港珠澳大桥隧道沉管技术
港珠澳大桥岛隧工程技术综述
港珠澳大桥岛隧工程技术综述摘要:港珠澳大桥岛隧工程是连接香港、珠海及澳门的大型跨海通道。
本篇综合介绍了其中人工海岛和沉管隧道工程的总体布置和技术要求;其次介绍了人工海岛建造技术、隧道的地质勘查和基础处理、沉管管节工厂化预制、水下挤密砂桩;管节接头防水技术、管节浮运与沉放等。
关键词:人工海岛;沉管隧道;1 项目概况港珠澳大桥跨越珠江口伶仃洋海域,是连接香港、珠海、澳门的大型跨海通道工程,是国家高速公路网规划中珠江三角洲地区环线的组成部分和跨越伶仃洋海域的关键性工程。
港珠澳大桥起自香港口岸,跨越粤港分界线,下穿拱北口岸,止于南屏镇洪湾,线路总长约为55km。
主体工程长约29. 6km,采用桥隧结合方案,穿越伶仃西航道和铜鼓航道段6.7km 采用隧道方案,其余路段约22.9km采用桥梁方案,主体工程隧道两端各设置1个海中人工岛。
主要技术指标: 公路等级为高速公路,设计速度为100km /h,双向六车道;设计使用寿命120年;建筑限界: 桥面标准宽度33. 1m,隧道2×14.25m,净高5.1m。
设计汽车荷载按《公路桥涵设计通用规范》JTGD60—2004 汽车荷载提高25%用于设计计算,同时满足香港《道路及铁路结构设计手册》中规定的活荷载要求。
抗风设计标准: 运营阶段设计重现期120年,施工期重现期 30 年。
地震设防标准: 地震基本烈度为7度;结构防水等级为一级;主体结构耐火等级按一级隧道设计,采用RABT标准升温曲线测试的耐火极限不低于2h。
2 工程主要技术特点2.1 人工海岛的主要技术特点根据主体工程总体布置,隧道两端各设置长度为625m的海中人工岛,两岛间平面距离约5.6km,人工岛平面呈耗贝形,横向最宽处约215 m。
修建海上人工岛的目的是实现桥梁与隧道的顺利衔接,满足岛上建筑物布置需要,并提供基本掩护功能,保障主体工程(岛上的隧道暗埋段敞开段)的顺利建设和正常运营。
其中,西人工岛靠近珠海市,岛的东侧与隧道衔接,西侧与青州航道桥的引桥衔接,平面呈椭圆形,采用“耗贝”的设计理念,岛长625m,最宽处约183m,工程区域天然水深约-8.0m。
港珠澳大桥沉管隧道如何开挖的
港珠澳大桥沉管隧道如何开挖的01沉管法沉管法是在水底建筑隧道的一种施工方法,如香港的海底隧道就是采用沉管法施工。
沉管法主要适用水深范围较大,水道河床稳定且水流不急的工程,可顺利开挖沟槽,浮运、定位并沉放管段,且可有效减少土方量。
同时,其具有施工工期短,操作条件好,施工安全,工程造价较低等优点。
施工时,应先在船台上或干坞中用钢板和混凝土或钢筋混凝土制作隧道管段,并用临时封墙密封管段两端后滑移下水,再将若干个预制段分别浮运到隧道设计位置。
然后进行定位,同时在向管段内加载后将管段逐节沉放并安装在已疏浚好的基槽内,再用水力压接法将相邻管段连接。
最后拆除封墙,将各节管段连通成一个整体隧道。
02钻爆法钻爆法是一种利用钻眼爆破方法开挖断面的海底隧道施工技术,如青岛胶州湾海底隧道就是采用钻爆法施工。
施工时应先利用钻眼爆破方法开挖断面,再将整个断面分部开挖至设计轮廓,然后随之修筑衬砌隧道及地下工程。
钻爆法的施工工艺流程如下:爆破设计→锚定钻孔作业平台→移机就位→确定孔深→套管护孔→钻孔→成孔冲洗→测量验孔→装药→连线→平台撤离→起爆信号→起爆、震动监测→爆破效果检查→解除警戒。
此外,钻爆法的掘进方式可分为全断面掘进法、导洞法和分部开挖法3种。
03盾构法盾构法是一种常用的全机械化海底隧道施工技术,如日本东京湾海底隧道就是采用盾构法施工。
施工时先将盾构机械在土层中推进,利用盾构外壳和管片支承四周围岩防止发生往隧道内的坍塌,同时通过切削装置进行土体开挖,且利用出土机械将其运出洞外,然后在后部采用千斤顶进行加压顶进,并拼装预制混凝土管片。
盾构法具有很多优点,其推进、出土、拼装、衬砌等全过程均可实现自动化作业,且掘进速度快,施工噪声小,施工劳动强度低,同时施工时不会影响地面交通设施以及地下管线等设施,且还不受季节、风雨等气候条件影响。
但其在断面尺寸多变的区段的施工适应能力较差,且不适合短施工区段的工程。
当然了,沉管法与盾构法并不是完全独立的,在实际的工程中,常常是协同使用。
港珠澳大桥的“科技密码”
港珠澳大桥的“科技密码”港珠澳大桥是连接中国内地、澳门和香港的一座重要交通工程,是世界上最长的跨海大桥,也是集桥梁、海底隧道、人工岛等多种工程技术于一体的超级工程。
港珠澳大桥的建设离不开科技的支持与保障,科技成为这一超级工程的“密码”,推动了港珠澳大桥建设技术的创新和发展。
一、先进的施工技术港珠澳大桥的建设面临着诸多挑战,例如深水施工、大跨度桥梁设计、海底隧道掘进等,需要运用大量的先进施工技术。
在桥梁施工方面,港珠澳大桥采用了世界上最大的钢箱梁桥梁远洋预制装配技术,通过大型工厂对钢箱梁进行预制,然后再通过海运运到工地进行组装。
这种技术可以极大提高施工效率,降低施工成本,同时保证了桥梁的质量和安全性。
在海底隧道的建设方面,港珠澳大桥采用了世界领先的“沉管法”技术,即利用浮船将预制的隧道沉管运到海底后,再通过水下控制沉放沉管。
这种技术避免了传统的挖掘隧道的方式,大大缩短了建设周期,降低了风险,同时也减少了对海洋生态环境的影响。
二、智能化的桥梁管理系统三、绿色环保的建设理念港珠澳大桥建设过程中积极倡导绿色环保的建设理念,通过科技手段保护海洋生态环境。
在施工过程中,采用了节能减排的先进技术和装备,减少了对环境的污染和破坏。
在桥梁运营管理阶段,采用了清洁能源、智能交通管理等绿色科技手段,减少了车辆的排放和交通的拥堵,降低了对大气和水质的影响。
港珠澳大桥还通过建设了多个人工养殖岛,创造了大量的海洋生态资源,促进了海洋生态的恢复和保护。
四、智能交通系统港珠澳大桥智能交通系统是整个大桥跨海交通运营的“大脑”,通过先进的智能技术实现了跨区域的一体化管理和协同运营。
该系统融合了先进的智能监控、智能调度、智能安全、智能救援等功能,可以实现对所有跨越港珠澳大桥的车辆、船舶等交通工具进行全方位、全天候、全天候的监控和管理。
智能交通系统还融合了先进的车辆识别、交通预测、自动驾驶等技术,提高了大桥的运输效率和安全性,为跨海交通提供了更加便捷快速的服务。
港珠澳大桥沉管隧道基础处理方案沉降分析
决基 槽开 挖作 业 所造 成 的槽底 不平 整 问题 , 保证 隧道在 施 工 、 用 阶段 变形稳 定 性 。 述 了 目前 国 内外 沉 使 叙
管隧道常用的基础处理方法, 细讨论 了压砂法的机理 。 详 介绍了港珠澳大桥沉管隧道 , 对沉管隧道基础压
砂 方 案做数 值 模 拟分析 。 、
计要 求 , 因此在 沉管 隧道 施工 前 , 采用 数值 方法 可 对 隧道施 工过程 进行 仿真模 拟 , 样可 以预先 掌握 这
图 9 图 1 为基槽 开挖 后 、 ~ 1 基底 压 砂并沉 放沉 管后 和 回於完 成后 竖直 方 向位 移 云 图。
开挖 过程 中 围岩 的变 形规律 , 对可 能发 生 的现 象做
[ 徐干成 , 2 ] 李永盛, 孙钧等. 杨林德沉管隧道的基础处理,
基槽 淤积和基础沉 降问题[ _ 隧道 ,9 5 J世界 ] 19 .
