大学物理课后习题答案第15章
大学物理(第二版)第十五章习题答案
第十五章习题15.1 解:介质中的折射率为n ,加入厚度为d 的薄膜,光程的改变为()19n d λ-=所以可以得到:1039958901011 1.530.0110n d λ--⨯⨯=+=+=⨯ 15.2 解:已知条件:6000A λ=,4m D =,垂直入射,两第五级明条纹中心之间的距离为4cm 。
2551022410m D D x d dλλ-=⨯==⨯ 双缝之间的距离:10325101046000100.610m=0.6mm 2410D d x λ---⨯⨯⨯===⨯⨯ 15.3 解:⑴ 双缝之间的距离为:0.2mm d =,缝与屏之间的距离为:1m D = 亮条纹距离零级明条纹中心的位置:D k x d λ=d xk D λ⇒=因为:4000A 8000A λ≤≤,所以可得:115d x k D λ==, 222.5d xk D λ==,即2.55k ≤≤ 第三级明纹:3310.21010106667A 13dx Dk λ--⨯⨯⨯===⨯第四级明纹:3320.21010105000A 14dx Dk λ--⨯⨯⨯===⨯ 第五级明纹:3330.21010104000A 15dx Dk λ--⨯⨯⨯===⨯ ⑵ 20mm x =,可以得到:dxk D λ=,510k ≤≤ 15k =, 33110.21020108000A 15dx Dk λ--⨯⨯⨯===⨯ 26k =,33220.21020106667A 16dx Dk λ--⨯⨯⨯===⨯ 37k =,33320.21020105714A 17dx Dk λ--⨯⨯⨯===⨯ 48k =,33440.21020105000A 18dx Dk λ--⨯⨯⨯===⨯59k =,33550.21020104444A 19dx Dk λ--⨯⨯⨯===⨯ 610k =,33660.21020104000A 110dx Dk λ--⨯⨯⨯===⨯ 15.4 解:设空气的折射率为1n ,氯气的折射率为2n ,两条光路的几何路程分别为:12,r r 。
【含答案】大学物理学习指导第15章
解!""#由气体状态方程U)<EA 得
<)EUA )"'!!%";++""!''"/#%%++"%''': )#!*:+"'#*>/%
"##氧分子的质量
@)J;>,18)7!''#!'+%"#'#% ):!%#+"'#7GH
由气体状态方程 得 "%#
槡 3 ) #!##<-)"!*"+%!"*+"%!:+"'/"'##+#!7=+"'#:+**;
)7!:*+"'=,/"
"*#
/)3
)7!:***+;"'=
)7!;:+"'/;>
":#
+E)
%#EA)
% #
+"!%;+"'/#%
+#<%):!7:+"'/#"U
第":章!气体动理论
%(%
四习题选解
+E ) "#@O# %
由$%式得到
第":章!气体动理论
( %'! (
大学物理下毛峰版)课后习题答案ch15+光的衍射+习题及答案
第15章 光的衍射 习题解答1.为什么声波的衍射比光波的衍射更加显著?解:因为声波的波长远远大于光的波长,所以声波衍射比光波显著。
2.衍射的本质是什么?衍射和干涉有什么联系和区别? 解:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象.其实质是由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生.而干涉则是由同频率、同方向及位相差恒定的两列波的叠加形成.3.什么叫半波带?单缝衍射中怎样划分半波带?对应于单缝衍射第三级明条纹和第四级暗条纹,单缝处波阵面各可分成几个半波带?解:半波带由单缝A 、B 首尾两点向ϕ方向发出的衍射线的光程差用2λ来划分.对应于第三级明条纹和第四级暗条纹,单缝处波阵面可分成7个和8个半波带. ∵由272)132(2)12(sin λλλϕ⨯=+⨯=+=k a284sin λλϕ⨯==a4.在单缝衍射中,为什么衍射角ϕ愈大(级数愈大)的那些明条纹的亮度愈小? 解:因为衍射角ϕ愈大则ϕsin a 值愈大,分成的半波带数愈多,每个半波带透过的光通量就愈小,而明条纹的亮度是由一个半波带的光能量决定的,所以亮度减小.5.若把单缝衍射实验装置全部浸入水中,衍射图样将发生怎样的变化?如果此时用公式),2,1(2)12(sin Λ=+±=k k a λϕ来测定光的波长,问测出的波长是光在空气中的还是在水中的波长?解:当全部装置浸入水中时,由于水中波长变短,对应='='λϕk a sin nk λ,而空气中为λϕk a =sin ,∴ϕϕ'=sin sin n ,即ϕϕ'=n ,水中同级衍射角变小,条纹变密.如用)12(sin +±=k a ϕ2λ),2,1(⋅⋅⋅=k 来测光的波长,则应是光在水中的波长.(因ϕsin a 只代表光在水中的波程差).6.单缝衍射暗纹条件与双缝干涉明纹的条件在形式上类似,两者是否矛盾?怎样说明? 解:不矛盾.单缝衍射暗纹条件为kk a 2sin ==λϕ2λ,是用半波带法分析(子波叠加问题).相邻两半波带上对应点向ϕ方向发出的光波在屏上会聚点一一相消,而半波带为偶数,故形成暗纹;而双缝干涉明纹条件为λθk d =sin ,描述的是两路相干波叠加问题,其波程差为波长的整数倍,相干加强为明纹.7.光栅衍射与单缝衍射有何区别?为何光栅衍射的明纹特别明亮而暗区很宽?解:光栅衍射是多缝干涉和单缝衍射的总效果.其明条纹主要取决于多缝干涉.光强与缝数2N 成正比,所以明纹很亮;又因为在相邻明纹间有)1(-N 个暗纹,而一般很大,故实际上在两相邻明纹间形成一片黑暗背景.8. 试指出当衍射光栅的光栅常数为下述三种情况时,哪些级次的衍射明纹缺级? (1)2a b a +=;(2)3a b a +=;(3)4a b a +=解:由光栅明纹条件和单缝衍射暗纹条件同时满足时,出现缺级.即⎩⎨⎧=''±==±=+)2,1(sin ),2,1,0(sin )(ΛΛk k a k k b a λϕλϕ 可知,当k aba k '+=时明纹缺级. (1)a b a 2=+时,⋅⋅⋅=,6,4,2k 偶数级缺级; (2)a b a 3=+时,⋅⋅⋅=,9,6,3k 级次缺级; (3)a b a 4=+,⋅⋅⋅=,12,8,4k 级次缺级.9.若以白光垂直入射光栅,不同波长的光将会有不同的衍射角。
大学物理第15章习题解答
第十五章习题解答1选择题:⑴ B ;⑵ C ;⑶ B ;⑷ B 。
2填空题:⑴ 线偏振光(或完全偏振光,或平面偏振光),光(矢量)振动,偏振化(或透光轴);⑵ 完全偏振光(或线偏振光),垂直; ⑶ ; ⑷ 波动,横波;3计算题:1 自然光入射到两个重叠的偏振片上.如果透射光强为,(1)透射光最大强度的三分之一,(2)入射光强的三分之一,则这两个偏振片透光轴方向间的夹角为多少? 解:(1) max 120131cos 2I I I ==α 又 20max I I =∴ ,601I I = 故 'ο11124454,33cos ,31cos ===ααα. (2) 0220231cos 2I I I ==α ∴ 'ο221635,32cos ==αα2 投射到起偏器的自然光强度为I 0,开始时,起偏器和检偏器的透光轴方向平行.然后使检偏器绕入射光的传播方向转过30°,45°,60°,试分别求出在上述三种情况下,透过检偏器后光的强度是I 0的几倍?解:由马吕斯定律有:0o 2018330cos 2I I I ==, 0ο2024145cos 2I I I ==,0ο2038160cos 2I I I == 所以透过检偏器后光的强度分别是I 0的38,14,18倍。
