数形结合专题复习

合集下载

中考数学总复习《数形结合问题》考点梳理及典例讲解课件

中考数学总复习《数形结合问题》考点梳理及典例讲解课件
∴S△ABO=12 ×1×1=12 .
(2)结合函数图象可得,当 y1>y2 时,x<1.
例 1:甲、乙两地之间是一条直路,在全民健身活 动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从 乙地往甲地,两人同时出发,王浩月先到达目的地,
两人之间的距离 s(单位:km)与运动时间 t(单位:h)的
函数关系大致如图所示,下列说法中错误的是( )
A.两人出发 1 h 后相遇 B.赵明阳跑步的速度为 8 km/h C.王浩月到达目的地时两人相距 10 km D.王浩月比赵明阳提前 1.5 h 到目的地 答案:C
例 2:如图,AB,CD 是⊙O 的两条互相垂直的直 径,点 P 从点 O 出发,沿 O→C→B→O 的路线匀速运 动,设∠APD=y(单位:度),那么 y 与点 P 运动的时
间(单位:秒)的关系图是( )
A
B
C

D
答案:B
例 3:如下图,抛物线 y=-14 x2-x+2 的顶点为
A,与 y 轴交于点 B. (1)求点 A,点 B 的坐标; (2)若点P是 x 轴上任意一点,
n=(BC+CD+DE+EF+FA )÷2=(BC+DE+AB +AF)÷2=(8+6+6+8+6)÷2=17.
(3)解:由图 2 知,点 P 在 BC 上运动时,0≤t≤4, ∴S=12 ×6×2t=6t,即 S=6t(0≤t≤4); ∵由图 2 知,点 P 在 DE 上运动时,6≤t≤9, ∴S=12 ×6×(2t-4)=6t-12,即 S=6t-12 (6≤t≤9).
当点 P 在 x 轴上又异于 AB 的延长线与 x 轴的交点
时,
在点 P,A,B 构成的三角形中,PA -PB<AB. 综合上述,PA -PB≤AB.

初中数学专题复习数形结合

初中数学专题复习数形结合

数学专题复习 数形结合教学目标:使学生理解并能运用数形结合思想解决有关数学问题,懂得第个几何图形中蕴含着一定的数量关系,而数量关系常常又通过图形的直观性作出反映和描述,数和形往往可以相互转化,将问题化难为易,化抽象为具体,数形结合是解决数学问题的重要方法之一。

教学重点与难点:如何审题教学过程:例1 已知关于x 的方程x 2-(q+p+1)x+p=0(q ≥0)的两个实数根为α、β,且α≤β。

(1)试用含有α、β的代数式表示p 、q ;(2)求证:α≤1≤β;(3)若以α、β为坐标的点M (α、β)在△ABC 的三条边上运动,且△ABC 顶点的坐标分别为A (1,2),B (21,1),C (1,1),问是否存在点M ,使45=+q p .若存在,求出点M 的坐标;若不存在,请说明理由。

例2 如图,△ABC 中(AB >AC )AD 平分BAC ,AD 的中垂线和BC 的延长线交于E ,设CE=a ,DE=b ,BE=c 。

试证:关于x 的一元二次方程ax 2-2bx+c=0,有两个相等的实数根。

例3 已知抛物线y=x 2-px-q 与X 轴交于A 、B 两点,与Y 轴交于C 点,已知∠ACB=Rt ∠,∠CAO=α,∠CBO=β,tan α-tan β=4。

(1)求抛物线的解析式,并用配方法求顶点的坐标、对称轴;(2)平行于X 轴的一条直线交抛物线于M 、N 两点,若以MN 为直径的圆正好与x 轴相切,求此圆的半径。

y x O C B A例4如图在平面直角坐标系中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c过A、B、,且12a+5c=0。

(1)求抛物线的解析式;(2)如果点P由A点开始以每秒2厘米速度向B运动,同时点Q以每秒1厘米速度向C 运动。

①移动开始后第t秒时,设S=PQ2,试求S与t的函数关系式,并写出自变量的取值范围;②当S取最大值时,在抛物线上是否存在点R,使P、B、R、Q为平行四边形的四个顶点?若存在,求出R的坐标,若不存在请说明理由。

专题复习数形结合(含答案)

专题复习数形结合(含答案)