[】 3沉管隧道与悬浮 隧道. 隧道译 丛,9 4 19 . 【] 4 宁茂权. 家门港海底 沉管隧道设计介绍[ ] 沈 J. 现代隧
到心 中有 数 。
比较 图 9 图 l 可 以看 出: ~ 1 基础 开挖后 , 基底 隆 起 ; 槽 开挖 线底部 两侧 隆起 较 大 。 基
基底 压砂 并沉 放沉 管后 , 向位移 : 竖 随着 开挖
参考文献
[] 1陈韶章 . 沉管隧道设计与施工[ . M】 北京: 科学出版社 ,
面总 留有 1 5 c 的不平 整度 。 5~ 0 m 沟槽底 面与 管段 表面之 间存在众 多不规则 的空隙 , 导致地基土 受力不 均匀 , 引起不均匀沉 降, 同时, 地基受力不均 也会使管 段结构受到较 高的局部应力 , 以至开裂, 因此, 必须进 行 适 当的基础 处理 , 以消除这些有 害空 隙。 沉 管隧道 基 础处 理主 要是解 决 : ①基 槽 开挖 作 业所 造成 的槽 底 不平整 问题 ; 地基 土特 别 软弱 或 ②
滴水不漏!看港珠澳大桥沉管隧道怎么做
6月29日凌晨,被英国《卫报》誉为“现代世界七大奇迹”之一的港珠澳大桥主体桥梁宣告成功合龙。
这意味着,离港珠澳大桥最终“蛟龙出海”已为时不远。
作为连接香港、珠海和澳门的超大型跨海通道,从研究、设计、施工到最终接近完成,港珠澳大桥历经十余年的漫长的岁月。
在这过程中,中国的设计者、建设者们承担着难以想象的压力,遭遇过外国设计方案不符合实际情况、沉管沉放“三次回拖两次安装”等各种问题,也面临着新设计方案不被理解,外在因素导致需要多方沟通的局面。
最终,诸多问题被一一克服,中国的工程师们以脚踏实地、勇于创新、不断挑战自我的精神,让这一中国的“超级样板”工程,将于2017年正式向人们展示他的巍巍身姿。
在港珠澳岛隧工程项目中,应用惯例和标准组件包括:桥梁;人工岛陆域形成,软基加固,消浪结构等;沉管预制厂土木结构;沉管基槽开挖、沉管回填、沉管附属工程等约占比35%,涉及造价75亿元人民币。
需要实验及需突破界限部分是工程主要部分包括:沉管基础、沉管预制、沉管岛上段等,占比约50%。
而为应对特殊挑战部分,需要技术创新的,其中很多都是世界上第一次,比如深插钢圆筒、半刚性沉管结构、外海沉管安装系统、沉管最终接头等,占比15%,占投资30多亿元人民币。
最终,港珠澳大桥以64项创新技术,贡献予世界沉管隧道工程。
中国是沉管隧道工程的后来者,然而,“如积薪耳,后来者居上”,这背后是中国工程人员的勤奋、智慧和不屈的斗志。
滴水不漏的海底隧道2015年12月,港珠澳大桥岛隧工程有位特殊客人来访——香港土木工程署前任署长刘正光。
他曾主持设计建造了香港青马大桥、汲水门大桥和汀九大桥,这三座桥梁都被誉为世界级的大桥。
鉴于此,他荣获我国桥梁工程界的最高奖——“茅以升”奖,并在国际桥梁界享有盛名。
长期以来,这位获得英国桥梁硕士学位的第一位华人,一直对中国大陆工程界颇有微词,特别是在一些大型的国际会议上,批评大陆工程的质量,并不掩饰其观点。
在参观的前一天,他给岛隧工程总指挥林鸣打电话,询问参观隧道需不需要穿雨衣水靴。
港珠澳海底隧道
1.1 沉管隧道方案概况
沉管隧道全长6648m,其中,沉管段长 5389m。其两端引道段、暗埋段位于人工岛内。
沉管隧道结构顶部高程约-30.5m,距 平均海平面的垂直距离约31m,海底起算的 埋深为14~24m;结构底板高程为-42.9m, 沉管隧道外轮廓宽度为44.8m,高度10.0m。
1.2 盾构隧道方案概况
港珠澳大桥海底隧道周丰峻来自二○○九年五月1、工程概况
港珠澳大桥跨越珠江口伶仃洋水域,是连接 香港、广东省珠海市、澳门的大型跨海通道。 海中桥隧工程主体总长35.578km,采用 桥隧组合方案,隧道长6.753km,桥长 28.825km。 从建造的可行性角度考虑,目前港珠澳海底 隧道主要有沉管与盾构二种工法。
地层 编号 ① ② 岩土层 名称 淤泥 淤泥质 粘土 粉质粘 土 夹砂 粉砂 工程特性 含水量高,孔隙比大,高压缩性,强度极低,基 本无自稳能力,开挖易产生滑移,沟槽不易成形。 高压缩性,结构灵敏,强度极低,渗透性微~极 微,开挖不易成形。 压缩性中等,结构灵敏,土质不均,垂向和水平 向渗透性差异大,易发生流土型渗透破坏,开挖 不易成形。 压缩性中等,承载力一般,渗透性弱,易发生管 涌型渗透破坏。 可挖性 分级 Ⅰ Ⅰ
3.9 盾构隧道在软土地段的稳定性分析
盾构隧道底板通过淤泥质粘土。该层具高压 缩性,高灵敏度,含水量孔隙比大,均为欠压密
土,未完成自重固结,稳定性较差,地基容许承
载力较低。
本工程隧道结构荷重不大,但软土尚未完成自
重固结,在隧道施工及运营过程中,会产生固结 沉降,稳定性差,危及隧道结构,长期运营不安 全。
4 沉管隧道方案工程地质、水文地质适应性分析
4.1 地层对沉管隧道沉降的影响
受地层特性不均一的影响,沉管隧道容易发 生不均匀沉降。 (1)根据沉管隧道断面图,从东人工岛到西人 工岛,隧道底部依次经过淤泥,淤泥质粘土,流 塑粉质粘土夹砂,软塑~可塑粉质粘土,淤泥质 粘土,淤泥。这些地层的压缩性和承载力差别较 大,
港珠澳大桥的岛隧技术
1.港珠澳大桥概略港珠澳大桥海中主体工程长29.6km。
整体河势东冲西淤。
其中东侧的一段按照30万吨油轮通航预留,且受香港机场飞行限高的控制,因此采用6.7km长的沉管隧道方案。
为了接上桥梁,隧道两头建造了两个人工岛。
工程于2011年1月批准开工,于2018年2月交工验收。
☝港珠澳大桥地理和经济环境及主体工程概况桥梁方面•上部结构用钢量超过40万吨,创造了世界桥梁工程的新记录;•桩基础创新地采用钢管复合结构,提高了桥墩的抗撞击能力;•非通航孔桥的桥墩采用工厂化预制,整体化安装,实现了外海桥梁的装配化施工,让工期、安全更有保障;•桥塔分别采用中国结、海豚和风帆的创意。
其中的海豚塔高达百米,重量超过2600t;独特的创意,结合现代化的工法,给港珠澳大桥留下了厚重的文化氛围。
