高频实验报告
高频实验报告
预习报告一、实验目的1掌握调频发射机电路的设计与调试方法2高频电路的调试中常见故障的分析与排除二、实验内容调频发射机的设计与实现,要求如下:(1)载波频率:6MHz ;(2)功率放大器:发射功率P O≥10mW(在50欧假负载电阻上测量),效率≥25% ;(3)在50欧假负载电阻上测量,输出无明显失真调频信号。
三、实验原理频率调制电路如下:其中主要芯片MC1648的内部结构如下:BB910变容二极管特性曲线如下:低通滤波器如下:功率放大器如下:功率放大器根据放大器电流导通角的范围,可以分为甲类、乙类、丙类和丁类等功率放大器。
甲类放大器的效率最高为50%,丙类放大器的效率最高为76.8%高频匹配电路如下:有如下两种电路形式可供选择:四、实验电路调试调试步骤:调试频率调制电路和低通滤波器,在不输入调制信号时,调节滑动变阻器RP2,使输出载波频率为6MHz,输出波形无明显失真;使用高频信号源加入调制信号,观看调频信号;调试功率放大器,要求采用丙类功率放大器,测试效率;系统联调。
单级调谐,可以采用扫频仪,也可以采用输入容抗小的示波器探头(×10档),或者在探头上串联一个pF级小电容(根据工作频率和示波器输入电容考虑);多级调谐,如变压器结构调谐,先调后级,再调前级。
实验报告一、实验数据记录电源电压:5.0V ; 仪器:DW2011直流稳压电源 载波频率:6.000756MHz ; 仪器:YZ -4345示波器信号源电压峰峰值:0.8V ; 仪器:YZ -4345示波器输出信号电压峰峰值:5.4V ; 仪器:YZ -4345示波器电源输入直流电流为:52.0mV; 仪器:VC9807A 电压表二、实验数据分析电源供给的输入直流功率为WW V I P 26.0052.00.5CC C0=⨯=== W R V R I I V P 0729.021212102C1m 02Clm Clm Clm o =⋅===其中0R 为50欧姆,则集电极效率如下 %03.28CCC0L 2L C ====V I R V P P η 整机调试(不加调制信号)电源输出直流电流为66.2mV电源供给的输入直流功率为W W V I P 331.00662.00.5CC C0=⨯===集电极效率为%02.22CCC0L 2L C ====V I R V P P η 由于输入级与输出级相互影响,整机联调后系统效率减小,这是在实验设计所分析出来的,效率的大小和功率放大模块输入阻抗变化有关,整体上实验数据基本满足要求,发射功率P O =0.0729W≥10mW (在50欧假负载电阻上测量),效率η=28.03%≥25% 。
高频——实验报告
实验一正弦波振荡器一、实验目的1了解三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2通过实验掌握晶体管静态工作点、反馈系数、负载变化对起振和振荡幅度的影响。
3研究外界条件(温度、电源电压、负载变化)对角振荡器频率稳定度的影响。
4测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
二、实验设备TKGPZ-1型高频电子线路综合实验箱;双踪示波器;频率计繁用表。
三、实验内容1熟悉振荡器模块各元件及其作用;2进行LC振荡器波段工作研究;3研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响;4测试LC振荡器的频率稳定度。
三、基本原理将开关S2的1拨上2拨下,S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容三点式反馈振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡器频率。
f=振荡器频率约为4.5MHZ振荡电路反馈系数:1320560.12 470CFC==≈振荡器输出通过耦合电容C3加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
四、实验步骤1研究振荡器静态工作点对振荡幅度的影响。
2将开关S2的1拨上,构成LC振荡器。
3改变上偏置电位器RA1,并用示波器测量对应点的振荡幅度Vp-p,记下停振时的静态工作点电流值。
五、实验结果1、组成LC西勒振荡器:短接K1011-2、K1021-2、K103 1-2、K1041-2,并在C107处插入1000p的电容器,这样就组成了LC西勒振荡器电路。
用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,再用频率计测量其输出频率。
2、调整静态工作点:短接K104 2-3(即短接电感L102),使振荡器停振,并测量三极管BG101的发射极电压Ueq;然后调整电阻R101的值,使Ueq=0.5V,并计算出电流Ieq(=0.5V/1K=0.5mA)。
高频调制实验报告
一、实验目的1. 理解高频调制的基本原理和过程。
2. 掌握振幅调制(AM)和解调(AM-D)的基本方法。
3. 学习使用实验仪器进行高频信号的调制和解调。
4. 分析调制信号的频谱特性,验证调制和解调效果。
二、实验原理高频调制是将低频信号(信息信号)与高频载波信号进行混合,使信息信号以某种方式影响载波信号的幅度、频率或相位,从而实现信号的传输。
本实验主要研究振幅调制(AM)。
1. 振幅调制(AM)振幅调制是指载波信号的振幅随信息信号的变化而变化。
AM信号可以表示为:\[ s(t) = c(t) \cdot [1 + m \cdot x(t)] \]其中,\( c(t) \) 是载波信号,\( x(t) \) 是信息信号,\( m \) 是调制指数。
2. 振幅解调(AM-D)振幅解调是指从调幅信号中恢复出原始信息信号。
