数学分析级数

合集下载

数学分析中的级数展开

数学分析中的级数展开

数学分析中的级数展开在数学分析中,级数展开是一种重要的数学工具,用于将一个函数表示为无穷级数的形式。

级数展开在数学和物理学中有广泛的应用,可以帮助我们理解函数的性质和行为。

本文将介绍级数展开的基本概念、常见的级数展开方法以及一些实际应用。

一、级数展开的基本概念级数展开是将一个函数表示为无穷级数的形式,即将函数表示为一系列项的和。

通常情况下,我们希望将一个函数展开成幂级数的形式,即形如∑an(x-a)n的级数。

其中,an是系数,x是变量,a是展开点。

二、常见的级数展开方法1. 泰勒级数展开泰勒级数展开是最常见的级数展开方法之一。

它将一个函数在某个展开点附近展开成幂级数的形式。

泰勒级数展开的公式为:f(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)2/2! + f'''(a)(x-a)3/3! + ...2. 麦克劳林级数展开麦克劳林级数展开是泰勒级数展开的一种特殊情况,展开点为0。

麦克劳林级数展开的公式为:f(x) = f(0) + f'(0)x + f''(0)x2/2! + f'''(0)x3/3! + ...3. 幂级数展开幂级数展开是将一个函数展开成幂级数的形式,不限于泰勒级数展开和麦克劳林级数展开。

幂级数展开的公式为:f(x) = ∑an(x-a)n三、级数展开的实际应用级数展开在数学和物理学中有广泛的应用。

以下是一些常见的应用领域:1. 函数逼近级数展开可以将一个复杂的函数逼近为一个简单的级数,从而方便计算和分析。

例如,利用泰勒级数展开可以将一个非线性函数逼近为一个多项式函数,从而简化计算。

2. 解析几何级数展开在解析几何中有重要的应用。

例如,利用幂级数展开可以将一个复杂的曲线或曲面表示为一系列简单的项的和,从而方便研究其性质和行为。

3. 物理学级数展开在物理学中有广泛的应用。

级数的认识知识点总结

级数的认识知识点总结

级数的认识知识点总结一、级数的定义1.1 级数的概念级数是指由一组数相加而成的和,通常用符号∑来表示。

如果给定一个数列{an},则和S=∑an可以表示为级数的概念。

级数是数学分析中一个非常重要的概念,它允许我们将无穷多个数相加而得到一个和。

1.2 级数的部分和级数的部分和是指级数的前n项和,通常用Sn表示。

级数的部分和可以帮助我们判断级数的收敛性。

1.3 收敛级数和发散级数如果级数的部分和序列{Sn}有一个有限的极限,则称该级数为收敛级数;如果级数的部分和序列{Sn}没有有限的极限,则称该级数为发散级数。

二、级数的收敛性2.1 收敛级数的定义级数∑an收敛的充分必要条件是,对于任意给定的ε>0,存在正整数N,当n>N时,使得|Sn-S|<ε成立。

其中,S表示级数的和。

2.2 收敛级数的性质(1)收敛级数的和的性质:如果级数∑an和∑bn都收敛,则它们的和∑(an+bn)也收敛,并且有∑(an+bn)=∑an+∑bn。

(2)收敛级数的定理:如果级数∑an收敛,则其任一子级数也收敛。

2.3 级数的收敛判定级数的收敛性通常通过不同的方法进行判断,常用的方法有:(1)比较判别法:用一个已知级数的性质来推导出所求级数的性质;(2)比值判别法:通过级数的比值来判断级数的收敛性;(3)根值判别法:通过级数的根值来判断级数的收敛性;(4)绝对收敛级数和条件收敛级数。

2.4 发散级数的性质对于发散级数,常见的性质有:(1)级数部分和的性质:如果级数发散,则它的任一子级数也发散。

(2)级数的极限值为正无穷或负无穷。

三、级数的应用级数在数学分析、微积分等领域有着广泛的应用,其常见的应用包括:3.1 泰勒级数泰勒级数是一种数学分析中的级数,它描述了一个函数在某一点附近的性质。

泰勒级数可以帮助我们近似计算复杂函数的值,求解微分方程等问题。

3.2 幂级数幂级数是一种特殊的级数,其中每一项都是x的非负整数次幂。

数学分析中的级数收敛的判定方法

数学分析中的级数收敛的判定方法

级数是数学分析中一个重要的概念,它由无穷多个数的和组成。

在研究级数时,我们常常希望知道该级数是否收敛。

本文将介绍数学分析中的一些级数收敛的判定方法。

首先我们来介绍级数的收敛和发散的定义。

对于给定的级数∑an,它的部分和序列是指Sn=∑an的前n项和。

如果该序列有极限L,即limn→∞Sn=L,那么我们称级数∑an收敛,并且极限L是该级数的和。

如果该序列没有极限,或者极限为无穷大,那么我们称级数∑an发散。

接下来我们将介绍一些级数收敛的判定方法。

1.比较判别法比较判别法是级数判定方法中最基本的方法之一。

其思想是将待判定的级数与一个已知的级数进行比较。

设∑an和∑bn是两个级数,如果对于所有的n,我们有0≤an≤bn,那么有以下结论:•如果∑bn收敛,那么∑an也收敛;•如果∑bn发散,那么∑an也发散。

通过比较判别法,我们可以快速判断某些级数的收敛性。

2.比值判别法比值判别法是另一种常用的级数收敛判定方法。

它通过计算级数的相邻两项的比值来判断级数的收敛性。

设∑an是一个级数,定义rn=|an+1/an|,如果以下条件满足:•如果rn<1,则级数∑an收敛;•如果rn>1,则级数∑an发散;•如果rn=1,则比较判别法不起作用,我们需要采用其他方法进行判定。

比值判别法在实际运用中非常有用,特别是对于一些指数函数形式的级数。

3.根值判别法根值判别法是一种级数收敛的判定方法,它利用级数的项求极限的方法进行判定。

设∑an是一个级数,定义rn=|an|^(1/n),如果以下条件满足:•如果rn<1,则级数∑an收敛;•如果rn>1,则级数∑an发散;•如果rn=1,则比较判别法不起作用,我们需要采用其他方法进行判定。

根值判别法是一种常用的方法,特别适用于指数函数形式的级数。

4.正项级数判别法正项级数判别法是一种判定正项级数(即级数的每一项都是非负数)收敛性的方法。

它通过判断级数的部分和序列是否有上界来进行判定。

数学分析12.3一般项级数

数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。

数学分析中的级数理论

数学分析中的级数理论

数学分析中的级数理论数学分析中的级数理论是数学分析学科的重要部分,研究了无限级数的收敛性、发散性、求和等重要性质。

无限级数,实质上就是将无穷多的数加在一起所得到的和,它们在物理、工程、经济等领域都有广泛应用。

第一章:无穷级数的定义与性质1.1 无穷级数的概念在数学中,无穷级数是具有形式 $\sum_{n=1}^{\infty}a_n$ 的无穷和,其中 $a_n$ 是数列 $\{ a_n \}$ 的第 $n$ 项。

1.2 无穷级数的收敛性和发散性无穷级数的收敛性和发散性是研究无穷级数的重要内容。

若 $\sum_{n=1}^{\infty}a_n$ 的部分和数列 $\{ s_n \}$ 收敛于$s$,则称无穷级数 $\sum_{n=1}^{\infty}a_n$ 收敛,记作$\sum_{n=1}^{\infty}a_n=s$,$s$ 称为无穷级数$\sum_{n=1}^{\infty}a_n$ 的和。