☝港珠澳大桥主体段桥梁(a)远眺桥梁; (b)青州航道桥中国结; (c)江海桥海豚塔安装; (d)东人工岛接桥隧; (e)隧道内视岛隧方面•建设规模超大;•世界首次将沉管隧道埋入海床面以下超过20m;•建设条件复杂:珠江口夏季受台风、强对流天气和汛期的影响,秋冬季受季风的影响,日过往船舶高达4000艘。
岛-隧工程穿过中华白海豚核心保护区,环保要求高。
在上述工作条件下,连续地完成了超过6km长的沉管隧道的水下基础与管节预制和安装。
2.快速和可靠的成岛技术由于人工岛下方的软土层厚30m,预计人工岛需要3年的时间建设,留给后续隧道建设时间不足。
对于人工岛的基础,软土具有利弊兼有的两面性;采用传统的筑岛方法将软土改良或移除,再填上砂石,需投入巨大的工程量是其不利的一面;软土易插入和不透水特性是有利的一面,可以被利用。
☝东人工岛最后一个钢圆筒的打设将22m直径,高约50m,壁厚仅1.6cm的钢圆筒插入软土约30m深,连续地插入约60个钢圆筒,就围成一个环岛,插入120个,就围成两个环岛。
同时用整体式副格连接相邻的钢圆筒,并深插入至软土的不透水层,就可形成低渗透率的临时岛壁,从而为岛内的超载排水作业提供了条件。
港珠澳大桥沉管隧道接头防水技术
港珠澳大桥沉管隧道接头防水技术2016-06-17“超级工程”港珠澳大桥沉管隧道由33节巨型沉管对接而成,每个标准管节长180m,由8个节段构成,重约80000t,最大沉放深度超过45m,是目前世界上综合难度最大的沉管隧道工程之一。
到目前为止,港珠澳大桥沉管隧道已经完成了三分之二的沉管浮运安装施工,并在施工完成的沉管隧道中表面没有湿迹,可见沉管隧道的防水、防渗设计要求之高。
本刊记者有幸参观港珠澳施工现场,并邀请上海市隧道工程轨道交通设计研究院地下分院陆明副总工来介绍该工程的接头防水设计与施工技术。
工程概况港珠澳大桥跨越珠江口伶仃洋海域,连接香港、珠海和澳门,是一国两制三地的海上通道。
项目东起香港大屿山石湾,西至珠海拱北和澳门明珠,总长约356km,包括3项工程内容:1)海中桥隧主体工程;2)香港口岸及珠海、澳门口岸;3)香港连接线、珠海连接线和澳门连接线。
其中,海中桥隧主体工程东自粤港分界线,穿越铜鼓、伶仃西主航道以及青州航道、江海直达船航道、九洲航道,止于珠澳口岸人工岛,总长约29.6km,岛隧工程为海中桥隧主体工程的控制性工程,长约6.7km。
本工程的海底隧道采用沉管法施工,是目前世界上综合难度最大的沉管隧道之一。
沉管隧道全长5664m,东、西岛暗埋段各长163m,海中段采用W 形布置,横断面宽度为37.95m,高度为11.4m,采用两孔一管廊布置,沉管隧道横纵断面图如图1、图2所示。
岛隧工程建设的主要难点:1)建设标准高。
①国家一级公路,双向6车道,设计时速100km/h;②设计使用寿命为120年;③地震基本烈度为Ⅶ度。
2)水文气象条件复杂。
工程处于外海环境,台风频繁,海流、涌浪复杂,受冬季季风影响。
3)海底软基深厚。
工程所处海床面的淤泥质土、粉质黏土深厚,下卧基岩面起伏变化大,基岩埋深基本处于50~110m。
4)受规划中30万吨级的航道(通航深度-29m)影响,隧道水深、埋深(回淤量)大。
港珠澳大桥隧道工程沉管法与盾构法比选
Scheme Comparison of Immersed Tunnel and Shield Tunnel for HongkongZhuhaiMacao Bridge
Lu Puwei1 ,Lang Bangyan 1 ,Zi Lijun 2
( 1 . CCCC Fourth Harbor Engineering Co. ,Ltd. ,Guangzhou , Guangdong 510231 , China ; 510010 ,China ) 2 . Guangzhou Metro Design and Research Institute Co. ,Ltd. , Guangzhou , Guangdong
Abstract : The technology characteristics of immersed tunnel and shield tunnel were analyzed. Based on the characteristics of Hongkong-Zhuhai-Macao Bridge ,scheme design was performed for both immersed tunnel and shield tunnel and comparisons were made in terms of construction difficulty ,risk assessment , geological applicability ,construction period ,engineering cost and environmental impact. The comparison shows that immersed tunnel scheme takes more advantage because it involves lower cost ,lower risks and shorter construction period. The shortcoming of immersed tunnel is higher levels of interaction with external environment. However ,with proper control measures ,this effect can be minimized. As a result of the study ,the immersed method was recommended for Hongkong-Zhuhai-Macao Bridge. Key words : tunnels ; immersed method ; shield method ; scheme ; construction 0 前言 目前, 全 世 界 已 建、 在建和拟建海底隧道共有 52 座 。 