勾股定理经典例题详解

合集下载

勾股定理的典型例题

勾股定理的典型例题

勾股定理是初中数学中的基本定理,常用于解决与直角三角形相关的问题。

以下是一些典型的勾股定理例题:
例题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,斜边的长度平方等于两个直角边的长度平方之和。

即斜边的长度x²= 3² + 4² = 9 + 16 = 25,所以斜边的长度x = √25 = 5cm。

例题二:已知一边长为5cm的直角三角形的斜边长度为13cm,求另一条直角边的长度。

解答:根据勾股定理,斜边的长度平方等于两个直角边的长度平方之和。

即5² + x² = 13²,即x² = 169 - 25 = 144,所以直角边的长度x = √144 = 12cm。

例题三:已知一条直角边长为8cm,另一条直角边长x cm,且斜边的长度为10cm,求直角边的长度x。

解答:根据勾股定理,斜边的长度平方等于两个直角边的长度平方之和。

即x² + 8² = 10²,即x² + 64 = 100,即x² = 100 - 64 = 36,所以直角边的长度x = √36 = 6cm。

这些例题都是基于勾股定理的基本原理进行求解的。

通过掌握勾股定理的应用,可以帮助我们解决一些与直角三角形相关的数学问题。

其中√指代根号。

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。

勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析1. 在直角三角形中,两直角边分别为3 和4,则斜边的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边的平方等于两直角边的平方和,即斜边= √(3²+ 4²) = 52. 一个直角三角形的两条直角边分别为6 和8,那么斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:先求出斜边为√(6²+ 8²) = 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为4.83. 若直角三角形的三边长分别为2,4,x,则x 的值可能有()A. 1 个B. 2 个C. 3 个D. 4 个答案:B解析:当4 为斜边时,x = √(4²- 2²) = 2√3;当x 为斜边时,x = √(2²+ 4²) = 2√5,所以x 的值有2 个4. 已知直角三角形的两直角边长分别为5 和12,则斜边长为()A. 13B. 14C. 15D. 16答案:A解析:斜边长= √(5²+ 12²) = 135. 直角三角形的一条直角边为9,另一条直角边为12,则斜边的长为()A. 15B. 16C. 17D. 18答案:A解析:斜边= √(9²+ 12²) = 156. 一个直角三角形的斜边为10,一条直角边为6,则另一条直角边为()A. 8B. 9C. 11D. 12答案:A解析:另一条直角边= √(10²- 6²) = 87. 若直角三角形的周长为12,斜边长为5,则其面积为()A. 12B. 10C. 8D. 6答案:D解析:设两直角边分别为a、b,a + b + 5 = 12,a + b = 7,(a + b)²= 49,即a²+ 2ab + b²= 49,又因为a²+ b²= 25,所以2ab = 24,面积= 0.5ab = 68. 直角三角形的两直角边分别为6 和8,则斜边上的中线长为()A. 5B. 6C. 7D. 8答案:A解析:斜边= 10,斜边上的中线长为斜边的一半,即 59. 在△ABC 中,∠C = 90°,AB = 13,AC = 12,则BC 的长为()A. 5B. 6C. 7D. 8答案:A解析:BC = √(13²- 12²) = 510. 若一个直角三角形的两条边长分别为3 和5,则第三条边长为()A. 4B. √34C. 4 或√34D. 无法确定答案:C解析:当5 为斜边时,第三条边= √(5²- 3²) = 4;当 3 和5 为直角边时,第三条边= √(3²+ 5²) = √3411. 已知直角三角形的两边长分别为3 和4,则第三边长为()A. 5B. √7C. 5 或√7D. 不确定答案:C解析:当4 为斜边时,第三边= √(4²- 3²) = √7;当 3 和4 为直角边时,第三边= √(3²+ 4²) = 512. 一个直角三角形的两条直角边分别为15 和20,那么这个三角形的周长是()A. 60B. 75C. 80D. 85答案:D解析:斜边= √(15²+ 20²) = 25,周长= 15 + 20 + 25 = 6013. 直角三角形的一条直角边为12,斜边为13,则另一条直角边为()A. 5B. 6C. 7D. 8答案:A解析:另一条直角边= √(13²- 12²) = 514. 若直角三角形的斜边长为25,一条直角边长为7,则另一条直角边长为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2415. 在Rt△ABC 中,∠C = 90°,若a = 5,b = 12,则c = ()A. 13B. 14C. 15D. 16答案:A解析:c = √(5²+ 12²) = 1316. 一个直角三角形的两条直角边分别为8cm 和15cm,则斜边为()A. 17cmB. 18cmC. 19cmD. 20cm答案:A解析:斜边= √(8²+ 15²) = 17cm17. 若直角三角形的周长为30cm,斜边长为13cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 13 = 30,a + b = 17,(a + b)²= 289,即a²+ 2ab + b²= 289,又因为a²+ b²= 13²= 169,所以2ab = 120,面积= 0.5ab = 30cm²18. 直角三角形的一条直角边长为11,另一条直角边长为60,则斜边的长为()A. 61B. 62C. 63D. 64答案:A解析:斜边= √(11²+ 60²) = 6119. 在直角三角形中,两直角边分别为5 和12,那么斜边上的中线长为()A. 6.5B. 7.5C. 8.5D. 9.5答案:A解析:斜边= 13,斜边上的中线长为6.520. 已知一个直角三角形的两条直角边分别为6 和8,那么这个直角三角形斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:斜边= 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为 4.821. 直角三角形的两直角边分别为9 和12,则此直角三角形的周长为()A. 21B. 30C. 36D. 42答案:C解析:斜边= √(9²+ 12²) = 15,周长= 9 + 12 + 15 = 3622. 若直角三角形的两直角边长分别为3cm 和4cm,则斜边上的高为()A. 2.4cmB. 2.5cmC. 2.6cmD. 2.7cm答案:A解析:斜边= 5cm,三角形面积= 0.5×3×4 = 0.5×5×斜边上的高,解得斜边上的高为2.4cm23. 一个直角三角形的两条直角边分别为7和24,则斜边为()A. 25B. 26C. 27D. 28答案:A解析:斜边= √(7²+ 24²) = 2524. 直角三角形的一条直角边为5,斜边为13,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(13²- 5²) = 1225. 在△ABC 中,∠C = 90°,BC = 6,AC = 8,则AB 的长为()A. 9B. 10C. 11D. 12答案:B解析:AB = √(6²+ 8²) = 1026. 若直角三角形的三边长分别为5,12,x,则x 的值可能是()A. 13B. 14C. 15D. 17答案:A解析:当x 为斜边时,x = √(5²+ 12²) = 13;当12 为斜边时,x = √(12²- 5²) = √119,因为选项中只有13,所以x = 1327. 一个直角三角形的两条直角边分别为18和24,则这个三角形的周长为()A. 60B. 72C. 84D. 96答案:C解析:斜边= √(18²+ 24²) = 30,周长= 18 + 24 + 30 = 7228. 直角三角形的一条直角边为16,斜边为20,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(20²- 16²) = 1229. 在Rt△ABC 中,∠C = 90°,若a = 8,b = 15,则c = ()A. 17B. 18C. 19D. 20答案:A解析:c = √(8²+ 15²) = 1730. 已知直角三角形的两边长分别为5和13,则第三边长为()A. 12B. √194C. 12 或√194D. 不能确定答案:C解析:当13 为斜边时,第三边= √(13²- 5²) = 12;当 5 和13 为直角边时,第三边= √(5²+ 13²) = √19431. 一个直角三角形的两条直角边分别为10和24,则斜边为()A. 25B. 26C. 27D. 28答案:B解析:斜边= √(10²+ 24²) = 2632. 若直角三角形的周长为24,斜边长为10,则其面积为()A. 24B. 36C. 48D. 96答案:B解析:设两直角边分别为a、b,a + b + 10 = 24,a + b = 14,(a + b)²= 196,即a²+ 2ab + b²= 196,又因为a²+ b²= 100,所以2ab = 96,面积= 0.5ab = 2433. 直角三角形的一条直角边长为7,斜边为25,则另一条直角边为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2434. 在△ABC 中,∠C = 90°,AB = 17,AC = 15,则BC 的长为()A. 8B. 9C. 10D. 11答案:A解析:BC = √(17²- 15²) = 835. 若一个直角三角形的两条边长分别为8和15,则第三条边长为()A. 17B. √161C. 17 或√161D. 无法确定答案:C解析:当15 为斜边时,第三条边= √(15²- 8²) = √161;当8 和15 为直角边时,第三条边= √(8²+ 15²) = 1736. 已知直角三角形的两边长分别为8和10,则第三边长为()A. 6B. 2√41C. 6 或2√41D. 不确定答案:C解析:当10 为斜边时,第三边= √(10²- 8²) = 6;当8 和10 为直角边时,第三边= √(8²+ 10²) = 2√4137. 一个直角三角形的两条直角边分别为20和21,则这个三角形的周长是()A. 60B. 61C. 62D. 63答案:D解析:斜边= √(20²+ 21²) = 29,周长= 20 + 21 + 29 = 7038. 直角三角形的一条直角边为24,斜边为25,则另一条直角边为()A. 7B. 8C. 9D. 10答案:A解析:另一条直角边= √(25²- 24²) = 739. 若直角三角形的斜边长为37,一条直角边长为12,则另一条直角边长为()A. 35B. 36C. 37D. 38答案:A解析:另一条直角边= √(37²- 12²) = 3540. 在Rt△ABC 中,∠C = 90°,若a = 12,b = 16,则c = ()答案:A解析:c = √(12²+ 16²) = 2041. 一个直角三角形的两条直角边分别为12cm 和16cm,则斜边为()A. 20cmB. 21cmC. 22cmD. 23cm答案:A解析:斜边= √(12²+ 16²) = 20cm42. 若直角三角形的周长为36cm,斜边长为15cm,则其面积为()A. 54cm²B. 60cm²C. 72cm²D. 81cm²答案:A解析:设两直角边分别为a、b,a + b + 15 = 36,a + b = 21,(a + b)²= 441,即a²+ 2ab + b²= 441,又因为a²+ b²= 15²= 225,所以2ab = 216,面积= 0.5ab = 54cm²43. 直角三角形的一条直角边长为18,另一条直角边长为24,则斜边的长为()A. 30B. 32C. 34D. 36答案:A解析:斜边= √(18²+ 24²) = 3044. 在直角三角形中,两直角边分别为7和24,那么斜边上的中线长为()A. 12.5B. 13C. 13.5D. 14答案:A解析:斜边= 25,斜边上的中线长为斜边的一半,即12.545. 已知一个直角三角形的两条直角边分别为9和12,那么这个直角三角形斜边上的高为()A. 7.2B. 7.5C. 7.8D. 8答案:A解析:斜边= 15,三角形面积= 0.5×9×12 = 0.5×15×斜边上的高,解得斜边上的高为7.246. 直角三角形的两直角边分别为15和20,则此直角三角形的周长为()A. 60B. 70C. 80D. 90答案:B解析:斜边= 25,周长= 15 + 20 + 25 = 6047. 若直角三角形的两直角边长分别为5cm和12cm,则斜边上的高为()A. 6cmB. 8cmC. 60/13 cmD. 120/13 cm答案:C解析:斜边= 13cm,三角形面积= 0.5×5×12 = 0.5×13×斜边上的高,解得斜边上的高为60/13 cm48. 一个直角三角形的两条直角边分别为25和60,则斜边为()A. 65B. 70C. 75D. 80答案:A解析:斜边= √(25²+ 60²) = 6549. 