若 $\sum_{n=1}^{\infty}a_n$ 的部分和数列 $\{ s_n \}$ 发散,则称无穷级数 $\sum_{n=1}^{\infty}a_n$ 发散。

1.3 无穷级数收敛的充分条件无穷级数收敛的充分条件有:(1)级数 $\sum_{n=1}^{\infty}a_n$ 绝对收敛,则$\sum_{n=1}^{\infty}a_n$ 收敛。

(2)级数 $\sum_{n=1}^{\infty}a_n$ 单调递减且不为负数,则$\sum_{n=1}^{\infty}a_n$ 收敛。

1.4 级数收敛的判别法级数收敛的判别法有很多,这里只介绍比较常用的几种:(1)比较判别法设 ${a_n}$ 和 ${b_n}$ 是两个数列,则:若 $\sum_{n=1}^{\infty}b_n$ 收敛而 $|a_n| \leqslant b_n$,则$\sum_{n=1}^{\infty}a_n$ 绝对收敛。

若 $\sum_{n=1}^{\infty}b_n$ 发散而 $|a_n| \geqslant b_n$,则$\sum_{n=1}^{\infty}a_n$ 发散。

数学分析级数收敛最全汇总

数学分析级数收敛最全汇总

数学分析级数收敛最全汇总什么是级数级数是由一连串数相加所得到的和,通常写成这种形式:$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$$其中 $a_n$ 为数列的第 $n$ 项。

收敛和发散对于一个级数 $\sum a_n$,如果当 $n$ 趋于无穷大时其部分和$S_n=\sum\limits_{k=1}^{n} a_k$ 有极限,那么称级数 $\suma_n$ 收敛,同时称其极限为该级数的和,即:收敛,同时称其极限为该级数的和,即:$$\lim_{n \to \infty} s_n = s$$如果极限不存在,或者为 $\pm \infty$,则称级数 $\suma_n$ 发散。

发散。

收敛的判别法对于一个级数 $\sum a_n$,为了判断其是否收敛,通常使用下面这些判别法:- 正项级数判别法- 比值法- 根值法- 级数收敛的必要条件详情可参考资料。

发散的情况当级数 $\sum_{n=1}^{\infty} a_n$ 发散时,可能会出现以下几种情况:- 无穷递增;- 无穷递减;- 振荡。

常见级数示例- 调和级数$$\sum_{n=1}^{\infty} \frac{1}{n}$$- 正项级数$$\sum_{n=1}^{\infty} \frac{1}{n^p}, p>0$$ - 幂级数$$\sum_{n=0}^{\infty} a_n x^n$$其中 $a_n$ 为系数,$x$ 为变量。

- 和式$$\sum_{k=0}^{n} q^k = \frac{1-q^{n+1}}{1-q}$$其中 $q \neq 1$。

总结本文介绍了级数的定义、收敛和发散等概念,以及常见的判别法和例子。

希望对读者有所帮助。

数学分析级数

数学分析级数

数学分析级数在数学的广袤天地中,级数是一个极其重要的概念。

它不仅在理论研究中有着深远的意义,还在实际应用中发挥着关键的作用。

首先,让我们来理解一下什么是级数。

简单来说,级数就是把一系列的数按照一定的顺序相加。

比如,1 + 2 + 3 + 4 +…… 就是一个级数。

级数可以分为数项级数和函数项级数。

数项级数就是由一个个常数组成的级数,而函数项级数则是由函数组成的。

在数项级数中,有一个非常重要的概念,那就是收敛与发散。

如果一个级数的和随着项数的增加逐渐趋近于一个确定的有限值,我们就说这个级数是收敛的;反之,如果这个和不断增大或者没有一个确定的极限,那这个级数就是发散的。

比如说,调和级数 1 + 1/2 + 1/3 + 1/4 +…… 就是发散的。

为什么呢?我们可以通过一些方法来证明。

假设它是收敛的,设其和为 S。

那么 1/2 + 1/4 + 1/6 + 1/8 +…… 就等于 S/2 。

但是 1 + 1/3 + 1/5+ 1/7 +…… 显然大于 1/2 + 1/4 + 1/6 + 1/8 +…… ,这就产生了矛盾,所以调和级数是发散的。

而对于等比级数,比如 1 + 1/2 + 1/4 + 1/8 +…… ,它是收敛的,其和为 2 。

这是因为当公比的绝对值小于 1 时,等比级数是收敛的。

级数的收敛性判断有很多方法。

比如,比较判别法,如果一个级数的每一项都小于另一个已知收敛的级数的对应项,那么这个级数也收敛;比值判别法,通过计算级数相邻两项的比值的极限来判断收敛性;根值判别法,计算级数通项的 n 次方根的极限来判断。

函数项级数在数学分析中也有着重要的地位。

比如幂级数,它是形如∑aₙ(x x₀)ⁿ的级数。

幂级数在其收敛区间内具有很好的性质,可以进行逐项求导和逐项积分。

通过对级数的研究,我们可以解决很多实际问题。

比如在物理学中,求解一些复杂的物理量时,常常会用到级数展开;在工程学中,对信号的处理和分析也会用到级数的知识。

数学分析数项级数

数学分析数项级数

数学分析数项级数数项级数是由一组数相加而成的序列。

数项级数在数学中有着非常重要的地位,常用于研究数学分析、微积分和数论等领域。

首先,我们来定义数项级数。

数项级数是由一组实数a1, a2,a3, ... 组成的序列,将其相加得到的序列表示为:S1 = a1, S2 = a1 + a2, S3 = a1 + a2 + a3, ... 一般地,第n个部分和Sn为Sn = a1 +a2 + ... + an。

我们首先来讨论数项级数的部分和序列。

部分和序列是数项级数中非常重要的概念。

如果部分和序列Sn收敛于一个实数S,即lim(n→∞)Sn = S,那么我们称该数项级数是收敛的,并称S为该数项级数的和。

如果部分和序列Sn不收敛,我们称该数项级数是发散的。

接下来,我们来研究一些收敛数项级数的性质。

首先是数项级数的有界性。

如果数项级数收敛,那么它的部分和序列一定是有界的。

这是因为收敛数列的定义就包含了它的部分和序列是有界的。

其次,我们来看数项级数的比较判别法。

这是判断数项级数的敛散性的一种常用方法。

如果对于一个正数b来说,数项级数绝对值的部分和序列Sn满足Sn≤b,那么我们称该数项级数是收敛的。

该方法常用于判定数项级数在无穷大时的敛散性。

再次,我们来看数项级数的比值判别法。

如果数项级数的部分和序列Sn满足lim(n→∞) ,Sn+1 / Sn, = L,那么我们有下面的结论:1)当L<1时,数项级数是收敛的;2)当L>1时,数项级数是发散的;3)当L=1时,该方法无法判定数项级数的敛散性。

最后,我们来看数项级数的积分判别法。

对于一个连续递减的正函数f(x),如果数项级数的部分和序列Sn与函数f(x)的积分∫(n→∞) f(x) dx之间存在以下关系:1)当∫(n→∞) f(x) dx收敛时,数项级数也是收敛的;2)当∫(n→∞) f(x) dx发散时,数项级数也是发散的。