随着科学 技 术 的 进 步, 人 们 已 经 意 识 到“遇 水架桥 ” 不再是唯 一 选 择 。 而 且 从 安 全 和 环 保 方 面 考虑, 修建水底隧 道 比 建 桥 更 为 优 越 。 修 建 水 底 隧 道主要有 3 种方法: 钻爆法 ( 矿山法) 、 沉管法 ( 沉 埋 法) 、 盾构法 。 早期的 海 底 隧 道 往 往 采 用 矿 山 法, 如 挪威已建成的十 几 座 海 底 隧 道, 均 用 矿 山 法。 但 是 由于矿山法 施 工 安 全 性 较 低, 且 工 程 规 模 受 限, 目 前在大型工程中 已 很 少 采 用 。 从 长 远 来 看, 沉管法 并且各具特色 。 和盾构法的发展空间更大一些, 1 港珠澳大桥工程概况 港珠澳大桥工 程 起 自 香 港 大 屿 山 散 石 湾, 连香
港珠澳大桥海底隧道建设技术(科技攻关)
船舶通航安全深度1
30万吨油轮航道设计水深为D=T+Z0+Z1+Z2+Z3+Z4,其中: T -30万吨级油轮满载吃水最大水深T为22.2m ; Z0-船舶航行时船体下沉值,取0.9m; Z1-船舶龙骨下最小富裕水深,取0.4m; Z2-波浪富裕深度,取0.7m; Z3-船舶装载纵倾富裕深度,取0.15m; Z4-备淤富裕深度,取0.5m。 经分析计算,航道设计水深D取24.9m。
港珠澳大桥跨越珠江口水域,东连香港,西接澳 门、珠海,是一座“沟通三地、承东启西”的特大型 跨海工程。工程规模宏大、涉及面广、技术难点多, 尤其是受香港国际机场航空限高和规划航道制约。基 于对拟建的港珠澳大桥桥位的现场勘察、调研及多次 论证,依据相关专题提供的研究成果,围绕桥位的总 体路线布局要求开展了一系列详实研究,在确保满足 预定交通功能的前提下,提出了大桥跨越珠江口伶仃 西航道、铜鼓西航道等主航道时以海底隧道的方式通 过。
港珠澳大桥 海底隧道建设技术
ma 2011年12月
报告提纲
1. 基本情况 2. 技术标准 3. 海底隧道技术方案 4. 海底隧道施工组织设计 5. 海底隧道全寿命工程费用估算 6. 工程地质对隧道工程的影响分析 7. 海底隧道工程风险分析 8. 工法综合比选及推荐意见 9. 目前的建设情况
1. 基本情况
• 现行JTG B01要求; • 经济发达地区适应远期交通量、安全性和行车舒适性很
有关港珠澳大桥沉管隧道的研究
建筑工程 Architectural Engineering1 概述预应力混凝土结构意味着在结构构件受到外力载荷之前,混凝土受到拉区的压缩应力,并且所得的预应力状态用于抵消或减小由外部载荷引起的拉伸区域的拉应力。
预应力钢筋与混凝土的粘结状态可分为:粘结预应力混凝土和无粘结预应力混凝土。
粘结预应力混凝土意味着预应力筋与混凝土接触面沿其整个长度具有粘结效应,预应力钢筋和混凝土两者粘结在一起,不允许相对滑动,预应力通过粘结力传递给混凝土。
在这种配置中,相邻的预应力钢筋具有与混凝土相同的应变和变形。
港珠澳大桥沉管隧道具有工程规模大、外海作业环境复杂、技术难点多、施工工期紧、环保要求严、安全风险高等特点,综合施工难度居于当前该领域世界前列。
浸入管段的总长度为5664米,其采用节段性半刚性管接头结构,总共具有33个区段。
曲线部分具有5个部分,曲率半径是5500米,标准管段180米长。
它是8段长和22.5米长,37.95米宽。
它是由11.4米的高度和大约74000吨的权重的管段。
水的最大深度为44微米。
它是世界上最困难的沉管隧道之一。
本文以港珠澳E31与E32管节为例,对接端安装水深为20.2 m,其注浆管横向布置见图1。
图1 注浆管布置截面图Fig.1 Sectional drawing of grouting pipe arrangement2 港珠澳大桥沉管隧道应用示范针对港珠澳大桥深埋沉管隧道半刚性沉管结构体系面临的特殊问题,该项目总经理创新性地提出了一种半刚性沉管连接方案,其主要特点包括:(1)港珠澳大桥隧道的单管部分由八个22.5米长的部分组成,由预应力串联连接,并且通过浮动安装。
(2)单独的段独立地是预制的,并且所述两个部段之间设置有段关节。
段接头被提供有多个止水带提供耐水性。
(3)预应力系统被认为满足最不利的工作条件,在浮动安装阶段和操作期间,接头的最小压缩应力的要求在浮动安装阶段是大于0.3兆帕。
港珠澳大桥沉管隧道安装解决方法
港珠澳大桥沉管隧道安装解决方法
港珠澳大桥沉管隧道的安装解决方法涉及到许多复杂的工程技术和专业知识。
首先,沉管隧道是一种特殊的地下结构,它需要在水下进行安装,因此需要考虑水下施工的特殊性。
在安装过程中,工程师们首先需要对海床进行详细的勘测和测量,以确保沉管隧道的安装位置和方向的准确性。
其次,需要选择合适的沉管材料和规格,这些材料通常是高强度的钢材或混凝土,在选择材料的同时需要考虑到海水的侵蚀和氧化等因素。
随后,需要设计和制造合适的沉管吊装设备和工具,以确保沉管在安装过程中能够精准地下沉到预定的位置。
在实际安装过程中,需要考虑到海床地质情况、海水动力学效应、气候条件等因素,以及如何保证安装过程中的安全性和稳定性。
此外,还需要考虑到沉管隧道与其他桥梁结构的衔接和配合,以确保整个大桥工程的顺利进行。
总的来说,港珠澳大桥沉管隧道的安装解决方法需要综合考虑工程技术、材料科学、海洋工程学等多个领域的知识,以确保安装过程的顺利进行和工程质量的可靠性。
创造港珠澳大桥的“极致”——世界最长海底隧道“最终接头” 二
港珠澳大桥海底隧道是世界最长的海底深埋隧道,沉管总长度5664米,由33节混凝土预制管节和1节12米长的“最终接头”组成。
其中,“最终接头”所采用的“小梁顶推”技术和装备为自主研制并属世界首创。