直角三角形的一条直角边为36,斜边为39,则另一条直角边为()A. 15B. 16C. 17D. 18答案:A解析:另一条直角边= √(39²- 36²) = 1550. 在△ABC 中,∠C = 90°,BC = 8,AC = 15,则AB 的长为()答案:B解析:AB = √(8²+ 15²) = 1751. 若直角三角形的三边长分别为8,15,x,则x 的值可能是()A. 17B. 18C. 19D. 20答案:A解析:当x 为斜边时,x = √(8²+ 15²) = 17;当15 为斜边时,x = √(15²- 8²) = √161,因为选项中只有17,所以x = 1752. 一个直角三角形的两条直角边分别为30和40,则这个三角形的周长为()A. 90B. 100C. 110D. 120答案:D解析:斜边= 50,周长= 30 + 40 + 50 = 12053. 直角三角形的一条直角边长为48,斜边为50,则另一条直角边为()A. 14B. 16C. 18D. 20答案:A解析:另一条直角边= √(50²- 48²) = 1454. 在Rt△ABC 中,∠C = 90°,若a = 10,b = 24,则c = ()A. 25B. 26C. 27D. 28答案:B解析:c = √(10²+ 24²) = 2655. 已知直角三角形的两边长分别为12和16,则第三边长为()A. 20B. 4√7C. 20 或4√7D. 不能确定答案:C解析:当16 为斜边时,第三边= √(16²- 12²) = 4√7;当12 和16 为直角边时,第三边= √(12²+ 16²) = 2056. 一个直角三角形的两条直角边分别为40和41,则斜边为()A. 58B. 59C. 60D. 61答案:D解析:斜边= √(40²+ 41²) = 6157. 若直角三角形的周长为48,斜边长为20,则其面积为()A. 48B. 96C. 192D. 384答案:B解析:设两直角边分别为a、b,a + b + 20 = 48,a + b = 28,(a + b)²= 784,即a²+ 2ab + b²= 784,又因为a²+ b²= 20²= 400,所以2ab = 384,面积= 0.5ab = 9658. 直角三角形的一条直角边为50,斜边为52,则另一条直角边为()A. 16B. 18C. 20D. 22答案:A解析:另一条直角边= √(52²- 50²) = 1659. 在△ABC 中,∠C = 90°,AB = 29,AC = 21,则BC 的长为()A. 20B. 22C. 24D. 26答案:A解析:BC = √(29²- 21²) = 2060. 若一个直角三角形的两条边长分别为10和26,则第三条边长为()A. 24B. 2√69C. 24 或2√69D. 无法确定答案:C解析:当26 为斜边时,第三条边= √(26²- 10²) = 24;当10 和26 为直角边时,第三条边= √(10²+ 26²) = 2√6961. 已知直角三角形的两边长分别为14和16,则第三边长为()A. 2√51B. 2√65C. 2√51 或2√65D. 不确定答案:C解析:当16 为斜边时,第三边= √(16²- 14²) = 2√51;当14 和16 为直角边时,第三边= √(14²+ 16²) = 2√6562. 一个直角三角形的两条直角边分别为55和73,则斜边为()A. 90B. 92C. 94D. 96答案:A解析:斜边= √(55²+ 73²) = 9063. 若直角三角形的周长为56,斜边长为25,则其面积为()A. 84B. 96C. 108D. 120答案:A解析:设两直角边分别为a、b,a + b + 25 = 56,a + b = 31,(a + b)²= 961,即a²+ 2ab + b²= 961,又因为a²+ b²= 25²= 625,所以2ab = 336,面积= 0.5ab = 8464. 直角三角形的一条直角边为65,斜边为68,则另一条直角边为()A. 21B. 23C. 25D. 27答案:A解析:另一条直角边= √(68²- 65²) = 2165. 在Rt△ABC 中,∠C = 90°,若a = 18,b = 24,则c = ()A. 30B. 32C. 34D. 36答案:A解析:c = √(18²+ 24²) = 3066. 一个直角三角形的两条直角边分别为18cm和24cm,则斜边为()A. 30cmB. 32cmC. 34cmD. 36cm答案:A解析:斜边= √(18²+ 24²) = 30cm67. 若直角三角形的周长为40cm,斜边长为17cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 17 = 40,a + b = 23,(a + b)²= 529,即a²+ 2ab + b²= 529,又因为a²+ b²= 17²= 289,所以2ab = 240,面积= 0.5ab = 60cm²68. 直角三角形的一条直角边长为32,另一条直角边长为24,则斜边的长为()A. 40B. 42C. 44D. 46答案:A解析:斜边= √(32²+ 24²) = 4069. 在直角三角形中,两直角边分别为11和60,则斜边上的中线长为()A. 30.5B. 31C. 31.5D. 32答案:C解析:斜边= 61,斜边上的中线长为30.570. 已知一个直角三角形的两条直角边分别为13和14,那么这个直角三角形斜边上的高为()A. 12B. 12.5C. 120/13D. 130/14答案:C解析:斜边= √(13²+ 14²) = √365,三角形面积= 0.5×13×14 = 0.5×√365×斜边上的高,解得斜边上的高为120/1371. 直角三角形的两直角边分别为21和28,则此直角三角形的周长为()A. 77B. 80C. 84D. 88答案:A解析:斜边= 35,周长= 21 + 28 + 35 = 8472. 若直角三角形的两直角边长分别为7cm和24cm,则斜边上的高为()A. 72/25 cmB. 84/25 cmC. 168/25 cmD. 252/25 cm答案:B解析:斜边= 25cm,三角形面积= 0.5×7×24 = 0.5×25×斜边上的高,解得斜边上的高为84/25 cm73. 一个直角三角形的两条直角边分别为75和100,则斜边为()A. 125B. 130C. 135D. 140答案:A解析:斜边= √(75²+ 100²) = 12574. 直角三角形的一条直角边为80,斜边为89,则另一条直角边为()A. 39B. 41C. 43D. 45答案:A解析:另一条直角边= √(89²- 80²) = 3975. 在△ABC 中,∠C = 90°,BC = 12,AC = 9,则AB 的长为()A. 13B. 14C. 15D. 16答案:C解析:AB = √(12²+ 9²) = 1576. 若直角三角形的三边长分别为15,20,x,则x 的值可能是()A. 25B. 26C. 27D. 28答案:A解析:当x 为斜边时,x = √(15²+ 20²) = 25;当20 为斜边时,x = √(20²- 15²) = 5√7,因为选项中只有25,所以x = 2577. 一个直角三角形的两条直角边分别为84和13,则斜边为()A. 85B. 86C. 87D. 88答案:A解析:斜边= √(84²+ 13²) = 8578. 若直角三角形的周长为60,斜边长为26,则其面积为()A. 72B. 96C. 108D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 60,a + b = 34,(a + b)²= 1156,即a²+ 2ab + b²= 1156,又因为a²+ b²= 26²= 676,所以2ab = 480,面积= 0.5ab = 12079. 直角三角形的一条直角边为96,斜边为100,则另一条直角边为()A. 28B. 32C. 36D. 40答案:B解析:另一条直角边= √(100²- 96²) = 3280. 在Rt△ABC 中,∠C = 90°,若a = 20,b = 21,则c = ()A. 29B. 30C. 31D. 32答案:A解析:c = √(20²+ 21²) = 2981. 已知直角三角形的两边长分别为20 和25,则第三边长为()A. 15B. 5√41C. 15 或5√41D. 不确定答案:C解析:当25 为斜边时,第三边= √(25²- 20²) = 15;当20 和25 为直角边时,第三边= √(20²+ 25²) = 5√4182. 一个直角三角形的两条直角边分别为63 和16,则斜边为()A. 65B. 67C. 69D. 71答案:A解析:斜边= √(63²+ 16²) = 6583. 若直角三角形的周长为70,斜边长为29,则其面积为()A. 120B. 130C. 140D. 150答案:A解析:设两直角边分别为a、b,a + b + 29 = 70,a + b = 41,(a + b)²= 1681,即a²+ 2ab + b²= 1681,又因为a²+ b²= 29²= 841,所以2ab = 840,面积= 0.5ab = 21084. 直角三角形的一条直角边为72,斜边为75,则另一条直角边为()A. 27B. 29C. 31D. 33答案:A解析:另一条直角边= √(75²- 72²) = 2785. 在△ABC 中,∠C = 90°,AB = 37,AC = 35,则BC 的长为()A. 12B. 14C. 16D. 18答案:A解析:BC = √(37²- 35²) = 1286. 若一个直角三角形的两条边长分别为18 和32,则第三条边长为()A. 38B. 14√2C. 38 或14√2D. 无法确定答案:C解析:当32 为斜边时,第三条边= √(32²- 18²) = 14√2;当18 和32 为直角边时,第三条边= √(18²+ 32²) = 3887. 已知直角三角形的两边长分别为9 和11,则第三边长为()A. √22B. √40C. √22 或√202D. 不确定答案:C解析:当11 为斜边时,第三边= √(11²- 9²) = √22;当9 和11 为直角边时,第三边= √(9²+ 11²) = √20288. 一个直角三角形的两条直角边分别为45和28,则斜边为()A. 53B. 55C. 57D. 59答案:A解析:斜边= √(45²+ 28²) = 5389. 若直角三角形的周长为66,斜边长为26,则其面积为()A. 96B. 108C. 112D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 66,a + b = 40,(a + b)²= 1600,即a²+ 2ab + b²= 1600,又因为a²+ b²= 26²= 676,所以2ab = 924,面积= 0.5ab = 11290. 直角三角形的一条直角边为108,斜边为110,则另一条直角边为()A. 32B. 34C. 36D. 38答案:D解析:另一条直角边= √(110²- 108²) = 3891. 在Rt△ABC 中,∠C = 90°,若a = 30,b = 40,则c = ()A. 50B. 60C. 70D. 80答案:A解析:c = √(30²+ 40²) = 5092. 一个直角三角形的两条直角边分别为36cm 和48cm,则斜边为()A. 60cmB. 62cmC. 64cmD. 66cm答案:A解析:斜边= √(36²+ 48²) = 60cm93. 若直角三角形的周长为56cm,斜边长为20cm,则其面积为()A. 96cm²B. 112cm²C. 128cm²D. 144cm²答案:A解析:设两直角边分别为a、b,a + b + 20 = 56,a + b = 36,(a + b)²= 1296,即a²+ 2ab + b²= 1296,又因为a²+ b²= 20²= 400,所以2ab = 896,面积= 0.5ab = 96cm²94. 直角三角形的一条直角边为78,斜边为85,则另一条直角边为()A. 37B. 39C. 41D. 43答案:B解析:另一条直角边= √(85²- 78²) = 3995. 在△ABC 中,∠C = 90°,BC = 16,AC = 30,则AB 的长为()A. 34B. 36C. 38D. 40答案:A解析:AB = √(16²+ 30²) = 3496. 若直角三角形的三边长分别为24,10,x,则x 的值可能是()A. 26B. 22C. 26 或22D. 不能确定答案:C解析:当x 为斜边时,x = √(24²+ 10²) = 26;当24 为斜边时,x = √(24²- 10²) = 2297. 一个直角三角形的两条直角边分别为90和120,则斜边为()A. 150B. 160C. 170D. 180答案:A解析:斜边= √(90²+ 120²) = 15098. 若直角三角形的周长为84,斜边长为37,则其面积为()A. 120B. 126C. 132D. 138答案:B解析:设两直角边分别为a、b,a + b + 37 = 84,a + b = 47,(a + b)²= 2209,即a²+ 2ab + b²= 2209,又因为a²+ b²= 37²= 1369,所以2ab = 840,面积= 0.5ab = 12699. 直角三角形的一条直角边为132,斜边为137,则另一条直角边为()A. 45B. 47C. 49D. 51答案:A解析:另一条直角边= √(137²- 132²) = 45100. 在Rt△ABC 中,∠C = 90°,若a = 48,b = 55,则c = ()A. 73 B. 75 C. 77 D. 79答案:A解析:c = √(48²+ 55²) = 73。