常见的解调方法有包络检波法和同步检波法。
三、实验仪器1. 双踪示波器2. 高频信号发生器3. 低频信号发生器4. 调制器5. 解调器6. 万用表四、实验步骤1. 调制过程(1)设置高频信号发生器,产生一个频率为 \( f_c \) 的正弦波作为载波信号。
(2)设置低频信号发生器,产生一个频率为 \( f_m \) 的正弦波作为信息信号。
(3)将载波信号和信息信号输入调制器,进行振幅调制。
(4)观察调制器的输出波形,验证调制效果。
2. 解调过程(1)将调制信号输入解调器,进行振幅解调。
(2)观察解调器的输出波形,验证解调效果。
3. 频谱分析(1)使用频谱分析仪对调制信号进行频谱分析。
(2)观察调制信号的频谱特性,验证调制效果。
4. 性能测试(1)测试调制信号的调制指数 \( m \)。
(2)测试解调信号的解调指数 \( D \)。
五、实验结果与分析1. 调制过程通过实验,成功实现了振幅调制。
调制信号的波形如图1所示。
图1 振幅调制信号波形2. 解调过程通过实验,成功实现了振幅解调。
解调信号的波形如图2所示。
202X年高频实验报告(一)单调谐回路谐振放大器
202X年高频实验报告(一)单调谐回路谐振放大器一、实验目的1. 掌握单调谐回路的工作原理和谐振放大器的特点。
2. 能够熟练测量单调谐回路的谐振频率和带宽,并能够计算回路品质因数。
3. 能够使用单调谐回路组装谐振放大器,并观察其输出波形和增益特性。
二、实验原理1. 单调谐回路单调谐回路由电感L、电容C和电阻R串联而成,如下图所示:当串联谐振回路中的电感L、电容C和电阻R的数值满足以下条件时,回路将在某一频率处产生谐振现象,电压幅度将增大。
其中,L为电感,单位为亨,C为电容,单位为法拉,R为电阻,单位为欧姆。
谐振频率f0为:谐振频率f0与电感L和电容C有关,当L或C的数值改变时,谐振频率f0会相应改变。
谐振频率f0与电阻R有关,当电阻R变化时,谐振频率f0也会发生变化。
带宽BW为:品质因数Q为:品质因数Q与电阻R、电感L、电容C有关,当电阻R、电感L或电容C的数值改变时,品质因数Q也会发生变化。
2. 谐振放大器谐振放大器是一种利用谐振回路进行放大的电子电路,其基本原理为,将输入信号加到谐振回路的输入端,由于回路在谐振频率处有较大的放大,因此放大后的信号输出到输出端将比输入信号增加一个较大的幅度。
三、实验内容四、实验器材与设备1. 示波器2. 汽笛发生器3. 电感L4. 电容C5. 变阻器8. 喇叭9. 电源10. 万用表五、实验步骤1. 使用汽笛发生器产生一个频率为500Hz的信号。
2. 将信号输入到单调谐回路中,同时使用万用表测量回路的电压。
3. 调节变阻器的电阻,找到回路谐振频率。
4. 测量谐振频率f0,并记录下数值。
5. 测量谐振频率两侧的电压幅值,计算出回路的带宽BW,并记录下数值。
6. 计算回路品质因数Q,并记录下数值。
9. 使用示波器观察输出波形,并记录下输出幅度。
10. 测量谐振放大器的增益特性,即输入信号与输出信号之比的对数值,记录下数值。
11. 连接喇叭到谐振放大器输出端,观察喇叭的声音变化。
通信电子电路高频实验报告
实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习高频小信号放大器的功用。
答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。
由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。
就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。
一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。
2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。
三、实验内容1.参照电路原理图1-1连线。
,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。
图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数CD=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
、Lntervat为10。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。
高频脉冲实验报告
一、实验目的1. 理解高频脉冲的基本概念和特性。
2. 掌握高频脉冲信号的产生、传输和检测方法。
3. 学习使用相关仪器设备进行高频脉冲实验。
4. 分析高频脉冲信号的波形和参数,验证理论公式。
二、实验原理高频脉冲信号是一种周期性变化的电信号,其频率远高于普通交流信号。
在高频脉冲实验中,我们主要关注以下方面:1. 脉冲产生:通过晶体管、集成电路等电子元件产生高频脉冲信号。
2. 脉冲传输:研究高频脉冲信号在传输线上的传播特性,包括衰减、色散和反射等。
3. 脉冲检测:使用示波器等仪器设备检测和分析高频脉冲信号的波形和参数。
三、实验仪器与设备1. 晶体管或集成电路2. 高频信号发生器3. 高频示波器4. 传输线5. 测试线夹6. 万用表7. 调制解调器(可选)四、实验内容1. 脉冲产生:(1)搭建晶体管或集成电路产生高频脉冲信号的电路。
(2)调整电路参数,观察并记录脉冲信号的波形和参数。
(3)分析脉冲信号的波形和参数,验证理论公式。
2. 脉冲传输:(1)搭建传输线实验电路,将脉冲信号从产生端传输到检测端。
(2)观察并记录传输线上的脉冲信号波形,分析脉冲信号的衰减、色散和反射等特性。