5月2日,“最终接头”在10多位外国专家和99名媒体记者的见证下,在28米深的海水中实现成功安装,南北向线形偏差控制在正负15厘米的标准范围内,实现了“日出起吊、日落止水、滴水不漏”的奇迹。
欢呼祝贺过后,“最终文蔡琳创造港珠澳大桥的“极致”接头”的线形偏差引起了争论。
“港珠澳大桥是120年设计使用寿命的超级工程,就像之前曲曲折折的33根沉管安装一样,这一次也绝不能留下任何遗憾。
”3日早上,中国交通建设股份有限公司总工程师、港珠澳大桥岛隧项目总指挥林鸣提出了一个大胆的想法——重新安装调整。
“这么好的结果,我反对再调整!”决策会上,“最终接头”止水带供应商荷兰特瑞堡公司工程师乔尔表示,“虽然止水带仍然可以再压缩一次,但是为了精调一个方向,就可能将这些来之不易的完美重新置于不确定性之中,一旦发生碰撞,不仅损失超亿元,甚至会造成重大事故。
”上午10时许,多方讨论的结果是“偏执”占了上风。
乔尔被这些为了精益求精而甘愿承担极大风险的中国工程师的情怀所感动,他感叹“这是一个非常艰难的决定”。
《消息二则》拓展阅读————世界最长海底隧道“最终接头”二次“精调”实现毫米级偏差拓展阅读214日晚8时43分,执着的大桥建设者经过34小时的奋战,将“最终接头”的线形偏差成功缩小到东侧0.8毫米、西侧2.5毫米。
“这就是我想要的结果。
”一天没上厕所、连续34个小时没合眼、指令发出上万次的林鸣终于笑了。
“在我参与的15座沉管隧道建设中,这个是最棒的,没有之一。
港珠澳大桥是世界造桥技术的最高体现!”乔尔感慨万千。
荷兰隧道工程咨询公司TEC 是世界沉管隧道领域的佼佼者,曾笑称“中国企业不会走路就想跑”。
5日,该公司发来贺电,向精准完成这一世界级难度安装的工程建设者们致敬。
港珠澳大桥隧道工程沉管法与盾构法方案比选
道,截至 2 世纪 9 年代 ,世界上共建成了 18 用于铁 O 0座 路、 公路交通的沉管隧道。沉管隧道关键技术——GN 橡 IA
胶 止水 带 、 础 处理 方 法 、 放作 业 工 艺等 的 不 断进 步 , 基 沉 使 沉 管法 已具有 很好 的适 用性 、 靠性 。 可 至 今 , 内修建 的 用于铁 路 ( 铁 ) 路 的沉 管 隧道 国 含地 、 公 共 有 10多座 , 0 其使 用状 态均 良好 。 别是沉 管 隧道 的 2 特 项 关键 技 术 , 即水 力压 接法和 基础 处理 压注 法 的发 明 , 使沉 更
33 工 程 环境 的 影响 .
中 , 最 大特 点是 不影 响或 较少 影 响地 面建 筑物 和环 境 。 其 近 年 来盾 构机 械设 备和 施 工工 艺 的不 断发展 ,使 其 对各 种工 程地 质 和水 文地 质条 件 的适 应能 力大 为提 高。 隧 道采 用 盾构 法 施 工 时 ,隧道 主 要 穿越 淤 泥质 土 , 盾 构外 径 达 到 l. m 同时 一次 推 进最 大 距 离长 达 7 00m 5 , 7 0 。 盾构 法施 工 的技 术可 行性 主要 体现 在 大 断面盾 构 制造 的可
21 沉管 隧道 工程 实施可 行性 分析 . 所 谓沉 管 隧道就 是 在干 坞 内预 制 管段 , 段两 端 用临 管
时端封墙进行密封 , 待舾装完毕后 , 将管段拖运至隧址 , 然
后覆 土 回填 , 进行 管段 内部 装修及 设 备安 装 , 完成 全部 再 以
隧道 。
沉管 隧道 的建造 历 史始 于 11 年 美 国 的底 特 律 河 隧 90
8 22 珂 3I 0 ・ 衄g 8 l8 h
22 盾构 隧道 工程 实 施可行 性分 析 . 盾 构 法 施 工 目前 主 要 用 于 穿越 软 弱地 层 和 下 穿 江 河
港珠澳大桥隧道施工方法
港珠澳大桥隧道施工方法港珠澳大桥,那可是个了不起的大工程啊!就说那隧道施工,那可真是充满了智慧和挑战。
你知道吗,这隧道施工就像是在大海底下挖一条秘密通道。
想象一下,要在那么深的海底,建造一条长长的隧道,这得有多难啊!他们用的方法之一呢,就是沉管法。
就好像是把一节节巨大的管子,小心翼翼地放到海底,然后再把它们连接起来。
这可不是随便放放就行的哦,得精确到毫米级呢!不然的话,这隧道可就不牢固啦。
这就好比搭积木,得严丝合缝的,不然轻轻一碰就倒了。
在施工的时候,那些工人们得非常小心谨慎。
他们就像是一群海底的探险家,一点点地挖掘,一点点地铺设。
他们得面对各种各样的困难,比如海底的压力,海水的流动,还有那些复杂的地质情况。
这可真不是一般人能做到的呀!还有啊,他们得保证隧道的质量。
这隧道可不是用几天就不用了,它得用上好多年呢!所以得坚固得像钢铁一样。
为了做到这一点,他们用了最好的材料,最先进的技术。
你说这是不是很神奇?在深深的海底,竟然能造出这样一条壮观的隧道。
这背后是无数人的努力和付出啊。
那些工程师们,他们整天都在研究怎么才能把隧道建好。
他们得考虑各种各样的因素,简直比我们考虑每天吃什么还复杂呢!他们得计算,得画图,得试验,每一个步骤都不能出错。
工人们呢,他们在工地上挥洒着汗水。
不管是炎热的夏天,还是寒冷的冬天,他们都坚守在自己的岗位上。
他们就像是一群默默耕耘的老牛,为了这个伟大的工程贡献着自己的力量。
港珠澳大桥的隧道施工,这不仅仅是一个工程,更是我们中国人的骄傲啊!它让全世界都看到了我们的实力和智慧。
你再想想,如果没有这样的隧道施工方法,我们怎么能在大海底下自由穿梭呢?怎么能把香港、珠海、澳门连接得这么紧密呢?这就是科技的力量,这就是人类的智慧啊!所以啊,我们要好好珍惜这座大桥,要感谢那些为它付出的人们。
让我们一起为港珠澳大桥点赞,为我们伟大的祖国点赞!这隧道施工,真的是太了不起了!。
港珠澳大桥沉管隧道工程
港珠澳大桥沉管隧道工程1 工程意义港珠澳大桥东连香港,西接珠海、澳门,一桥连三地,有助于提升珠江三角洲地区的综合竞争力、打造粤港澳大湾区世界级城市群。