3 使自然光通过两个偏振化方向夹角为60°的偏振片时,透射光强为I 1,今在这两个偏振片之间再插入一偏振片,它的偏振化方向与前两个偏振片均成30°,问此时透射光I 与I 1之比为多少?解:由马吕斯定律:ο20160cos 2I I =80I =,32930cos 30cos 20ο2ο20I I I == ∴ 194 2.25I I == 4 一束自然光从空气入射到折射率为1.40的液体表面上,其反射光是完全偏振光.试求:(1)入射角等于多少? (2)折射角为多少?解:⑴ 0tan 1.401i =,∴ 'ο02854=i⑵ οο'0903532i γ=-=5 自然光从空气中射向介质,测得布儒斯特角058i =.(1)求介质的折射率和折射角.(2)如果实验在水中进行,水的折射率为 1.33n =水,求这种情况下的布儒斯特角.(3)若介质是透明的,当光从介质射向与空气的分界面时,起偏角是多少?(4)若从空气中射向介质的是振动方向在入射面内的偏振光,仍以058i =入射,问反射光是什么性质的光?解:(1)00tan tan 58 1.6n i ===折射角:οο09032i γ=-=(2)0 1.6tan 1.2031.33i ==,ο050.26i = (3)01tan 0.6251.6i ==,ο032i = (4)无反射光。
大学物理答案第15章
第十五章 机械振动15-1 已知一简谐振动的振幅m 1022-⨯=A ,周期T =0.5s, 初相4/πϕ=.试写出振动方程;并作出该振动的x-t ,v -t ,a-t 曲线.分析 振动方程的基本形式为)cos(ϕω+=t A x .通过作曲线, 进一步了解v 、a表达式的意义以及x 、v 、a 间的相位关系.解 rad/s 4 rad/s 5.022πππω===T振动方程为m)4/4cos(1022ππ+⨯=-t xx15-2 一弹簧支持的椅子构成在太空测量人体失重状态下质量的装置——人体称重器.飞船进入空间轨道时,宇航员坐在椅子上测出振动周期.(1)如m '为宇航员的质量,m 为人体称重器中的有效质量(如椅子等),试证明mkT m -='224π其中T 是振动周期,k 是弹簧的劲度系数;(2)现k =605.6 N/m ,椅子空着时的振动周期T =0.9015 s, 求有效质量m ;(3)在太空,宇航员坐在椅子上, 测出振动周期为2.299s, 求宇航员在失重状态下的质量.分析 当宇宙飞船在空间轨道上绕地球旋转自由运行时,地球对飞船及飞船上所有物体的引力就是使它们作圆周轨道运动的向心力,于是飞船及飞船上所有物体如果处于相对静止状态,相互之间就不存在作用力,就不能用地面上通常使用的质量或重量测量仪器进行测量.考虑到无外力作用时,弹簧振子振动周期决定于弹簧劲度系数以及物体质量,如果已知弹簧劲度系数,通过测量振动周期可测出物体质量.解 (1) 弹簧振子系统振动周期为km m T +'=π2 (1)宇航员的质量为 m kT m -='224π(2) 椅子空着时,0='m ,由(1)式得kg 66.12kg 6.605142.349015.042222=⨯⨯==πkT m(3) kg 50.68kg 66.12kg 142.34299.26.60542222=-⨯⨯=-='m kT m π15-3 一质量为0.20kg 的质点作简谐振动,其振动方程为 x =0.60cos(5t -π/2), 其中x 以m 为单位, t 以s 为单位.求:(1)质点的初速度;(2)质点在正向位移一半处所受的力.分析 物体振动速度tx d d =v , 物体所受恢复力x m ma F 2ω-==,方向指向平衡位置.解 (1)据已知)2/5(60.0π-=t x ,得t t t A tx 5cos 3)2/5sin(560.0)sin(d d =-⨯-=+-==πϕωωv当t=0时,得 v 0=3 m/s(2) 正向最大位移一半处,x =0.30 m ,所受的力为N 5.1N 3.052.022-=⨯⨯-=-==x m ma F ω方向指向平衡位置.15-4 一物体沿x 轴作简谐振动,振幅为0.12m ,周期为2s ,当t =0时,位移为0.06m ,且向x 轴正方向运动.求(1)该物体的振动方程;(2)t =0.5s 时,物体的位置、速度、加速度;(3)在x =-0.06m 处,且向x 轴负方向运动时,物体的速度、加速度,以及物体从这一位置回到平衡位置所需的时间.分析 求解振动方程的难点是确定振动物体的初相ϕ.初相取决于计时起点t =0时物体的位置和速度.确定初相可用三角函数法或旋转矢量法.解 (1) 已知振幅为A = 0.12 m ,角频率为πππω===222Trad/s ,t = 0时初始位置和初速度分别为x 0=A cos ϕ =0.06 (1)v 0=ϕωsin A - >0 (2)从(1)式得2112.006.0cos 0===Ax ϕ得 33ππϕ或-=从(2)式得0sin <ϕ,所以应取3/πϕ-=此外,由t = 0时初始位置和初速度可以确定其旋转矢量如图15-4所示,即3/πϕ-=.振动方程为m)3/cos(12.0ππ-=t x(2) t =0.5s 时, x =)3/cos(12.0ππ-t =0.104 mv m/s188.0)3/sin(12.0-=--=πππt22m/s03.1)3/cos(12.0-=--=πππt a(3) 在1x =-0.06 m 处,物体向x 轴负向运动时,设1t t =,则06.0)3/cos(11-=-=ππt A x m (3)v 1)3/sin(1ππω--=t A < 0 (4)从(3)式得 2112.006.0)3/cos(11-=-==-Ax t ππ解得 ππππππn n t 2322323/1+-+=-或 (n =0,1,2…)又从(4)式得 0)3/sin(1>-ππt 应取 ππππn t 2323/1+=- (n =0,1,2…)故 )12(1+=n tm/s 592.0 m/s 326.0211=-= a v设回到平衡位置时2t t =,则0)3/cos(22=-=ππt A x (5)v 2)3/sin(2ππω--=t A >0 (6)从(5)式得 ππππn t 2233/2+=-或ππππn t 223/2+=- (n =1,2…)从(6)式得 )3/sin(2ππ-t <0 应取 ππππn t 2233/2+=- (n =1,2…)65)12(2++=n t回到平衡位置所需时间 s 83.0s 6512==-=t t t ∆15-5 一个质点作简谐振动,其振动方程为x =0.24cos(πt /2+π/3)m ,其中x 以m 计, t 以s 计.试用旋转矢量法求出质点由初始状态运动到 x =-0.12m, v <0状态所需的最短时间.分析 根据振动方程,当0t =0时旋转矢量A 与Ox 于x =-0.12m, v <0状态时,A 32π,如图15-5所示.因此,从0t 位置转到新位置偏转3/π解 如图15-5所示, t '时刻的相位为πϕ32=A 沿逆时针方向从0t 位置转过角度3/π所需的时间为s 32231=÷ππ15-6 作简谐振动的单摆在一个周期内的几个运动状态如图15-6所示.(1)若以(a )图所示的状态为计时起点;(2)若以(b )图所示的状态为计时起点,问单摆的初相位和其它各图所示状态的相位各为何值?分析 应从本题得出的结论是: 初相与计时起点(即初始条件)有关; 相位与与计时起点无关而与振动物体的瞬时状态有关.解 (1)以图(a )状态为计时起点,t =0时m m cos θϕθθ==得0=ϕ,因此对图(b)有0)cos(=+=ϕωθθt m (1)0)sin(d d <+-=ϕωωθθt tm(2)从(1)式得 2πϕω±=+t从(2)式得 )s i n (ϕω+t >0 所以图(b)的相位应取 2)(πϕω=+t同理,对图(c) πϕω=+)(t 对图(d)3)(πϕω=+t0cos ==ϕθθm (3)0sin d d <-=ϕωθθm t(4)(3)式(4)式联立,解得 2πϕ=同理,对图(c) πϕω=+)(t 对图(d) 23)(πϕω=+t对图(a) 0)(=+ϕωt15-7 一物块在水平面上作简谐振动,振幅为0.1m ,在距平衡位置0.06m 处速度为0.4m/s ,(1)求振动周期;(2)当速度为±0.12m/s 时,位移为多少?(3)若有另一物体置于该振动物块之上,当物块运动至端点时正好滑动,问摩擦系数μ为多大?分析 当所讨论问题涉及物体正好要滑动的条件时,由于物体尚未滑动,所受摩擦力仍为静摩擦力,静摩擦力方向与物体运动趋势方向相反.