考研高数各章重点总结

合集下载

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品

2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。

2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。

3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。

4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。

5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。

另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。

此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。

7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。

8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。

此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。

高数考研重点罗列

高数考研重点罗列

考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。

(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。

考研-高等数学必看知识点

考研-高等数学必看知识点

考研高等数学必看知识点不能因为提分不显著,就在最后关头放弃数学的复习,11月死磕这些知识点,你的数学也许会让你惊喜!一起看看高数部分应该跟哪些知识点“较劲”到底吧!第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表:“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、函数、极限与连续1. 函数的概念与性质- 有界性- 奇偶性- 单调性- 周期性- 复合函数- 反函数2. 极限的定义与性质- 数列极限- 函数极限- 极限的四则运算- 极限存在的条件- 无穷小与无穷大的比较3. 连续函数- 连续性的定义- 间断点的类型- 连续函数的性质- 闭区间上连续函数的性质(确界存在定理、零点定理、介值定理)二、导数与微分1. 导数的定义- 概念与几何意义- 左导数与右导数- 高阶导数2. 导数的计算- 基本初等函数的导数 - 导数的四则运算- 链式法则- 隐函数求导- 参数方程求导3. 微分- 微分的定义- 微分的几何意义- 微分形式的变换三、中值定理与导数的应用1. 中值定理- 罗尔定理- 拉格朗日中值定理- 柯西中值定理2. 导数的应用- 函数的单调性- 函数的极值问题- 最值问题- 曲线的凹凸性与拐点 - 函数的渐近线四、积分1. 不定积分- 基本积分表- 换元积分法- 分部积分法- 有理函数的积分2. 定积分- 定义与性质- 微积分基本定理- 定积分的计算- 定积分的应用(面积、体积、弧长、工作量等)3. 积分技巧- 特殊技巧(三角函数的积分、积分区间的变换等) - 积分证明五、多元函数微分学1. 多元函数的基本概念- 定义域- 偏导数- 全微分2. 多元函数的极值问题- 偏导数与极值- 拉格朗日乘数法六、重积分1. 二重积分- 直角坐标系下的二重积分- 极坐标系下的二重积分- 积分的换元法2. 三重积分- 直角坐标系下的三重积分- 柱坐标系与球坐标系下的三重积分七、级数1. 数项级数- 收敛性的判别- 无穷级数的性质- 级数的运算2. 幂级数- 幂级数的收敛半径- 泰勒级数- 函数展开成幂级数八、常微分方程1. 一阶微分方程- 可分离变量的微分方程- 齐次微分方程- 一阶线性微分方程2. 二阶微分方程- 二阶线性微分方程- 常系数线性微分方程- 变系数线性微分方程九、傅里叶级数与变换1. 傅里叶级数- 三角级数- 傅里叶级数的收敛性- 正弦级数与余弦级数2. 傅里叶变换- 傅里叶变换的定义- 傅里叶变换的性质- 快速傅里叶变换(FFT)以上是考研高数的主要知识点总结。

高数各章各节总结

高数各章各节总结
平面 2 : A2 x B2 y C2 z D2 0, n2 ( A2 , B2 , C2 ) 垂直: 平行: n1 n2 0
A1 A2 B1B2 C1C2 0
A1 B1 C1 A2 B2 C2
n1 n2 夹角公式: cos n1 n2
机动
内容小结
设 a (a x , a y , a z ) , b (bx , by , bz ) , c (c x , c y , c z ) 1. 向量运算 加减: 数乘: 点积: 叉积:
a b (a x bx , a y by , a z bz )
a ( a x , a y , a z )
x y z 1 a b c
x x1 x2 x1 x3 x1
(abc 0)
z z1 z 2 z1 0 z3 z1
机动 目录 上页 下页 返回 结束
三点式
y y1 y2 y1 y3 y1
2.平面与平面之间的关系 平面 1 : A1 x B 1 y C 1 z D1 0, n1 ( A1 , B 1 , C 1 )
垂直: 平行: s1 s2 0
s1 s2 夹角公式: cos s1 s2
m1m2 n1n2 p1 p2 0 m1 n1 p1 m 2 n 2 p2
机动
目录
上页
下页
返回
结束
面与线间的关系 平面: Ax By Cz D 0, n ( A , B , C )
机动 目录
(2,1,3)
P (3,2,1) (1,1,0)
上页 下页 返回 结束
例4. 求直线
上的投影直线方程.

高数考研知识点总结

高数考研知识点总结

高数考研知识点总结一、微积分微积分是一门研究变化的学问。

微积分包括微分学和积分学两个部分。

微分学主要包括导数的概念和性质、高阶导数、隐函数及参数方程求导,微分中值定理,泰勒公式及其应用,不定积分和定积分的概念,不定积分和定积分的计算方法,微分方程的基本概念和初等解法,以及常见微分方程的应用等知识点。

积分学主要包括定积分的概念和性质,定积分的计算方法,换元积分法,分部积分法,定积分的几何应用,定积分的物理应用,不定积分和定积分的基本定理,微分方程的解法和应用,广义积分,数列的敛散,函数项级数的一致收敛性等知识点。

二、级数级数是指由一列数按照一定规律相加而得到的一种算术运算。

级数分为数列和级数的概念,各种级数的审敛性的判别法,幂级数,傅里叶级数,函数项级数的一致收敛性,泰勒级数和洛朗级数等知识点。

三、空间解析几何空间解析几何是指研究空间内点、直线、平面、曲线、曲面及它们之间的相互位置关系等问题的一门数学学科。

空间解析几何主要包括三维空间中的向量及其运算,直线和平面的向量方程和参数方程,空间曲线的方程和参数方程,空间曲面的方程和参数方程,以及常见空间曲线和曲面的性质及应用等知识点。