勾股定理详解与经典例题解析

勾股定理详解与经典例题解析

勾股定理详解与经典例题解析(总10页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除勾股定理(基础)学习目标1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.要点梳理要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.典型例题类型一、勾股定理的直接应用1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【变式】在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.类型二、与勾股定理有关的证明2、如图所示,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为N,试说明.【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2 B.BD2C.BC2 D.DE2类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC 重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.6类型四、与勾股定理有关的面积计算4、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6 B.5 C.11 D.16类型五、利用勾股定理解决实际问题5、一圆形饭盒,底面半径为8,高为12,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?巩固练习一.选择题1.在△ABC中,AB=12,AC=9,BC=15,则△ABC的面积等于()A.108 B.90C.180D.542.若直角三角形的三边长分别为2,4,,则的值可能有( )A.1个 B.2个 C.3个 D.4个3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( ) A.12米 B.10米 C.8米 D.6米4.Rt△ABC中,斜边BC=2,则的值为( )A.8 B.4 C.6 D.无法计算5.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于( )A.4 B.6 C.8 D.56.如图,Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为( )A.150B.200 C.225 D.无法计算二.填空题7.甲、乙两人同时从同一地点出发,已知甲往东走了4,乙往南走了3,此时甲、乙两人相距____.8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD的顶点B,点A、C到直线的距离分别是6、8,则正方形的边长是______.12.如图,王大爷准备建一个蔬菜大棚,棚宽2.4m,高3.2m,长15m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积是m2.三.解答题13.如图四边形ABCD的周长为42,AB=AD=12,∠A=60°,∠D=150°,求BC的长.14.已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.勾股定理逆定理(基础)学习目标1.理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.要点梳理要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;典型例题类型一、勾股定理的逆定理1、判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=;(3),,();【变式】一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是()A.20:15:12 B.3:4:5 C.5:4:3 D.10:8:2类型二、勾股定理逆定理的应用例3、已知:为的三边且满足,试判断的形状.例:4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?巩固练习一.选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是().A. 9,12,15 B.3,4,5 C.,,5 D.4,7,52. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是().A.CD、EF、GH B.AB、EF、GH C.AB、CF、EF D.GH、AB、CD3. 下列说法:(1)在△ABC中,若a2+b2≠c2,则△ABC不是直角三角形;(2)若△ABC是直角三角形,∠C=90°,则a2+b2=c2;(3)在△ABC中,若a2+b2=c2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有().A.4个B.3个C.2个D.1个4.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ).A.1∶1∶2 B.1∶3∶4C.9∶25∶26 D.25∶144∶1695.已知三角形的三边长为(其中),则此三角形( ).A.一定是等边三角形 B.一定是等腰三角形C.一定是直角三角形 D.形状无法确定6.三角形的三边长分别为、、(都是正整数),则这个三角形是().A.直角三角形 B.钝角三角形 C.锐角三角形 D.不能确定二.填空题7.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.8.已知两条线段的长分别为11和60,当第三条线段的长为时,这3条线段能组成一个直角三角形(要求三边长均为整数).9. 已知,则由此为边的三角形是三角形.10.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是_____.11.若一个三角形的三边之比为5:12:13,且周长为60,则它的面积为.12.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.三.解答题13.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=,求证:AF⊥FE.14.观察下列各式:,,,,…,你有没有发现其中的规律?请用含的代数式表示此规律并证明,再根据规律写出接下来的式子.15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?。

完整版勾股定理典型例题详解及练习附答案

完整版勾股定理典型例题详解及练习附答案

典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF GH 四条线段, 其中能构成一个直角三角形三边的线段是( B. AB 、EF 、 D. AB 、G1) sa 倾 2) 解題患跖 解答过程=屮在gJ^EAF 中.Arm, AE=3,根据勾股定理,得EF = Q 苗十上尸'* =品+F =同理 AE = 2忑、CrjV= ^/13| ID = 2爲©计算发现(心r (2罷¥ =(届厂即血U E 严=閒士,根据 勾股定理的逆左理得到l^ADs ET, GH 为辺的三角形是直®三垢形•故选 B.屮解題后ffi 思专.*L 勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形°因此5解题时一定更认真分析题目所给条皆,看是否可用匈股定理来解口 : 2. 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 “匚"就是斜迫而“固执”地运用公式二/十迁 其冥,同样是厶, 丄C 不—定就等于g (K 疋不一定就是斜过,AA3C 不一定就是直®三® 孰*)GHCD EFA. CD 、EF 、GH C. AB 、CD GH +J本题考查幻股定理及勾股宦理的逆定理.4 可利用勾般定理直接求出各边长,再e 行判斷.43. 直角三角形的判定条件与勾股定理是S 逆的・区别在于勾股定理的运 用是一个从'「形''(一个三角形是直角三角形)到 嘟(十沪) 的过程,而直甬三«形的利定是一个从 懺段【一个三角影的三辺S 足 匚2 =亍+色询条件)到“形-1这个三甬形是直角三角形)的过程.44. 在应用勾股定理解题时,聲全®地琴虑间题.注意间题中存在的多种 可能性,避免漏辭.“W 1;如图,有一块直角三甬形紙椅屈C,两貢角迫月^孔皿3*沁. 现将直角边AC 沿直绘AD 折盞 便它落在斜边上.且点C 落到点E 处, fflCT 等于()4扎2 cm 1) SA 倾 本题着查勾股定理的应用仪:)龜思路,車题若直接在中运用勾股定理是无法求得仞a 匕的,因为貝知道一条边卫U 的长,由题意可知,△月CT 和△/£刀关于直 线KQ 对称,因而ZvlCD 竺△血Q ・进一歩则有 血TCMmh CL=ED, ED 丄AS,设则在Rt A ASC*中,由勾股定理可得TV A?月筋贋=1 皿,Aa=iacm,在 皿刃述中,Cio-fi ) 2= C S —X )$0 解得 益 4B.-IB 龜后的思肴:茫勾股定理说到底是一个等式,而含有未知数的等式就是方程。

勾股定理经典题型讲解

勾股定理经典题型讲解
答:梯子底端B也外移约0.77米.
我国古代数学著作《九章算术》中的一个问题,原文是:今有 方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,水 深、葭长各几何?请用学过的数学知识回答这个问题.
译:有一个水池,水面是一个边 长为10尺的正方形,在水池正中 央有一根芦苇,它高出水面一尺. 如果把这根芦苇拉向水池一边的 中点,它的顶端恰好到达池边的 水面.这个水池的深度与这根芦 苇的长度分别是多少?
是( C ) 3 4 π2
A.3 1π B.3 2 C. 2
D.3 1 π2
解析:把圆柱侧面展开,展开图如图所示,点A、C的最短距离
为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=3,AD
为底面半圆弧长,AD=1.5π,所以AC= 32 (3π )2 3 4 π2 ,
2
2
故选:C.
在Rt△ABC中, ∠C=90°. (1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.
解:(1)设a=x,b=2x,根据勾股定理建立方程得
x2+(2x)2=52, 解得
x (5 舍去)
(2)
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
(结果取整数).
解: AB BC2 AC2
602 202 40 2
≈57(m).
四.勾股定理解决线段移动问题
如图,一架2.6米长的梯子AB 斜靠在一竖直的墙 AO上,这时AO 为2.4米. (1)求梯子的底端B距墙角O多少米? (2)如果梯子的顶端A沿墙下滑0.5 米,那么梯子底端B也外移0.5米吗?
勾股定理经典题型讲解
一.利用勾股定理求直角三角形的边长
如图,在Rt△ABC中, ∠C=90°.

专题01 勾股定理的基本应用(解析版)

专题01 勾股定理的基本应用(解析版)