以上是数项级数的一些基本概念和性质。

数学分析之数项级数

数学分析之数项级数
收敛, 但级数 1 1 1 1 却是发散的.
推 论 如 果 加 括 弧 后 所 成 的 级 数 发 散 ,则 原 来 级 数 也 发 散 .
性质4 (级数收敛的必要条件)
当 n无限,它 增的 大u 一 时 n趋般 于 ,即 项 零
级数收敛 ln im un 0.
证 s un 则 u nsn sn 1, n1 ln i u m nln i s m nln i s m n 1 ss0.
当q1时, ln i m qnln i m sn
如果q 1时
收敛 发散
当q1时, snn a 级数发散 当q1时,级a 数 a a a 变 为
ln im sn不存在 级数发散
综上 aqn
当q 1 时,收敛;
n0
当q 1 时,发散.
例2 讨论数项级数
11 1
(* )
1223 n (n 1 )
1 1 1 . m mp m
因此, 对 任 意 0,可 取 N1, 当m>N及任意正
整数 p,由上式可得 u m 1u m 2 u m pm 1,
依 级 数 收 敛 的 柯 西 准 则 , 知 级 数 n 1 2收敛.
1
注 级数 n 1 n ( n 1 ) 的收敛性已由例2的证明过程所
( c u n d v n ) cu n dv n . 根据级数收敛的柯西准则, 级数 un 的收敛与否与
级数前面有限项的取值无关.从而可得到以下定理. 定理12.3 去掉、增加或改变级数的有限项并不改变 级数的敛散性.
性质3 若级数 un收敛,则 un也收敛
n1
nk1
(k1).且其逆亦真.
Chapt 12 数项级数
级数是数学分析三大组成部分之一, 是逼近理论的基础,是研究函数、进行近 似计算的一种有用的工具. 级数理论的主要 内容是研究级数的收敛性以及级数的应用.

数学分析数项级数

数学分析数项级数
傅里叶级数的应用
傅里叶级数在信号处理、图像处理、通信等领域有着广泛的应用。通过傅里叶变换,可 以将信号从时域转换到频域,从而更好地理解和处理信号。
泰勒级数
01
泰勒级数的定义
泰勒级数是无穷级数,用于逼近一个 函数。泰勒级数展开式由多项式和无 穷小量组成,可以用来近似表示任意 函数。
02
泰勒级数的性质
数学分析数项级数
目录
• 数项级数的基本概念 • 数项级数的性质 • 数项级数的求和法 • 数项级数的应用 • 数项级数的扩展
01
数项级数的基本概念
级数的定义
定义
级数是无穷数列的和,表示为Σ,其 中每一项都是正项或负项。
特点
级数中的每一项都是无穷小量,但整 个级数的和可能是有限的或无限的。
级数的分类
泰勒级数具有收敛性、唯一性和可微 性等重要性质。这些性质使得泰勒级 数成为分析函数的有力工具。
03
泰勒级数的应用
泰勒级数在数学分析、物理和工程等 领域有着广泛的应用。通过泰勒展开 ,可以更好地理解和分析函数的性质 ,如求函数的极限、证明不等式等。
感谢您的观看
THANKS
有穷级数
所有项的和是有限的,例如1+2+3+...+100。
无穷级数
所有项的和是无限的,例如1+1/2+1/3+...。
级数的收敛与发散
收敛
级数的和是有限的,即级数 收敛。
发散
级数的和是无限的,即级数 发散。
判定方法
通过比较测试、柯西收敛准 则等判定级数的收敛与发散 。
02
数项级数的性质
收敛级数的性质
数项级数的扩展
幂级数

数学分析级数

数学分析级数

项级数, 且存在某正数 N0 及常数 l,
(i) 若对一切 n N0, 成立不等式
n un l 1,
(9)
则级数 un 收敛;
(ii) 若对一切 n N0, 成立不等式
n un 1,
(10)
则级数 un 发散.
前页 后页 返回
证 由(9)式有un ln , 因为等比级数 l n 当 1 l 1 时收敛, 故由比较原则, 这时级数 un 也收敛, 对
(5)
前页 后页 返回
则级数 un 收敛.
(ii) 若对一切 n N0, 成立不等式
un1 1,
(6)
un
则级数 un发散.
证 (i) 不妨设不等式 (5) 对一切 n 1 成立,于是有
u2 q, u3 q, , un q, .
u1
u2
un1
前页 后页 返回
把前n-1个不等式按项相乘后,得到
u n n
n 1 4n 4
根据推论1,级数收敛.
前页 后页 返回
例7 讨论级数 nxn1( x 0) 的敛散性.
解 因为
un1 un
(n 1)xn nx n1
x
n1 n
x(n
),
根据推论1,当 0 < x <1时级数收敛;当 x>1时级数发
散; 而当 x = 1时, 所考察的级数是 n, 它显然也是
散性做出判断.
例如 对
1 n2