四、常微分方程常微分方程是指自变量只有一个的微分方程,它是描述动力系统中的基本方程。

常微分方程包括一阶常微分方程的基本概念和解法,高阶常微分方程的概念和求解方法,常系数线性微分方程的解法,解微分方程的初值问题,二阶常微分方程常见的特殊解法,欧拉方程,伯努利方程,克莱罗方程,常见的非齐次线性微分方程的解法等知识点。

五、多元函数微分学多元函数微分学是研究多变量函数的导数、偏导数及其应用的一门数学学科。

多元函数微分学包括二元函数的概念及性质,多元函数的极值及其应用,隐函数存在定理,非线性方程组的解法,多元函数的泰勒公式,梯度、散度、旋度及拉普拉斯算子,二元函数积分学,重积分的概念和性质,重积分的计算方法,重积分的几何物理应用,累次积分的计算次序等知识点。

考研数学每章总结知识点

考研数学每章总结知识点

考研数学每章总结知识点一、集合与函数1. 集合的基本概念1)集合的含义:集合是由一定的确定的对象组成的总体。

2)元素:属于集合的对象。

3)集合的表示法:列举法、描述法。

4)集合间的关系:包含关系、相等关系、互斥关系。

2. 集合的运算1)并集、交集、差集、补集的概念及运算法则。

2)集合运算律:分配律、结合律、交换律、对偶律。

3. 函数的概念1)函数的含义:每个自变量对应唯一的因变量。

2)定义域、值域、映射关系。

3)函数的表示法:解析式表示、图形表示、映射图表示。

4. 函数的性质1)奇偶性、周期性、单调性、有界性、分段性。

2)反函数的存在与性质。

3)初等函数:幂函数、指数函数、对数函数、三角函数。

二、极限1. 数列极限1)定义:当数列中的项”无限走”时,就引出了极限的概念。

2)数列收敛与发散的判定。

3)数列极限的性质:保号性、夹逼定理、介值性。

2. 函数极限1)定义:当自变量趋于某一点时,函数值的”极限”。

2)函数极限存在与无穷极限。

3)无穷小量与无穷大量。

3. 极限运算法则1)函数极限的四则运算法则。

2)复合函数、柯西收敛准则。

4. 极限存在的条件1)夹逼准则:当函数夹在两个趋于同一个极限的函数中间时,可以得到极限。

2)子数列性质。

3)介值性:利用介值性证明函数的极限。

三、连续1. 连续的概念1)点连续:在函数定义域内任一点处的连续性。

2)间断点:函数在某点处不连续。

3)连续函数的性质:介值定理、零点定理。

2. 连续函数的运算1)和、差、积、商的连续性。

2)复合函数的连续性。

3. 函数的限制1)边界点、左极限、右极限的概念。

2)函数的间断点的分类。

4. 连续函数的应用1)罗尔中值定理、拉格朗日中值定理。

2)柯西中值定理、费马引理。

四、导数1. 导数的概念1)导数的定义:函数在某点处的”无穷小增量与自变量增量”的比值。

2)导数的几何意义。

2. 导数的计算1)基本导数公式。

2)常用的一些导数运算法则。

考研高数每章总结知识点

考研高数每章总结知识点

考研高数每章总结知识点一、函数与极限1. 函数的概念与性质2. 一元函数的极限3. 函数的连续性4. 导数与微分5. 多元函数的极限6. 多元函数的连续性7. 偏导数与全微分在这一章节中,我们需要深入理解函数的概念与性质,掌握一元函数的极限和导数与微分的计算方法,以及多元函数的极限、连续性、偏导数与全微分的性质和应用。

二、微分学1. 函数的微分学2. 隐函数与参数方程的微分法3. 高阶导数与微分的应用4. 泰勒公式与函数的逼近5. 不定积分6. 定积分与广义积分7. 定积分的应用在这一章节中,我们需要掌握函数的微分学的相关知识,包括隐函数与参数方程的微分法、高阶导数与泰勒公式的应用,以及不定积分、定积分与广义积分的计算方法及其应用。

三、级数与一些其他杂项1. 数项级数2. 幂级数3. 函数项级数4. 傅立叶级数5. 常微分方程在这一章节中,我们需要掌握数项级数、幂级数和函数项级数的相关知识,包括傅立叶级数的表示和计算方法,以及常微分方程的解法和应用。

四、空间解析几何1. 空间直角坐标系2. 空间点、向量和坐标3. 空间中的直线和平面4. 空间中的曲线5. 空间中的曲面6. 空间曲线和曲面的切线与法线在这一章节中,我们需要掌握空间中的点、向量和坐标的表示和计算方法,以及空间中的直线、平面、曲线和曲面的性质和应用,包括曲线和曲面的切线与法线的计算方法。

五、多元函数微分学1. 函数的极值2. 条件极值与 Lagrange 乘数法3. 二重积分4. 三重积分5. 重积分的应用在这一章节中,我们需要掌握多元函数的极值和条件极值的求解方法,包括 Lagrange 乘数法的应用,以及二重积分和三重积分的计算方法及其应用。