专题01 勾股定理的基本应用题型一 求面积1.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设“赵爽弦图”中直角三角形较长直角边长为a ,较短直角边长为b ,若2()24a b +=,大正方形的面积为14,则小正方形的面积为( )A .2B .3C .4D .5【解答】解:设大正方形的边长为c ,则22214c a b ==+,2()24a b +=Q ,22224a ab b \++=,解得5ab =,\小正方形的面积是:1441425141042ab -´=-´=-=,故选:C .2.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、B 、D 的面积依次为6、10、24,则正方形C 的面积为( )A .4B .6C .8D .12【解答】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,A B D CS S S S \+=-正方形正方形正方形正方形Q 正方形A 、B 、D 的面积依次为6、10、24,24610C S \-=+正方形,8C S \=正方形.故选:C .3.如图,点C 是线段AB 上的一点,分别以AC 、BC 为边向两侧作正方形.设6AB =,两个正方形的面积和1220S S +=,则图中BCD D 的面积为( )A .4B .6C .8D .10【解答】解:设AC a =,BC b =,由题意得:6a b +=,2220a b +=,222()2a b a b ab +=+-Q ,22062ab \=-,8ab \=,BCD \D 的面积118422ab ==´=.图中BCD D 的面积为4.故选:A .4.正方形ABCD 的边长为1,其面积记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为2S ,L 按此规律继续下去,则2022S 的值为( )A .20221()2B .20211()2C .2022D .2021【解答】解:在图中标上字母E ,如图所示.Q 正方形ABCD 的边长为1,CDE D 为等腰直角三角形,222DE CE CD \+=,DE CE =,221S S S \+=.观察,发现规律:2111S ==,211122S S ==,321124S S ==,431128S S ==,¼,11()2n n S -\=.当2022n =时,202212021202211()()22S -==,故选:B .5.如图,以正方形ABCD 的边AD 为直径作一个半圆,点M 是半圆上一个动点,分别以线段AM 、DM 为边各自向外作一个正方形,其面积分别为1S 和2S ,若正方形的面积为10,随点M 的运动12S S +的值为( )A .大于10B .小于10C .等于10D .不确定【解答】解:AB Q 为半圆的直径,90AMD \Ð=°,22210AM DM AD \+==,21S AM =Q ,22S DM =,1210S S \+=.故选:C .6.如图,在四边形ABDE 中,//AB DE ,AB BD ^,点C 是边BD 上一点,BC DE a ==,CD AB b ==,AC CE c ==.下列结论:①ABC CDE D @D ;②90ACE Ð=°;③四边形ABDE 的面积是21()2a b +;④22111()2222a b c ab +-=´;⑤该图可以验证勾股定理.其中正确的结论个数是( )A .5B .4C .3D .2【解答】解://AB DE Q ,AB BD ^,DE BD \^,90B D \Ð=Ð=°.在ABC D 和CDE D 中,90AB CD B D BC DE =ìïÐ=Ð=°íï=î,()ABC CDE SAS \D @D,A DCE \Ð=Ð,ACB E Ð=Ð.90A ACB Ð+Ð=°Q ,90DCE ACB \Ð+Ð=°.180DCE ACB ACE Ð+Ð+Ð=°Q ,90ACE \Ð=°,故①②正确;//AB DE Q ,AB BD ^,\四边形ABDE 的面积是21()2a b +;故③正确;Q 梯形ABDE 的面积-直角三角形ACE 的面积=两个直角三角形的面积,\22111()2222a b c ab +-=´,222a b c \+=.故③④⑤都正确.故选:A .7.如图,Rt ABC D 中,90C Ð=°,AD 平分BAC Ð,交BC 于点D ,6CD =,12AB =,则ABD D 的面积是( )A .18B .24C .36D .72【解答】解:作DH AB ^于D ,如图,AD Q 平分BAC Ð,DH AB ^,DC AC ^,6DH DC \==,1126362ABD S D \=´´=.故选:C .8.如图,Rt ABC D 中,90C Ð=°,5AC =,12BC =,分别以AB 、AC 、BC 为边在AB 的同侧作正方形ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为1S 、2S 、3S 、4S ,则1234S S S S +++等于( )A .60B .80C .90D .120【解答】解:连接PF ,过点F 作FD AK ^于点D ,AB EB =Q ,90ACB ENB Ð=Ð=°,而90CBA CBE EBN CBE Ð+Ð=Ð+Ð=°,CBA EBN \Ð=Ð,()CBA NBE AAS \D @D ,故4ABC S S D =;同理ADF ABC D @D ,AC DF AQ CP \===,90QAC KDF PCD Ð=Ð=Ð=°Q ,//AQ DF \,\四边形CDFP 是矩形,90CPF \Ð=°,180QPC CPF \Ð+Ð=°,Q \,P ,F 三点共线,又FA AB =Q ,90FDA ACB Ð=Ð=°,而90FAD CAB CAB ABC Ð+Ð=Ð+Ð=°,FAD ABC \Ð=Ð,()FAD ABC AAS \D @D ,同理可证ACT FDK D @D ,2FDA ABC S S S D D \==,同理可证TPF KME D @D ,AQF ABC D @D ,13ADF ABC S S S S D D \+==,综上所证:1234133125902ABC S S S S S D +++==´´´=.故选:C .9.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为4和10,则b 的面积为 14 .【解答】解:如图,a Q 、b 、c 都为正方形,BC BF \=,90CBF Ð=°,24AC =,210DF =,1290Ð+Ð=°Q ,2390Ð+Ð=°,13\Ð=Ð,在ABC D 和DFB D 中,13BAC FDB BC FB Ð=ÐìïÐ=Ðíï=î,ABC DFB \D @D ,AB DF \=,在ABC D 中,2222241014BC AC AB AC DF =+=+=+=,b \的面积为14.故答案为14.10.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,90BAC Ð=°,3AB =,4AC =,点D ,E ,F ,G ,H ,I 都在矩形KLMJ 的边上,则空白部分的面积为 60 .【解答】解:如图,延长AB 交KF 于点O ,延长AC 交GM 于点P ,所以,四边形AOLP 是正方形,90BAC Ð=°Q ,3AB =,4AC =,347AO AB AC \=+=+=,3710KL \=+=,4711LM =+=,因此,矩形KLMJ 的面积为1011110´=,\空白部分的面积为22211034560---=,故答案为:60.11.我国古代著作《周髀算经》中记载了“赵爽弦图”.如图,若勾6AE =,弦10AD =,则小正方形EFGH 的面积是 4 .【解答】解:如图,Q 勾6AE =,弦AD =弦10AB =,\股8BE ==,\小正方形的边长862=-=,\小正方形的面积224==.故答案是:4.12.如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、6、18,则正方形B 的面积为 8 .【解答】解:由题意:A B E S S S +=正方形正方形正方形,D C E S S S -=正方形正方形正方形,A B D CS S S S \+=-正方形正方形正方形正方形Q 正方形A 、C 、D 的面积依次为4、6、18,4186B S \+=-正方形,8B S \=正方形.故答案为:8.13.如图,在同一平面内,直线l 同侧有三个正方形A ,B ,C ,若A ,C 的面积分别为9和4,则阴影部分的总面积为 6 .【解答】解:如图,作LM FE ^交FE 的延长线于点M ,交JI 的延长线于点N ,Q 四边形A 、B 、C 都是正方形,且正方形A 、C 的面积分别为9、4,90EKI EDR IHG \Ð=Ð=Ð=°,29DE =,24HI =,3DE \=,2HI =,1809090EDK KHI Ð=Ð=°-°=°Q ,90DKE KHI HIK \Ð=°-Ð=Ð,在EDK D 和KHI D 中,EDK KHI DKE HIK EK KI Ð=ÐìïÐ=Ðíï=î,()EDK KHI AAS \D @D ,2DK HI \==,3DE HK ==,13232EDK KHI S S D D \==´´=;90DEF HIJ Ð=Ð=°Q ,18090DEM DEF \Ð=°-Ð=°,18090HIN HIJ Ð=°-Ð=°,90KEL KIL Ð=Ð=°Q,90MEL DEK KEM \Ð=Ð=°-Ð,90NIL HIK KIN Ð=Ð=°-Ð,//EF l Q ,//IJ l ,//EF IJ \,90EML EMN N \Ð=Ð=Ð=°,在EML D 和EDK D 中,MIL DEK EML EDK EL EK Ð=ÐìïÐ=Ðíï=î,()EML EDK AAS \D @D ,EM ED EF \==,3EFL EML EDK S S S D D D \===;在LNI D 和KHI D 中,NIL HIK N KHI IL IK Ð=ÐìïÐ=Ðíï=î,()LNI KHI AAS \D @D ,IN IE IJ ==Q ,3LJI LNI KHI S S S D D D \===,336EFL LJI S S D D \+=+=,\阴影部分的总面积为6.14.如图,正方形ABDE 、CDFI 、EFGH 的面积分别为25、9、16,AEH D 、BDC D 、GFI D 的面积分别为1S 、2S 、3S ,则123S S S ++= 18 .【解答】解:DF DC =Q ,DE DB =,且180EDF BDC Ð+Ð=°,过点A 作AJ EH ^,交HE 的延长线于点J ,90J DFE \Ð=Ð=°,90AEJ DEJ DEJ DEF Ð+Ð=Ð+Ð=°Q ,AEJ DEF \Ð=Ð,AE DE =Q ,()AEJ DEF AAS \D @D ,AJ DF \=,EH EF =Q ,AHE DEF S S D D \=,同理:BDC GFI DEF S S S D D D ==,1233AHE BDC GFI DEF S S S S S S S D D D D ++=++=´,13462DEF S D =´´=,12318S S S \++=.故答案为:18.题型二 求线段长15.一个大正方形,被两条线段分割成两个小正方形和两个小长方形,若两个小正方形的面积分别为10和6,则小长方形的对角线AB 的长为( )A .4B .6C .10D .16【解答】解:如图,Q 两个小正方形的面积分别为10和6,26AC \=,210BC =,由勾股定理得,4AB ===.故选:A .16.如图,在Rt ABC D 中,90ABC Ð=°,以AB 为边在ABC D 外作正方形,其面积为9,以BC 为斜边在ABC D 外作等腰直角三角形,其面积为4,过点B 作BD AC ^交AC 于点D ,则(AD = )A .85B .94C .95D .2【解答】解:Q 以AB 为边的正方形的面积为9,29AB \=,Q 以BC 为斜边的等腰直角三角形的面积为4,\等腰直角三角形的腰长为216BC \=,在Rt ABC D 中,90ABC Ð=°,则5AC ===,1122ABC S AB AC AC BD D =´´=´´Q ,\1134522BD ´´=´´,解得:125BD =,由勾股定理得:95AD ===,故选:C .17.