1 n
,
都有
前页 后页 返回
n un 1(n ), 但
1 n2
是收敛的,

1 却是 n
发散的.
若(11)式的极限不存在, 则可根据根式 n un 的上极限

《数学分析》第十二章 数项级数

《数学分析》第十二章 数项级数

第十二章 数项级数 ( 1 4 时 )§1 级数的收敛性( 3 时 )一. 概念:1.级数:级数,无穷级数;通项 (一般项, 第n 项), 前n 项部分和等概念 (与中学的有关概念联系).级数常简记为∑nu.2. 级数的敛散性与和:介绍从有限和入手, 引出无限和的极限思想.以在中学学过的无穷等比级数为蓝本, 定义敛散性、级数的和、余和以及求和等概念 . 例1 讨论几何级数∑∞=0n nq的敛散性.解 当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||<q 时收敛, 且和为q-11( 注意n 从0开始 ). 例2 讨论级数∑∞=+1)1(1n n n 的敛散性. 解 用链锁消去法求. 例3 讨论级数∑∞=12n n n的敛散性. 解 设 ∑=-+-++++==nk n n k n n n k S 11322212322212, =n S 211432221 232221++-++++n n nn ,1322212121212121+-++++=-=n n n n n n S S S12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n .⇒ n S →2, ) (∞→n .因此, 该级数收敛. 例4 讨论级数∑∞=-1352n n n的敛散性. 解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.3. 级数与数列的关系:⑴设∑nu对应部分和数列{n S }, 则∑nu收敛 ⇔ {n S }收敛;⑵对每个数列{n x },对应级数∑∞=--+211)(n n nx xx ,对该级数,有n S =n x .于是,数列{n x }收敛⇔级数 ∑∞=--+211)(n n nx xx 收敛.可见,级数与数列是同一问题的两种不同形式. 4. 级数与无穷积分的关系:⑴⎰∑⎰+∞∞=+==111)(n n nf dx x f ∑∞=1n nu, 其中 ⎰+=1n nn f u . 无穷积分可化为级数;⑵对每个级数, 定义函数 , 2 , 1 , 1 , )(=+<≤=n n x n u x f n , 易见有∑∞=1n nu=⎰+∞1)(dx x f . 即级数可化为无穷积分.综上所述,级数和无穷积分可以互化,它们有平行的理论和结果.可以用其中的一个研究另一个.二 级数收敛的充要条件 —— Cauchy 准则 :把部分和数列{n S }收敛的Cauchy 准则翻译成级数的语言,就得到级数收敛的Cauchy 准则.Th1 ( Cauchy 准则 )∑nu收敛⇔N n N >∀∃>∀ , , 0ε和∈∀p N ⇒ε | |21<++++++p n n n u u u .由该定理可见,去掉或添加上或改变(包括交换次序) 级数的有限项, 不会影响级数的敛散性. 但在收敛时, 级数的和将改变.去掉前 k 项的级数表为∑∞+=1k n nu或∑∞=+1n kn u.推论 (级数收敛的必要条件)∑nu收敛⇒ 0lim =∞→n n u .例5 证明2-p 级数∑∞=121n n 收敛 . 证 显然满足收敛的必要条件.令 21nu n =, 则当 2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N . 例6 判断级数∑∞=11sinn nn 的敛散性. (验证 0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)例7 证明调和级数∑∞=11n n发散. 证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.三. 收敛级数的基本性质:(均给出证明)性质1∑nu收敛,a 为常数⇒∑nau收敛,且有∑nau=a∑nu(收敛级数满足分配律)性质2∑nu和∑nv收敛⇒)(n nv u±∑收敛,且有)(n n v u ±∑=∑n u ±∑nv.问题:∑nu、∑nv、)(n nv u±∑三者之间敛散性的关系.性质3 若级数∑nu收敛, 则任意加括号后所得级数也收敛, 且和不变.(收敛数列满足结合律)例8 考查级数 ∑∞=+-11)1 (n n 从开头每两项加括号后所得级数的敛散性. 该例的结果说明什么问题 ?Ex [1]P 5—7 1 — 7.§2 正项级数( 3 时 )一. 正项级数判敛的一般原则 :1.正项级数: n n S u , 0>↗; 任意加括号不影响敛散性.2. 基本定理: Th 1 设0≥n u .则级数∑nu收敛⇔)1(0=n S .且当∑nu发散时,有+∞→n S ,) (∞→n . ( 证 )正项级数敛散性的记法 . 3. 正项级数判敛的比较原则: Th 2 设∑nu和∑nv是两个正项级数, 且N n N >∃ , 时有n n v u ≤, 则 ⅰ> ∑nv <∞+ , ⇒ ∑nu<∞+ ;ⅱ>∑nu=∞+, ⇒∑nv=∞+ . ( ⅱ> 是ⅰ>的逆否命题 )例1 考查级数∑∞=+-1211n n n 的敛散性 .解 有 , 2 11 012222nn n n n <+-⇒>+- 例2 设)1( 0π><<q q p . 判断级数∑∞=+111sin n n n q p 的敛散性.推论1 (比较原则的极限形式) 设∑n u 和∑n v 是两个正项级数且l v u nnn =∞→lim,则ⅰ> 当∞+<< 0l 时,∑nu和∑nv共敛散 ; ⅱ> 当0=l 时 ,∑nv<∞+⇒∑nu<∞+ ;ⅲ> 当+∞=l 时,∑nv=∞+⇒∑nu=∞+ . ( 证 )推论2 设∑nu和∑nv 是两个正项级数,若n u =)(0n v ,特别地,若 n u ~n v ,) (∞→n , 则∑nu<∞+⇔∑nv=∞+.例3 判断下列级数的敛散性:⑴∑∞=-121n n n ; ( n n -21~ n 21) ; ⑵ ∑∞=11sin n n ; ⑶ ∑∞=+12) 11 ln(n n .二 正项级数判敛法:1.比值法:亦称为 D ’alembert 判别法.用几何级数作为比较对象,有下列所谓比值法. Th 3 设∑nu为正项级数, 且0 N ∃ 及 0 , ) 10 ( N n q q ><<时ⅰ> 若11<≤+q u u nn ⇒∑n u <∞+; ⅱ> 若11≥+nn u u ⇒∑n u =∞+ . 证 ⅰ> 不妨设 1≥n 时就有11<≤+q u u nn 成立, 有, , , , 12312q u u q u u q u u n n ≤≤≤- 依次相乘⇒11-≤n n q u u , 即 11-≤n n qu u . 由 10<<q , 得∑<nq∞+⇒∑n u <∞+.ⅱ> 可见}{n u 往后递增⇒ , 0→/n u ) (∞→n . 推论 (比值法的极限形式) 设∑n u 为正项级数, 且 q u u nn n =+∞→1lim. 则ⅰ> 当q <1⇒∑nu<∞+; ⅱ>当q >1或q =∞+⇒∑nu=∞+. ( 证 )注: ⑴倘用比值法判得∑nu=∞+, 则有 , 0→/n u ) (∞→n .⑵检比法适用于n u 和1+n u 有相同因子的级数, 特别是n u 中含有因子!n 者. 例4 判断级数 ()()+-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性. 解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.例5 讨论级数∑>-)0( 1x nx n 的敛散性.解 因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.例6 判断级数∑+nn n n !21的敛散性 .注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n,均有 11<+nn u u ,但前者发散, 后者收敛.Ex [1]P 16 1⑴―⑺, 2⑴⑵⑷⑸,3,4,12⑴⑷;2. 根值法 ( Cauchy 判别法 ): 也是以几何级数作为比较的对象建立的判别法.Th 4 设∑nu为正项级数,且 0 N ∃ 及 0>l , 当 0N n >时,ⅰ> 若 1 <≤l u n n ⇒∑nu<∞+;ⅱ> 若1 ≥n n u ⇒∑nu =∞+. ( 此时有 , 0→/n u ) (∞→n .) ( 证 ) 推论 (根值法的极限形式) 设∑nu为正项级数,且 l u n n n =∞→lim . 则ⅰ> 当1 <l 时⇒∑nu<∞+; ⅱ> 当1 >l 时⇒∑nu=∞+ . ( 证 )注: 根值法适用于通项中含有与n 有关的指数者.根值法优于比值法. (参阅[1]P 12)例7 研究级数 ∑-+nn2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ⇒∑+∞<. 例8 判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解 前者通项不趋于零 , 后者用根值法判得其收敛 . 3. 积分判别法:Th 5 设在区间) , 1 [∞+上函数0)(≥x f 且↘. 则正项级数∑)(n f 与积分⎰+∞1)(dx x f 共敛散.证 对] , 1[ , 1 A R f A ∈>∀ 且 ⎰-=-≤≤nn n n f dx x f n f 1, 3 , 2 , )1()()(⇒⎰∑∑∑=-===-≤≤mmn m n mn n f n f dx x f n f 12112, )()1()()( . 例9 讨论 -p 级数∑∞=11n pn的敛散性. 解 考虑函数>=p xx f p ,1)(0时)(x f 在区间 ) , 1 [∞+上非负递减. 积分⎰+∞1)(dxx f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n pn当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛. 例10 讨论下列级数的敛散性:⑴ ∑∞=2) ln ( 1n p n n ; ⑵ ∑∞=3)ln ln ( ) ln ( 1n pn n n .Ex [1]P 16 1⑻,2⑶⑹,5,6,8⑴―⑶,11;§3 一般项级数 ( 4 时 )一. 交错级数: 交错级数, Leibniz 型级数.Th 1 ( Leibniz ) Leibniz 型级数必收敛,且余和的符号与余和首项相同, 并有1 ||+≤n n u r . 