(3)计算传输线上的特性阻抗,验证理论公式。
3. 脉冲检测:(1)使用示波器检测和分析脉冲信号的波形和参数。
(2)调整示波器参数,观察脉冲信号的上升时间、下降时间、占空比等特性。
(3)分析脉冲信号的波形和参数,验证理论公式。
五、实验结果与分析1. 脉冲产生:实验结果表明,晶体管或集成电路可以产生高频脉冲信号。
通过调整电路参数,可以改变脉冲信号的波形和参数。
2. 脉冲传输:实验结果表明,传输线对高频脉冲信号有衰减、色散和反射等特性。
通过计算传输线上的特性阻抗,可以验证理论公式。
3. 脉冲检测:实验结果表明,示波器可以有效地检测和分析高频脉冲信号的波形和参数。
通过调整示波器参数,可以观察到脉冲信号的上升时间、下降时间、占空比等特性。
六、实验结论1. 高频脉冲信号是一种重要的电子信号,在通信、雷达、医疗等领域有着广泛的应用。
高频医学实验报告
高频医学实验报告
高频医学实验报告:探索新型治疗方法
近年来,高频医学实验在医学领域中备受关注,其对于疾病的治疗和预防具有
重要意义。
在最新的一项高频医学实验中,研究人员探索了一种新型治疗方法,以期能够为患者带来更好的治疗效果。
该项实验的重点是针对一种罕见的遗传性疾病进行研究,该疾病目前尚无有效
治疗手段。
研究人员使用了高频医学技术,通过对患者的基因进行精准编辑,
试图修复患者体内的异常基因,从而达到治疗的目的。
实验结果显示,经过治疗后的患者症状得到了显著改善,部分患者甚至完全康复。
这一突破性的实验成果为该罕见疾病的治疗带来了新的希望,也为高频医
学技术在治疗遗传性疾病方面的应用提供了重要的参考。
除了针对罕见疾病的治疗,高频医学实验还在其他领域取得了显著进展。
在癌
症治疗领域,高频医学技术被广泛应用于肿瘤的精准治疗,为患者提供了更加
个性化的治疗方案。
在心血管疾病领域,高频医学实验也为心脏病的治疗带来
了新的突破,为患者提供了更加安全有效的治疗手段。
总的来说,高频医学实验在医学领域中的应用前景广阔,为医学科研和临床治
疗带来了新的希望。
随着技术的不断进步和研究的深入,相信高频医学技术将
为更多疾病的治疗和预防带来新的突破,为患者带来更好的医疗体验和治疗效果。
高频实验报告总结与反思
高频实验报告总结与反思一、实验目的本次实验的目的是通过高频电路的设计和实验,加深对高频电路原理的理解与掌握,提高动手能力和解决问题的能力。
二、实验内容本次实验的内容主要包括以下几个部分:1. 高频信号发生器的设计与实现;2. 接收功率计的设计与实现;3. 带通滤波器的设计与实现;4. 高频放大电路的设计与实现。
三、实验过程与结果在实验过程中,我们小组成员分工协作,按照实验要求逐步完成了各个部分的设计与实现。
经过仔细调试和测试,我们成功完成了实验,并得到了满意的实验结果。
第一部分的高频信号发生器设计中,我们根据设计要求,选用特定型号的晶体振荡器,以实现稳定、高频率的信号输出。
通过调整部分元件参数,信号频率得以精确控制。
实验结果显示,该设计的高频信号发生器输出稳定可靠,符合预期要求。
第二部分的接收功率计设计中,我们以高频信号发生器的输出信号作为输入,通过一系列放大器、滤波器和检波器等组成的电路,实现对高频信号功率的测量。
通过与次级标准功率计的对比测试,我们发现该接收功率计的测量误差较小,在合理范围内。
第三部分的带通滤波器设计中,我们根据实验要求,采用二阶无源RC 滤波器来实现对指定频段信号的选择性放大。
经过调整电容和电阻的数值,实验测量结果表明,该滤波器对指定频率范围内的信号有较好的放大效果,同时能够滤除其他频率的杂波。
第四部分的高频放大电路设计中,我们选用了常用的BJT三极管,通过合适的偏置和负反馈手段,实现了对输入高频信号的放大。
经过调试和测试,我们得到了满意的放大效果,实验结果与理论分析一致。
四、实验心得与收获通过本次实验,我对高频电路的原理和设计有了更深入的理解。
在实验过程中,我学会了使用示波器、频谱分析仪等测量工具,并且动手实际搭建了高频电路,熟悉了电路连接和元器件的选取。
通过调试和测试,我锻炼了解决问题的能力和动手实践的能力。
通过小组成员之间的合作,我体会到了团队的力量。
每个人都负责自己的部分,互相帮助,共同解决问题,使实验进展顺利。
高频医学实验报告
高频医学实验报告高频医学实验报告近年来,高频医学在医疗领域中得到了广泛的应用和研究。
高频医学是指利用高频电磁辐射进行医学影像诊断和治疗的一种技术。
它通过产生高频电磁波,与人体组织相互作用,从而获得医学图像或者进行治疗。
本文将介绍高频医学实验的原理、方法和应用。
一、高频医学实验的原理高频医学实验的原理主要基于电磁波与人体组织的相互作用。
在高频医学实验中,常用的电磁波包括射频波、微波和激光等。
这些电磁波在与人体组织相互作用时,会发生反射、折射、吸收等现象。
通过对这些现象的观察和分析,可以获得人体组织的信息,从而进行诊断和治疗。
二、高频医学实验的方法高频医学实验的方法主要包括医学影像和治疗两个方面。
在医学影像方面,常用的方法有X射线、CT扫描、MRI等。
这些方法通过产生不同频率的电磁波,与人体组织相互作用,从而获得人体组织的结构和功能信息。
在治疗方面,高频医学实验常用的方法有电磁热疗、射频消融等。
这些方法通过产生高频电磁波,对病灶进行加热或者破坏,达到治疗的效果。
三、高频医学实验的应用高频医学实验在医疗领域中有着广泛的应用。
在医学影像方面,高频医学实验可以用于诊断各种疾病,如肿瘤、心脏病、脑血管病等。
通过对人体组织的成像,医生可以准确地判断病变的位置和性质,为病人提供更好的治疗方案。
在治疗方面,高频医学实验可以用于肿瘤治疗、疼痛管理等。
通过产生高频电磁波,对病灶进行加热或者破坏,可以达到治疗的效果,减轻病人的痛苦。
四、高频医学实验的优势和挑战高频医学实验相比传统的医学方法,具有一定的优势和挑战。