如图,在Rt ABC D 中,90ACB Ð=°,CD AB ^于D .已知15AB =,Rt ABC D 的周长为15+,则CD 的长为( )A .5BC .D .6【解答】解:如图所示:Rt ABC D Q 的周长为15+,90ACB Ð=°,15AB =,AC BC \+=,222215225AC BC AB +===,22()AC BC \+=,即222405AC AC BC BC +´+=,2405225180AC BC \´=-=,90AC BC \´=,Q 1122AB CD AC BC ´=´,90615AC BC CD AB ´\===;故选:D .18.若ABC=,高24=,则BC的长为( )cm.AD cmAC cmD中,30AB cm=,26A.28或8B.8C.28D.以上都不对Q为边BC上的高,【解答】解:AD\Ð=Ð=°.90ADB ADCBD===,在Rt ABDD中,18CD===.在Rt ACDD中,10当点D在线段BC上时,如图1,181028=+=+=;BC BD CD当点D在线段CB的延长线上时,如图2,18108=-=-=.BC BD CD\的长为28或8.BC故选:A.19.如图,在ABCBC=,6AB=,4AC=,则DE的^于D,且5D中,CE是AB边上的中线,CD AB长 2 .【解答】解:设BD x=-,=,则5AD x在Rt ACD D 中,222CD AC AD =-,在Rt BCD D 中,222CD BC BD =-,2222AC AD BC BD \-=-,即22226(5)4x x --=-,解得,12x =,则12BD =,2DE BE BD \=-=,贵答案为:2.20.如图,锐角三角形ABC 中,2C B Ð=Ð,AB =,8BC CA +=,则ABC D 的面积为 【解答】解:过A 作AE BC ^于E ,延长BC 到D 使CD AC =,则CAD D Ð=Ð,ACB D CAD Ð=Ð+ÐQ ,2ACB D \Ð=Ð,2C B Ð=ÐQ ,B D \Ð=Ð,AB AD \=,BE DE \=,8BC CA +=Q ,8BD BC CD BC AC \=+=+=,4BE \=,AE \==,222AE CE AC \+=,即228(4)(8)BC BC +-=-,解得:5BC =,ABC \D 的面积11522BC AE ==´´=g故答案为:.21.如图所示,ABC D 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD AC ^于点D ,则BD 的长为 3 .【解答】解:由图形可知,5BC =,BC 边上的高为3,ABC \D 的面积1155322=´´=,由勾股定理得,5AC ==,则115522BD ´´=,解得,3BD =,故答案为:3.22.如图,在Rt ABC D 中,90B Ð=°,3AB =,6BC =,AC 的中垂线DE 交AC 于点D ,交BC 于点E .延长DE 交AB 的延长线于点F ,连接CF .(1)求出CD 的长;(2)求出CF 的长.【解答】解:(1)在Rt ABC D 中,90B Ð=°,3AB =,6BC =,则AC ===,DE Q 是AC 的中垂线,12CD AC \==(2)DF Q 是AC 的中垂线,FA FC \=,3AB =Q ,33FB FA CF \=-=-,在Rt FBC D 中,222CF BC FB =+,即2226(3)CF CF =+-,解得:152CF =.23.如图,在ABC D 中,AB AC =,AD BC ^于点D ,45CBE Ð=°,BE 分别交AC ,AD 于点E 、F .(1)如图1,若13AB =,10BC =,求AF 的长度;(2)如图2,若AF BC =,求证:222BF EF AE +=.【解答】(1)解:如图1,AB AC =Q ,AD BC ^,BD CD \=,10BC =Q ,5BD \=,Rt ABD D 中,13AB =Q ,12AD \==,Rt BDF D 中,45CBE Ð=°Q ,BDF \D 是等腰直角三角形,5DF BD \==,1257AF AD DF \=-=-=;(2)证明:如图2,在BF 上取一点H ,使BH EF =,连接CF 、CH 在CHB D 和AEF D 中,Q 45BH EFCBH AFE BC AF=ìïÐ=Ð=°íï=î,()CHB AEF SAS \D @D ,AE CH \=,AEF BHC Ð=Ð,CEF CHE \Ð=Ð,CE CH \=,BD CD =Q ,FD BC ^,CF BF \=,45CFD BFD \Ð=Ð=°,90CFB \Ð=°,EF FH \=,Rt CFH D 中,由勾股定理得:222CF FH CH +=,222BF EF AE \+=.24.如图,在ABC D 中,AD BC ^,垂足为点D ,13AB =,5BD =,15AC =.(1)求AD 的长;(2)求BC的长.【解答】解:(1)AD BC ^Q ,90ADB CDA \Ð=Ð=°.在Rt ADB D 中,90ADB Ð=°Q ,222AD BD AB \+=,222144AD AB BD \=-=.0AD >Q ,12AD \=.(2)在Rt ADC D 中,90CDA Ð=°Q ,222AD CD AC \+=,22281CD AC AD \=-=.0CD >Q ,9CD \=.5914BC BD CD \=+=+=.题型三 通过勾股定理设方程25.如图,四个全等的直角三角形围成正方形ABCD 和正方形EFGH ,即赵爽弦图.连接AC ,分别交EF 、GH 于点M ,N ,连接FN .已知3AH DH =,且21ABCD S =正方形,则图中阴影部分的面积之和为( )A .214B .215C .225D .223【解答】解:21ABCD S =Q 正方形,221AB \=,设DH x =,则33AH DH x ==,22921x x \+=,22110x \=,根据题意可知:AE CG DH x ===,3CF AH x ==,32FE FG CF CG x x x \==-=-=,2FGN CGNS S D D \=AEM CGN S S D D =Q ,FGN AEM CGN S S S D D D \=+,\阴影部分的面积之和为:()12NGFM S NG FM FG =+×梯形1()2EM MF FG =+×12FE FG =×21(2)2x =´22x =215=.故选:B .26.如图,在ABC D 中,90C Ð=°,点M 是AB 的中点,点N 在AC 上,MN AB ^.若8AC =,4BC =,则NC 的长为( )A .3B .4C .5D .【解答】解:如图,连接BN ,AB Q 的垂直平分线交AB 、AC 于点M 、N ,AN BN \=,设NC x =,则8AN BN x ==-,在Rt BCN D 中,由勾股定理得:222BN BC CN =+,即222(8)4x x -=+,解得:3x =,即3NC =,故选:A .27.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是()A B C .a b +D .a b-【解答】解:设CD x =,则DE a x =-,HG b =Q ,AH CD AG HG DE HG a x b x \==-=-=--=,2a bx -\=,22a b a bBC DE a -+\==-=,2222222()()222a b a b a b BD BC CD +-+\=+=+=,BD \=,故选:B .28.在长方形ABCD 中,52AB =,4BC =,CE CF =,延长AB 至点E ,连接CE ,CF 平分ECD Ð,则BE = 76 .【解答】解:如图,延长CF ,BA 交于点G ,连接EF ,过点F 作FH CE ^于H ,过点E 作EM CF ^于M ,Q 四边形ABCD 是矩形,且52AB =,4BC =,//AB CD \,52AB CD ==,90D ABC CBE Ð=Ð=Ð=°,DCF G \Ð=Ð,CF Q 平分ECD Ð,DCF FCE \Ð=Ð,FH DF =,G ECF \Ð=Ð,EC EG \=,ECG \D 是等腰三角形,CM MG \=,CE CF =Q ,ECF \D 是等腰三角形,EM CF ^Q ,FH CE ^,EM \和FH 是等腰三角形腰上的高,EM FH DF \==,Rt CDF Rt CME(HL)\D @D ,52CM CD \==,5CG \=,Rt CBG D 中,3BG ===,设BE x =,则3EC EG x ==+,Rt CBE D 中,222(3)4x x +=+,解得:76x =,76BE \=.故答案为:76.29.如图是“赵爽弦图”, ABH D ,BCG D ,CDF D 和DAE D 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果10AB =,且:3:4AH AE =.那么AH 等于 6 .【解答】解:10AB =Q ,:3:4AH AE =,设AH 为3x ,AE 为4x ,由勾股定理得:222222(3)(4)(5)AB AH AE x x x =+=+=,510x \=,2x \=,6AH \=,故答案为:6.30.[阅读理解]如图,在ABC D 中,4AB =,6AC =,7BC =,过点A 作直线BC 的垂线,垂足为D ,求线段AD 的长.解:设BD x =,则7CD x =-.AD BC ^Q ,90ADB ADC \Ð=Ð=°.在Rt ABD D 中,222AD AB BD =-,在Rt ACD D 中,222AD AC CD =-,2222AB BD AC CD \-=-.又4AB =Q ,6AC =,222246(7)x x \-=--.解得2914x =,2914BD \=.AD \==.[知识迁移](1)在ABC D 中,13AB =,15AC =,过点A 作直线BC 的垂线,垂足为D .)i 如图1,若14BC =,求线段AD 的长;)ii 若12AD =,求线段BC 的长.(2)如图2,在ABC D 中,AB =,AC =,过点A 作直线BC 的垂线,交线段BC 于点D ,将ABD D 沿直线AB 翻折后得到对应的ABD D ¢,连接CD ¢,若252AD =,求线段CD ¢的长.【解答】解:(1))i 设BD x =,则14CD x =-,AD BC ^Q ,90ADB ADC \Ð=Ð=°,在Rt ABD D 中,222AD AB BD =-,在Rt ACD D 中,222AD AC CD =-,2222AB BD AC CD \-=-,13AB =Q ,15AC =,22221315(14)x x \-=--,5x \=,5BD \=,12AD \===;)ii 在Rt ABD D 中,5BD ===,在Rt ACD D 中,9CD ===,当ABC Ð为锐角时,如图11-,5914BC BD CD =+=+=,当ABC Ð为钝角时,如图12-,954BC BD CD =-=-=;(2)如图2,连接DD ¢交AB 于点N ,则DD AB ¢^,过点D ¢作D H BD ¢^于H ,在Rt ABD D 中,254BD ==;在Rt ACD D 中,5CD ==,AB Q 垂直平分DD ¢,254D B DB ¢\==,2D D DN ¢=,1122ABD S AD BD AB DN D =×=×Q ,\252524DN ´=,DN \=2D D DN ¢\==,设HB m =,则254HD HB BD m =+=+,22222D H D D HD D B HB ¢¢¢=-=-Q ,22222525(()44m m \-+=-,154m \=,154HB \=,152541544HC HB BD CD \=++=++=,5D H ¢===,D C ¢\===.。