总结起来,考研高数的每个章节都包含了大量的知识点,要想取得好成绩就需要对每个章节的知识点有一个深入的了解和掌握。

在备考的过程中,应该注重理论知识的掌握和应用能力的提升,多做习题和模拟题,以增强对知识点的理解和记忆。

高数上册考研备考重点整理

高数上册考研备考重点整理

高数上册考研备考重点整理2023年,考研备考已经进入了紧张的阶段。

高数上册作为考研的必修课程之一,是考研重点科目之一。

广大考生要想在考研中获得高分,就必须重视高数上册考研备考。

下面,笔者将为大家整理出高数上册考研备考重点,帮助考生们更好地备考。

一、数列与极限数列是高数上册的基础,分为等差数列和等比数列两种类型。

这部分内容考点较多,主要包括数列的概念、通项公式以及求和公式等。

数列与极限作为高数上册的第一章,对后续章节的学习有很大的影响。

考生们必须掌握数列的基本概念,掌握等差数列、等比数列的通项公式、求和公式以及求通项公式和求和公式的应用等。

极限是高数上册的重点和难点之一,也是数学分析中的核心内容。

考生们必须掌握极限的基本概念、极限的性质、极限的运算规则和求解方法以及重要的极限定理等。

二、微积分基础微积分是高数上册中的重要内容,主要包括导数和微分两部分。

导数的基本概念是高数上册中的核心知识点之一,也是后续微积分学习的基础。

考研中以一阶导数和二阶导数为主,要求考生掌握导数的定义、导数的性质、导数的运算法则以及各种函数的导数求法等。

微分的概念和应用也是高数上册的重点内容之一,主要包括微分的定义和性质、微分的应用以及微分算符的使用等。

考生们必须掌握微分的基本概念,掌握各种函数的微分表达式、微分的几何意义和微分的应用等。

三、常微分方程常微分方程作为高数上册的最后一章,也是经过前面大量基础知识的巩固才能掌握的重点内容。

常微分方程是数学分析中的一个重要分支,主要研究一阶和高阶的常微分方程的解法和应用等内容。

考研中主要考查考生的解微分方程的能力,要求考生掌握解一阶和二阶常微分方程的方法,掌握一阶和二阶微分方程的基本理论和性质以及解常微分方程的应用等。

以上就是高数上册考研备考重点整理。

如果考生们想要在高数上册考研中拿到高分,必须牢固掌握数列与极限、微积分基础和常微分方程等重点内容,对此进行深入的理解和熟练地掌握,才能在考场上游刃有余。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结一、极限与连续1.1 函数的极限1.1.1 函数的极限定义1.1.2 函数极限的性质1.1.3 函数的无穷极限1.1.4 无穷小与无穷大1.2 极限运算法则1.2.1 两个重要极限1.2.2 无穷大与无穷小的比较1.3 一元函数的连续1.3.1 连续函数的定义1.3.2 连续函数的性质1.3.3 初等函数的连续性1.4 中值定理1.4.1 Rolle定理1.4.2 拉格朗日中值定理1.4.3 柯西中值定理1.5 L'Hospital法则二、导数与微分2.1 函数的导数2.1.1 导数的定义2.1.2 导数的几何意义2.1.3 导数的物理意义2.1.4 函数的可导性2.2 导数的运算法则2.2.1 基本初等函数的导数2.2.2 复合函数的求导法则2.2.3 反函数的导数2.2.4 隐函数的导数2.3 高阶导数2.4 微分2.4.1 微分的概念2.4.2 微分的运算法则2.4.3 隐函数的微分2.4.4 高阶微分三、不定积分3.1 不定积分的概念3.2 不定积分的运算法则3.2.1 基本初等函数的积分3.2.2 第一换元法3.2.3 第二换元法3.2.4 分部积分法3.3 不定积分的应用3.3.1 函数的原函数3.3.2 定积分与不定积分的关系3.3.3 牛顿-莱布尼茨公式四、定积分与定积分的应用4.1 定积分的概念4.2 定积分的运算法则4.2.1 定积分与不定积分的关系4.2.2 定积分的性质4.2.3 定积分中值定理4.3 定积分的应用4.3.1 几何应用4.3.2 物理应用4.3.3 概率应用4.3.4 广义积分五、微分方程5.1 微分方程的概念5.2 微分方程的解5.2.1 变量分离法5.2.2 齐次方程5.2.3 一阶线性微分方程5.2.4 一阶齐次线性微分方程5.2.5 可降阶的高阶微分方程5.3 微分方程的应用5.3.1 函数图形的性质5.3.2 物理模型5.3.3 生物模型5.3.4 经济模型六、无穷级数6.1 级数的概念6.2 收敛级数的判别法6.2.1 正项级数6.2.2 任意项级数6.2.3 幂级数6.3 级数的应用6.3.1 函数展开成级数6.3.2 物理应用6.3.3 工程应用七、多元函数微分学7.1 多元函数的概念7.2 偏导数7.2.1 偏导数的定义7.2.2 偏导数的几何意义7.2.3 高阶偏导数7.3 方向导数7.3.1 方向导数的概念7.3.2 方向导数的计算7.3.3 方向导数与梯度7.4 多元函数的极值7.4.1 极值的判别法则7.4.2 拉格朗日乘数法7.5 多元函数的微分学应用7.5.1 向量值函数的导数7.5.2 隐函数的偏导数这些是考研高数知识点的一些主要内容,希望对大家的学习有所帮助。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是研究数与其变化规律的一门基础课程,是理工科学生学习的重要课程之一。