解 (1)设物块的振动方程为)cos(1.0ϕω+=t x物块位于06.01=x m 时, 速度v 1= 0.4m/s, 即x 1=A )cos(ϕω+t =0.06 m (1) v 1=)sin(ϕωω+-t A =0.4 m/s (2)以上两式平方相加, 代入A =0.1m ,解得 5=ωrad/s 26.12==ωπT s(2)由 v 2=)sin(ϕωω+-t A =±0.12 得 24.0)sin( =+ϕωt971.0)(sin 1)cos(2±=+-±=+ϕωϕωt t 则位移为x 2=0.1)cos(ϕω+t =±9.7×10-2m(3)物块运动至端点时正好物体开始滑动,即最大恢复力等于最大静摩擦力,物块受力如图15-7所示,因最大静摩擦力mg F μ=f ,最大恢复力A m F 2max ω=,得mg A m μω=226.08.91.05 22=⨯==gA ωμ15-8 一个轻弹簧在60N 的拉力作用下可伸长30cm , 将一物体悬挂在弹簧下端,并在它上面放一小物体,它们的总质量为4kg , 待其静止后再把物体向下拉10cm , 然后释放. 问(1)此小物体是停在振动物体上还是离开它? (2)如果使放在振动物体上的小物体与振动物体分离, 则振幅A 需满足什么条件? 二者在何位置开始分离?分析 根据胡克定律,由弹簧在外力作用下的形变量可以求出弹簧的劲度系数.当两物体脱离接触时,它们之间的正压力等于零,以此为条件可以判断小物体是否停在振动物体上. 解 (1) 根据胡克定律,得N/m 200N/m 3.060Δ===lF k由定义得 rad/s50rad/s 4200===mk ω弹簧、物体和小物体组成一个弹簧振子系统,把物体下拉10cm 后释放,故该弹簧振子的振幅为A =0.1m .设小物体质量为m ,小物体随系统一起运动,最大加速度为A a 2ω=,小物体受力情况如图15-8所示,当达最高点时,所受物体的正压力有最小值,即Am ma F mg N 2ω==+ (1)当A =0.1m 时,得 N 2.192=-=-=kA mg A m mg F N ω 即F N > 0 ,因而小物体仍停留在振动物体上.(2) 两物体脱离接触条件为0N =F ,代入(1)式得m196.0m 508.92==='ωgA即振幅大于0.196m ,两物体将在平衡位置上方分离,分离的位置即在0.196m 处.15-9 如图15-9(a )所示,在一个倾角为θ的光滑斜面上,固连一原长为L ,劲度系数为k ,质量忽略不计的弹簧,弹簧与质量为m 的重物相连,求重物作简谐振动的平衡位置和周期.分析 平衡位置是系统所受合外力为零的位置. 在建立振动方程时,一般都把取平衡位置为坐标原点.放在斜面上的弹簧振子处于静止状态时,物体所受弹簧的弹性力与重力沿斜面向下的分量大小相等,方向相反.解 弹簧和物体组成一个弹簧振子系统.物体受力情况如图15-9(b )所示.设在平衡位置弹簧的伸长量为0x ,有0sin 0=-kx mg θ 解得 k mg x θsin 0=即处于平衡位置时弹簧长度为0x L +. 根据定义,弹簧振子系统作简谐振动的角频率为mk =ω周期为 km T π2=15-10 如图15-10(a)所示,密度计玻璃管的直径为d ,浮在密度为ρ的液体中.若在竖直方向轻轻推一下,任其自由振动,试证明:若不计液体的沾滞阻力,密度计的运动是简谐振动;设密度计的质量为m , 试求振动周期.分析 若物体运动为简谐振动,应该具有如下特征:物体所受合外力与位移成正比而方向相反,即加速度与位移成正比而方向相反;或者位移是时间的余弦F F(a) (b)图15-9函数或正弦函数.解 密度计受力分析如图15-10(b)所示.设密度计截面积为S , 当处于平衡状态时,设浸入水中部分高度为h , 浮力则为ghS F ρ=B ,有0=-ghS mg ρ(1) 取平衡位置为坐标原点,向下为x 轴正向,当密度计向下位移为x 时,有22d d )(t xm S x h g mg =+-ρ (2) 由(1)和(2)式得gxS t x m ρ-=22d d 即加速度与位移成正比而方向相反,因此运动为简谐振动,且有g m dT mg d mgS ρππρρω4 2===15-11 如图15-11,劲度系数为k 的轻弹簧上端与质量为m 的平板相连,下端与地固连.另一质量为m '的物体,从h 高处自由落下,与平板发生完全非弹性碰撞后一起运动. 若以平板开始运动为计时起点,取向下为坐标正向,求振动的周期,振幅和初相位.分析 m '与m 发生完全非弹性碰撞后一起运动,与轻弹簧组成振动系统, 平衡位置是(m '+ m )所受合外力为零的位置,并选取为坐标原点.以发生碰撞后平板开始运动为计时起点,此时平板m 的坐标就是系统的初位移0x ,碰后(m '+ m )的共同速度v 0就是系统的初速度,而且可以依据碰撞中动量守恒求出.解 m '自由下落, 以gh 2的速度与m 发生完全非弹性碰撞,设碰后m '+ m 的共同速度为v 0,方向向下,应用动量守恒定律,得)(2m m gh m +'='v 0v 0mm gh m +''=2m '、m和弹簧组成振动系统,设m '+m 所受合外力为零时,弹簧的压缩量为x ∆,此位置是系统的平衡位置,则有0Δ)(=-+'x k g m m (1)取系统的平衡位置为坐标原点,向下为x 轴正向,当m '+m 位移为x 时,有d d )()()(22tx m m x x k g m m +'=+-+'∆ (2)由(1)和(2)式得0d d 22=+'+x mm k t x且有 km m T mm k +'=+'=πω2取m '与m 相碰的瞬间为振动的初始时刻t =0,有mm gh m kmg x +''=-=2 00v即 kmg A x -==ϕcos 0 (3)mm gh m A +''=-=2sin 0ϕωv (4)(3)与(4)式联立,得振动的周期和初相位分别为)(212020gm m kh kg m x A +'+'=⎪⎭⎫ ⎝⎛+=ωvgm m kh mm x )(2tan 0+''=-=ωϕv又因ϕ , 0 , 000><v x 在第三象限,则)(2 tanarc πϕ++''=gm m kh mm15-12 弹簧下端挂一物体后,弹簧伸长量为2108.9-⨯m , 若令物体上下振动,(1)求振动周期;(2)使其在平衡位置上方0.1m 处由静止开始运动,求振幅、初相及振动方程.(3)使其在平衡位置以0.8m/s 向上的初速度开始运动,求振幅、初相及振动方程.分析 计算结果表明,同一系统在不同初始条件下的振动方程不同. 解 (1)设挂上物体达平衡时弹簧的伸长量为x ∆, 根据胡克定律和平衡条件有mgx k =∆由定义得 10===xgmk ∆ω rad/s 63.02==gx T ∆πs(2)如图15-12所示,取平衡位置为坐标原点, 向上为x 轴正向.初始条件为: t =0时, x 0=0.1m v 0=0,即1.0cos 0==ϕA x (1)0sin 0=-=ϕωA v (2) 由(1)和(2)式联立解得m 1.01.022020==⎪⎭⎫ ⎝⎛+=ωv x A0=ϕ振动方程为 t x 10cos 1.0= m(3) 初始条件为:t =0时,x 0=0 v 0=0.8,即cos 0==ϕA x (3)08.0sin 0>=-=ϕωA v (4)由(3)和(4)式联立解得A =2020⎪⎭⎫ ⎝⎛+ωv x 0.08m从(3)式得 2πϕ=或 23πϕ=从(4)式得 0sin <ϕ 所以取 23πϕ=振动方程为 )2310cos(08.0π+=t x m15-13 如图15-13(a )所示的弹簧,其一端固定在天花板上,另一端挂着质量都是1.0kg 的两个物体A 和B .当物体静止时,弹簧伸长量为2108.9-⨯m , 如果物体B 突然脱落掉下,不计弹簧质量,(1)求物体A 的振动周期;(2)若从物体B 脱落时开始计时,求物体A 的振幅、初相和振动方程.分析 虽然弹簧下悬挂着两物体,但由于物体B 脱落,振动系统实为弹簧和 物体A 组成. 据题意, 物体B 脱落之时t=0,因此物体A 的位置为系统的初始位置,且物体B 从静止状态脱落,系统初速度为0.