勾股定理经典例题(全解版)

勾股定理经典例题(全解版)

11类型一:勾股定理的直接用法1、在Rt △ABC 中,∠C=90°(1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a.思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC 中,∠C=90°,a=6,c=10,b=(2) 在△ABC 中,∠C=90°,a=40,b=9,c=(3) 在△ABC 中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少? 【答案】∵∠ACD =90° AD =13, CD=12 ∴AC 2 =AD 2-CD 2 =132-122 =25 ∴AC =5又∵∠ABC=90°且BC =3 ∴由勾股定理可得 AB 2=AC 2-BC 2 =52-32 =16 ∴AB = 4∴AB 的长是4.类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC 的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D ,则有,,再由勾股定理计算出AD 、DC 的长,进而求出BC 的长. 解析:作于D ,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半). 根据勾股定理,在中,.根据勾股定理,在中,22.∴ .举一反三【变式1】如图,已知:,,于P . 求证:.解析:连结BM ,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵ (已知),∴.在中,根据勾股定理有, ∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD 的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于点E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

勾股定理经典例题(含答案)

勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法 1.在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求 a. 思绪点拨:写解的进程中,必定要先写上在哪个直角三角形中,留意勾股定理的变形运用. 解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=触类旁通【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是若干?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是 4. 类型二:勾股定理的结构运用 2.如图,已知:在中,,,. 求:BC的长.思绪点拨:由前提,想到结构含角的直角三角形,为此作于D,则有,,再由勾股定理盘算出AD.DC的长,进而求出BC的长. 解析:作于D,则因, ∴(的两个锐角互余)∴(在中,假如一个锐角等于, 那么它所对的直角边等于斜边的一半).依据勾股定理,在中,. 依据勾股定理,在中,. ∴.触类旁通【变式1】如图,已知:,,于P. 求证:.解析:贯穿连接BM,依据勾股定理,在中,. 而在中,则依据勾股定理有. ∴又∵(已知), ∴. 在中,依据勾股定理有, ∴. 【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求:四边形ABCD的面积.剖析:若何结构直角三角形是解本题的症结,可以贯穿连接AC,或延伸AB.DC交于F,或延伸AD.BC交于点E,依据本题给定的角应选后两种,进一步依据本题给定的边选第三种较为简略. 解析:延伸AD.BC交于 E.∵∠A=∠60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==.∵DE2= CE2-CD2=42-22=12,∴DE==. ∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的现实运用(一)用勾股定理求两点之间的距离问题 3.如图所示,在一次夏令营运动中,小明从营地A点动身,沿北偏东60°偏向走了到达B点,然后再沿北偏西30°偏向走了500m到达目标地C点. (1)求A.C两点之间的距离.(2)肯定目标地C在营地A的什么偏向.解析:(1)过B点作BE//AD∴∠DAB=∠ABE=60°∵30°+∠CBA+∠ABE=180°∴∠CBA=90°即△ABC为直角三角形由已知可得:BC=500m,AB=由勾股定理可得:所以(2)在Rt△ABC中, ∵BC=500m,AC=1000m ∴∠CAB=30°∵∠DAB=60°∴∠DAC=30°即点C在点A的北偏东30°的偏向触类旁通【变式】一辆装满货色的卡车,其外形高2.5米,宽1.6米,要开进厂门外形如图的某工场,问这辆卡车可否经由过程该工场的厂门?【答案】因为厂门宽度是否足够卡车经由过程,只要看当卡车位于厂门正中央时其高度是否小于CH.如图所示,点D在离厂门中线0.8米处,且CD⊥AB, 与地面交于H.解:OC=1米(大门宽度一半), OD=0.8米(卡车宽度一半)在Rt△OCD中,由勾股定理得:CD===0.6米, CH=0.6+2.3=2.9(米)>2.5(米).是以高度上有0.4米的余量,所以卡车能经由过程厂门.(二)用勾股定理求最短问题4.国度电力总公司为了改良农村用电电费过高的近况,今朝正在全国各地农村进行电网改革,某地有四个村庄A.B.C.D,且正好位于一个正方形的四个极点,现筹划在四个村庄结合架设一条线路,他们设计了四种架设筹划,如图实线部分.请你关心盘算一下,哪种架设筹划最省电线.思绪点拨:解答本题的思绪是:最省电线就是线路长最短,经由过程运用勾股定理盘算线路长,然落后行比较,得出结论.解析:设正方形的边长为1,则图(1).图(2)中的总线路长分离为AB+BC+CD=3,AB+BC+CD= 3 图(3)中,在Rt△ABC中同理∴图(3)中的路线长为图(4)中,延伸EF交BC于H,则FH ⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=3> 2.828>2.732 ∴图(4)的衔接线路最短,即图(4)的架设筹划最省电线.触类旁通【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A动身,沿着圆柱的侧面爬行到点C,试求出爬行的最短旅程.解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,依据勾股定理得(提问:勾股定理)∴ AC===≈10.77(cm)(勾股定理).答:最短旅程约为10.77cm.类型四:运用勾股定理作长为的线段5.作长为..的线段.思绪点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,相似地可作.作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一向角边为1的直角.斜边为;(3)按序如许做下去,最后做到直角三角形,如许斜边...的长度就是....触类旁通【变式】在数轴上表示的点.解析:可以把看作是直角三角形的斜边,,为了有利于绘图让其他双方的长为整数,而10又是9和1这两个完整平方数的和,得别的双方分离是3和1.作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为.类型五:逆命题与勾股定理逆定理6.写出下列原命题的逆命题并断定是否准确1.原命题:猫有四只脚.(准确)2.原命题:对顶角相等(准确)3.原命题:线段垂直等分线上的点,到这条线段两头距离相等.(准确)4.原命题:角等分线上的点,到这个角的双方距离相等.(准确)思绪点拨:控制原命题与逆命题的关系.解析:1. 逆命题:有四只脚的是猫(不准确)2. 逆命题:相等的角是对顶角(不准确)3. 逆命题:到线段两头距离相等的点,在这条线段的垂直等分线上.•(准确)4. 逆命题:到角双方距离相等的点,在这个角的等分线上.(准确)总结升华:本题是为了进修勾股定理的逆命题做预备.7.假如ΔABC的三边分离为a.b.c,且知足a2+b2+c2+50=6a+8b+10c,断定ΔABC的外形.思绪点拨:要断定ΔABC的外形,须要找到a.b.c的关系,而标题中只有前提a2+b2+c2+50=6a+8b+10c,故只有从该前提入手,解决问题.解析:由a2+b2+c2+50=6a+8b+10c,得:a2-6a+9+b2-8b+16+c2-10c+25=0,∴ (a-3)2+(b-4)2+(c-5)2=0.∵ (a-3)2≥0, (b-4)2≥0, (c-5)2≥0.∴ a=3,b=4,c=5.∵ 32+42=52,∴ a2+b2=c2.由勾股定理的逆定理,得ΔABC是直角三角形.总结升华:勾股定理的逆定理是经由过程数目关系来研讨图形的地位关系的,在证实中也常要用到.触类旁通【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【答案】:贯穿连接AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)【变式2】已知:△ABC的三边分离为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),断定△ABC是否为直角三角形.剖析:本题是运用勾股定理的的逆定理, 只要证实:a2+b2=c2即可证实:所以△ABC是直角三角形.【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB.请问FE与DE是否垂直?请解释.【答案】答:DE⊥EF.证实:设BF=a,则BE=EC=2a, AF=3a,AB=4a,∴ EF2=BF2+BE2=a2+4a2=5a2;DE2=CE2+CD2=4a2+16a2=20a2.衔接DF(如图)DF2=AF2+AD2=9a2+16a2=25a2.∴ DF2=EF2+DE2,∴ FE⊥DE.经典例题精析类型一:勾股定理及其逆定理的根本用法 1.若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积.思绪点拨:在直角三角形中知道双方的比值和第三边的长度,求面积,可以先经由过程比值设未知数,再依据勾股定理列出方程,求出未知数的值进而求面积.解析:设此直角三角形两直角边分离是3x,4x,依据题意得:(3x)2+(4x)2=202化简得x2=16; ∴直角三角形的面积=×3x×4x=6x2=96 总结升华:直角三角形边的有关盘算中,常常要设未知数,然后用勾股定理列方程(组)求解. 触类旁通【变式1】等边三角形的边长为2,求它的面积.【答案】如图,等边△ABC,作AD⊥BC于 D 则:BD=BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD= 1 在直角三角形ABD中,AB2=AD2+BD2,即:AD2=AB2-BD2=4-1= 3 ∴AD=S△ABC=BC·AD=注:等边三角形面积公式:若等边三角形边长为a,则其面积为 a.【变式2】直角三角形周长为12cm,斜边长为5cm,求直角三角形的面积. 【答案】设此直角三角形两直角边长分离是x,y,依据题意得:由(1)得:x+y=7, (x+y)2=49,x2+2xy+y2=49 (3) (3)-(2),得:xy=12∴直角三角形的面积是xy=×12=6(cm2)【变式3】若直角三角形的三边长分离是n+1,n+2,n+3,求n. 思绪点拨:起首要肯定斜边(最长的边)长n+3,然后运用勾股定理列方程求解. 解:此直角三角形的斜边长为n+3,由勾股定理可得:(n+1)2+(n+2)2=(n+3)2化简得:n2= 4 ∴n=±2,但当n=-2时,n+1=-1<0,∴n= 2 总结升华:留意直角三角形中两“直角边”的平方和等于“斜边”的平方,在标题没有给出哪条是直角边哪条是斜边的情形下,起首要先肯定斜边,直角边. 【变式4】以下列各组数为边长,能构成直角三角形的是()A.8,15,17 B.4,5,6 C.5,8,10 D.8,39,40 解析:此题可直接用勾股定理的逆定理来进行断定, 对数据较大的可以用c2=a2+b2的变形:b2=c2-a2=(c-a)(c+a)来断定. 例如:对于选择D, ∵82≠(40+39)×(40-39), ∴以8,39,40为边长不能构成直角三角形. 同理可以断定其它选项.【答案】:A【变式5】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.解:贯穿连接AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169 ∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)∴S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=36类型二:勾股定理的运用2.如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m.假设拖沓机行驶时,四周100m以内会受到噪音的影响,那么拖沓机在公路MN上沿PN偏向行驶时,黉舍是否会受到噪声影响?请解释来由,假如受影响,已知拖沓机的速度为18km/h,那么黉舍受影响的时光为若干秒?思绪点拨:(1)要断定拖沓机的噪音是否影响黉舍A,本质上是看A到公路的距离是否小于100m, 小于100m则受影响,大于100m则不受影响,故作垂线段AB并盘算其长度.(2)请求出黉舍受影响的时光,本质是请求拖沓机对黉舍A的影响所行驶的旅程.是以必须找到拖沓机行至哪一点开端影响黉舍,行至哪一点后停止影响黉舍. 解析:作AB⊥MN,垂足为 B. 在RtΔABP中,∵∠ABP=90°,∠APB=30°, AP=160,∴AB=AP=80. (在直角三角形中,30°所对的直角边等于斜边的一半)∵点A到直线MN的距离小于100m, ∴这所中学会受到噪声的影响. 如图,假设拖沓机在公路MN上沿PN偏向行驶到点C处黉舍开端受到影响,那么AC=100(m), 由勾股定理得:BC2=1002-802=3600,∴BC=60.同理,拖沓机行驶到点D处黉舍开端离开影响,那么,AD=100(m),BD=60(m), ∴CD=120(m). 拖沓机行驶的速度为: 18km/h=5m/s t=120m÷5m/s=24s.答:拖沓机在公路MN上沿PN偏向行驶时,黉舍会受到噪声影响,黉舍受影响的时光为24秒. 总结升华:勾股定理是求线段的长度的很主要的办法,若图形缺乏直角前提,则可以经由过程作关心垂线的办法,结构直角三角形以便运用勾股定理.触类旁通【变式1】如图黉舍有一块长方形花圃,有少少数工资了避开拐角而走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1m),却踩伤了花卉.解析:他们本来走的路为3+4=7(m) 设走“捷径”的路长为xm,则故少走的路长为7-5=2(m) 又因为2步为1m,所以他们仅仅少走了4步路.【答案】4【变式2】如图中的虚线网格我们称之为正三角形网格,它的每一个小三角形都是边长为1的正三角形,如许的三角形称为单位正三角形. (1)直接写出单位正三角形的高与面积. (2)图中的平行四边形ABCD含有若干个单位正三角形?平行四边形ABCD的面积是若干?(3)求出图中线段AC的长(可作关心线).【答案】(1)单位正三角形的高为,面积是. (2)如图可直接得出平行四边形ABCD含有24个单位正三角形,是以其面积. (3)过A作AK⊥BC于点K(如图所示),则在Rt△ACK中,,,故类型三:数学思惟办法(一)转化的思惟办法我们在求三角形的边或角,或进行推理论证时,常常作垂线,结构直角三角形,将问题转化为直角三角形问题来解决.3.如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E.F分离是AB.AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长.思绪点拨:现已知BE.CF,请求EF,但这三条线段不在统一三角形中,所以症结是线段的转化,依据直角三角形的特点,三角形的中线有特别的性质,不妨先衔接AD.解:衔接AD.因为∠BAC=90°,AB=AC.又因为AD为△ABC的中线, 所以AD=DC=DB.AD⊥BC.且∠BAD=∠C=45°.因为∠EDA+∠ADF=90°.又因为∠CDF+∠ADF=90°.所以∠EDA=∠CDF.所以△AED≌△CFD(ASA).所以AE=FC=5.同理:AF=BE=12.在Rt△AEF中,依据勾股定理得:,所以EF=13.总结升华:此题考核了等腰直角三角形的性质及勾股定理等常识.经由过程此题,我们可以懂得:当已知的线段和所求的线段不在统一三角形中时,应经由过程恰当的转化把它们放在统一向角三角形中求解.(二)方程的思惟办法4.如图所示,已知△ABC中,∠C=90°,∠A=60°,,求..的值.思绪点拨:由,再找出.的关系即可求出和的值. 解:在Rt△ABC中,∠A=60°,∠B=90°-∠A=30°, 则,由勾股定理,得. 因为,所以,,,. 总结升华:在直角三角形中,30°的锐角的所对的直角边是斜边的一半. 触类旁通:【变式】如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长. 解:因为△ADE与△AFE关于AE对称,所以AD=AF,DE=EF. 因为四边形ABCD是矩形,所以∠B=∠C=90°, 在Rt△ABF中,AF=AD=BC=10cm,AB=8cm,所以.所以. 设,则. 在Rt△ECF中,,即,解得.即EF的长为5cm.。