在考研数学中,高等数学是必考科目之一,占有较大比重。

下面就考研高等数学知识点进行总结,希望对考生们有所帮助。

一、函数与极限1. 基本概念:函数、反函数、复合函数、有界函数、周期函数等。

2. 极限的定义:数列极限的定义、函数极限的定义等。

3. 极限的性质:极限的唯一性、有界性、局部有界原理等。

4. 极限运算法则:加减乘除、复合函数的极限等相关运算法则。

5. 无穷大与无穷小:无穷大和无穷小的概念、性质及相关推论。

二、导数与微分1. 导数的定义:函数在某一点的导数、导数的几何意义、物理意义等。

2. 基本导数公式:多项式函数、三角函数、指数函数、对数函数等基本函数的导数。

3. 高阶导数:二阶导数、高阶导数及其相关概念。

4. 微分中值定理:拉格朗日中值定理、柯西中值定理等。

5. 隐函数与参数方程的导数:隐函数的导数、参数方程的导数等相关内容。

三、微分中的应用1. 函数的极值与最值:函数的极值点的判定、极值、最值等相关概念。

2. 函数的单调性与凹凸性:函数的单调区间、凹凸区间等相关概念。

3. 泰勒公式与泰勒展开:泰勒公式的表达形式、泰勒展开的求解方法及应用。

4. 微分的应用:函数的近似计算、误差估计、最优化问题等。

四、不定积分1. 不定积分的概念:定义、性质及运算法则。

2. 基本不定积分公式:多项式函数、三角函数、指数函数、对数函数等基本函数的不定积分公式。

3. 换元积分法:第一类换元法、第二类换元法及其应用。

4. 分部积分法:分部积分法的原理、应用条件及相关例题。

5. 有理函数积分法:有理函数积分的基本思路及方法。

五、定积分及其应用1. 定积分的定义:定积分的严格定义及其几何意义。

2. 定积分的性质:定积分的线性性、定积分的区间可加性等性质。

3. 定积分的基本定理:牛顿-莱布尼茨公式及其几何意义。

4. 定积分的应用:面积、定积分表示的物理量、定积分的几何应用等。

考研高数知识点总结

考研高数知识点总结

考研高数知识点总结高等数学是考研数学中的重要一部分,对于考研学生来说,掌握高等数学的知识点是非常重要的。

下面是对高等数学知识点的总结,希望对考研学生有所帮助。

一、函数与极限1. 函数的概念:函数的定义域、值域和图像2. 函数的性质:奇偶性、周期性等3. 极限的概念:数列极限和函数极限4. 极限的性质:极限的四则运算、夹逼定理等5. 单调性与有界性:单调递增、单调递减、有界二、导数与微分1. 导数的概念:导数的定义、几何意义、物理意义2. 导数的运算法则:加法减法法则、乘法法则、复合函数法则等3. 高阶导数与隐函数求导4. 微分与微分近似三、高阶导数与泰勒公式1. 高阶导数的定义与运算法则2. 泰勒展开式与泰勒公式四、不定积分与定积分1. 不定积分的概念与运算法则2. 反常积分:可积性、柯西准则、比较判别法等3. 定积分的概念与性质:函数积分的线性性、可加性、区间可加性等4. 牛顿-莱布尼茨公式与定积分的应用五、多元函数与偏导数1. 多元函数的定义与性质:定义域、值域、图像等2. 偏导数的概念:一阶偏导数、高阶偏导数3. 隐函数求导与全微分的概念4. 多元函数的极值与条件极值六、重积分与曲线曲面积分1. 二重积分的概念与计算方法:极坐标法、换元法、直角坐标系下的积分法2. 三重积分的概念与计算方法:柱面坐标法、球面坐标法、直角坐标系下的积分法3. 曲线积分与曲面积分的概念与计算方法七、常微分方程1. 常微分方程的基本概念:初值问题、解的存在唯一性2. 高阶线性常微分方程与常系数齐次线性方程3. 常微分方程的解法:分离变量法、齐次方程法、一阶线性非齐次方程法等4. 常微分方程的应用:动力学模型、电路网络分析等八、级数1. 级数的概念与基本性质:收敛、发散、极限、级数的四则运算等2. 正项级数与比较判别法、比值判别法、根值判别法等3. 幂级数与泰勒级数展开高等数学知识点总结完毕,以上知识点对考研的高等数学考试来说是基础中的基础。