解 物体B 脱落之前,两个物体A 和B 处于重力和弹簧的弹性力作用下的平衡状态,弹簧伸长量为m 108.9Δ2-⨯=l ,则l k mg Δ2=N/m200N/m 108.98.912Δ22=⨯⨯⨯==-lmg k物体B 脱落后,物体A 和弹簧组成弹簧振子系统,设平衡位置处弹簧伸长量为0l ,则 00=-kl mg (1) 取平衡位置为坐标原点,向下为x 轴正向,如图15-13(b )所示,当物体A 位移x 时,应用牛顿第二定律,得220d d )(tx ml x k mg =-- (2)由(1)和(2)式得22d d tx mkx =-由定义得 rad/s2100.1200===mk ω s44.02==ωπT0=t 时,物体B 脱落,有m 109.4ΔΔ200-⨯==-=-=kmg kmg l l l x即 m 109.4cos 20-⨯==ϕA x (3) 0sin 0=-=ϕωA v (4)(3)和(4) 式联立解得 2220109.4)(-⨯=+=ωv x A m从(3)式0=ϕ,满足(4)式, 所以 0=ϕ振动方程为 t x 210cos 109.42-⨯= m讨论: (1)我们现在是取向下为x 轴正向,如果取向上为正,则初相为π,振动方程有所不同.这就是解题中强调要给出坐标取向的理由.(2)如果A 、B 质量不等,例如A B m m 2=,会有不同的l Δ值,则初始条件0x 不同,将导致振动特征参量的改变.15-14 如图15-14(a )所示,一质量可忽略的盘挂在劲度系数为k 的轻弹簧之下,一质量为m 的物体自h 高处自由下落至盘中,并与盘粘在一起作简谐振动. 设m =0.1kg ,k =4.9 N/m ,h =0.3m ,若以物体刚落至盘中时为计时起点,求系统的振动方程.解 如图15-14(b), 弹簧、质量为m 的物体和盘组成振动系统.取平衡位置为坐标原点, 向上为x 轴正向.平衡时弹簧伸长为0l l-,平衡方程为)(0=--l l k mg(1)当盘的位移为x 时,应用牛顿第二定律,得220d d )(tx ml x l k mg=-+- (2)由(1)和(2)式,得 22d d tx mkx=-由定义得71.09.4===mk ω rad/s质量为m 的物体与盘相碰时, t =0,弹簧伸长量为m 2.0m 9.48.91.0k0=⨯-=-=mg x相碰时,物体下落速度为gh 2,忽略盘质量,应用动量守恒定律,碰后物与盘的共同速度方向向下,大小为m/s 3.2m/s 3.08.922=⨯⨯==gh v即 x 0=ϕcos A =0.2 m (3)ϕωsin 0A -=v <0 (4)(3)和(4)式联立解得220)(ωv +=x A =0.4 m从(3)式得21cos 0==Ax ϕ,3πϕ±=.从(4)式得0sin >ϕ,所以应取3πϕ=振动方程为 )37cos(4.0π+=t xm15-15 单摆长为l ,小球质量为m ,带有电荷+q ,悬挂在场强大小为E 、方向由左向右的均匀电场中,如图15-15(a )所示.(1)求小球处在平衡位置时悬线与竖直向下方向所成的角;(2)假设单摆对平衡位置的偏角很小,求单摆的周期.分析 由于带电小球受到均匀电场的电场力作用,合外力为零的平衡位置将与铅垂位置有一偏角.解 (1)如图15-15(b )所示, 小球受重力m g 、静电力E q 和张力F T 作用,设平衡位置偏角为0θ,则0cos 0T =-θF mgsin 0T =-qE F θmg qEarctan 0=θ (1) (2)当摆线从平衡位置偏离θ角时,与铅垂位置偏角为)(0θθ+,应用牛顿第二定律,得小球切向运动微分方程为2220200d d d )(d )sin()cos(tmltmlmg qE θθθθθθθ=+=+-+ (2)由(1)式可得0tan θmg qE =代入(2)式,得2200d d ]cos )sin(sin )[cos(cos tmlmg θθθθθθθθ=+-+应用三角函数公式,得θθθsin cos d d 022l g t-=当θ很小时,θθ≈sin,得θωθθθ222cos d d -=-=l g t表明角加速度与角位移成正比,且方向相反,因此小球作简谐振动,并得222222222 cos Eq gm ml T mlEq gm l g +=+==πθω15-16 劲度系数分别为1k 和2k 的两根弹簧串在一起,竖直地悬挂着,下面挂一质量为m 的小球,作成一个在竖直方向振动的弹簧振子.试求其振动周期.分析 这是两根弹簧串联(首尾相连)的问题.处理这类连接体问题仍要用隔离物体法.当两弹簧质量均可忽略时,无论处于运动或静止状态,两弹簧中的弹性力相等,并等于相互作用力. 解 两根串联弹簧和小球组成振动系统. 隔离物体,对小球作受力分析如图15-16所示.取平衡位置为坐标原点,向下为x 轴正向.设平衡时弹簧1的伸长量为10x ,弹簧2的伸长量为20x ,小球受力平衡方程为101=-x k mg (1)两弹簧连接处相互作用力等大而反向,即0202101=-x k x k (2)小球相对于平衡位置下移x 时,设弹簧1伸长量为1x ,弹簧2伸长量为2x ,应用牛顿第二定律,得2211d d tx mx k mg =- (3)两弹簧连接处相互作用力等大而反向,即2211x k x k =,因201021x x x x x ++=+,得 )(20102121x x x k k k x +++=代入(3)式得 22212101d d )(tx mx k k k x k mg =++- (4)由(1)和(4)式,得222121d d tx mx k k k k =+-表明加速度与位移成正比,且方向相反,因此小球作简谐振动,并得)(2 )(21212121k k k k m T k k m k k +=+=πω15-17 两弹簧劲度系数分别为1k =1N/m , 2k =3N/m .在光滑的水平面上将此二弹簧分别连接到质量为m =0.1kg 的物体的两端,弹簧的其余两端分别固定在支柱1P 及2P 上,如图15-17所示.今使物体有一向右初位移m10320-⨯=x ,向右初速度m/s10402-⨯=v ,(1)试证物体作简谐振动;(2)求振动方程(设物体在振动中,两弹簧始终处于被拉伸状态).分析 当物体运动时,两弹簧的形变量大小相同,并等于物体的位移量. 解 以物体为研究对象, 受力如图15-17所示. 设平衡时两弹簧伸长量分别为1l 、2l ,有2211l k l k = (1) 取平衡位置为坐标原点,向右为x轴正向.当物体向右位移为x 时,应用牛顿第二定律,得221122d d )( )(tx mx l k x l k =+-- (2)由(1)和(2)式得2221d d )(-tx mx k k =+由定义,得 r a d /s102rad/s 1.0421==+=mk k ω已知t =0时, m/s 1040 m 1032020--⨯=⨯=v x即 ϕcos 0A x = = m 1032-⨯ (3)v 0= ϕωsin A - >0 (4)(3)和(2)式联立,解得220)(ωv +=x A =2×10-2m从(3)式得23cos 0==Ax ϕ,6πϕ±=,从(4)式得ϕsin <0,则应取6πϕ-=所以振动方程为 m )6102cos(1022π-⨯=-t x15-18 已知某简谐振动的振动曲线如图15-18(a),试求此简谐振动的振动方程.分析 振动曲线是振动物体位移x 与时间t 的关系曲线.从振动曲线上可得出振幅和初始条件.由图15-18(a)可以看出,当t 稍大于零时,物体将向x 轴负向运动,所以物体初速度v 0< 0.由旋转矢量图可以比较容易地确定振动的角频率,即旋转矢量1s 内转过的角度便是角频率.解 由图15-18(a)看出,A = 2 m ,32πϕ=.t =1s 时的位移和速度分别为)cos(1ϕω+=t A x = 0 (1)v 1= )sin(ϕωω+-t A <0 (2)(1)式给出cos )(ϕω+t = 0,得2)(πϕω=+t ,显然满足(2)式,即为1s 时的相位.旋转矢量图如图15-18(b)所示,t =0时的旋转矢量为)0(=t A ,可以看出,1s 内A 沿逆时针方向转过的角度即角频率为rad/s61123ππππω=++=振动方程为 )32611cos(2ππ+=t xm15-19 (1)、(2)两个简谐振动的周期相同,振动曲线如图15-19.