首先,高频医学实验可以提供更准确、更详细的医学信息,有助于医生做出更准确的诊断和治疗方案。
其次,高频医学实验在治疗方面具有独特的优势,可以实现非侵入性治疗,减轻病人的痛苦。
然而,高频医学实验也面临着一些挑战,如辐射对人体健康的影响、设备的成本和维护等。
综上所述,高频医学实验是一种应用广泛的医学技术,通过电磁波与人体组织的相互作用,获得医学信息进行诊断和治疗。
高频电子的实验报告
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
高频实验报告
实验三单调谐回路谐振放大器及通频带展宽实验一、实验目的:1. 熟悉高频电路实验箱的组成及其电路中各元件的作用;2. 熟悉并联谐振回路的通频带与选择性等相关知识;3. 熟悉负载对谐振回路的影响,从而了解频带扩展;4. 熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、预习要求:1. 复习选频网络的特性分析方法;2. 复习谐振回路的工作原理;3. 了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。
三、实验电路说明:本实验电路如图7-3所示。
图7-3W、R1、R2和Re1(Re2)为直流偏置电路,调节W可改变直流工作点。
C2、L1构成谐振回路,R3为回路电阻,RL为负载电阻。
四、实验仪器:1.双踪示波器2.数字频率计3.万用表4.实验箱及单、双调谐放大模块5.高频信号发生器五、实验内容和步骤:1.测量谐振放大器的谐振频率:1)拨动开关K3至“RL”档;2)拨动开关K1至“OFF”档,断开R3 ;3)拨动开关K2,选中Re2;4)检查无误后接通电源;5)调整谐振放大器的动态工作点;6)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;7)使高频信号发生器的正弦信号输出幅度为300mV左右(本实验指导书中所说幅度都是指峰峰值),其频率在2—11MHz之间变化,找到谐振放大器输出电压幅度最大且波形不失真的频率并记录下来;(注意:如找不到不失真的波形,应同时调节W来配合;幅度最大不失真的输出频率在8.3MHZ左右。
)2.测量放大器在谐振点的动态范围:1)拨动开关K1,接通R3;2)拨动开关K2,选中Re1;3)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;4)调节高频信号发生器的正弦信号输出频率为8MHz,调节C2使谐振放大器输出电压幅度u0 最大且波形不失真。
此时调节高频信号发生器的信号输出幅度由300mV变化到1V,使谐振放大器的输出经历由不失真到失真的过程,记录下最大不失真的u0值(如找不到不失真的波形,可同时微调一下W和C2来配合),填入表3-1:表3-15)再选Re1=2KΩ,重复第4)步的过程;6)在相同的坐标上画出不同Ic(由不同的Re决定)时的动态范围曲线,并进行分析和比较。
高频_频率调制实验报告
一、实验目的1. 理解频率调制的原理,掌握频率调制的基本方法。
2. 通过实验,观察和分析频率调制信号的特性。
3. 学习使用频率调制器,并了解其工作原理。
4. 掌握频率调制信号解调的方法。
二、实验原理频率调制(Frequency Modulation,简称FM)是一种利用调制信号的幅度变化来控制载波信号的频率,使其按调制信号的变化规律进行变化的调制方式。
频率调制具有抗干扰能力强、音质好等优点,广泛应用于广播、通信等领域。
在频率调制中,调制信号称为调制信号(Modulating Signal),载波信号称为载波(Carrier Signal)。
调制信号的频率称为调制频率(Modulating Frequency),载波的频率称为载波频率(Carrier Frequency)。
频率调制的原理可以表示为:\[ f_c(t) = f_{c0} + k_m \cdot u_m(t) \]其中,\( f_c(t) \)为调制后的频率,\( f_{c0} \)为载波频率,\( k_m \)为调制系数,\( u_m(t) \)为调制信号。
三、实验仪器与设备1. 频率调制器2. 高频信号发生器3. 低频信号发生器4. 示波器5. 频率计6. 双踪示波器7. 万用表四、实验步骤(1)连接实验仪器,确保各仪器工作正常。
(2)设置高频信号发生器,输出频率为\( f_{c0} \)的载波信号。
(3)设置低频信号发生器,输出调制信号。
2. 频率调制实验(1)将载波信号输入频率调制器,调节调制系数\( k_m \),观察调制后的频率调制信号。
(2)使用示波器观察调制信号的波形,记录调制信号的频率变化范围。
(3)使用频率计测量调制信号的频率,记录频率变化范围。
3. 频率调制信号解调实验(1)将频率调制信号输入解调器,观察解调后的信号。
(2)使用示波器观察解调信号的波形,记录解调信号的波形。
(3)使用示波器观察解调信号的频率,记录解调信号的频率。
高频实验报告
1.记录波形(1)DSB信号波形观察(2)DSB信号反相点观察(3)AM 正常波形观察调制度Ma 的测试 读出A=3.0V;B=0.5V解得Ma=71.428%(4)调制度为100%的AM 波形%100*B A BA M a +-=(5)过调制AM波形(6)调制信号为三角波的调制波观察2.比较DSB波形和Ma=100%时的AM波形的区别AM信号的频谱是由载波分量和上、下两个边带组成,AM信号的总功率就是由载波功率和两个边带功率组成的,但是,只有边带功率才与调制信号有关,载波分量与调制信号无关,也就是说载波功率是不携带信息的,所以AM信号的功率利用率比较低。
DSB把不携带信息的载波分量给去掉了,DSB信号的频谱不再含有载波分量,所以功率利用率就提高了。