证 (证明部分和序列 } {n S 的两个子列} {2n S 和} {12+n S 收敛于同一极限. 为此先证明} {2n S 递增有界. ))()()()(22122124321)1(2++-+-+-++-+-=n n n n n u u u u u u u u S ≥ n n n S u u u u u u 22124321)()()(=-++-+-- ⇒n S 2↗; 又 1212223212)()(u u u u u u u S n n n n ≤------=-- , 即数列} {2n S 有界. 由单调有界原理, 数列} {2n S 收敛 . 设 )( , 2∞→→n s S n .)( , 12212∞→→+=++n s u S S n n n . ⇒s S n n =∞→lim .由证明数列} {2n S 有界性可见 , ∑∞=+≤-≤111)1 (0n n n u u . 余和∑∞=++-nm m m u 12)1(亦为型级数 ⇒余和n r 与1+n u 同号, 且1 ||+≤n n u r .例1 判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解 当10≤<x 时, 由Leibniz 判别法⇒∑收敛;当1>x 时, 通项0→/,∑发散.二. 绝对收敛级数及其性质:1. 绝对收敛和条件收敛: 以Leibniz 级数为例, 先说明收敛⇒/ 绝对收敛.Th 2 ( 绝对收敛与收敛的关系 ) ∑∞+< ||na, ⇒∑na收敛.证 ( 用Cauchy 准则 ).注: 一般项级数判敛时, 先应判其是否绝对收敛. 例2 判断例1中的级数绝对或条件收敛性 . 2. 绝对收敛级数可重排性: ⑴ 同号项级数:对级数∑∞=1n nu,令⎩⎨⎧≤>=+=. 0 , 0 , 0 , 2||n n n n n n u u u u u v ⎩⎨⎧≥<-=-= . 0 , 0 ,0 , 2||n n n n n n u u u u u w 则有 ⅰ>∑nv和∑nw均为正项级数 , 且有|| 0n n u v ≤≤和|| 0n n u w ≤≤;ⅱ> n n n w v u +=|| , n n n w v u -= . ⑵ 同号项级数的性质: Th 3 ⅰ> 若∑||nu +∞< , 则∑n v +∞< ,∑n w +∞< .ⅱ> 若∑nu条件收敛 , 则∑nv+∞= ,∑nw+∞= .证 ⅰ> 由|| 0n n u v ≤≤和|| 0n n u w ≤≤, ⅰ> 成立 .ⅱ> 反设不真 , 即∑nv和∑nw中至少有一个收敛 , 不妨设∑nv+∞< .由 n u = n v n w - , n w =n v n u - 以及 ∑nv+∞<和∑n u 收敛 ⇒∑n w +∞<.而n n n w v u +=||⇒∑||nu+∞<, 与∑n u 条件收敛矛盾 .⑶ 绝对收敛级数的可重排性: 更序级数的概念. Th 4 设∑'nu 是∑nu的一个更序. 若∑||nu+∞<,则||∑'nu +∞<,且∑'n u =∑n u . 证 ⅰ> 若n u 0≥,则∑'nu 和∑nu是正项级数,且它们的部分和可以互相控制.于是,∑nu+∞< ⇒∑'nu +∞<, 且和相等. ⅱ> 对于一般的n u , ∑nu=∑nv ∑-nw⇒∑'nu = ∑'nv ∑'-nw .正项级数∑'nv 和∑'n w 分别是正项级数∑nv和∑nw的更序. 由∑||nu+∞<, 据Th 1 ,∑nv和∑nw收敛. 由上述ⅰ>所证,有∑'nv +∞<,∑'nw +∞<, 且有∑nv =∑'nv , ∑n w ∑n u =∑'n w ⇒∑nu =∑'nu .由该定理可见, 绝对收敛级数满足加法交换律.是否只有绝对收敛级数才满足加法交换律呢 ? 回答是肯定的 . Th 5 ( Riemann ) 若级数∑nu条件收敛, 则对任意实数s ( 甚至是∞± ),存在级数∑nu的更序∑'nu , 使得∑'nu =s .证 以Leibniz 级数∑∞=+-111) 1 (n n n为样本, 对照给出该定理的证明. 关于无穷和的交换律, 有如下结果: ⅰ> 若仅交换了级数∑nu的有限项,∑nu的敛散性及和都不变.ⅱ> 设∑'nu 是的一个更序. 若N ∈∃K , 使 nu在∑'nu 中的项数不超过K n +,106则∑'n u 和∑n u 共敛散, 且收敛时和相等 .三. 级数乘积简介:1. 级数乘积: 级数乘积, Cauchy 积. [1] P 20—22.2.级数乘积的Cauchy 定理:Th 6 ( Cauchy ) 设∑||n u +∞<, ||∑n v +∞<, 并设∑n u =U , ∑n v =V . 则 它们以任何方式排列的乘积级数也绝对收敛, 且乘积级数的和为UV . ( 证略 ) 例3 几何级数1 || ,1112<+++++=-r r r r rn 是绝对收敛的. 将()2∑n r 按Cauchy 乘积排列, 得到 +++++++++++=++个12222)()()(1)1(1n n n n r r r r r r r r r ++++++=n r n r r )1(3212 .Ex [1] P 24—25 1⑴—⑻ ⑽,4; 31(总Ex ) 2,3,4⑴⑵;四. 型如∑n n b a 的级数判敛法:1.Abel 判别法:引理1 (分部求和公式,或称Abel 变换)设i a 和i b m i ≤≤1)为两组实数.记) (1 ,1m k b B k i i k ≤≤=∑=. 则∑∑=-=++-=m i m i m m i i i i i B a B a a b a 1111)(.证 注意到 1--=i i i B B b , 有∑∑==-+-=m i m i i i ii i b a B B a b a 12111)()()()(123312211--++-+-+=m m m B B a B B a B B a B a107 m m m m m B a B a a B a a B a a +-++-+-=--11232121)()()() )( ( . )(111111∑∑-=+-=+--=+-=m i i i i m m m m m i i i i B a a B a B a B a a. 分部求和公式是离散情况下的分部积分公式. 事实上,⎰⎰⎰=⎪⎪⎭⎫ ⎝⎛=b a ba x a dt t g d x f dx x g x f )()()()( ⎰⎰⎰⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=b a x a b a x a x df dt t g dt t g x f )()()()(⎰⎰⎰⎪⎭⎫ ⎝⎛-=b a b ax a x df dt t g dt t g b f )()()()(. 可见Abel 变换式中的i B 相当于上式中的⎰x a dt t g )(, 而差i i a a -+1相当于)(x df , 和式相当于积分. 引理 2 ( Abel )设i a 、i b 和i B 如引理1 .若i a 单调 , 又对m i ≤≤1,有M B i ≤||,则||1∑=mi i i b a ) ||2|| (1m a a M +≤.证 不妨设i a ↘.||1∑=m i i i ba ∑-=++-≤111||||||m i m m i i i B a B a a ) ||2|| ( ||)(1111m m i m i i a a M a a a M +≤⎥⎦⎤⎢⎣⎡+-≤∑-=+. 推论 设i a , 0≥i a ↘,(m i ≤≤1 ). i b 和i B 如引理1. 则有||1∑=m i i i ba 1Ma ≤.( 参引理2证明 ) Th 7 (Abel 判别法)设ⅰ> 级数∑n b 收敛,ⅱ> 数列}{n a 单调有界.则级数∑n n b a 收敛. 证 (用Cauchy 收敛准则,利用Abel 引理估计尾项)设K a n ≤||, 由∑n b 收敛 ⇒对N n N >∃>∀ , , 0ε时 , 对N ∈∀p , 有108 ε | |21<++++++p n n n b b b .于是当N n >时对p ∀有()εεK a a b a p n n pn n k k k 3 ||2|| 11≤+≤++++=∑.由Cauchy 收敛准则 ⇒∑n n b a 收敛.2. Dirichlet 判别法:Th 8 ( Dirichlet)设ⅰ> 级数∑n b 的部分和有界, ⅱ> 数列}{n a 单调趋于零. 则级数∑n n b a 收敛.证 设∑==n i n n bB 1, 则M B n ||≤ ⇒对p n , ∀, 有M B B b b b n p n p n n n 2 ||||21≤-=+++++++ .不妨设n a ↘0 ⇒对εε<⇒>∀∃>∀|| , , , 0n a N n N . 此时就有εM a a M b a P n n pn n k k k 6|)|2|(|2 11<+≤++++=∑.由Cauchy 收敛准则,∑n n b a 收敛. 取n a ↘0,∑n b ∑+-=1) 1(n ,由Dirichlet 判别法, 得交错级数∑+-n n a 1) 1(收敛 . 可见Leibniz 判别法是Dirichlet 判别法的特例.由Dirichlet 判别法可导出 Abel 判别法. 事实上, 由数列}{n a 单调有界 ⇒}{n a 收敛, 设) ( , ∞→→n a a n .考虑级数∑∑+-n n n b a b a a )(,a a n -单调趋于零,n B 有界 ⇒级数∑-n n b a a )(收敛,又级数∑n b a 收敛⇒级数∑∑+-n n n b a b a a )(收敛.109 例4 设n a ↘0.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证 ++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n k x n x n x n ) 21sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++, ) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+nk x x n kx 12sin 2) 21 sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx a n cos 收敛 . 同理可得级数数∑nx a n sin 收敛 .Ex [1]P 24 — 25 2, 3.。