沉管隧道是港珠澳大桥的控制性工程,是中国第一条外海沉管隧道,是目前世界上最长的公路沉管隧道,是世界唯一的深埋沉管隧道。
2 工程概况港珠澳大桥东接香港,西接珠海、澳门,全长约55km,其中海中主体工程长29.6km,按双向6车道高速公路标准建设,采用桥岛隧结合方案,是目前世界上规模最大、标准最高、最具挑战性的集桥、岛、隧为一体的交通集群工程。
港珠澳大桥平面布置见图1。
图1 港珠澳大桥总平面图沉管隧道是大桥的控制性工程,设计方案见图2和图3。
隧道全长6704m,是世界最长的公路沉管工程;沉管段长5664m,共33节,标准管节尺寸为180m(长)×37.95m(宽)×11.4m(高),每节近8万t的质量成为世界之最;为满足通航要求,沉管管顶埋于海床面以下23m的长度达3km,是目前世界上唯一的深埋沉管隧道工程;沿线基底软土厚度为0~30m,地处珠江口外开敞海域,水文气象环境复杂,航线繁忙,通行船舶日均4000艘,是当今世界范围内综合建设难度最大的沉管隧道之一。
图2 沉管隧道纵断面图 图3 沉管隧道横断面图3 工程难点及解决方案1)为“一国两制”条件下大型跨界工程,需同时满足三地要求。
通过专项研究,并按“就高不就低”的原则,制定本项目专用技术标准。
2)世界上最长的公路沉管隧道,标准高,规模大,为全桥控制性工程。
设计及施工秉承“大型化、工厂化、标准化、装配化”理念,确保了工程质量及工期。
3)沿线基底软土厚度0~30m,纵向管底地质复杂且不均匀;埋深大,管顶回淤荷载大。
采用“复合地基+组合基床沉管”基础方案,管节沉降控制水平世界领先。
4)沉管管顶埋于海床面以下23m的长度达3km,是目前世界唯一深埋沉管,节段接头受力及防水风险高。
通过自主研发半刚性纵向结构体系,有效提高了结构及防水安全度。
试论港珠澳大桥沉管隧道工程施工过程
试论港珠澳大桥沉管隧道工程施工过程概要:港珠澳大桥海底沉管隧道是国内第一个采用沉管工艺的海底隧道和世界上规模最大的沉管隧道,不仅代表了中国最高水平,也反映了世界最高水平。
其大型化、工厂化、标准化、装配化的“四化”理念,已成为当今世界工程建设的最新理念和最高境界。
港珠澳大桥建成后,将是一种时空观的改变,驾车从珠三角一端到另一端的时间将从原来的大约四小时缩短到仅45分钟,将为珠三角地区经济、社会进一步发展提供支持。
港珠澳大桥作为当前我国交通领域建设的世界级的跨海通道,有不少技术是国内甚至是世界首次应用的:海底隧道工程为我国第一条在外海修建的海底沉管隧道,沉管隧道水下埋深达45m,沉管隧道长度及规模居世界之首;桥隧人工岛为我国第一次修建的外海离岸人工岛,岛体规模和难度为世界级,场区风浪条件及地质条件极具风险;岛隧沉降控制、结构裂缝控制及结构防渗等技术具有世界级难度。
港珠澳大桥海底隧道是迄今为止世界上埋深最深、规模最大、单节管道最长的海底公路沉管,沉管全部采用工厂法流水预制,完成舾装后拖运至施工地点进行安装。
【关键词】世界级跨海工程、海底沉管隧道、软土、砂桩加密法、碎石基床基础1 地基处理1.1工程概况工程地处珠江口伶仃洋水域,是深圳港、广州港的主航道,航道跨距达到4100m;是30万吨巨轮的必经之地,也是世界上最繁忙的水域之一;同时也临近香港机场飞机的起落航线,航空限高只有88m,水域通航环境复杂,还要穿越中华白海豚保护区。
修建海底隧道是可行的,但面临的困难是海底表面全是软土,淤泥含水量高达50%-60%,石头抛上去基本都陷在泥汤里,地基条件差。
(见图1)图1 港珠澳大桥岛隧工程示意图1.2软土进行加固首先要对软土进行加固,使沉管安放在固定的基础上,并减少日后的沉降和不均匀沉降,施工方案是砂桩加密法,通过冲击或振动的方法将底端封闭的钢管贯入海底40m下的硬土层地基中成孔,孔内填入砂料后再由钢管回压捣实扩径成桩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
港珠澳大桥岛隧工程沉管隧道新技术姓名:x吉x 学号:616140xxxx引言随着陆上交通和内河、海洋航运事业的发展,对越江跨海通道的需求越来越大,而由于水上通行轮船的吨位和密度的增大,要求桥下通航净空越来越高,跨度越来越大,使得修建桥梁的成本和难度大增.同时,由于受到城市规划的限制,跨江越海桥梁的两岸接线条件随城市发展变得更为困难.因此,近十年来陆续出现了一批水下隧道,其断面不断增大水深不断加深,工程技术水平得到快速提升.目前修建水下隧道主要有矿山法、盾构法、围堰明挖法和沉管法.其中沉管法是20 世纪初发展起来的一种专门修建水下隧道的工法,至今已有100年历史,适用条件较为苛刻1,而随着工程技术的发展,其适应性也越来越强.广州珠江和宁波甬江水下隧道的成功修建标志着我国沉管工法技术领域进入了新的发展阶段,继丹麦—瑞典的厄勒松海峡沉管隧道和韩国釜山—巨济沉管隧道之后,我国正在珠江口伶仃洋30万t主航道上修建一座港珠澳大桥沉管隧道,该隧道是港珠澳大桥建设的关键性工程,建成后将成为世界最长的双向6车道公路沉管隧道.为此,国内工程师们在实践过程中攻坚克难,借鉴国外技术与国内施工经验,自主创新,结合工程项目特点,在地质勘察、结构受力分析、耐久性设计、管节预制、地基与基础处理等方面发展了一些新技术.工程概况港珠澳大桥工程跨越珠江口伶仃洋海域, 是连接香港、珠海及澳门的大型跨海通道.工程范围包括海中桥隧工程, 香港、珠海和澳门三地口岸人工岛, 以及香港、珠海、澳门三地连接线.工程总长49.968 km, 其中主体大桥工程全长约29.6 km, 海底隧道长约6 km, 海中部分采用桥隧组合方式.港珠澳大桥建成后将成为世界最长的跨海连线工程(见图1).图1 港珠澳大桥岛隧工程示意图大桥及岛隧工程以公路桥隧的形式连接香港、珠海和澳门, 以6车道高速公路标准建设, 设计时速为100 km.工程建成通车后, 从香港到珠海的车行时间将由目前的约3h缩减至约0.5 h.工程总体投资超过700亿元, 其中海中桥隧工程约327亿元, 岛隧工程约133.5亿元.