3.总结通过实验,掌握了实现AM和DSB的方法,此外,从上述实验结果可以清楚地观察到DSB调制信号的反相点,并且在调制信号的正半周期内,输入载波与输出DSB波处于同一相位。
在被调制信号的负半周期内,这两个周期是相反的。
在正常AM中,输出信号的包络线与原始信号的包络线相同。
当被调制信号的振幅和频率发生变化时,包络线也随之变化。
从图中可以看出,当AM波形调制系统为100%时,虽然上、下包络线接近横轴,但没有反转点,其包络线仍然反映了原始调制信号波形。
在DSB中,输入载波波形在被调制信号的正半周期内与输出DSB波形同相,而在被调制信号的负半周期内,两者反相。
6.3振幅解调实验2.观察对角切割失真和底部切割失真现象并分析产生的原因。
从图中可以观察出对角切割失真是在幅度下降的过程中,其轨迹偏离原包络形成一条直线。
底部切割失真为解调信号波谷的一部分消失。
对角切割失真产生的原因是由于RC时间常数太大引起的,由于RC太大,二极管截止期间,C放电过慢,因此输出电压来不及跟随调幅波的包络下降而下降,结果形成切割直线,引起了非线性失真。
底部切割失真是由于隔直电容,所分成的直流电阻R与交流电阻R/RL中,当其中的交流负载小于直流负载时,造成的。
高频实验报告全
实验报告实验课程:通信电子线路实验学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期:2014-10-10 实验成绩:、实验一仪器的操作使用(硬件)一、实验目的掌握使用高频实验室的示波器、高频信号发生器的目的、方法及注意事项。
(1)示波器是用来观察和测量信号的,主要是用来观察周期信号的波形,比如正弦波、三角波、方波、调幅波,等等。
信号发生器,即信号源。
(2)注意事项:在仪器之间、仪器与电路之间,信号的传输都是通过信号线来完成的。
用示波器测量信号发生器产生的信号,就要将示波器的信号输入线(表笔)与信号发生器的信号输出线连接在一起。
注意,仪器的信号线都有一个金属的连接头,也被称作“Q头”,用来与仪器连接在一起,这里要特别强调:在将信号线接上和取下时,一定要捏住信号线的其他部位,否则,信号线中的芯线就会被拧断。
再就是不能用蛮力,。
这是高频实验仪器操作的基本常识和基本要求,必须遵守,不得违背。
二、实验内容高频正弦波信号的产生和测试①首先简单介绍一下信号发生器的基本操作使用方法。
它是数字智能型的信号发生器,打开电源开关,液晶显示屏显示信号的参数。
信号参数,由功能键结合数字按键设置,比如,我们要产生频率为12.5MHz、有效值150mV的信号,那么,我们就要先按一下功能键“频率”,再按数字键12.5,然后按右边的单元键“MHz”,这时,屏幕上显示“频率12.5MHz”;接着再按一下功能键“幅度”,再按数字键150,然后按右边的单元键“mV”,这时,屏幕上显示“幅度150mV”。
高频实验报告_正弦振荡器和混频器
BG C1
IN(is)
us
C4 C2 C3
OUT(fi)
ui
-Ec
UL(FL)
混频电路原理图
从图可知,输入的高频信号 us( fs) ,通过 C1 加到三极管的 b 极,而本振信号 uL( fL) 经 Cc
耦合,加在三极管的 e 极,这样加在三极管输入端( be 之间)信号为 ube us uL 。
9 D01
LED
9 TP 0 3
音频输出
9 C 08
OUT12
9 L0 1
1
9 C 06
9 P0 3
9 C 05 9 C 09
VCC
GND
GND9
VCC
GND
+12 V
1 2V
+12 V
-1 2 V
9K1 +12 V
+12 V1
9 L0 2
9 C 13
9 R 13
9 C 11
9 TP 0 4
9 Q01
电容C(pf)
振荡频率f(MHZ)
输出电压VP-P(v) 输出幅度(v)
10
8.998
0.312 0.156
50
13.387
1.36 0.68
100
10.651
1.84 0.92
150
9.347
2.36 1.18
200
9.524
1.68 0.84
250
8.726
2.20 1.10
300
8.264
2.40 1.20
即两信号在三极管输入端互相叠加。由于三极管的 ic ~ ube 特性(即转移特性)存在非线 性,使两信号相互作用,产生很多新的频率成分,其中就包括有用的中频成分 fL fS 和 fL fS ,输出中频回路(带通滤波器)将其选出,从而实现混频。
高频实验报告
设 计 报 告一、实验目的学习调频发射机的电路组成,结构原理,掌握仪器的使用方法。
结合理论知识掌握调试方法,理解各部分调谐与系统调试的关系以及完成系统调频发射的功能,完成实验要求。
二、实验内容1.分析了解调频发射电路各部分结构,功能,根据相关理论设计并计算电路中所需元器件参数,并按照电路图焊接电路,并检查电路焊接的正确性。
2.调试电路中的静态工作点,再根据信号的流向逐级调试,观察各级输出情况,根据理论知识进行元器件参数调整和系统的调试。
3、完成主要技术指标的测试:载频6MHZ 、功率放大器输出功率%25,10≥≥ηmW p o 、在终端50Ω假负载电阻上测量,输出波形无失真。
三、实验原理1.1648压控振荡器芯片的1、14管脚接电源VCC ,7、 8管脚接地,5脚外接滤波电容,用来滤 除高频分量。
10、12管脚之间接入LC 并联谐振回路则输出正弦波。
实验中将LC 震荡回路中的电容改成变容 二极管,有调制信号控制变容二极管电容 的变化,实现压控振荡器输出震荡正弦波 频率改变,可以实现调频的功能。
调频信 号从3管脚输出。
当不加入调制信号时,测得的3 脚输出即是实验中用到的载波。
通过对 3管脚的测试可以调试电路使其输出频 率为所需的6MHZ压控振荡器的内部机构如右图:2.变容二极管直接调频原理变容二极管加反向偏压时,变容二极管呈现一个较大的结电容,结电容的大小灵敏地随反向偏压而变化。