勾股定理典型例题详解

勾股定理典型例题详解

一、直接应用勾股定理或勾股定理逆定理例1:已知a 、b 、c 为ABC ∆的三边,且满足c b a c b a 262410338222++=+++.求证:这个三角形是直角三角形.例3:一场罕见的大风过后,学校那棵老杨树折断在地,此刻,张老师正和张明、清 华、绣亚、冠华在楼上凭栏远眺。

清华开口说道:“老师,那棵树看起来挺高的。

” “是啊,有10米高呢,现在被风拦腰刮断,可惜呀!”“但站立的一段似乎也 不矮,有四五米高吧。

”冠华兴致勃勃地说。

张老师心有所动,他说:“刚才我 跑过时用脚步量了一下,发现树尖距离树根恰好3米,你们能求出杨树站立的那一段的高度吗?”三、勾股定理及其逆定理的正逆混用例6:(1)图甲是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形。

若大正方形的面积为13,每个直角三角形两条直角边的和是5,求中间小正方形的面积。

(2)现有一张长为6.5cm、宽为2cm的纸片,如图乙,请你将它分割成6块,再拼合成一个正方形。

(要求:先在图乙中画出分割线,再画出拼成的正方形并标明相应数据)例8 细心观察图,认真分析各式,然后解答问题:(1)用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长;(3)求出的值。

例9 在直线l上依次摆放着七个正方形(如图1所示),已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=____例10 如图:(1)以Rt△ABC的三边长为边作三个等边三角形,则这三个等边△的面积,S1、S2、S3之间有何关系,说明理由。

(2)如图(2),以Rt△ABC的三边长为直径作三个半圆,则这三个半圆的面积S1,S2,S3之间有何关系?(3)如果将图(2)中斜边上的半圆沿斜边翻折180°,成为图(3),请验证:“两个阴影部分的面积之和正好等于直角三角形的面积”(此阴影部分在数学史上称为“希波克拉底月牙)例11. 如图3,图中所有的四边形都是正方形,所有的三角形都是直角三角形,若所有的正方形的面积之和为507cm2,试求最大的正方形的边长。

勾股定理典型例题

勾股定理典型例题

勾股定理典型例题类型一:勾股定理的直接用法1、在 Rt△ABC中, ∠C=90°思路点拨:写解的过程中, 一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析: (1)在△ABC中, ∠C −90∘,a −6,c =10,b =√c 2−a 2=8 (2) 在△ABC中, ∠C =90∘,a =40,b =9,c =√a 2+b 2=41 (3)在△ABC中. ∠C =90∘,c =25,b =15,a =√c 2−b 2=20举一反三∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB²=AC²-BC²-5²-3²-16∴AB=4∴AB的长是4. 类型二:勾股定理的构造应用2、如图, 已知:在△ABC中,∠B=60°, AC=70, AB=30,求: BC 的长.那么它所对的直角边等于斜边的一半).根据勾股定理, 在 Rt△ABD中. AD =√AB 2−BD 2=√302−152=15√3根据勾股定理,在R△ACD中,CD =√AC 2−AD 2=√702−152×3=65【答案】∵∠ACD=90°AD=13,CD-12∴AC²=AD²-CD²=13²-12²=25思路点拨:由条件∠B=60°, 想到构造含30°角的直角三角形,为此作AD⊥BC于D ,则有 ∠BAD =30∘,BD =12AB =15,再由勾股定理计算出AD 、DC 的长,进而求出BC 的长. 解析:作AD⊥BC于D,则因∠B=60°.∴∠BAD=90°-60°=30°(R△ 的两个锐角互余): BD =12AB =15(在RZ△中,如果一个锐角等于30°,。

勾股定理经典例题(含答案)

勾股定理经典例题(含答案)

勾股定理经典例题类型一:勾股定理的直接用法 1、在Rt △ABC 中,∠C=90°(1)已知a=6, c=10,求b , (2)已知a=40,b=9,求c ; (3)已知c=25,b=15,求a.思路点拨: 写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

举一反三【变式】:如图∠B =∠ACD =90°, AD =13,CD =12, BC =3,则AB 的长是多少?类型二:勾股定理的构造应用 2、如图,已知:在中,,,. 求:BC 的长.1、某市在旧城改造中,计划在市内一块如图所示的三角形空地上种植草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要( ) A 、450a 元 B 、225a 元C 、150a 元D 、300a 元举一反三【变式1】如图,已知:,,于P . 求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD 的面积。

类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A 点出发,沿北偏东60°方向走了到达B 点,然后再沿北偏西30°方向走了500m 到达目的地C 点。

(1)求A 、C 两点之间的距离。

(2)确定目的地C 在营地A 的什么方向。

150°20m30m举一反三【变式】一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?(二)用勾股定理求最短问题4、如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.类型四:利用勾股定理作长为的线段5、作长为、、的线段。

作法:如图所示举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

勾股定理详解与经典例题解析

勾股定理详解与经典例题解析

勾股定理(基础)学习目标1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.要点梳理要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.典型例题类型一、勾股定理的直接应用1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【变式】在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.类型二、与勾股定理有关的证明2、如图所示,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为N,试说明.【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2B.BD2C.BC2D.DE2类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6类型四、与勾股定理有关的面积计算4、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6B.5C.11D.16类型五、利用勾股定理解决实际问题5、一圆形饭盒,底面半径为8,高为12,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?巩固练习一.选择题1.在△ABC中,AB=12,AC=9,BC=15,则△ABC的面积等于()A.108B.90C.180D.542.若直角三角形的三边长分别为2,4,,则的值可能有()A.1个B.2个C.3个D.4个3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是()A.12米B.10米C.8米D.6米4.Rt△ABC中,斜边BC=2,则的值为()A.8B.4C.6D.无法计算5.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于()A.4B.6 C.8D.56.如图,Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为()A.150B.200C.225D.无法计算二.填空题7.甲、乙两人同时从同一地点出发,已知甲往东走了4,乙往南走了3,此时甲、乙两人相距____.8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD的顶点B,点A、C到直线的距离分别是6、8,则正方形的边长是______.12.如图,王大爷准备建一个蔬菜大棚,棚宽2.4m,高3.2m,长15m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积是m2.三.解答题13.如图四边形ABCD的周长为42,AB=AD=12,∠A=60°,∠D=150°,求BC的长.14.已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.勾股定理逆定理(基础)学习目标1.理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.要点梳理要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;典型例题类型一、勾股定理的逆定理1、判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=;(3),,();【变式】一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是()A.20:15:12B.3:4:5C.5:4:3D.10:8:2类型二、勾股定理逆定理的应用例3、已知:为的三边且满足,试判断的形状.例:4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?巩固练习一.选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是().A. 9,12,15B.3,4,5C.1.4,4.8,5D.4,7,52. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是().A.CD、EF、GH B.AB、EF、GH C.AB、CF、EF D.GH、AB、CD3. 下列说法:(1)在△ABC中,若a2+b2≠c2,则△ABC不是直角三角形;(2)若△ABC是直角三角形,∠C=90°,则a2+b2=c2;(3)在△ABC中,若a2+b2=c2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有().A.4个B.3个C.2个D.1个4.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是().A.1∶1∶2B.1∶3∶4C.9∶25∶26D.25∶144∶1695.已知三角形的三边长为(其中),则此三角形().A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定6.三角形的三边长分别为、、(都是正整数),则这个三角形是().A.直角三角形B.钝角三角形C.锐角三角形D.不能确定二.填空题7.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.8.已知两条线段的长分别为11和60,当第三条线段的长为时,这3条线段能组成一个直角三角形(要求三边长均为整数).9. 已知,则由此为边的三角形是三角形.10.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是_____.11.若一个三角形的三边之比为5:12:13,且周长为60,则它的面积为.12.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.三.解答题13.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=,求证:AF⊥FE.14.观察下列各式:,,,,…,你有没有发现其中的规律?请用含的代数式表示此规律并证明,再根据规律写出接下来的式子.15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?。