求(1)、(2)两个简谐振动的相位差. 分析 根据振动曲线可以判断指定点的相位.若两振动的相位差012>-ϕϕ,通常说,振动2的相位比振动1超前或振动1的相位比振动2落后.解 从图15-19知,振动(1)的初始条件是10cos ϕA x ==0 (1)v 0= 0sin 1>-ϕωA (2)由(1)式得 21πϕ±=由(2)式得 0sin 1<ϕ 则振动(1)的初相应取 21πϕ-=振动(2)的初始条件是20cos ϕA x = =A (3)v 0= 2sin ϕωA -=0 (4)由(3)式得02=ϕ,满足(4)式,即为振动(2)的初相.因两振动的角频率相同, 所以振动(1)与振动(2)相位差为2π-, 且振动(1)比振动(2)相位落后2π.15-20 一质量为0.1kg 的物体作振幅为0.01m 的简谐振动,最大加速度为0.042m/s .试求(1)振动的周期;(2)总的振动能量;(3)物体在何处时,其动能和势能相等?分析 作简谐振动的弹簧振子系统机械能守恒, 动能和势能都随时间周期变化且相互转换,这是系统运动过程中只有重力、弹性力等保守力作功,外力和非保守内力不作功的条件下才成立的.实际的振动系统起码要受到阻力作用, 因而必定有能量的损耗,系统机械能不守恒.解 (1)由A a m 2ω= 得s 14.3s 04.001.022===ππma A T(2)总振动能量为J102J 01.004.01.02121215-m22⨯=⨯⨯⨯===A maAm E ω(3)设动能和势能相等时, 物体距平衡位置x 远, 则 2P 21kx E =又由 mk E E E ===2k P , 21ω得 m 1007.7m 04.01.001.010235--⨯=⨯⨯⨯==mma EA x15-21 质点作简谐振动,已知振动频率为ν, 则振动动能变化的频率为多少?当其位移为振幅的一半时,其动能为总能量的几分之几?分析 只要大致勾画出k E -t 和x-t 曲线轮廓,便可得出动能变化频率与振动频率间关系.解 振动动能为)]2(2cos 1[41 )2(sin 2122222k t A m t A m E πνωπνω-==所以振动动能变化频率为ν2,k E -t 曲线如图15-21所示.当 A x 21=时, 振动势能为)21(41)2(2122p kA A k E ==此时振动动能为)21(43)21(4121222P k kA kA kA E E E =-=-= 即为总能量的3/4.15-22 两同方向简谐振动,其振动方程分别为)4110cos(106, )4310cos(1052221ππ+⨯=+⨯=--t x t x式中x 以m 为单位,t 以s 为单位.(1)求合振动的振幅和初相;(2)若另有一同方向简谐振动)10cos(10723ϕ+⨯=-t x ,问 ϕ为何值时,合振动 31x x +的振幅为最大; 又 ϕ为何值时,合振动 32x x +的振幅为最小?(3)用旋转矢量法表示(1)、(2)的结果.分析 先体会给出的两个振动方程,哪里体现了同方向?哪里体现了同频率?作两个同方向同频率振动合成,最简单的方法是旋转矢量法(不妨也尝试一下解析法),只要画出了合成矢量,简单的几何关系便给出合振动的振幅及初相.本题的另一部分是讨论振动加强减弱条件,这为后面讨论机械波、光波的干涉加强减弱作舖垫.解 (1)如图15-22,两矢量间夹角为2π所以合振动振幅m 107.81 m106522222221--⨯=⨯+=+=A A A合振动初相8484465 tanarc 0'=+=πϕ(2) 合振动A 再与第三个振动合成.据振动叠加条件, πϕϕk 21±=-时合振动有极大值,即ππϕk 243±=(k =0,1,2…)当πϕϕ)12(1+±=-k 时合振动有极小值, 即ππϕ)12(43+±=k (k =0,1,2…)15-23 有两个同方向同频率的简谐振动,其合振动的振幅为0.2m ,相位与第一振动的相位差为π61,若第一振动的振幅为1103-⨯m ,用旋转矢量法求第二振动的振幅及第一、第二两个振动的相位差.分析 本题与上题相反, 为已知合振动求分振动. 解 作旋转矢量如图15-23所示,由几何关系得m1.030cos 212122=︒-+=AA A A A再由)cos(2122122212ϕϕ-++=A A A A A 解得20)cos(1212πϕϕϕϕ=-=-15-24 示波管的电子束受到两个互相垂直的电场的作用,若电子在两个方向上的位移分别为t A x ωcos =和)cos(ϕω+=t A y .求在0=ϕ、30=ϕ、90=ϕ各种情况下,电子在荧光屏上的轨道方程,并分别说明电子沿轨道的运动方向.分析 这是两个频率相同、振动方向相互垂直简谐振动的合成. 解 轨道方程为)(sin )cos(21221221222212ϕϕϕϕ-=--+A A xy Ay Ax因 A A A ===-2112 ϕϕϕϕϕ2222sin cos 2A xy y x =-+当0=ϕ时,得x=y ,为一过原点的直线.说明电子沿直线作往返运动.当 30=ϕ时,得 222413Axy y x =-+为一椭圆,且运动方程为)30cos(cos+==t A y t A x ωω当 90=t ω时,电子位于)21,0(A -处,此后瞬间x <0, y <0,电子位于第三象限内,表明电子顺时针转动.当 90=ϕ时,得 222A y x =+ 为一圆.且运动方程为)90cos(cos+==t A y t A x ωω当0=t ω时, 电子位于)0, (A 处, 此后瞬间x >0, y <0,电子位于第四象限内, 表明电子仍顺时针转动.。
物理第十五章电流和电路单元练习(包含答案)
物理第十五章电流和电路单元练习一、单选题1.将两只相同的气球在衣服上摩擦后,就可以让一只气球在另一只气球上方漂浮,对此现象的解释正确的是()A.两只气球带同种电荷 B.两只气球带异种电荷C.摩擦可以创造电荷D.带电体能吸引轻小物体2.通常情况下,属于导体材料的一组是()A.铜和玻璃B.银和陶瓷C.铁和橡胶D.铝和盐水3.如图所示,一根支在支架上的塑料吸管,能在水平面内自由转动。
用餐巾纸摩擦吸管使其带电,将丝绸摩擦过的玻璃棒靠近带电吸管的一端,吸管被吸引,说明餐巾纸在与吸管摩擦的过程中()A.失去电子带负电B.失去电子带正电C.得到电子带正电D.得到电子带负电4.如图所示为宾馆房间取电房卡装置。
将房卡插入槽中,房间内的用电器才能使用。
图中装置的作用相当于电路中的( )A.用电器B.开关C.导线D.电源5.电源在电路中的作用是()A.提供电流B.提供自由电子C.提供电压D.既提供电压,也提供电流6.在如图的电路中,将电键闭合时,可能发生的现象是()A.L1、L2都不发光B.L1、L2同时发光C.只有L1发光D.只有L2发光7.物理实验室里投影仪的光源是强光灯泡,发光时必须用电风扇给予散热。
为了保证灯泡不被烧坏,要求:电风扇先启动后,灯泡才能发光;电风扇不转,灯泡不能发光。
图所示电路中符合以上要求的是()A. B.C. D.L电流的是()8.下列四个电路中,电流表能测量通过灯1A. B. C. D.9.某同学用一个双量程的电流表探究串联电路中的电流规律,当把电流表接在图甲所示a 处与b 处时,指针位置分别如图乙和丙所示,下列说法正确的是( )A.电路中a 处与b 处的电流大小不相等B.乙图中电流表的示数要大一些C.两次使用的量程不一样,乙图使用的是0~3A 的量程D.两次使用的量程不一样,丙图使用的是0~3A 的量程10.如图所示,电源两端电压恒定,闭合开关,发现灯泡1L 比2L 暗,则( )A.1L 的实际功率比2L 的大B.通过1L 的电流比2L 的小C.1L 的电阻比2L 的小D.若1L 烧断,则2L 两端的电压变大二、多选题11.下列现象能说明物体带了电荷的是( )A .靠近带负电的泡沫小球相吸引B .接触不带电的验电器金属箔张开C .靠近带正电的泡沫小球相排斥D .靠近不带电的泡沫小球相吸引12.有甲、乙、丙、丁四个轻质小球,已知甲吸引乙,丙吸引甲,丁排斥丙.如果丁带正电,则下列说法中错误..的是( )A.这四个轻质小球中,可能有两个不带电的B.如果甲不带电,则乙一定带负电C.如果四个轻质小球都带电,则甲一定带负电D.如果乙不带电,则甲一定带负电13.把餐巾纸摩擦过的塑料吸管放在支架上,吸管能在水平面自由转动,如图所示,手持带负电的橡胶棒,靠近吸管 端, 端会远离橡胶棒,实验中( )A.吸管不带电B.吸管带正电C.摩擦时,吸管得到电子D.与吸管摩擦的餐巾纸失去电子14.在常温干燥的情况下,下列餐具是绝缘体的是()A.塑料筷子 B.陶瓷盘 C.不锈钢勺 D.玻璃果盘15.将两个不同的电极插入水果就构成了水果电池。