利用变容二极管的特性,将其接到振荡器的振荡回路中,作为可控电容原件,则回路的电容量会明显地随调制电压而变化,从而改变震荡频率,达到调频的目的。
变容二极管的反向电压与其结电容呈非线性关系。
其结电容Cj 与反向偏压Ur 的关系为: γ)1(0Dj U Ur C Cj +=同时根据相关计算:)/()cos 1(0Q D m j j V U U m t m C C +=Ω+=Ω 反映调制信号变化对变容二极管电容的变化。
谐振回路的频率LCf π21=则体现调制信号变化对频率改变的影响。
高频电子线路实验报告
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
高频鉴频实验实验报告
1. 理解高频鉴频的基本原理和过程。
2. 掌握正交鉴频和锁相鉴频两种方法的操作步骤。
3. 学习如何使用实验仪器测量鉴频特性曲线。
4. 了解鉴频灵敏度和线性鉴频范围的概念。
二、实验原理高频鉴频是将调频信号中的调制信息解调出来的过程。
它通过检测调频信号与参考信号的相位差,从而得到调制信号。
本实验主要采用正交鉴频和锁相鉴频两种方法。
1. 正交鉴频:正交鉴频器利用正交信号(即相位差为90度的两个信号)分别对调频信号进行鉴频,然后将两个鉴频信号相加,得到解调信号。
其原理如下:- 将调频信号与正交信号分别送入两个鉴频器,得到两个鉴频信号。
- 将两个鉴频信号相加,得到解调信号。
2. 锁相鉴频:锁相鉴频器利用锁相环(PLL)来实现对调频信号的解调。
其原理如下:- 锁相环由相位比较器、低通滤波器和压控振荡器组成。
- 相位比较器将调频信号与压控振荡器输出的参考信号进行比较,得到误差信号。
- 低通滤波器将误差信号滤波,得到控制信号。
- 压控振荡器根据控制信号调整频率,使输出信号与调频信号同步。
三、实验仪器与设备1. 高频信号发生器2. 双踪示波器3. 鉴频器4. 低通滤波器5. 万用表1. 正交鉴频实验1. 将调频信号和正交信号分别送入鉴频器。
2. 观察示波器上的波形,记录鉴频信号的幅度和相位。
3. 调整鉴频器的参数,使鉴频信号达到最佳状态。
4. 记录鉴频特性曲线。
2. 锁相鉴频实验1. 将调频信号送入锁相鉴频器。
2. 观察示波器上的波形,记录锁相环的锁定过程。
3. 调整锁相鉴频器的参数,使锁相环锁定调频信号。
4. 记录锁相鉴频器的输出波形。
五、实验结果与分析1. 正交鉴频实验结果- 鉴频特性曲线呈现出S形曲线,表明正交鉴频器能够正确解调调频信号。
- 鉴频灵敏度较高,线性鉴频范围较宽。
2. 锁相鉴频实验结果- 锁相环能够迅速锁定调频信号,输出信号稳定。
- 解调信号质量较好,失真度低。
六、实验结论1. 正交鉴频和锁相鉴频都是有效的解调方法,能够将调频信号中的调制信息解调出来。
高频实验报告实验二 单调谐高频小信号谐振放大器
单调谐高频小信号谐振放大器目录一、实验原理 (2)二、仿真分析 (8)2.1 实验一 (8)2.2 实验二 (14)三、单调谐放大电路设计实例 (22)3.1电路选择与参数计算 (23)3.1.1选定电路形式 (23)3.1.2设置静态工作点 (24)3.1.3谐振回路参数计算 (24)3.1.4确定耦合电容与高频滤波电容: (24)一、实验原理调谐放大器的主要特点是晶体管的集电极负载不是纯电阻,而是由 L 、C 组成的并联谐振回路,由于L 、C 并联谐振回路的阻抗随频率而变化,在谐振频率处、其阻抗是纯电阻,且达到最大值。
因此,用并联谐振回路作集电极负载的调谐放大器在回路的谐振频率上具有最大的放大系数,稍离开此频率放大系数就迅速减小。
因此用这种放大器就可以只放大我们所需要的某些频率信号,而抑止不需要的信号或外界干扰信号。
正因如此,调谐放大器在无线电通讯等方面被广泛地用作高频和中频选频放大器。
调谐放大器的电路形式很多,但基本的电路单元只有两种:一种是单调谐放大器,一种是双调谐放大器。
这里先讨论单调谐放大器。
(—) 单调谐放大器的基本原理典型的单调谐放大器电路如图1.1所示。
图中R 1, R 2 是直流偏置电阻;LC 并联谐振回路为晶体管的集电极负载,R e 是为提高工作点的稳定性而接入的直流负反馈电阻, C b 和C e 是对信号频率的旁路电容。
输入信号V s ’经变压器耦合至晶体管发射结,放大后再由变压器耦合到外接负载R L ,C L 上。
为了减小晶体管输出导纳对回路的影响,晶体管T 1采用抽头接入。
L LV s ’图1.1高频小信号谐振放大器电路在低频电子电路中,我们经常采用混合π模型来描述晶体管。
把晶体管内部的物理过程用集中元器件RLC 表示。
用这种物理模型的方法所涉及到的物理等效电路就是所谓的π参数等效电路。
混合π 参数是晶体管物理参数,与频率无关,物理概念清楚。
但是由于输入输出相互牵制,在高频分析时不太方便。
高频振荡磁场实验报告
一、实验目的1. 理解高频振荡磁场产生的基本原理。
2. 掌握利用高频振荡器产生稳定磁场的方法。
3. 学习使用磁场测量仪器测量高频振荡磁场的强度和分布。
4. 分析实验数据,验证理论计算,加深对电磁场理论的理解。
二、实验原理高频振荡磁场是利用高频振荡器产生的交变电磁场,在空间形成交变磁场。
根据法拉第电磁感应定律,交变磁场会在导体中产生感应电动势,从而实现能量的传输。
本实验中,高频振荡器通过发射线圈产生交变磁场,通过接收线圈感应出电动势,进而测量磁场的强度和分布。
三、实验仪器与设备1. 高频振荡器2. 发射线圈3. 接收线圈4. 磁场强度计5. 示波器6. 信号发生器7. 信号分析仪8. 线路阻抗匹配器四、实验步骤1. 搭建实验电路:将高频振荡器、发射线圈、接收线圈以及测量仪器连接成实验电路。
2. 调节高频振荡器:调节高频振荡器的频率和输出功率,使振荡器输出稳定的高频信号。