工程设计使用年限为120年2.工程于2009年12月15日项目开工建设, 2010年对岛隧工程进行总体招投标.为确保该特大工程顺利实施, 业主将6.7km的沉管隧道和两座海中人工岛整体打包, 采用设计施工总承包方式进行招标, 最终以中国交通建设股份有限公司为牵头单位的联合体以技术和商务总分最优中标.联合体分设计团队和施工团队两部分, 设计团队成员为:中交公路规划设计院有限公司, 上海市隧道工程轨道交通设计研究院, 中交第四航务工程勘察设计院有限公司, COWIA/S(丹麦COWI国际咨询公司);施工团队成员为:中国交通建设股份有限公司, 上海城建集团, AECOM AsiaCompanyLtd.(艾奕康有限公司).工程特点及难点1)工程处于伶仃洋外海,岛隧工程所处的海域附近受热带气旋、强雷暴等恶劣天气影响大;工程处于白海豚核心保护区;施工海域的水上交通繁忙.2)与常规沉管法隧道相比,该工程具有管节数量多、埋置深度大、基槽浚挖量大、受恶劣气象条件影响大、航运组织和环境保护要求高等特点.3)工程总体规模宏大,海象、地质与环境条件复杂;且施工工期紧迫,综合技术难度与风险为世界罕有.4)管节预制难度高,采用自防水全断面预制工艺.管节的早期裂缝控制、预制尺寸精度、钢端壳安装精度,以及混凝土重度控制等技术要求高.5) 水文气象条件复杂.全部33节管节的浮运安装,需要经历多个台风季节;施工水域水流受人工岛和基槽施工的影响,流态复杂.在整个管节沉放过程中, 需对气象窗口进行精确的分析和准确的预测、预报.6)施工作业环境.岛隧工程施工区航道交叉,属于航道运输最繁忙水域之一, 也是水上交通安全事故频发的敏感区域.管节浮运沉放期间,需精心组织临时海上交通,确保施工期间的航运畅通.7)管节浮运沉放技术难点多.在恶劣气象、复杂水流和航运条件下的管节浮运;深水条件水下测量定位、管节沉放及定位调整;管节安装轴线精度控制等.地质勘察以往的沉管隧道一般位于河(海)床表面上,上覆荷载小,对地基承载力要求不高,即怕浮不怕沉.由于规划航道的通航要求,随着深埋回淤问题的出现,港珠澳大桥沉管隧道工程对地质勘察的要求并非以往海上桥梁地质勘察工作所能满足,而且传统钻探获取的土样不可避免地受到扰动而难以取得较为准确的物理力学参数.为了降低海床软土土体取样受扰动对勘察结果的影响、减少海上作业与通航运营船舶的相互干扰,港珠澳大桥沉管隧道工程采用了以静力触探CPTu为主、传统钻探为辅的勘察技术.CPTu是带孔压的静力触探,主要适用于海、陆相交替的冲积层和沉积层,根据其仪器自动采集的端阻、侧阻和孔压等数据,可快速准确地进行地质分层,见图2.与传统的钻探勘察不同,CPT主要是通过获取间接指标,以经验公式计算出变形参数,进而计算出地基沉降量.我国静力触探技术应用历史短,经验少,相关的经验在20世纪90年代才开始被相关规范认可,其适用范围(主要用于陆上建筑)和深度与国际标准有较大的差别.目前,我国仍主要使用qt(锥头阻力)、fs(侧摩阻力)和Ps(比贯入阻力)指标,而国际上已普遍使用Bq(孔压比)和Fr(摩阻比)进行详细的土体分类.欧美国家形成的经验公式也具有明显的地区局限性,不一定适合我国广大地区,因此,在工程具体应用时还需要在原位或同类土质地层使用静载压板试验或螺旋压板试验进行对比或修正,并结合鉴别孔和消散孔进行综合分析,甚至还要结合地区特性开展研究工作.此外,在沉管隧道设计过程中还需要考虑地基刚度的不确定性(包括勘察不确定性、基槽超欠挖和基础不平整等因素)对隧道结构内力和变形的影响,目前主要是以一定的偏差波动(见图3),结合管节长度计算出最不利的偏差波长,再以此作为沉管隧道结构纵向受力最不利工况.因此CPTu的布孔应考虑管节长度和计算最不利偏差波长,与鉴别孔、消散孔(孔压消散试验)的布置相结合.图2 CPTu 数据分析和地层判别示意图3 地基刚度变化示意曲线港珠澳大桥岛隧工程在约7个月的补勘工作中完成了CPTu孔374个、消散孔22个、原位测试孔39个以及技术孔41个,在确保对主航道航运影响最小的前提下,短时间内完成了大量的地质补勘工作,避开了台风期作业,通过精细化勘察,及时向设计和施工提供高质量的地层参数.混凝土结构耐久性、裂缝控制设计以往修建的沉管隧道,大部分处于江河下游,耐久性问题并不突出.从20世纪90年代开始,沉管隧道工程从江河环境逐渐向江河入海口、海湾环境甚至跨海峡环境发展,暴露在海洋环境中的混凝土结构耐久性面临进一步挑战.对于在海洋环境中采用钢筋混凝土结构的沉管隧道(特别是没有外包防水的节段式混凝土管节),混凝土结构的耐久性设计和控裂技术是实现混凝土结构自防水的关键.传统的耐久性设计方主要是建立在经验的基础上,依据判断—符合原则(deem-to-satisfy rules)建立经验理论体系,综合经验、摸索和直觉确定钢筋混凝土钢筋保护层的厚度,无执行操作和设计使用年限定义的说明,依据的材料和工艺陈旧,试验方法存在较多缺点,没有论述与设计使用年限有关的混凝土早期质量要求.发达国家从20世纪50年代中期起就投入大量人力、经费致力于混凝土结构耐久性研究.欧盟资助的Duracrete研究项目(1996—1999),在国际上首次提出了混凝土耐久性的可靠度设计方法,作为使用年限设计方法在厄勒海峡和釜山—巨济通道等工程上得到了应用.近20年,我国在混凝土结构耐久性特别是暴露在海洋环境中的混凝土结构耐久性研究方面投入了大量的研究力量,发表了一批针对海洋环境钢筋混凝土结构腐蚀作用的研究成果,开发了实验室开展海洋环境研究的人工气候箱(室),编制和更新了相关的国家与行业技术标准,在多项跨海工程建设中逐渐积累了宝贵的经验.然而在具体设计中,对于海底隧道混凝土结构的耐久性设计尚处于遵从经验判定的阶段,虽然可以给出对应不同设计使用年限的混凝土耐久性控制指标,但这些指标是基于目前规范规定和传统的经验进行取值,使得耐久性技术指标和设计使用年限之间缺乏可靠的理论对应关系,满足设计要求的工程是否就能达到规定的设计使用年限仍缺乏足够的理论依据.