张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 电磁感应)【圣才出品】
第15章 电磁感应15.1 在通有电流I =5 A 的长直导线近旁有一导线段ab ,长l =20 Cm ,离长直导线距离d =10 cm (图15-1)。
当它沿平行于长直导线的方向以速度v =10 m /s 平移时,导线段中的感生电动势多大?a,b哪端的电势高?图15-1解:(如图15-1所示)由于所以a 端电势高。
15.2 平均半径为12 cm 的4×103匝线圈,在强度为0.5G 的地磁场中每秒钟旋转30周,线圈中可产生最大感生电动势为多大?如何旋转和转到何时,才有这样大的电动势?解:线圈绕垂直于磁场的直径旋转,当线圈平面法线与磁场垂直时感生电动势出现此最大值。
15.3 如图15-2所示,长直导线中通有电流l=5.0 A,另一矩形线圈共1×103匝,宽a=10 cm,长L=20 cm,以v=2 m/s的速度向右平动,求当d=10 cm时线圈中的感生电动势。
图15-2解:如图15-2所示,线圈向右平移时,上下两边不产生动生电动势。
因此,整个线圈内的感生电动势为15.4 习题15.3中若线圈不动,而长导线中通有交变电流,线圈内的感生电动势将为多大?解:通过线圈的磁链为15.5 在半径为R的圆柱形体积内,充满磁感应强度为B的均匀磁场。
有一长为L的金属棒放在磁场中,如图15-3所示。
设磁场在增强,并且已知,求棒中的感生电动势,并指出哪端电势高。
图15-3解:方法一如图15-3所示,考虑△Oba。
以S表示其面积,则通过S的磁通量。
当磁通变化时,感应电场的电场线为圆心在O的同心圆。
由法拉第电磁感应定律可得由此得由于,所以,因而b端电势高方法二直接对感应电场积分。
在棒上dl处的感应电场的大小为,方向如图15-3所示由于,所以b 端电势高。
15.6 在50周年国庆盛典上我FBC-1“飞豹”新型超音速歼击轰炸机在天安门上空沿水平方向自东向西呼啸而过。
该机翼展12.705m 。
设北京地磁场的竖直分量为0.42×10-4T ,该机又以最大M 数1.70(M 数即“马赫数”,表示飞机航速相当于声速的倍数)飞行,求该机两翼尖间的电势差。
【大学物理】第15章热力学第一定律
例补:20mol氧气由状态1变化到状态2所经历的过程
如图,(1)沿1-m-2路径;(2)沿1-2直线。试分
别求出这两过程中的A与Q及氧气内能的变化 氧气分子当成刚性分子理想气体看待。
E2
E1
p(1.03105 pa)
20 2
m
5 0 10
1
50 V (L)
解(1)1-m-2过程:
对于1-m过程,由于体积不变(等容过程),所以
I绝热膨胀:V2 V1 T2 T1
II绝热压缩:V2 V1 T2 T1
四、绝热过程的P-V图
1、P-V图: 将绝热方程代入
A V2 PdV 可得: V1
A P1V1 P2V2
1
A
p1V1
1
1
V1 V2
1
dQ dE dA dE PdV
dE 0
PV M RT
( dQ)T dA PdV
QT
A
V2 PdV
V1
代入上式
QT
M
RT
V2 dV V V1
M
RT ln V2 V1
P1V1 P2V2
QT
M
RT
ln
P1 P2
3、理想气体等温过程作功图示:
对于AB过程,因为热力学第一定律得气体吸收的热量应等于气体对外做的功, 功可以通过过程曲线下的面积求得
QAB
WAB
1 2 (pA
pB )(VB
VA )
大学物理第十五章狭义相对论基础课后习题答案及复习内容
第十五章狭义相对论基础一、基本要求1. 理解爱因斯坦狭义相对论的两个基本假设。
2. 了解洛仑兹变换及其与伽利略变换的关系;掌握狭义相对论中同时的相对性,以及长度收缩和时间膨胀的概念,并能正确进行计算。
3. 了解相对论时空观与绝对时空观的根本区别。
4. 理解狭义相对论中质量和速度的关系,质量和动量、动能和能量的关系,并能分析计算一些简单问题。
二、基本内容1.牛顿时空观牛顿力学的时空观认为,物体运动虽然在时间和空间中进行,但时间的流逝和空间的性质与物体的运动彼此没有任何联系。
按牛顿的说法是“绝对空间,就其本性而言,与外界任何事物无关,而永远是相同的和不动的。
”,“绝对的,真正的和数学的时间自己流逝着,并由于它的本性而均匀地与任何外界对象无关地流逝着。
”以上就构成了牛顿的绝对时空观,即长度和时间的测量与参照系无关。
2.力学相对性原理所有惯性系中力学规律都相同,这就是力学相对性原理(也称伽利略相对性原理)。
力学相对性原理也可表述为:在一惯性系中不可能通过力学实验来确定该惯性系相对于其他惯性系的运动。
3. 狭义相对论的两条基本原理(1)爱因斯坦相对性原理:物理规律对所有惯性系都是一样的,不存在任何一个特殊的(例如“绝对静止”的)惯性系。
爱因斯坦相对论原理是伽利略相对性原理(或力学相对性原理)的推广,它使相对性原理不仅适用于力学现象,而且适用于所有物理现象。
(2)光速不变原理:在任何惯性系中,光在真空中的速度都相等。
光速不变原理是当时的重大发现,它直接否定了伽利略变换。
按伽利略变换,光速是与观察者和光源之间的相对运动有关的。
这一原理是非常重要的。
没有光速不变原理,则爱因斯坦相对性原理也就不成立了。
这两条基本原理表示了狭义相对论的时空观。
4. 洛仑兹变换()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧--='='='--='2222211c u xc u t t z z y y c u ut x x (K 系->'K 系)()⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-'+'='='=-'+'=2222211c u x c u t t z z y y c u t u x x (K 系->'K 系) 令u c β=,γ=①当0→β,γ=1得ut x x -=',,',','t t z z y y ===洛仑兹变换就变成伽利略变换。
大学物理2,15.第十五章思考题
1、一束光垂直入射在偏振片上,以入射光线为轴转动偏振片,观察通过偏振片后的光强变化过程。
如果观察到光强不变,则入射光是什么光如果观察到明暗交替变化,有时出现全暗,则入射光是什么光如果观察到明暗交替变化,但不出现全暗,则入射光是什么光 【答案:自然光;完全偏振光;部分偏振光】详解:当一束光垂直入射在偏振片上时,以入射光线为轴转动偏振片,如果观察到通过偏振片后的光强不发生变化,入射光是由自然光;如果观察到光强有明暗交替变化,并且有时出现全暗,则入射光是完全偏振光;如果观察到光强有明暗交替变化,但不出现全暗,则入射光是部分偏振光。
2、一束光是自然光和线偏振光的混合光,让它垂直通过一个偏振片。
若以此入射光束为轴旋转偏振片,测得透射光强度最大值是最小值的5倍,那么入射光束中自然光与线偏振光的光强比值为多少 【答案:1/2】详解:设该光束中自然光和线偏振光的强度分别为I 1和I 2。
当以此入射光束为轴旋转偏振片时,透射光强度的最大值和最小值分别为21max 21I I I +=1min 21I I = 依题意有I max =5I min ,即12121521I I I ⨯=+ 解之得2121=I I 即入射光束中自然光与线偏振光的光强比值等于1/2。
3、一束光强为I 0的自然光相继通过三个偏振片P 1、P 2、P 3后,出射光的光强为 。
已知P 1和P 2的偏振化方向相互垂直,若以入射光线为轴旋转P 2,要使出射光的光强为零,P 2最少要转过多大的角度【答案:45°】详解:由于P 1和P 2的偏振化方向相互垂直,而自然光相继通过三个偏振片后的光强不等于零,说明自然光通过偏振片的顺序为P 1、P 3、P 2。