高数前三章知识点总结公式

高数前三章知识点总结公式

高数前三章知识点总结公式一、函数与极限1. 函数的概念函数是数学中的一个重要概念,它描述了一个自变量和因变量之间的映射关系。

在高等数学中,函数通常表示为f(x),其中x为自变量,f(x)为因变量。

函数的定义域、值域、奇偶性、周期性等性质都是我们研究函数的重要内容。

2. 极限的概念极限是微积分中一个基本概念,它描述了一个函数在某一点或者无穷远处的趋势。

在高等数学中,我们主要讨论函数在某一点的极限和无穷远处的极限。

极限的定义、性质、计算方法是我们学习的重点内容。

3. 极限存在的条件在高等数学中,我们学习了许多函数的极限存在的条件,比如数列的极限、函数的左右极限、无穷极限等。

这些条件对我们理解函数的性质和应用都有着重要的意义。

4. 极限的运算法则在计算函数的极限时,我们通常会用到极限的四则运算法则、复合函数的极限、夹逼准则等方法。

这些运算法则是我们计算极限时的重要工具。

5. 无穷小与无穷大在研究极限时,我们会遇到无穷小和无穷大的概念。

无穷小是当自变量趋于某一点时,因变量趋于零的量,而无穷大是当自变量趋于某一点时,因变量趋于无穷的量。

无穷小和无穷大的性质和计算是我们学习的重点内容。

6. 泰勒公式泰勒公式是微积分中的一个重要定理,它描述了一个函数在某一点附近的近似表达式。

泰勒公式的推导和应用是我们学习的重要内容。

7. 函数的连续性连续性是函数的一个重要性质,它描述了函数图像的平滑程度。

在高等数学中,我们学习了函数的间断点、可导性、连续函数的性质和应用。

8. 函数的单调性单调性是函数的一个重要性质,它描述了函数在定义域上的增减性。

在高等数学中,我们学习了函数的单调递增和单调递减的判定方法和应用。

二、导数与微分1. 导数的概念导数是微积分中的一个重要概念,它描述了一个函数在某一点的变化率。

在高等数学中,我们学习了导数的定义、性质、几何意义和物理意义。

2. 导数的计算在计算函数的导数时,我们通常会用到导数的四则运算法则、复合函数的导数、高阶导数、隐函数的导数等方法。

高数基础知识总结与重点概念整理

高数基础知识总结与重点概念整理

高数基础知识总结与重点概念整理
一、导数与微分
导数:描述函数在某一点附近的变化率,是函数值的极限。

可导性:函数在某点可导,当且仅当该点附近存在一个定义恰当的导数。

微分:一个近似值,表示函数在某点附近的小变化所引起的函数值的大致变化。

二、积分
不定积分:求一个函数的原函数(或反导数),即求函数的不定积分。

定积分:对一个区间上函数的值的总和的量度,即求函数的定积分。

微积分基本定理:定积分可化为不定积分的计算。

三、级数
数列:一个数字序列。

无穷级数:无穷多个数的和,即数列的和。

收敛性:无穷级数趋于一个有限的和的性质称为收敛性。

发散性:无穷级数不收敛的性质称为发散性。

四、多元函数
多元函数:定义在多个变量上的函数。

偏导数:多元函数对一个变量的导数。

方向导数:描述函数在某点处沿某一方向的变化率。

梯度:方向导数的最大值,表示函数在某点处沿梯度方向的增长最快的方向。

五、微分方程
微分方程:包含未知函数的导数或微分的方程。

初值问题:给定初始条件的微分方程问题。

通解与特解:满足微分方程的解称为通解,满足特定初始条件的解称为特解。

高等数学考研知识点总结

高等数学考研知识点总结

第一讲函数、极限与连续一、考试要求1.理解函数的概念,掌握函数的表示方法,会建立应用问题的函数关系。

2.了解函数的奇偶性、单调性、周期性和有界性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解(了解)极限的概念,理解(了解)函数左、右极限的概念以及函数极限存在与左、右极限之间的关系。

6.掌握(了解)极限的性质,掌握四则运算法则。

7.掌握(了解)极限存在的两个准则,并会利用它们求极限,掌握(会)利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型 10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

11.掌握(会)用洛必达法则求未定式极限的方法。

二、内容提要 1、函数(1)函数的概念: y=f(x),重点:要求会建立函数关系.(2)复合函数: y=f(u), u=ϕϕ()[()]x y f x ⇒=,重点:确定复合关系并会求复合函数的定义域.(3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次的四则运算和复合运算且用一个数学式子表示的函数。

(5)函数的特性:单调性、有界性、奇偶性和周期性 *注:1、可导奇(偶)函数的导函数为偶(奇)函数。

特别:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则⎰xdt t f 0)(为奇函数;若)(x f 为奇函数,则⎰xadt t f )(为偶函数;3、可导周期函数的导函数为周期函数。