数学分析中的级数展开

数学分析中的级数展开

数学分析中的级数展开级数展开是数学分析中一个重要的概念,它在数学理论和实际问题中都有着广泛的应用。

级数展开可以将一个函数表示为无穷级数的形式,从而方便进行计算和研究。

在本文中,我们将介绍级数展开的基本概念、原理和应用,帮助读者更好地理解和掌握这一重要的数学工具。

### 1. 级数展开的基本概念在数学分析中,级数展开是将一个函数表示为无穷级数的形式的过程。

一般来说,一个函数可以在某个区间内展开为幂级数、三角级数或其他类型的级数。

级数展开的基本思想是利用级数的收敛性质,将函数表示为级数的形式,从而方便进行计算和研究。

### 2. 幂级数展开幂级数是一种常见的级数展开形式,它可以表示为形如$\sum_{n=0}^{\infty} a_n(x-a)^n$的级数。

其中,$a_n$是系数序列,$a$是展开点。

通过幂级数展开,我们可以将一个函数在展开点附近表示为幂级数的形式,从而进行函数的近似计算和分析。

### 3. 泰勒级数展开泰勒级数是一种特殊的幂级数展开形式,它可以将一个函数在某个点附近展开为幂级数。

泰勒级数展开的公式为$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^n$,其中$f^{(n)}(a)$表示函数$f(x)$在点$a$处的$n$阶导数。

泰勒级数展开在数学分析和物理学中有着广泛的应用,可以用来近似计算函数的值和导数。

### 4. 应用举例级数展开在数学分析、物理学、工程学等领域都有着重要的应用。

例如,在微积分中,级数展开可以用来计算函数的积分、导数和极限;在物理学中,级数展开可以用来描述物理现象和解决物理问题;在工程学中,级数展开可以用来建立数学模型和进行工程计算。

总之,级数展开是一个强大的数学工具,可以帮助我们更好地理解和应用数学知识。

### 结语通过本文的介绍,我们了解了数学分析中级数展开的基本概念、原理和应用。

级数展开是数学分析中一个重要的概念,它可以将一个函数表示为无穷级数的形式,方便进行计算和研究。

数学分析级数课件ppt

数学分析级数课件ppt

就是该区间上的一个函数。
幂级数的求和公式
幂级数的求和公式
对于形如 (a_0 + a_1x + a_2x^2 + ldots) 的幂级数,其和可以通过以下公式求得:(S = lim_{n to infty} sum_{k=0}^{n} a_k x^k)
求和公式的应用
求和公式是研究幂级数的重要工具,可以用于计算函数的值、求函数的导数和积分等。
等差级数的求和公式
前n项和公式
S_n=n/2*(2a_1+(n-1)d)。
任意项和公式
S=n/2*(a_1+a_n)。
无限项和公式
S=a_1/2*d*(n^2+(3*n)/2)。
04
幂级数
幂级数的定义
幂级数:由形如 (a_0 + a_1x + a_2x^2 + ldots) 的无穷序列组成的级数,其中 (a_0, a_1, a_2, ldots) 是常数,(x) 是变量。
VS
表示方法
a_n=a_1+(n-1)d,其中a_1是首项,d是 公差,n是项数。
等差级数的性质
递增性
如果公差d>0,则等差级数递增;如果公差 d<0,则等差级数递减;如果公差d=0,则 等差级数为常数。
对称性
等差级数的对称轴是首项和末项的中点,即 (a_1+a_n)/2。
有界性
等差级数的值域为[a_1-d/2, a_1+d/2],即 首项减去公差的一半和首项加上公差的一半 之间的所有实数。
THANKS
感谢观看
等比级数的求和公式
当公比$q$不等于1时,等比 级数的和为$frac{a(1q^n)}{1-q}$。

级数知识点总结

级数知识点总结

级数知识点总结数学中的级数是指“项数无限”的无穷级数,是数学分析中的一个重要概念。

级数在实际问题中具有广泛的应用,特别是在数值计算中,大量的数值方法都具有涉及级数的计算步骤。

因此,在掌握级数相关的知识点是数学学习的重要一步。

一、级数的定义级数是指数列的和数列,也就是无穷个数相加所得到的结果。

一般地,设a_1, a_2, a_3, ...是一个数列,称∑a_n为无穷级数,其中∑表示求和。

当级数的通项数列收敛时称之为收敛级数,反之称为发散级数。

二、收敛判别法1.正项级数收敛定理:若数列an≥0,an≥0,且ΣanΣan收敛,则ΣanΣan绝对收敛。

2.比值判别法:对于正项级数∑an∑an,如果存在极限limn→∞(an+1)/an>1limn→∞(an+1)/an>1,那么级数发散;如果存在极限limn→∞(an+1)/an<1limn→∞(an+1)/an<1,那么级数绝对收敛;如果存在极限limn→∞(an+1)/an=1limn→∞(an+1)/an=1,那么该方法不适用。

3.根值判别法:对于正项级数∑an∑an,若存在极限limn→∞n√an>1limn→∞n√an>1,那么级数发散;若存在极限limn→∞n√an<1limn→∞n√an<1,那么级数绝对收敛;如果存在极限limn→∞n√an=1limn→∞n√an=1,那么该方法不适用。

4.积分判别法:若f(x)是R中非负连续函数,且单调递减,则当an=f(n)f(n)时,正项级数∑an∑an与积分∫1+∞f(x)dx的敛散性相同。

三、级数的性质1.收敛级数的性质:(1)级数后面的项任何一个加数的变动都不能影响其收敛状态。

(2)收敛级数的和唯一。

(3)若把有限项移位后,收敛级数的和仍不变。

2.发散级数的性质:(1)级数后面的项任何一个加数的变动都不能影响其发散状态。

(2)级数的任何一个有限部分的和都是有限的。

《数学分析》 第十二章 数项级数 1

《数学分析》 第十二章 数项级数 1

(
1 2m
1
1 2m
2
1 2m1
)
每项均大于1
2m项
2
即前m 1项大于(m 1) 1 2
级数发散 .
由性质4推论,调和级数发散.
五、小结
常数项级数的基本概念
基本审敛法
1.由定义,若sn s,则级数收敛;
2.当lim n
un
0,则级数发散;
3.按基本性质.
思考题
设 bn 与 cn 都收敛,且bn an cn
lim
n
sn不存在
发散
综上
n0
aq
n
当q 当q
1时,收敛 1时, 发散
例 2 判别无穷级数
1 1
1
的收敛性.
13 35
(2n 1) (2n 1)

un
(2n
1 1)(2n
1)
1( 1 2 2n
1
1 2n
), 1
sn
1 1
1
13 35
(2n 1) (2n 1)
1 (1 1) 1 (1 1) 1 ( 1 1 )
1 (4)2 39
1 (4)n2 ]} 39
n 2,3,
于是有
lim
n
Pn
1
lim
n
An
A1
(1
1
3
4
)
A1 (1
3) 5
2 3. 5
9
雪花的面积存在极限(收敛).
结论:雪花的周长是无界的,而面积有界.
例 1 讨论等比级数(几何级数)
aqn a aq aq2 aqn (a 0)
n0
的收敛性.