如图所示,设偏振片P 1和P 3的夹角为,由马吕斯定律得出射光强为)09(cos cos 2220θθ-=I I θ2sin 820I= 由于I = ,代入上式解得45=θ要使出射光强为零,应使P 2和P 3的偏振化方向垂直,因此P 2最少要转过的角度也等于45°。
大学物理(华中科技版)第15章习题答案
习 题15-1解:由马吕斯定律,得102201002014932930cos 30cos 28860cos 2I I I I I I I I I ====⇒==又有 即透射光强为第一此透射光强的9/4.15-2解:(1)由马吕斯定律有33arccos 31cos 62131cos 2112010max max 1201=⇒==⇒===ααα则因为透射光强的最大值I I I I I I I (2) 332arccos 32cos 31cos 222202201=⇒===ααα则I I I15-3解:设入射光中自然光强为0I ,线偏振光光强为1I ,则总光强为10I I I +=,当光束通过一偏振片时,先偏振光被吸收,最小光强为自然光光强的一半,即 0min 21I I = 最大光强是线偏振光光强与自然光光强的一半之和,就是线偏振光的偏振化方向与偏振片的透射方向同。
即 10max 21I I I += 2/5/6212110010min max ==+=I I I I I I I 即入射光中自然光和线偏振光的强度之比为5/2.15-4解:当光由水射向玻璃时,水的折射率为1n ,玻璃的折射率为2n ,据布儒斯特定律 61.20376.0arctan 376.0tan 12==⇒==b b n n θθ 当光由玻璃射向水时, 39.6966.2arctan 66.2tan 21=='⇒=='b bn n θθ 可见两角度互余。
15-5解:(1)据题意,当反射光为线偏振光时,折射角与入射角互余,即 583290=-=r θ入射角(2)由布儒斯特定律,6.158tan 158tan 2212==⇒==n n n n15-6解:提图参考教材图15—14,由图可知通过第一各偏振片单色自然光变成与P1偏振方向相同的线偏振光,而此线偏振光通过拨片后,分成两相互垂直的线偏振光,其中包括与波晶片光轴平行的非寻常光(其振幅为e E )和与光轴垂直的寻常光(振幅为O E ),这两束偏振光中却只有平行于P2透射方向的分量2e E 和2o E 能透过,且透射光满足相干条件。
湖南大学物理(2)第14,15章课后习题参考答案
第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ1 m2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r< R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B dΦr b rNId 2π=μ12ln2R R NIbπ=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条, 其面积为 x S d 1d ⋅=.窄条处的磁感强度 202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x RIx20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0x2EF D E BC AB B B B B B+++= )sin (sin 4120ββμ-π=aIB AB , 方向⊗其中 2/1)2/(sin 2==a a β,0sin 1=β∴ a I B AB π=240μ, 同理, a IB BC π=240μ,方向⊗.同样)28/(0a I B B EF D E π==μ,方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有 2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.P7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B 的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
大学物理学下册(赵近芳)第15章习题解答
1习 题1515.1选择题(1)用一定频率的单色光照射在某种金属上,测出其光电流I 与电势差U 的关系曲线如题16.1图中实线所示.然后在光强度I 不变的条件下增大照射光的频率,测出其光电流的曲线用虚线表示.符合题意的图是: [ ][答案:D 。
光强度I φ不变,光的频率v 增大,光子数(光子密度)N φ减少,则逸出光电子数 N e 减少,饱和光电流I e 减少;光的频率v 增大,由爱因斯坦光电效应方程21A 2m m hv υ=-知初动能增大,则遏止电压增加。
](2) 康普顿散射的主要特点是: [ ](A) 散射光的波长均与入射光的波长相同,与散射角、散射体性质无关.(B) 散射光中既有与入射光波长相同的,也有比入射光波长长的和比入射光波长短的.这与散射体性质有关.(C) 散射光的波长均比入射光的波长短,且随散射角增大而减小,但与散射体的性质无关.(D) 散射光中有些波长比入射光的波长长,且随散射角增大而增大,有些散射光波长与入射光波长相同.这都与散射体的性质无关.[答案:D 。
](3)假定氢原子原是静止的,质量为1.67×10-27 kg ,则氢原子从n = 3 的激发状态直接通过辐射跃迁到基态时的反冲速度大约是 [ ](A) 4 m/s . (B) 10 m/s . (C) 100 m/s . (D) 400 m/s .[答案:A 。
动量守恒 -m υ+h/λ34722711 6.62610 1.096108()13 1.67109H h R m υ--⨯⨯⨯=-=⨯⨯≈4m/s](4) 关于不确定关系2x p x ∆∆≥,有以下几种理解: (a ) 粒子的动量不可能确定.(b ) 粒子的坐标不可能确定.(c ) 粒子的动量和坐标不可能同时准确地确定.(d ) 不确定关系不仅适用于电子和光子,也适用于其它粒子.其中正确的是: [ ]O(A ) (B ) (C ) (D )题15.1图。
大学物理习题解答12~15章
第十二章 恒定磁场 (Steady Magnetic Field)一、选择题12.1 均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) B r 22π. (B)B r 2π.(C) 0. (D) 无法确定的量. [ B ]12.2 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B)π2∶ 1(C)π2∶4 (D)π2∶8 [ D ]12.3 如题图12.1,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ D ]II a bcdL120°题图12.1I 1I 212.4 如题图12.2,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直。
大平板的电流与线框中电流方向如图所示。
则在同一侧且对着大平板看,通电线框的运动情况是:(A) 靠近大平板. (B) 顺时针转动.(C) 逆时针转动. (D) 离开大平板向外运动. [ B ]12.5 在匀强磁场中,有两个平面线圈,其面积A 1 = 2 A 2,通有电流I 1 = 2 I 2,它们所受的最大磁力矩之比M 1 / M 2等于 (A) 1. (B) 2.(C) 4. (D) 1/4. [ C ]12.6 如题图12.3所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 (A)RIπ20μ; (B)RI40μ; (C)RIπ20μ ;(D))11(20π-R Iμ; (E) )11(40π+R I μ。
大学物理第15章-热力学第一定律
所吸收的热量为 E4 E1 A 1869 747.6 26166 J Q .