完整版勾股定理习题含解析

完整版勾股定理习题含解析

勾股定理习题1. 赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的 赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一 个大正方形,设直角三角形较长直角边长为 a ,较短直角边长为b ,若(a+b ) 2=21,大正方形的面积为13,则小正方形的面积为(【解答】解:如图所示:•••( a+b ) 2=21, ••• a 2+2ab+b 2=21,•••大正方形的面积为13,2ab=21 - 13=8,•••小正方形的面积为13-8=5.2.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为A . 20B . 22C . 24D . 26【解答】解:•••两条边长是连续偶数,可设另一直角边为 X ,则斜边为(x+2),根据勾股定理得:(X+2) 2 - x 2=62,解得 x=8,.・. x+2=10,•••周长为:6+8+10=24.故选C5 D . 63. 在下列四组数中,不是勾股数的一组数是(A .a=15, b=8, c=17B .a=9, b=12, c=15C .a=7, b=24, c=25D .a=3, b=5, c=7【解答】解:由题意可知,在A 组中,152+82=172=289,在 B 组中,92+122=152=225,在 C 组中,72+242=252=625,而在 D 组中,32+52工72,6, 8, 10 ② 13, 5, 12 ③ 1, 2,3④9, 40, 41⑤3, 4, 5•其中能构成直角三角形的有()组. A .2B .3C . 4D .5 【解答】解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的7. △ ABC 的三边长分别为a, b, C ,下列条件:/ C=3: 4: 5:③a 2= ( b+c ) (b - c );④a :逆定理,所以能构成直角三角形的有三组.故选B .故选 D .4. 下列各组数,可以作为直角三角形的三边长的是(2, 3, 4 B .7, 24, 25C .8, 12, 20D .5, 13, 15 【解答】解:A 、T 22+32工42,二不能构成直角三角形;••• 72+242=252,二能构成直角三角形;A .B 、C 、 ••• 82+122工202,A 不能构成直角三角形;D 、 ••• 52+132工152,A 不能构成直角三角形.故选 B .5. 下列各组数中,能构成直角三角形的是(4, 5, 6 B .1, 1, 2C .6, 8, 11 【解答】解:A 、T 42+52工62,A 不能构成直角三角形,故 A 错误;B 、T 12+12=,二能构成直角三角形,故 B 正确;••• 62+82工112,A 不能构成直角三角形,故 ••• 52+122工232,A 不能构成直角三角形,故 A . C 、 D 、 D .5, 12, 23 C 错误;D 错误.故选: B .分别以下列五组数为一个三角形的边长:① 6. ①/ A=/ B-/ C ;②/A : / B : b : c=5: 12: 13,其中能判断△ABC 是直角三角形的个数有()A . 1 个B . 2 个C . 3 个D .4 个 【解答】解;①/ A=/ B-/ C,/ A+/ B+/ C=180,解得/ B=90°,故①是直角 三角形; ②/ A : / B : / C=3:4:5, / A+/ B+/ C=180,解得/ A=45 , / B=6ff , / C=75, 故②不是直角三角形;③ ••• a 2= (b+c ) (b - c), ••• a 2+c 2=b 2,符合勾股定理的逆定理,故③是直角三角形;④ ••• a : b : c=5: 12: 13,Aa 2+b 2=c 2,符合勾股定理的逆定理,故④是直角三角 形.能判断△ ABC 是直角三角形的个数有3个;故选:C .8. 下列三角形中,是直角三角形的是(A .三角形的三边满足关系 a+b=c B.三角形的三边比为1: 2: 3 C •三角形的一边等于另一边的一半 D .三角形的三边为9, 40, 41 【解答】解:A 、不能判定是直角三角形,此选项错误;B 、 由于12+22工32,所以不是直角三角形,此选项错误;C 、D 、不能判定是直角三角形,此选项错误; 由于 92+402=412,是直角三角形,此选项正确.故选 D . 9. 一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三 个数据与其它的数据弄混了,请你帮助他找出来,是第( )组.13,12,12B . 12,12,8 C . 13,10,12D . 5,8,4 【解答】解:A 、132工122+62,错误;B 、122工82+62,错误;C 、 确; A . 132=122+52,正D . 82工52+22,错误.故选C.10.下列说法正确的有()①如果/ A+/B=/ C,那么△ ABC是直角三角形;②如果/ A:/ B:/ C=1: 2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.A. 1个B. 2个C. 3个D. 4个【解答】解:①•••/ A+/ B=/ C,且/ A+/B+/C=180,得/ C=90,:.△ ABC是直角三角形,故①正确;②设/ A=x,/ B=2x,/ C=3x,则/ A+/ B=/ C,由①知,该三角形是直角三角形,故②正确;③42=16, 62=36,显然42+42工62,不符合勾股定理的逆定理,该三角形不是直角三角形,故③正确;④符合直角三角形的判定方法,故④正确;所以4个结论都正确,故选D.11.若等边△ ABC的边长为A. 1cm2B. 2cm2C. 2cm,那么△ ABC的面积为( 3cm2D. 4cm2【解答】故选A.12.如图,四边形ABCD中,AD// BC, / ABO/DCB=90, 且BC=2AD 以ABBC DC为边向外作正方形,其面积分别为Si、S2、S3, 若S=3, 9=9,则9D. 48【解答】V S=3 , 3=9 , A AB=CD=3,过A作AE// CD交BC于E,则/ AEB=/DCB V AD // BC, A四边形AECD是平行四边形,A CE=AD AE=CD=3V/ ABC+Z DCB=90,.・./ AEB F/ABC=9O,•••/ BAE=9O,•••BE==2 V BC=2AD二BC=2BE=4 A◎二(4) 2=48,故选D.13. 一个三角形的三边的长分别是 3 , 4 , 5 ,则这个三角形最长边上的高是14.已知直角三角形两边的长为3和4 ,则此三角形的周长为【解答】解:设RtAABC的第三边长为x, ①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+77 ,15.女口图所示,AB=BC=CD=DE=1AB丄BC, AC丄CD, AD丄DE,贝U AE=16.如图,在四边形 ABCD 中,AB=1, BC=1, CD=2, DA=且/ ABC=90,则四边形ABCD 的面积是17. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是18. 等腰三角形的腰长为10,底长为12,则其底边上的高为19. 如图字母B 所代表的正方形的面积是【解答】解:由题可知,在直角三角形中,斜边的平方=169, —直角边的平方=25, 根据勾股定理知,另一直角边平方=169-25=144,即字母B 所代表的正方形的面 积是144.21. 一直角三角形的三边分别为 2、3、X ,那么以x 【解答】解:当2和3都是直角边时,则X 2=4+9=13; 4=5.故选C.20.直角三角形的两条直角边的长分别为5, 12, 则斜边上的高线的长为 为边长的正方形的面积为当3是斜边时,则X 2=9-22.如图,在△ ABC 中,AD 丄BC 于 D,AB=17,BD=15,DC=6,J 则 AC 的长为 D . 8 【解答】解:女口图,V AD 丄BC, •••/ ADB=/ ADC=90. 又 v AB=17, BD=15,DC=6 •••在直角△ ABD 中,由勾股定理得到:AD 2=AB^ - BD 2=64.在直角△ ACD 中,由勾股定理得到:AC===10即AC=1Q 故选:B.23.如图,校园内有两棵树,相距 8米,一棵树树高13米,另一棵树高7米, 一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞 __________ 。

勾股定理经典例题详解

勾股定理经典例题详解

勾股定理经典例题详解知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。

2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。

熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理经典例题详解知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。

(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。

(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2,b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;4.利用勾股定理,作出长为的线段。

2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。

熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=总结升华:有一些题目的图形较复杂,但中心思想还是化为直角三角形来解决。

如:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差或和。

举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.总结升华:利用勾股定理计算线段的长,是勾股定理的一个重要应用. 当题目中没有垂直条件时,也经常作垂线构造直角三角形以便应用勾股定理.举一反三【变式1】如图,已知:,,于P. 求证:.思路点拨: 图中已有两个直角三角形,但是还没有以BP为边的直角三角形. 因此,我们考虑构造一个以BP为一边的直角三角形. 所以连结BM. 这样,实际上就得到了4个直角三角形. 那么根据勾股定理,可证明这几条线段的平方之间的关系.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD 的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

解析:延长AD、BC交于E。

∵∠A=∠60°,∠B=90°,∴∠E=30°。

∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。

∵DE2= CE2-CD2=42-22=12,∴DE==。

∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。

(2)确定目的地C在营地A的什么方向。

思路点拨:把实际问题中的角度转化为图形中的角度,利用勾股定理求解。

解析:(1)过B点作BE米,CH=0.6+2.3=2.9(米)>2.5(米).因此高度上有米的余量,所以卡车能通过厂门.》(二)用勾股定理求最短问题4、国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.思路点拨:解答本题的思路是:最省电线就是线路长最短,通过利用勾股定理计算线路长,然后进行比较,得出结论.解析:设正方形的边长为1,则图(1)、图(2)中的总线路长分别为AB+BC+CD=3,AB+BC+CD=3图(3)中,在Rt△ABC中同理∴图(3)中的路线长为图(4)中,延长EF交BC于H,则FH⊥BC,BH=CH由∠FBH=及勾股定理得:EA=ED=FB=FC=∴EF=1-2FH=1-∴此图中总线路的长为4EA+EF=3>>∴图(4)的连接线路最短,即图(4)的架设方案最省电线.总结升华:在实际生产工作中,往往工程设计的方案比较多,需要运用所学的数学知识进行计算,比较从中选出最优设计.本题利用勾股定理、等腰三角形的判定、全等三角形的性质.举一反三【变式】如图,一圆柱体的底面周长为20cm,高AB为4cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程.解:如图,在Rt△ABC中,BC=底面周长的一半=10cm,根据勾股定理得(提问:勾股定理)∴AC===≈10.77(cm)(勾股定理).答:最短路程约为10.77cm.类型四:利用勾股定理作长为的线段5、作长为、、的线段。

思路点拨:由勾股定理得,直角边为1的等腰直角三角形,斜边长就等于,直角边为和1的直角三角形斜边长就是,类似地可作。

作法:如图所示(1)作直角边为1(单位长)的等腰直角△ACB,使AB为斜边;(2)以AB为一条直角边,作另一直角边为1的直角。

斜边为;(3)顺次这样做下去,最后做到直角三角形,这样斜边、、、的长度就是、、、。

总结升华:(1)以上作法根据勾股定理均可证明是正确的;(2)取单位长时可自定。

一般习惯用国际标准的单位,如1cm、1m等,我们作图时只要取定一个长为单位即可。

举一反三【变式】在数轴上表示的点。

解析:可以把看作是直角三角形的斜边,,为了有利于画图让其他两边的长为整数,而10又是9和1这两个完全平方数的和,得另外两边分别是3和1。

作法:如图所示在数轴上找到A点,使OA=3,作AC⊥OA且截取AC=1,以OC为半径,以O为圆心做弧,弧与数轴的交点B即为。

类型五:逆命题与勾股定理逆定理6、写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.(正确)2.原命题:对顶角相等(正确)3.原命题:线段垂直平分线上的点,到这条线段两端距离相等.(正确)4.原命题:角平分线上的点,到这个角的两边距离相等.(正确)思路点拨:掌握原命题与逆命题的关系。

解析:1. 逆命题:有四只脚的是猫(不正确)2. 逆命题:相等的角是对顶角(不正确)3. 逆命题:到线段两端距离相等的点,在这条线段的垂直平分线上.•(正确)4. 逆命题:到角两边距离相等的点,在这个角的平分线上.(正确)总结升华:本题是为了学习勾股定理的逆命题做准备。

7、如果ΔABC的三边分别为a、b、c,且满足a2+b2+c2+50=6a+8b+10c,判断ΔABC的形状。

思路点拨:要判断ΔABC的形状,需要找到a、b、c的关系,而题目中只有条件a2+b2+c2+50=6a+8b+10c,故只有从该条件入手,解决问题。

解析:由a2+b2+c2+50=6a+8b+10c,得:a2-6a+9+b2-8b+16+c2-10c+25=0,∴(a-3)2+(b-4)2+(c-5)2=0。

∵(a-3)2≥0, (b-4)2≥0, (c-5)2≥0。

∴a=3,b=4,c=5。

∵32+42=52,∴a2+b2=c2。

由勾股定理的逆定理,得ΔABC是直角三角形。

总结升华:勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中也常要用到。

举一反三【变式1】四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

【答案】:连结AC∵∠B=90°,AB=3,BC=4∴AC2=AB2+BC2=25(勾股定理)∴AC=5∵AC2+CD2=169,AD2=169∴AC2+CD2=AD2∴∠ACD=90°(勾股定理逆定理)【变式2】已知:△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),判断△ABC是否为直角三角形.分析:本题是利用勾股定理的的逆定理,只要证明:a2+b2=c2即可证明:所以△ABC是直角三角形.【变式3】如图正方形ABCD,E为BC中点,F为AB上一点,且BF=AB。

请问FE与DE是否垂直请说明。

【答案】答:DE⊥EF。

证明:设BF=a,则BE=EC=2a, AF=3a,AB=4a,∴EF2=BF2+BE2=a2+4a2=5a2;DE2=CE2+CD2=4a2+16a2=20a2。

连接DF(如图)DF2=AF2+AD2=9a2+16a2=25a2。

∴DF2=EF2+DE2,∴FE⊥DE。

经典例题精析类型一:勾股定理及其逆定理的基本用法1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。

相关文档
最新文档