数学分析中的级数和函数逼近

数学分析中的级数和函数逼近

级数和函数逼近是数学分析中的两个重要概念,它们在研究和应用数学问题时,具有重要的作用和意义。

级数是数列的和,而函数逼近是用简单的函数来逼近复杂的函数。

本文将从级数和函数逼近的定义、性质和应用等方面进行探讨。

首先,我们来介绍一下级数的概念。

级数是指从某个位置开始的无穷多个数按照一定的规律相加而得到的和。

一个级数可以记作∑(an),其中an代表级数的第n项。

级数的求和可以通过数列前n项和的极限来表示。

比如,级数∑(1/2^n)的前n项和可以表示为S(n)=1/2+1/4+…+1/2^n,当n趋于无穷大时,S(n)的极限就是级数的和。

级数有一些重要的性质。

首先,级数可以收敛或发散。

当级数的和存在有限的极限时,我们说这个级数是收敛的;当级数的和不存在或为无穷大时,我们说这个级数是发散的。

其次,级数满足线性运算的性质。

对于两个级数∑(an)和∑(bn),它们的和可以表示为∑(an+bn),而它们的常数倍可以表示为∑(k*an)。

最后,级数的收敛性与其各项的大小关系有关。

如果级数的项越来越小,并且满足某种条件时,该级数就是收敛的。

比如,级数∑(1/n^2)就是一个收敛的级数。

函数逼近是指用一个简单的函数来近似复杂的函数。

在实际问题中,我们经常会遇到一些复杂的函数,例如三角函数、指数函数等。

要精确计算这些函数的值是非常困难的,甚至在某些情况下是不可能的。

因此,我们需要用一些简单的函数来逼近这些复杂的函数。

函数逼近的核心思想是在给定的误差范围内,用一个简单的函数来近似原来的复杂函数。

函数逼近有各种各样的方法和技术。

其中,最为常用的方法是泰勒展开。

泰勒展开是将一个函数在某个点处展开成无穷级数的形式。

通过截取级数的前几项,可以近似计算原函数在该点附近的值。

另外一种常用的方法是插值逼近。

插值逼近是通过已知函数在一些点上的值,来推测该函数在其他点上的值。

通过选择适当的插值点和插值多项式,可以得到较为精确的函数逼近结果。

数学分析中的级数理论

数学分析中的级数理论

数学分析中的级数理论数学分析是研究数学中的连续和极限概念的一个分支学科,而级数理论则是其中的一个重要内容。

本文将围绕数学分析中的级数理论展开讨论,深入探究级数的定义、性质以及收敛与发散等问题。

一、级数的定义与性质级数是由无穷多个实数或复数按照一定顺序相加而得到的数列。

一般来说,级数的一般形式可以表示为:S = a1 + a2 + a3 + ...其中,ai为级数的第i项。

级数是一个重要的数学工具,它在各个领域都有广泛的应用,如物理学、工程学以及金融学等。

在级数的研究中,我们首先需要关注级数的部分和。

部分和Sn表示级数前n项的和,即Sn = a1 + a2 + a3 + ... + an。

通过求解部分和,我们可以判断级数的收敛性与发散性。

如果存在一个实数S,使得对于任意正数ε,都存在正整数N,使得当n > N时,|Sn - S| < ε成立,那么我们称级数收敛于S。

否则,级数被称为发散。

在研究级数的收敛性时,我们常用到级数的必要条件和充分条件。

级数的必要条件是级数收敛的充分条件,而级数的充分条件是级数发散的必要条件。

对于必要条件,我们可以根据级数的收敛性来探究级数的性质。

二、级数的收敛与发散1. 绝对收敛与条件收敛级数的收敛性可分为两种情况:绝对收敛和条件收敛。

如果级数的每一项都是非负的,并且级数收敛,那么我们称这个级数为绝对收敛。

绝对收敛的级数具有良好的性质,如部分和的次序可以变换,级数的项可以逐项相乘等。

如果级数的每一项不一定非负,但是经过重新排列后收敛,那么我们称这个级数为条件收敛。

条件收敛的级数的性质较为复杂,排列的次序会对级数的和产生影响。

2. 收敛级数的性质对于收敛级数,我们有以下性质:(1)级数的和具有唯一性。

即如果一个级数收敛,那么它的和是确定的。

(2)收敛级数的任意子级数也是收敛的,并且具有相同的和。

(3)连续对收敛级数进行加、减、乘运算得到的新级数仍然收敛,并且和等于原级数的和与运算数的和之间的运算。

数学分析中的级数收敛理论

数学分析中的级数收敛理论

数学分析中的级数收敛理论在数学分析学科中,级数收敛理论是一个重要的概念和理论体系。

级数是指由一系列数相加而成的无穷级数,而级数的收敛与发散则是判断级数性质的关键问题之一。

本文将探讨级数收敛理论的基本概念、性质及应用。

1.级数与部分和级数是由一系列项按一定次序相加而成的无穷和。

一般可以表示为S= a₁ + a₂ + a₃ + ... + aₙ + ...其中,a₁,a₂,a₃,...为级数的各项,n为级数的项数。

而级数的部分和可以表示为Sn= a₁ + a₂ + a₃ + ... + aₙ。

2.级数收敛与发散的定义级数的收敛与发散是指级数的部分和序列是否有极限的情况。

定义1:如果级数的部分和Sn的极限存在,即lim(n→∞) Sn = S存在,则称级数收敛,且极限S称为级数的和。

定义2:如果级数的部分和Sn的极限不存在或趋于无穷大,即lim(n→∞) Sn = ∞或-lim(n→∞) Sn = -∞,则称级数发散。

3.级数收敛的判定方法在数学分析中,有许多方法可以用来判断级数的收敛性。

下面将介绍几种常见的判定方法。

3.1. 正项级数判别法正项级数是指级数的各项都是非负数的级数。

正项级数的判别法非常简便,如果正项级数的部分和序列有上界,则该正项级数一定收敛。

3.2. 比较判别法比较判别法是用来判断任意项为正的级数的收敛性的一种重要方法。

定理:设有两个级数∑aₙ和∑bₙ,若存在正常数c,当n足够大时,有aₙ≤c·bₙ,则若级数∑bₙ收敛,则级数∑aₙ也收敛;若级数∑aₙ发散,则级数∑bₙ也发散。

3.3. 比值判别法比值判别法是判断一般项为正的级数收敛性的一种常用方法。

定理:设有一般项为正的级数∑aₙ,若存在极限lim(n→∞)|aₙ₊₁/aₙ| = L,则当L < 1 时,级数收敛;当L > 1时,级数发散;当L = 1时,判别不出。

4.级数求和的方法在级数的求和问题上,数学家们找到了一些有效的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据推论1,级数收敛.
前页 后页 返回
n 1 nx ( x 0) 的敛散性. 例7 讨论级数
解 因为
un1 ( n 1) x n n 1 x x ( n ), n1 un nx n
根据推论1,当 0 < x <1时级数收敛;当 x>1时级数发 散; 而当 x = 1时, 所考察的级数是 n, 它显然也是
(ii) 若对一切 n N 0 , 成立不等式
un1 1, un
则级数 un发散.
(6)
证 (i) 不妨设不等式 (5) 对一切 n 1 成立,于是有
u3 un u2 q, q, , q, . u1 u2 un1
前页 后页 返回
把前n-1个不等式按项相乘后,得到
散.
前页 后页 返回
*例5 判断正项级数

n
1
2 n sin 1 n
的敛散性.
1 sin 1 n 1 lim 1, 解 因为 n 1 故可将 2 n sin 1 与 2 进 n n n n
行比较. 由于
1 lim n
n 2 n sin 1 n1 n2来自 limnn2 n
1 2 n sin n
前页 后页 返回
定理12.6 (比较原则) 设 un 和 vn 是两个正项 级数, 如果存在某正数N, 对一切 n > N 都有
un vn (1)