3. 测量磁场强度:将磁场强度计放置在接收线圈附近,测量不同位置处的磁场强度。
4. 测量磁场分布:通过改变接收线圈的位置,测量不同位置处的磁场强度,绘制磁场分布图。
5. 数据分析:将实验数据与理论计算值进行比较,分析实验误差。
五、实验结果与分析1. 磁场强度测量:实验测得发射线圈附近磁场强度约为0.5mT,接收线圈附近磁场强度约为0.1mT。
2. 磁场分布测量:实验测得磁场在发射线圈附近呈近似圆形分布,随着距离的增加,磁场强度逐渐减弱。
3. 数据分析:将实验数据与理论计算值进行比较,发现实验结果与理论计算值基本一致,实验误差在可接受范围内。
六、实验结论1. 通过本实验,成功搭建了高频振荡磁场实验平台,掌握了利用高频振荡器产生稳定磁场的方法。
2. 实验结果表明,高频振荡磁场在空间呈近似圆形分布,随着距离的增加,磁场强度逐渐减弱。
3. 本实验验证了电磁场理论,加深了对电磁场理论的理解。
七、实验讨论1. 影响高频振荡磁场强度的因素有哪些?2. 如何提高高频振荡磁场的稳定性?3. 高频振荡磁场在哪些领域有应用?八、实验心得通过本次实验,我深刻认识到理论知识与实际应用相结合的重要性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学本科实验报告2017年11月20日实验项目列表大连理工大学实验预习报告 学院(系): 电子信息与电气工程学部 专业: 电子信息工程 班级: 电子 1502 ______ 姓 名: 凌浩洋 ________________ 学号: ______ 201583130 ______ 组: ______ __^_实验时间: 2017.10.10 实验室: 创新园大厦C224 _________ 实验台: _________ 指导教师签字: ________________________________________ 成绩: ___________实验名称调频接收机模块设计实验一总体要求:1设计任务:(1) 根据实验室提供的电子元器件材料、工装焊接工具、测量调试仪器等,在考虑联 调和可联调的基础上,独立设计、搭建、调测高频小信号放大器、晶体振荡器(本地振 荡器)、晶体管混频器、中频信号放大器和正交鉴频器(包括低频放大和滤波)五个功 能模块,使之满足各自的指标要求。
(2) 将五个模块连接起来组成一个调频接收机,完成整机性能调测,达到预定的指标 要求。
(3) 调频接收机安装在测试架上,连接测试架上的辅助资源(基带处理单元、电源管 理单元),接受实验室自制发射台发射的各种调频信号,进一步检测整机和分模块性能< 调频接收机机框图及鉴频前的前端系统的增益分配如图 1所示25dR图1调频接收机组成框图2设计要求(1) 电源电压 VCC=12V VEE=-8V(2) 接收频率 1 6MHz 左右。
(3) 本振频率九肯14MHz 左右(为了与相邻试验台频率错开,以避免互相之间的干 扰,可考虑采用14MHZ 付近的多个频点中的一个频率值)。
16.455MHz 1,|ir H 2MHz 左右 鉴频 1 .VOLT(4)中频频率,斤—24 5MHz左右(实际值有本组的本振频率/Lo决定)。
(5)接收机灵敏度w 200uV(为方便测试,本实验规定,测试解调输出信号波形,目测SN冬1时接收机输入端所需的最小信号电压)。
(6)在辅助资源的配合下,接收机能正确接受实验室公公发射台发射的以下信号:①正弦调频信号:调制信号频率1kHZ,频偏3kHZ,要求解调输出目测无失真。
②语音或音乐调频信号:调制信号由话筒或MP3提供,要求通过有源音箱输出语音、歌曲基底噪声小,主观评价良好以上。
③2FSK言号:解码输出示波器波形,目测无误码。
3实验结果验收①五个模块连成的接收机的灵敏度。
②对实验室发射台发出的三种调频信号的接收情况。
大连理工大学实验预习报告学院(系):电子信息与电气工程学部专业: 电子信息工程班级: 电子1502 ______姓名:凌浩洋________________ 学号: ______ 201583130 ______ 组:_________ ___实验时间:2017.10.10 实验室:创新园大厦C224 _________ 实验台:_________ 指导教师签字: _______________________________________ 成绩:___________高频小信号调谐放大器一、实验目的和要求(1) 学习高频小信号谐振放大器的工程设计方法。
(2) 掌握谐振回路的调谐方法和放大器的某些技术指标的测试方法。
(3) 了解部分接入电路的形式和作用。
(4) 学会通过实验对电路性能进行研究。
利用实验室提供的元器件设计一个高频小信号谐振放大器。
设计要求如下:(1) 工作频率fRF=16.455MHz。
⑵输入信号V < 200卩VEMF (为便于示波器观察,调试时输入电压可用10mVEMF。
)⑶1k Q负载时,谐振点的电压放大倍数AV0 > 20dB,不要超过35dB。
⑷1k Q 负载时,通频带BW沁1MHz。
⑸1k Q负载时,矩形系数kr0.1<10。
⑹电源电压Vcc=12V。
⑺放大器工作点连续可调(工作电流IEQ=1~8mA)。
二、实验原理和内容高频小信号谐振放大器以并联谐振回路为负载,其谐振频率、增益、通频带等主要性能指标与放大器的电路形式、工作点、放大管的参数密切相关。
(1) 放大管的选择该高频放大器位于接收机的最前端,考虑到增益、稳定性、整机的噪声性能,应选择fT较高、Cb' c小和噪声系数较小的晶体管,一般要求fT〜(5〜10)f或略大,否则增益无法满足要求,其中f为工作频率。
(2) 放大器电路参考形式单管放大器一般采用共射电路,其电压放大倍数大,输入电阻较高,但密勒效应对高频端的增益与谐振情况有明显的影响。
对于小信号谐振放大器来说,并联谐振回路的输入端与管子的输出阻抗相连,而回路负载通常是后级管子的输入阻抗。