特别:设)(x f 以T 为周期且)(0x f '存在,则)()(00x f T x f '=+'。

高数定理大解析必背

高数定理大解析必背

高等数学定理大解析-考研必捋版考研大纲要求范围+高数重点知识第一章函数与极限1、函数的有界性在定义域内有fx≥K1则函数fx在定义域上有下界,K1为下界;如果有fx≤K2,则有上界,K2称为上界;函数fx在定义域内有界的充分必要条件是在定义域内既有上界又有下界;2、函数的单调性、奇偶性、周期性指最小正周期3、数列的极限定理极限的唯一性数列{xn}不能同时收敛于两个不同的极限;定理收敛数列的有界性如果数列{xn}收敛,那么数列{xn}一定有界; 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,-1n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件;定理收敛数列与其子数列的关系如果数列{xn}收敛于a,那么它的任一子数列也收敛于a;●如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,-1n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的;4、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时fx有没有极限与fx在点x0有没有定义无关;定理极限的局部保号性如果limx→x0时fx=A,而且A>0或A<0,就存在着点那么x0的某一去心邻域,当x在该邻域内时就有fx>0或fx>0,反之也成立;●函数fx当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即fx0-0=fx0+0,若不相等则limfx不存在;●一般的说,如果limx→∞fx=c,则直线y=c是函数y=fx的图形水平渐近线;如果limx→x0fx=∞,则直线x=x0是函数y=fx图形的铅直渐近线;5、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1x≥F2x,而limF1x=a,limF2x=b,那么a≥b;6、极限存在准则●两个重要极限limx→0sinx/x=1;limx→∞1+1/xx=1;●夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn 且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立;●单调有界数列必有极限;7、函数的连续性●设函数y=fx在点x0的某一邻域内有定义,如果函数fx当x→x0时的极限存在,且等于它在点x0处的函数值fx0,即limx→x0fx=fx0,那么就称函数fx在点x0处连续;●不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim x→x0fx不存在;3、虽在x=x0有定义且limx→x0fx存在,但limx →x0fx≠fx0时则称函数在x0处不连续或间断;●如果x0是函数fx的间断点,但左极限及右极限都存在,则称x0为函数fx的第一类间断点左右极限相等者称可去间断点,不相等者称为跳跃间断点;非第一类间断点的任何间断点都称为第二类间断点无穷间断点和震荡间断点;●定理有限个在某点连续的函数的和、积、商分母不为0是个在该点连续的函数;●定理如果函数fx在区间Ix上单调增加或减少且连续,那么它的反函数x=fy在对应的区间Iy={y|y=fx,x∈Ix}上单调增加或减少且连续;反三角函数在他们的定义域内都是连续的;●定理最大值最小值定理在闭区间上连续的函数在该区间上一定有最大值和最小值;如果函数在开区间内连续或函数在闭区间上有间断点,那么函数在该区间上就不一定有最大值和最小值;●定理有界性定理在闭区间上连续的函数一定在该区间上有界,即m ≤fx≤M;●定理零点定理设函数fx在闭区间a,b上连续,且fa与fb异号即f a×fb<0,那么在开区间a,b内至少有函数fx的一个零点,即至少有一点ξa<ξ<b使fξ=0;●定理介值定理设函数fx在闭区间a,b上连续,且在这区间的端点处取不同的值fa=A,fb=B,那么对于A与B之间的任一数C,在开区间a, b内至少有一点ξ使fξ=C,a<ξ<b;●推论在闭区间上连续的函数必取得介于最大值M与最小值m之间的任何值;第二章导数与微分1、导数存在的充分必要条件●函数fx在点x0处可导的充分必要条件是在点x0处的左极限limh→-0fx0+h-fx0/h及右极限limh→+0fx0+h-fx0/h都存在且相等,即左导数f-′x0右导数f+′x0存在相等;2、函数fx在点x0处可导=>函数在该点处连续;函数fx在点x0处连续≠>在该点可导;即函数在某点连续是函数在该点可导的必要条件而不是充分条件;3、原函数可导则反函数也可导,且反函数的导数是原函数导数的倒数;4、函数fx在点x0处可微=>函数在该点处可导;函数fx在点x0处可微的充分必要条件是函数在该点处可导;第三章中值定理与导数的应用1、定理罗尔定理如果函数fx在闭区间a,b上连续,在开区间a,b内可导,且在区间端点的函数值相等,即fa=fb,那么在开区间a,b内至少有一点ξa<ξ<b,使的函数fx在该点的导数等于零:f’ξ=0;2、定理拉格朗日中值定理如果函数fx在闭区间a,b上连续,在开区间a,b内可导,那么在开区间a,b内至少有一点ξa<ξ<b,使的等式f b-fa=f’ξb-a成立即f’ξ=fb-fa/b-a;3、定理柯西中值定理如果函数fx及Fx在闭区间a,b上连续,在开区间a,b内可导,且F’x在a,b内的每一点处均不为零,那么在开区间a,b内至少有一点ξ,使的等式fb-fa/Fb-Fa=f’ξ/F’ξ成立;4、洛必达法则应用条件●只能用与未定型诸如0/0、∞/∞、0×∞、∞-∞、00、1∞、∞0等形式;5、函数单调性的判定法●设函数fx在闭区间a,b上连续,在开区间a,b内可导,那么:1如果在a,b内f’x>0,那么函数fx在a,b上单调增加;2如果在a,b内f’x<0,那么函数fx在a,b上单调减少;●如果函数在定义区间上连续,除去有限个导数不存在的点外导数存在且连续,那么只要用方程f’x=0的根及f’x不存在的点来划分函数fx的定义区间,就能保证f’x在各个部分区间内保持固定符号,因而函数fx在每个部分区间上单调;6、函数的极值●如果函数fx在区间a,b内有定义,x0是a,b内的一个点,如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,fx<fx0均成立,就称fx0是函数fx的一个极大值;如果存在着点x0的一个去心邻域,对于这去心邻域内的任何点x,fx>fx0均成立,就称fx0是函数fx的一个极小值;●在函数取得极值处,曲线上的切线是水平的,但曲线上有水平曲线的地方,函数不一定取得极值,即可导函数的极值点必定是它的驻点导数为0的点,但函数的驻点却不一定是极值点;●定理函数取得极值的必要条件设函数fx在x0处可导,且在x0处取得极值,那么函数在x0的导数为零,即f’x0=0;●定理函数取得极值的第一种充分条件设函数fx在x0一个邻域内可导,且f’x0=0,那么:1如果当x取x0左侧临近的值时,f’x恒为正;当x去x0右侧临近的值时,f’x恒为负,那么函数fx在x0处取得极大值;2如果当x取x0左侧临近的值时,f’x恒为负;当x去x0右侧临近的值时,f’x恒为正,那么函数fx在x0处取得极小值;3如果当x取x0左右两侧临近的值时,f’x恒为正或恒为负,那么函数fx在x0处没有极值;●定理函数取得极值的第二种充分条件设函数fx在x0处