定义与性质讲解t 分布的概念、概率密度函数、累积分布函数以及其性质。

解释t 分布与正态分布的关系。

7.2 t 分布的自由度介绍t 分布的自由度概念,即样本量。

讲解自由度对t 分布形状的影响。

7.3 t 分布的应用介绍t 分布在实际问题中的应用,如利用t 分布进行小样本推断、假设检验等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3 由正态分布导出的几个重要 分布
6.3.1 2分布
6.3.2 t 分布 6.3.3 F 分布
精品课件
2 分布
精品课件
统计学
STATISTICS (第五版)
χ2 分布的使用
如果一个变量的诸数值可视为几个独立变量值的平方和,则该变量服从 χ2 分布
方差就可视为若干随机变量值的平方和
样本中各随机数值与均值之离差的平方和(即样本方差的n-1倍)与总体 方差之比,服从自由度为n-1的χ2 分布
统计量的概念 常用统计量 次序统计量 充分统计量
精品课件
统计学
STATISTICS (第五版)
统计量
(statistic)
1. 设X1,X2,…,Xn是从总体X中抽取的容量为n的一个样本,如 果由此样本构造一个函数T(X1,X2,…,Xn),不依赖于任何未 知参数,则称函数T(X1,X2,…,Xn)是一个统计量
t 分布
x
t 分布与标准正态分布的比较
t (df = 5)
z
t
不同自由度的t分布
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
T 分 布 的 图 形
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
精品课件
统计学
STATISTICS (第五版)
学习目标
1. 了解统计量及其分布的几个概念 2. 了解由正态分布导出的几个重要分布 3. 理解样本均值的分布与中心极限定理 4. 掌握单样本学院
6.1 统计量
6.1.1 6.1.2 6.1.3 6.1.4
2分布
(性质和特点)
1. 分布的变量值始终为正
2. 分布的形状取决于其自由度n的大小,通常为不
对称的正偏分布,但随着自由度的增大逐渐趋
于对称
3. 期望为:E(2)=n,方差为:D(2)=2n(n为自
由度)
4. 可加性:若U和V为两个独立的2分布随机变量 ,从U自~由度2(n为1)n,1+Vn~2的2(n22分),则布U+V这一随机变量服
第 6 章 统计量及其抽样分布
精品课件
作者:中国人民大学统计学院 贾俊平
第 6 章 统计量及其抽样分布
6.1 统计量 6.2 关于分布的几个概念 6.3 由正态分布导出的几个重要分布 6.4 样本均值的分布与中心极限定理 6.5 样本比例的抽样分布 6.6 两个样本平均值之差的分布 6.7 关于样本方差的分布
在重复选取容量为n的样本时,由该统计量的所有可
能取值形成的相对频数分布
2. 随机变量是 样本统计量
样本均值, 样本比例,样本方差等
3. 结果来自容量相同的所有可能样本
4. 提供了样本统计量长远而稳定的信息,是进行推 断的理论基础,也是抽样推断科学性的重要依据
精品课件
作者:贾俊平,中国人民大学统计学院
样本均值、样本比例、样本方差等都是统 计量
2. 统计量是样本的一个函数 3. 统计量是统计推断的基础
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
次序统计量
1. 一组样本观测值X1,X2,…,Xn由小到大的排序
X(1)≤X(2)≤…≤ X(i)≤…≤ X(n)
后,称X(1),X(2),…,X(n)为次序统计量
2. t 分布是类似正态分布的一种对称分布,
它通常要比正态分布平坦和分散
3. 一个特定的分布依赖于称之为自由度的参 数。随着自由度的增大,分布也逐渐趋于 正态分布
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
t 分布图示
标准正态分布
标准正态分布
t (df = 13)
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
F分布
(F distribution)
1. 由统计学家费希尔(R.A.Fisher) 提出的,以其姓氏 的第一个字母来命名
2. 设若U为服从自由度为n1的2分布,即U~2(n1),
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
2分布
(2 distribution)
1.
2. 3. 4. 5.
精品课件
由阿贝(Abbe) 于1863年首先给出,后来由海尔墨
特(Hermert)和卡·皮尔逊(K·Pearson) 分别于1875
年和1900年推导出来 X ~ N(, 2)
z X ~ N(0,1)

,则
Y z2

,则 Y 服从自由度为1的2分布,即
Y ~ 2 (1)
X ~ N(, 2)
当总体
n
( xi
x),2 从中抽取容量为n的样本,则
i 1
2
~ 2 (n 1)
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
2. 中位数、分位数、四分位数等都是次序统计量
精品课件
作者:贾俊平,中国人民大学统计学院
6.2 关于分布的几个概念
6.2.1 抽样分布 6.2.2 渐进分布 6.2.3 随机模拟获得的近似分布
精品课件
统计学
抽样分布
STATISTICS (第五版)
(sampling distribution)
1. 样本统计量的概率分布,是一种理论分布
T 分 布 的 使 用
精ww品w课.th件
作者:贾俊平,中国人民大学统计学院
F 分布
精品课件
统计学
STATISTICS (第五版)
F分布
两个都服从χ2 分布的变量之比的分布规律。
可以设想为两个方差之比
方差之比会接近1(因为前面已经假设各变量都服从标 准正态分布),似乎存在一个“两端少,中间多”的特 征,但不对称(除非其中存在一个无限总体,使样本数 量为无穷大,则样本方差有无穷多个)
精品课件
作者:贾俊平,中国人民大学统计学院
统计学
STATISTICS (第五版)
n=1
c2分布
(图示)
n=4 n=10 n=20
精品课件
不同容量样本的抽样分作布者:贾俊平,中国人民大学统计学院2
t 分布
精品课件
统计学
STATISTICS (第五版)
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 “Student”(学生)为笔名的论文中首次提 出
相关文档
最新文档