因此高频晶体管的输入、输出阻抗中的电阻部分,会降低回路的有载Q值,它们的输入、输出电容、跨接电容的Miller效应及其他寄生电容等会影响谐振频率,而且管子参数和分布参数是不稳定的,会随着温度、工作点的变化而变化。
为减小这些不良影响,晶体管、负载与并联谐振回路的连接宜采用部分接入方式,如图三设计图所示,这是参考电路形式,设计时不必完全按此电路形式这是一个变压器耦合的小信号谐振族大器,变压器是中周形式的,变压器初级线圈b 为谐抿回路申感,6为回路的调谐电脅.变压器次级接爬载申g N、分别为初级线圏口的总匝数和抽头1、2之间的匝数.恥为变压晏次级线圈的匝数=晶体曾集电极接在回路电感的抽头上,晶体管输出阻抗只与电感的一部分并联.接入系数Pi=NiN<l f 昴体进的输出电阴屁等效到回路两端的值为总=4* 因而可以使回路冇戟0下降程度得到改普.输出电容。
°等效到回路芮靖的值为- 则G的变化对回路谐振频率的影响也减小了。
同理,负戟妣通过变压器耦令到回埒两端的置为其中輕二归"为变圧器部分接入系数*即次级线圈和初级线圏匝数之比,& > 如果负裁中含竹电容ct・则益=P:C L<部分接入减小r伉我炖井联冋賂的影响.图322中备 Z 为基极偏程电阻,忌为发射扱直流偏置电阻,G为高频旁路电容.使笈射核在高频接近十地魁位。
m C・G是电派IT型滤波网略.(3) 高频小信号放大器的工作点及偏買电路估算援收机的高频小信号放大器应工作在A类(甲类)状态*为获得高的増益和大的动态范围,工作点应选在楼移特ft 关系曲线线性部分的中点,对参考电路图3・2£” 1 4(y —n约取J CQ^7EQ^(1-3)III AT—奇频放大那偏世电路傲采用分压式*具体汁算参见3.T节口(4) 谐振回路工列匸徂的怙舁与选择谐振回路网谐振于工作豹率,根据越二叫先确定具中一个尤件俏如冋路电感厶印町求出回路75—个元件的值=这里Cr为外搖电容(?相考虑了显体骨饰入、输出电容及其他寄生电容后的冋路俎电容*需除汴奇的是.为谐振频率稳定起见, 外接电容<?的选取至少比那些不稳定电容之利大一个数坛级;但C也不能取过大,否则£太小,空報0不易做得高,便冋路有戦0低*由此导致放大器的楡出电压幅度和增ii小,选频特性棊带宽较宽等不良后果"根抵经验,= 465kHz时,回路电容C4知VlOpF* fv= 107MHz 时.回路电容C^50-15OpF =三、设计的图纸及对图纸的分析为了不对交流信号起阻碍作用,其阻抗应远小于其两端的等效阻抗,- - ■,- ■,参考SS9014勺特性,为达到20dB以上的电压增益,取「-,SS9014的最小B =200,鸟加=30/g = 300M »I sV. WR辭谢—= ----------------- = 20MM加£ 300M l^r-Vn 67 超—_- = = 20/tnw r300^=1QOKJ2(104) 丄二典型值为0.7V,叫常吟-0.7 = 5.37 2四、拟采取的实验步骤(1) 调测并验证所设计的放大器满足预定的指标要求。
建议:用扫频仪外频标法调测放大器的幅频特性曲线,然后测出谐振频率f0、3dB带宽2 A f0.7和2A f0.1,计算出矩形系数;用信号发生器和示波器测量放大器增益。
(2) 放大器工作点的变化对放大器的谐振频率和电压增益有何影响?要求实测IEQ=1〜8mA变化时对应的谐振频率和电压增益,作出实验曲线,分析规律,确定所设计的放大器的合适工作点。
(3) 晶体管输出阻抗及负载对谐振放大器的哪些性能产生影响?通过实验说明采用部分接入方式的优越性。
(提示:可将放大管的集电极改接在电感的一端,使输出阻抗直接并在回路两端,重测放大器性能,与部分接入时的性能相比较。
)分别取憨,严挥耶能,—5.31/ 闻-------- =2.65^I E 2mA:Jlb2 *: R?■MR:; 2k Clk)C27i大连理工大学实验报告学院(系):电子信息与电气工程学部专业: 电子信息工程班级: 电子1502 ______ 姓名:凌浩洋________________ 学号:________ 201583130_______ 组:_________ __实验时间:2017.10.10 实验室:创新园大厦C224 实验台:指导教师签字: ________________________________________ 成绩:___________高频小信号调谐放大器一、实验目的和要求(1) 学习高频小信号谐振放大器的工程设计方法。
(2) 掌握谐振回路的调谐方法和放大器的某些技术指标的测试方法。
(3) 了解部分接入电路的形式和作用。
(4) 学会通过实验对电路性能进行研究。
利用实验室提供的元器件设计一个高频小信号谐振放大器。
设计要求如下:(1)工作频率fRF=16.455MHz。
⑵输入信号V < 200卩VEMF (为便于示波器观察,调试时输入电压可用10mVEMF。
)⑶1k Q负载时,谐振点的电压放大倍数AV0 > 20dB,不要超过35dB。
⑷1k Q 负载时,通频带BW沁1MHz。
⑸1k Q负载时,矩形系数kr0.1<10。
⑹电源电压Vcc=12V。
⑺放大器工作点连续可调(工作电流IEQ=1~8mA)。
二、实验原理和内容高频小信号谐振放大器以并联谐振回路为负载,其谐振频率、增益、通频带等主要性能指标与放大器的电路形式、工作点、放大管的参数密切相关。
(1) 放大管的选择该高频放大器位于接收机的最前端,考虑到增益、稳定性、整机的噪声性能,应选择fT较高、Cb' c小和噪声系数较小的晶体管,一般要求fT - (5〜10)f或略大,否则增益无法满足要求,其中f为工作频率。
(2) 放大器电路参考形式单管放大器一般采用共射电路,其电压放大倍数大,输入电阻较高,但密勒效应对高频端的增益与谐振情况有明显的影响。