目前在国际上,基于设计使用年限的耐久性设计方法研究,对混凝土性能可分为2 种不同等级: 1) ACI(美国混凝土学会)的life365,仅仅对混凝土环境腐蚀而发生劣化过程这小部分作随机(概率)分析,其余大部分则为判定性分析,原则上定为1 级; 2)欧盟的DuraCrete,除了对耐久性设计采用概率方法计算外,还考虑材料性能对耐久性设计的影响,原则上定为2级.港珠澳大桥沉管隧道耐久性设计方法,是基于结构使用年限的定量耐久性设计,强调结构构件的环境作用,基于近似环境的暴露试验数据,以全概率或近似概率方法建立耐久性数学模型对钢筋混凝土的保护层厚度、氯离子扩散系数、所处环境条件以及养护措施等变量进行分析,对构件的材料指标或者结构指标提出量化要求.港珠澳大桥沉管隧道耐久性设计方法不但结合了工程环境、材料和施工工艺,还从定性判断提高到了定量控制.在施工中必须重点把握以下关键环节: 施工缝钢筋节点处理、节点施工、配合比设计、混凝土入模前质量检验、养护等.混凝土施工阶段,按照规范要求取样,并检测7-28d强度及同条件养护强度,检测结果良好.以上整个检测过程都有专人负责,监理工程师旁站.筏板设计强度等级50MPa,以第13块筏板为例,其28d强度的检测数据如下:试块最低值52MPa,最高值77MPa,平均值61MPa,均满足设计要求.施工缝是筏板施工的重点检测部位,必须单独提交报验单给相关工程师验收.通过检测及目测,施工缝部位结合紧密,观感良好,无结构冷缝,无渗漏现象发生,无明显的表面开裂.筏板分块施工,通过优化混凝土配合比和混凝土的供应,采用适当的技术处理及施工措施,科学组织施工,严格施工管理,有效保证了基础底板大体积混凝土的分块施工以及浇筑质量,在高温天气下成功保证了基础底板混凝土的强度及抗渗性能,避免了混凝土的结构裂缝.分块施工有效组织了筏板流水施工,可以充分利用资源组织均衡化施工生产.该施工方法及手段可适用于类似项目的施工.管节工厂化生产在传统干坞中预制管节,从钢筋绑扎、模板架立、混凝土浇筑到拆模养护等工作,都是围绕着管节实体在固定的非常有限的空间内进行,工序和台班易受扰动、模板经常拆卸移动而使得预制质量与工作效率不高.港珠澳大桥沉管隧道由于距离长、工期紧,需要预制的管节长、体积大、数量多,混凝土的控裂质量也直接影响着结构耐久性和防水,若使用传统干坞,则还需要临时系泊存放而占用较大的海域面积,造价高而效率低,因此,管节预制应寻求更高效率的生产方式和工艺.厄勒松海峡沉管隧道工程首次成功实施了管节工厂化生产3 (见图4),其本质是实现流水化生产模式,即在流水线上的不同位置依次完成钢筋绑扎、模板架立、混凝土浇筑、拆模养护、浅坞一次舾装和深坞二次舾装等工作,通过将生产对象(管节钢筋笼或成型混凝土)进行顶推平移至下一道工序位置进行后续作业.这种生产方法适用于节段式管节的预制生产,模板只需按一节段长度进行制造,逐段生产、顶推,再连接成管节,其模板在生产线的位置固定,可大大节约模板数量且便于维护,而且,生产线的大部分工作在室内环境下进行,可全天候作业,各道生产工序可同时进行,相互干扰少,显著提高了管节生产的效率和质量.图4 厄勒松海峡沉管隧道管节预制厂港珠澳大桥沉管隧道工程是世界范围内第2个成功实现管节工厂化的建设项目4.在消化吸收厄勒松海峡沉管隧道工厂化生产技术的基础上,不但成功实现了工厂化生产的5大关键设施:管节混凝土模板系统、混凝土搅拌及供应系统、混凝土温控及养护系统、管节顶推与导向系统和管节支承系统,还作了4项重要技术创新:1)将顶推系统从管节截面顶推改进为底部支座顶推;2)因地制宜,将深坞与浅坞平行布置,将深坞的管节存储量从2节增加到4节,并将系泊区与深坞舾装区合并;3)进一步实现了流水化的底、侧、顶钢筋加工及拼装生产线,采用了摩擦焊接和数控钢筋加工技术,大大提高了钢筋笼精度和施工自动化水平;4)采用了大型自动化液压混凝土模板及其两侧的大型混凝土结构反力墙,大大提高了管节制作精度和工效.港珠澳大桥沉管隧道管节预制厂在2条流水线同时作业的情况下,每2月生产2个管节,每个标准管节混凝土用量约2.7万m³,质量超过7万t,每个节段混凝土方量约3400m³,采用全断面一次浇筑,温度裂缝控制效果良好.参考文献1陈韶章,陈越.沉管隧道设计与施工[M.北京: 科学出版社,2002: 1-15.( CHEN Shaozhang,CHEN Yue.Design and construction of immersed tunnel[M].Beijing:Science Press,2002: 1-15.( in Chinese) ) 2中交公路规划设计院有限公司, COWIA/S(丹麦COWI国际咨询公司), ARUP奥雅纳工程顾问, 上海市隧道工程轨道交通设计研究院, 中交第一航务工程勘察设计院有限公司.港珠澳大桥主体工程初步设计第四篇隧[ Z] .2009.3肖晓春.大型沉管隧道管节工厂化预制关键技术[J].隧道建设,2011,31( 6) : 701 -705.( XIAOXiaochun.Key technology for manufactory prefabrication of tube elements of large-scale immersed tunnels [J].Tunnel Construction,2011,31( 6) : 701-705.( in Chinese) )4吴瑞大,欧政军.沉管隧道管节预制工艺比选[J].中国港湾建设,2012( 4) : 20-24.( WURuida,OUZhengjun.Comparison and selection of prefabrication technologiesfor immersed tubular tunnel sections [J].ChinaHarbour Engineering,2012( 4) : 20-24.( in Chinese) )。