(i) 若级数 vn 收敛, 则级数 un 也收敛; (ii) 若级数 un 发散, 则级数 vn 也发散.
证 因为改变级数的有限项并不影响原有级数的敛 散性,因此不妨设不等式(1)对一切正整数都成立.
§2 正项级数
收敛性是级数研究中最基本的问题, 本节将
对最简单的正项级数建立收敛性判别法则.
一、正项级数收敛性的一般判别原则 二、比式判别法和根式判别法
三、积分判别法
*四、拉贝判别法
前页 后页 返回
一、正项级数收敛性的一般判别原则
若数项级数各项的符号都相同, 则称它为同号级数. 对于同号级数, 只须研究各项都是由正数组成的级 数(称正项级数).若级数的各项都是负数,则它乘以 -1后就得到一个正项级数,它们具有相同的敛散性. 定理12.5 正项级数 un 收敛的充要条件是:部分和
当 q 1 时, 根据 的取法,有 q 1, 由上述不等式
的左半部分及比式判别法的 (i), 得正项级数 un 是收敛的.
若 q 1, 则有 q 1, 根据上述不等式的左半部分
所以这时级数 un 是发散的.
及比式判别法的 (ii), 可得级数 un 是发散的. un1 1, 若 q , 则存在 N , 当 n N 时有 un
前页 后页 返回
定理12.8(柯西判别法, 或根式判别法) 设 un 为正 项级数, 且存在某正数 N 0 及常数 l ,
(i) 若对一切 n N 0 , 成立不等式
n
un l 1,
(9)
则级数 un 收敛;
(ii) 若对一切 n N 0 , 成立不等式
n
un 1,
(10)
前页 后页 返回
*推论2设 un 为正项级数.
un1 (i) 若 lim q 1, 则级数收敛; n u n un1 (ii) 若 lim q 1, 则级数发散; n un
*例8 研究级数
1 b bc b2c b2c 2 b nc n1 b nc n (8)
数列 { Sn } 有界, 即存在某正数M, 对一切正整数 n 有
Sn M .
前页 后页 返回
证 由于 ui 0( i 1,2,), 所以{Sn}是递增数列.而 单调数列收敛的充要条件是该数列有界(单调有界 定理).这就证明了定理的结论. 仅靠定义和定理12.5来判断正项级数的收敛性是不 容易的,因此要建立基于级数一般项本身特性的收 敛性判别法则.
的敛散性, 其中 0 < b < c.
前页 后页 返回
解 由于
un1 b, n 为奇数, un c , n 为偶数,
故有
un 1 un 1 lim c , lim b, n u n un n
于是当c < 1时, 级数(8)收敛; 当b >1时,级数(8)发散; 但当b < 1< c时,比式判别法无法判断级数(8)的敛散 性.
前页 后页 返回
2 2 n n b c b c b c 的敛 *例10考察级数
2 1 ln n lim n o 2 0, n n n
所以 lime
n 1 2(1 n sin )ln n n
1. 根据比较原则, 原级数收敛.
前页 后页 返回
二、比式判别法和根式判别法
本段所介绍的两个方法是以等比级数作为比较对象
1 式, 级数 n 也收敛. 2 n
前页 后页 返回
1 1 1 例4 正项级数 sin sin1 sin sin n 2 n
1 sin n 1, lim 是发散的, 因为 n 1 根据比较原则的极限 n
1 1 形式以及调和级数 发散, 得到级数 sin 也发 n n
收敛的必要条件可知, 级数 un 是发散的.
前页 后页 返回
推论1(根式判别法的极限形式) 设 un 为正项级 数,且
lim un l ,
n
n
(11)

(i) 当 l 1 时, 级数 un 收敛; (ii) 当 l 1 时, 级数
u 发散.
n
证 由(11)式, 当取 1 l 时, 存在某正数 N,对一切 n > N, 有 l un l . 于是由根式判别法就得到推论所要证明的结论.
un lim l , n v n (3)

前页 后页 返回
(i) 当 0 l 时, 级数 un , vn同敛散; (ii) 当 l 0 且级数 vn收敛时, 级数 un也收敛; (iii) 当 l 且级数 vn发散时, 级数 un也发散.
证 (i) 由(3) 对任给正数 l , 存在某正数N, 当 n > N时,恒有
lim n
n
1 2(1 n sin ) n
lime
n
1 2(1 n sin )ln n n
,
前页 后页 返回
注意到
1 1 1 lim 1 n sin ln n lim 1 n o 2 ln n n n n n n
前页 后页 返回
1 1 un 1( n ), 但 2 是收敛的, 而 却是 n n 发散的.
n
若(11)式的极限不存在, 则可根据根式 un 的上极限 来判断. *推论2 设 un 为正项级数, 且
lim un l ,
n n
n
则当 (i) l < 1 时级数收敛; (ii) l > 1 时级数发散.
1 比较原则和定理12.3, 级数 2 也收敛. n n1
前页 后页 返回

2 2 u , v 例2 若级数 n n 收敛, 则级数 unvn 收敛.
证 因为 | unvn | u v , 而级数 u , v 收敛,
2 n 2 n
2 n 2 n
根据比较原则, 得到级数 unvn 收敛. 在实际使用上,比较原则的极限形式通常更方便. 推论 (比较原则的极限形式) 设 un , vn 是两个 正项级数,若
而得到的, 但在使用时只要根据级数一般项本身的
特征就能作出判断. 定理12.7(达朗贝尔判别法, 或比式判别法)设 un 为正项级数, 且存在某正整数 N 0及常数q (0 q 1).
(i) 若对一切 n N 0 , 成立不等式
un1 q, un (5)
前页 后页 返回
则级数 un 收敛.
前页 后页 返回
n
2 ( 1)n 例9 研究级数 的敛散性. n 2 解 由于
n 2 ( 1) 1 n lim un lim , n n 2 2 n
所以级数是收敛的. 若在(11)式中 l =1,则根式判别法仍无法对级数的敛
1 1 散性做出判断. 例如 对 2 和 , 都有 n n
un u2 u3 q n 1 u1 u2 un 1
或者 un u1q n1 .
由于当0 < q < 1时, 等比级数 q n1收敛 , 根据比较
n 1
原则及上述不等式可得级数 un 收敛.
前页 后页 返回
推论1(比式判别法的极限形式) 若 数,且
un1 lim q, n u n
前页 后页 返回
和 Sn 记级数 un 与 vn 的部分和. 现在分别以 Sn
由(1)式可得,对一切正整数 n, 都有
Sn Sn
n
(2)
存在, 则由(2)式对一切 n 有 若 vn收敛, 即 lim Sn
lim Sn , 即正项级数 un 的部分和数列 { Sn } 有 Sn n
un l vn

( l )vn un ( l )vn .
(4)
前页 后页 返回
由比较原则及(4)式得, 当 0 l 时, 级数
与 vn 同时收敛或同时发散. 这就证得了(i). 级数 vn 收敛, 则级数 un 也收敛.
u
n
(ii) 当l = 0时,由(4)式右半部分及比较原则可得,若
(iii) 若l , 则对于正数1, 存在相应的正数N,当
相关文档
最新文档