具有二阶导数且f’x0=0,f’’x0≠0那么:1当f’’x0<0时,函数fx在x0处取得极大值;2当f’’x0>0时,函数fx在x0处取得极小值;●驻点有可能是极值点,不是驻点也有可能是极值点;7、函数的凹凸性及其判定设fx在区间Ix上连续,如果对任意两点x1,x2恒有fx1+x2/2<fx1+fx1/2,那么称fx在区间Ix上图形是凹的;如果恒有fx1+x2/2> fx1+fx1/2,那么称fx在区间Ix上图形是凸的;●定理设函数fx在闭区间a,b上连续,在开区间a,b内具有一阶和二阶导数,那么1若在a,b内f’’x>0,则fx在闭区间a,b上的图形是凹的;2若在a,b内f’’x<0,则fx在闭区间a,b上的图形是凸的;●判断曲线拐点凹凸分界点的步骤1求出f’’x;2令f’’x=0,解出这方程在区间a,b内的实根;3对于2中解出的每一个实根x0,检查f’’x在x0左右两侧邻近的符号,如果f’’x在x0左右两侧邻近分别保持一定的符号,那么当两侧的符号相反时,点x0,fx0是拐点,当两侧的符号相同时,点x0,fx0不是拐点;●在做函数图形的时候,如果函数有间断点或导数不存在的点,这些点也要作为分点;第四章不定积分1、原函数存在定理●定理如果函数fx在区间I上连续,那么在区间I上存在可导函数F x,使对任一x∈I都有F’x=fx;简单的说连续函数一定有原函数;●分部积分发如果被积函数是幂函数和正余弦或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数和指数函数为u,这样用一次分部积分法就可以使幂函数的幂降低一次;如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可设对数和反三角函数为u;2、对于初等函数来说,在其定义区间上,它的原函数一定存在,但原函数不一定都是初等函数;第五章定积分1、定积分解决的典型问题1曲边梯形的面积2变速直线运动的路程2、函数可积的充分条件●定理设fx在区间a,b上连续,则fx在区间a,b上可积,即连续=>可积;●定理设fx在区间a,b上有界,且只有有限个间断点,则fx在区间a, b上可积;3、定积分的若干重要性质●性质如果在区间a,b上fx≥0则∫abfxdx≥0;●推论如果在区间a,b上fx≤gx则∫abfxdx≤∫abgxdx;●推论|∫abfxdx|≤∫ab|fx|dx;●性质设M及m分别是函数fx在区间a,b上的最大值和最小值,则mb-a≤∫abfxdx≤Mb-a,该性质说明由被积函数在积分区间上的最大值及最小值可以估计积分值的大致范围;●性质定积分中值定理如果函数fx在区间a,b上连续,则在积分区间a,b上至少存在一个点ξ,使下式成立:∫abfxdx=fξb-a;4、关于广义积分设函数fx在区间a,b上除点ca<c<b外连续,而在点c的邻域内无界,如果两个广义积分∫acfxdx与∫cbfxdx都收敛,则定义∫abfxdx= ∫acfxdx+∫cbfxdx,否则只要其中一个发散就称广义积分∫abfxdx 发散;第六章定积分的应用1、求平面图形的面积曲线围成的面积●直角坐标系下含参数与不含参数●极坐标系下r,θ,x=rcosθ,y=rsinθ扇形面积公式S=R2θ/2●旋转体体积由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成且体积V=∫abπfx2dx,其中fx指曲线的方程●平行截面面积为已知的立体体积V=∫abAxdx,其中Ax为截面面积●功、水压力、引力●函数的平均值平均值y=1/b-a∫abfxdx第七章多元函数微分法及其应用1、多元函数极限存在的条件极限存在是指Px,y以任何方式趋于P0x0,y0时,函数都无限接近于A,如果Px,y以某一特殊方式,例如沿着一条定直线或定曲线趋于P0x0, y0时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在;反过来,如果当Px,y以不同方式趋于P0x0,y0时,函数趋于不同的值,那么就可以断定这函数的极限不存在;例如函数:fx,y={0xy/x^2+y^2x^2+y^2≠02、多元函数的连续性●定义设函数fx,y在开区域或闭区域D内有定义,P0x0,y0是D的内点或边界点且P0∈D,如果limx→x0,y→y0fx,y=fx0,y0则称fx,y在点P0x0,y0连续;●性质最大值和最小值定理在有界闭区域D上的多元连续函数,在D 上一定有最大值和最小值;●性质介值定理在有界闭区域D上的多元连续函数,如果在D上取得两个不同的函数值,则它在D上取得介于这两个值之间的任何值至少一次;3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续;这是因为各偏导数存在只能保证点P沿着平行于坐标轴的方向趋于P0时,函数值fP趋于fP0,但不能保证点P按任何方式趋于P0时,函数值fP都趋于fP0;4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导;5、多元函数可微的充分条件定理充分条件如果函数z=fx,y的偏导数存在且在点x,y连续,则函数在该点可微分;6多元函数极值存在的必要、充分条件定理必要条件设函数z=fx,y在点x0,y0具有偏导数,且在点x0,y0处有极值,则它在该点的偏导数必为零;定理充分条件设函数z=fx,y在点x0,y0的某邻域内连续且有一阶及二阶连续偏导数,又fxx0,y0=0,fyx0,y0=0,令fxxx0,y0=0=A,fxyx0, y0=B,fyyx0,y0=C,则fx,y在点x0,y0处是否取得极值的条件如下:1AC-B2>0时具有极值,且当A<0时有极大值,当A>0时有极小值;2AC-B2<0时没有极值;3AC-B2=0时可能有也可能没有;7、多元函数极值存在的解法1解方程组fxx,y=0,fyx,y=0求的一切实数解,即可求得一切驻点; 2对于每一个驻点x0,y0,求出二阶偏导数的值A、B、C;3定出AC-B2的符号,按充分条件进行判定fx0,y0是否是极大值、极小值;注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内;第八章二重积分1、二重积分的一些应用●曲顶柱体的体积●曲面的面积A=∫∫√1+f2xx,y+f2yx,ydσ●平面薄片的质量●平面薄片的重心坐标x=1/A∫∫xdσ,y=1/A∫∫ydσ;其中A=∫∫dσ为闭区域D的面积;●平面薄片的转动惯量Ix=∫∫y2ρx,ydσ,Iy=∫∫x2ρx,ydσ;其中ρx,y为在点x,y处的密度;●平面薄片对质点的引力FxFyFz2、二重积分存在的条件当fx,y在闭区域D上连续时,极限存在,故函数fx,y在D上的二重积分必定存在;3、二重积分的一些重要性质●性质如果在D上,fx,y≤ψx,y,则有不等式∫∫fx,ydxdy≤∫∫ψx,ydxdy,特殊地由于-|fx,y|≤fx,y≤|fx,y|又有不等式|∫∫fx,ydxdy|≤∫∫|fx,y|dxdy;●性质设M,m分别是fx,y在闭区域D上的最大值和最小值,σ是D的面积,则有mσ≤∫∫fx,ydσ≤Mσ;●性质二重积分的中值定理设函数fx,y在闭区域D上连续,σ是D的面积,则在D上至少存在一点ξ,η使得下式成立:∫∫fx,ydσ=fξ,ησ4、二重积分中标量在直角与极坐标系中的转换●把二重积分从直角坐标系换为极坐标系,只要把被积函数中的x,y 分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素dxdy换成极坐标系中的面积元素rdrdθ;。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