一、摩尔热容 C
系统在一个过程中从外 界吸热(放热) ,温度上升(降低) ,定义: dQ dT
热容量
dQ C dT
摩尔热容C: 物质温度升高 K所吸收的热量,即 1mol 1
C C
dQ C dT
式中m, M分别为气体的总质量和 摩尔质量。
例:如图,系统沿过程 曲线abc态变化到c态共吸收热量 J,沿 500 过程曲线cda回到a态,向外放热 J,外界对系统作功 J, 300 200 求系统在abc过程中系统内能增加及 对外作功。 P
解:在cda过程中Q 300J,A 200J, 根据热力学第一定律, 有
p
III( p3 ,V3 , T3 )
T1 300K
p1 p2 p4 1.013 105 P a m RT1 2.8 103 8.31 300 V1 M p1 28 103 1.013 105 2.46 10 ( m )
3 3
2
IV( p4 ,V4 , T4 ) I ( p1 ,V1 , T1 ) II( p2 ,V2 , T2 )
单原子分子气体( 3): i
CV
3 R 2
CP
5 R 2
5 3
刚性双原子分子理想气 体(i 5),有
CV
5 R 2
CP
7 R 2
先求出每个分过程的 E, A, Q, 然后将其相加。
i) I II等压(P 0)
A1 pdV p1 (V2 V1 ) 1.013105 2.46103 249( J )
v1 v2
大学物理课本答案习题 第十五章习题解答
习题十五15-1 某物体辐射频率为146.010Hz ⨯的黄光,问这种辐射的能量子的能量是多大? 解: 根据普朗克能量子公式有:-3414196.6310 6.010 4.010(J)h εν-==⨯⨯⨯=⨯15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求:(1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因. 解 (1)由维恩位移定律,得-3-72.89810=9.9910(m)=999(nm)2900b T λ⨯==⨯(2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光效率较低。
15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。
解: 由 40T M σ=太阳的辐射总功率为2428482002644 5.671060004(6.9610)4.4710(W)S S S P M R T R πσππ-===⨯⨯⨯⨯⨯=⨯地球接受到的功率为62226221117 6.3710() 4.4710()422 1.496102.0010(W)S E E E S P R P R P d d ππ⨯===⨯⨯⨯=⨯ 把地球看作黑体,则 24244E E E E E R T R M P πσπ==290(K)E T ===15-4 一波长nm 2001=λ的紫外光源和一波长nm 7002=λ的红外光源,两者的功率都是400W 。
问:(1)哪个光源单位时间内产生的光子多?(2)单位时间内产生的光子数等于多少? 解: (1)光子的能量λνchh E ==设光源单位时间内产生的光子数为n ,则光源的功率hcw n nhcnE w λλ===, 可见w 相同时,λ越大,n 越大,而12λλ>,所以红外光源产生的光子数多。
大学物理学 第15章_光的干涉 习题解答 [王玉国 康山林 赵宝群]
2n油e (2k 1) , k 1,, 2 2
1 2 n e (2 k 1) 油 1 2k 1 2 7 1 500 nm 2 , 当 时, 1 700 nm k 2 1 5 2 2 2 1 2n e (2k 1) 2 油 2
对于 2 =532nm 的光波,条纹间距为:
x2
两组条纹的同侧第 8 级条纹之间的距离为:
x k
D D 1 k 2 k (x1 x2 ) 8 (0.433 0.355) 103 m 0.624 103 m d d
已知对于波长为 500nm 和 15-8 在玻璃板(折射率为1.50 )上有一层油膜(折射率1.30 )。 700nm 的垂直入射光都发生反射相消,而这两波长之间无别的波长的光反射相消,求此油 膜的厚度。 解:因为油膜( n油 1.3 )在玻璃( n玻 1.5 )上,所以不考虑半波损失,由反射相消条件 有:
r2 e ne r1 r2 r1 (n 1)e 0
解得
k
(n 1)e
(1.58 1) 6.6 10 6 7 5.5 10 7
即零级明纹移到覆盖云母片的狭缝这一侧的原来的第 7 级明纹处。 15-7 在杨氏干涉实验中,两小孔的距离为1.5mm ,观察屏离小孔的垂直距离为 1m , 若所用光源发出波长 1=650nm 和 2=532nm 的两种光波,试求两光波分别形成的条纹间 距以及两组条纹的同侧两个第 8 级亮纹之间的距离。 解:第 k 明纹中心位置为
《大学物理学》习题解答
第 15 章
15-1 一单色光从空气射入水中,其频率、波速、波长是否变化?怎样变化? 答:单色光从空气射入水中,其频率不变;波速变大;波长变长。 15-2 什么是光程?在不同的均匀媒质中,若单色光通过的光程相等时,其几何路程是 否相同?其所需时间是否相同?在相位差与光程差的关系式
大学物理15章习题
⼤学物理15章习题15章习题答案15-3求各图中点P 处磁感应强度的⼤⼩和⽅向。
[解] (a) 因为长直导线对空间任⼀点产⽣的磁感应强度为:()210cos cos 4θθπµ-=aIB对于导线1:01=θ,22πθ=,因此aI B πµ401=对于导线2:πθθ==21,因此02=BaIB B B πµ4021p =+= ⽅向垂直纸⾯向外。
(b) 因为长直导线对空间任⼀点产⽣的磁感应强度为:()210cos cos 4θθπµ-=aIB对于导线1:01=θ,22πθ=,因此rI a I B πµπµ44001==,⽅向垂直纸⾯向内。
对于导线2:21πθ=,πθ=2,因此rI a I B πµπµ44002==,⽅向垂直纸⾯向内。
半圆形导线在P 点产⽣的磁场⽅向也是垂直纸⾯向内,⼤⼩为半径相同、电流相同的圆形导线在圆⼼处产⽣的磁感应强度的⼀半,即rIr=,⽅向垂直纸⾯向内。
所以,rIr I r I r I r I B B B B 4244400000321p µπµµπµπµ+=++=++= (c) P 点到三⾓形每条边的距离都是a d 63=o 301=θ,o 1502=θ每条边上的电流在P 点产⽣的磁感应强度的⽅向都是垂直纸⾯向内,⼤⼩都是()a I d IB πµπµ23150cos 30cos 400000=-=故P 点总的磁感应强度⼤⼩为aIB B πµ29300==⽅向垂直纸⾯向内。
15-4在半径为R 和r 的两圆周之间,有⼀总匝数为N 的均匀密绕平⾯线圈,通有电流I ,⽅向如图所⽰。
求中⼼O 处的磁感应强度。
[解] 由题意知,均匀密绕平⾯线圈等效于通以 I NI 圆盘,设单位长度线圈匝数为nrR Nn -=建⽴如图坐标,取⼀半径为x 厚度为dx 的圆环,其等效电流为:x r R NIx j I d d d -== )(2d 2d d 000r R x xNI xIB -==µµrR r R NIr R x xNIln)(2)(2d d 0000-=-==?µµ所以⽅向垂直纸⾯向外.15-5电流均匀地流过⼀⽆限长薄壁半圆筒,设电流I =5.0A ,圆筒半径 R =m 100.12?如图所⽰。