历年考研数学真题高数部分考查重点

历年考研数学真题高数部分考查重点

历年考研数学真题高数部分考查重点(一)
一、函数、极限与连续
1.求分段函数的复合函数;
2.求极限或已知极限确定原式中的常数;
3.讨论函数的连续性,判断间断点的类型;
4.无穷小阶的比较;
5.讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

二、一元函数微分学
1.求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
2.利用洛比达法则求不定式极限;
3.讨论函数极值,方程的根,证明函数不等式;
4.利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如证明在开区间内至少存在一点满足......,此类问题证明经常需要构造辅助函数;
5.几何、物理、经济等方面的值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
6.利用导数研究函数性态和描绘函数图形,求曲线渐近线。

三、一元函数积分学
1.计算题:计算不定积分、定积分及广义积分;
2.关于变上限积分的题:如求导、求极限等;
3.有关积分中值定理和积分性质的证明题;
4.定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
5.综合性试题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、一元函数微分学
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;
利用洛比达法则求不定式极限;
讨论函数极值,方程的根,证明函数不等式;
利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;
几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;
利用导数研究函数性态和描绘函数图形,求曲线渐近线。

二、一元函数积分学
计算题:计算不定积分、定积分及广义积分;
关于变上限积分的题:如求导、求极限等;
有关积分中值定理和积分性质的证明题;
定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;
综合性试题。

三、函数、极限与连续
求分段函数的复合函数;
求极限或已知极限确定原式中的常数;
讨论函数的连续性,判断间断点的类型;
无穷小阶的比较;
讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

四、向量代数和空间解析几何
计算题:求向量的数量积,向量积及混合积;
求直线方程,平面方程;
判定平面与直线间平行、垂直的关系,求夹角;
建立旋转面的方程;
与多元函数微分学在几何上的应用或与线性代数相关联的题目。

五、多元函数的微分学
判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;
求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;
求二元、三元函数的方向导数和梯度;
求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;
多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。

这部分应用题多要用到其他领域的知识,考生在复习时要引起注意。

六、多元函数的积分学
二重、三重积分在各种坐标下的计算,累次积分交换次序;
第一型曲线积分、曲面积分计算;
第二型(对坐标)曲线积分的计算,格林公式,斯托克斯公式及其应用;
第二型(对坐标)曲面积分的计算,高斯公式及其应用;
梯度、散度、旋度的综合计算;
重积分,线面积分应用;求面积,体积,重量,重心,引力,变力作功等。

数学一考生对这部分内容和题型要引起足够的重视。

七、无穷级数
判定数项级数的收敛、发散、绝对收敛、条件收敛;
求幂级数的收敛半径,收敛域;
求幂级数的和函数或求数项级数的和;
将函数展开为幂级数(包括写出收敛域);
将函数展开为傅立叶级数,或已给出傅立叶级数,要确定其在某点的和(通常要用狄里克雷定理);
综合证明题。

八、微分方程
求典型类型的一阶微分方程的通解或特解:这类问题首先是判别方程类型,当然,有些方程不直接属于我们学过的类型,此时常用的方法是将x与y对调或作适当的变量代换,把原方程化为我们学过的类型;
求解可降阶方程;
求线性常系数齐次和非齐次方程的特解或通解;
根据实际问题或给定的条件建立微分方程并求解;
综合题,常见的是以下内容的综合:变上限定积分,变积分域的重积分,线积分与路径无关,全微分的充要条件,偏导数等。

相关文档
最新文档