专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。

2。

」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解

高考数学复习----《数形结合》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知函数()2x f x x =+,2()log g x x x =+,()2sin h x x x =+的零点分别为a ,b ,c 则a ,b ,c 的大小顺序为( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>【答案】D【解析】由()2sin 0h x x x =+=得0x =,0c ∴=,由()0f x =得2x x =−,由()0g x =得2log x x =−.在同一平面直角坐标系中画出2x y =、2log y x =、y x =−的图像, 由图像知a<0,0b >,a c b ∴<<.故选:D例2、(2023·江苏·高三专题练习)已知正实数a ,b ,c 满足2e e e e c a a c −−+=+,28log 3log 6b =+,2log 2c c +=,则a ,b ,c 的大小关系为( )A .a b c <<B .a c b <<C .c a b <<D .c b a <<【答案】B【解析】22e e e e e e e e c a a c c c a a −−−−⇒+=+−=−,故令()e e x x f x −=−,则()e e c c f c −=−,()e e a a f a −=−.易知1e ex x y −=−=−和e x y =均为()0,+∞上的增函数,故()f x 在()0,+∞为增函数. ∵2e e a a −−<,故由题可知,2e e e e e e c c a a a a −−−−=−>−,即()()f c f a >,则0c a >>.易知222log 3log log 2b =+>,2log 2c c =−,作出函数2log y x =与函数2y x =−的图像,如图所示,则两图像交点横坐标在()1,2内,即12c <<,c b ∴<,a cb ∴<<.故选:B .例3、(2023·全国·高三专题练习)已知e ππe e ,π,a b c ===,则这三个数的大小关系为( )A .c b a <<B .b c a <<C .b a c <<D .c a b <<【答案】A【解析】令()()ln ,0x f x x x =>,则()()21ln ,0x f x x x −'=>, 由()0f x ¢>,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0x f x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >,所以()()πe f f <,即ln πln e πe<, 所以eln ππln e <,所以e πln πln e <,又ln y x =递增,所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦, 在同一坐标系中作出xy =与y x =的图像,如图:由图像可知在()2,4中恒有x x >, 又2π4<<,所以ππ>, 又e y x =在()0,∞+上单调递增,且ππ>所以e πe πe π=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<,故选:A例3、(2022春·四川内江·高三校考阶段练习)最近公布的2021年网络新词,我们非常熟悉的有“yyds ”、“内卷”、“躺平”等.定义方程()()f x f x '=的实数根x 叫做函数()f x 的“躺平点”.若函数()lng x x =,()31h x x =−的“躺平点”分别为α,β,则α,β的大小关系为( )A .αβ≥B .αβ>C .αβ≤D .αβ<【答案】D【解析】∵()ln g x x =,则()1g x x'=, 由题意可得:1ln a α=, 令()1ln G x x x=−,则α为()G x 的零点, 可知()G x 在定义域()0,∞+内单调递增,且()()1110,e 10eG G =-<=->, ∴()1,e α∈;又∵()31h x x =−,则()23h x x '=, 由题意可得:3213ββ−=,令()3231H x x x =−−,则β为()H x 的零点,()()23632H x x x x x '=−=−,令()0H x '>,则0x <或2x >,∴()H x 在(),0∞−,()2,+∞内单调递增,在()0,2内单调递减,当(),2x ∈−∞时,()()010H x H ≤=−<,则()H x 在(),2−∞内无零点, 当[)2,x ∞∈+时,()()310,4150H H =−<=>,则()3,4β∈, 综上所述:()3,4β∈;故αβ<.故选:D.。

高三数学专题复习11:数形结合思想

高三数学专题复习11:数形结合思想

专题十一 数形结合思想一、考点回顾1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。

它可以使抽象的问题具体化,复杂的问题简单化。

“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。

2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。

3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”, 用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。

4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是 “以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是 “以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了 “数形结合”的知识平台。

5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。

用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。

二、经典例题剖析1.选择题(1)设21()1x x f x x x ⎧⎪=⎨<⎪⎩,≥,,,()g x 是二次函数,若(())f g x 的值域是[)0+,∞,则()g x 的值域是( ) A .(][)11--+∞,,∞B .(][)10--+∞,,∞C .[)0+,∞D .[)1+,∞解析:因为()g x 是二次函数,值域不会是A 、B ,画出函数()y f x =的图像(图1)易知,当()g x 值域是[)0+,∞时,(())f g x 的仁政域是[)0+,∞,答案:C 。

高中数学二轮专题复习——数形结合思想

高中数学二轮专题复习——数形结合思想

思想方法专题数形结合思想【思想方法诠释】一、数形结合的思想所谓的数形结合,就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和空间形式巧妙、和谐地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决,数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化,从形的直观和数的严谨两方面思考问题,拓宽了解题思路,是数学的规律性与灵活性的有机结合.数形结合的实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化.二、数形结合思想解决的问题常有以下几种:1.构建函数模型并结合其图象求参数的取值范围;2.构建函数模型并结合其图象研究方程根的范围;3.构建函数模型并结合其图象研究量与量之间的大小关系;4.构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;5.构建立体几何模型研究代数问题;6.构建解析几何中的斜率、截距、距离等模型研究最值问题;7.构建方程模型,求根的个数;8.研究图形的形状、位置关系、性质等。

三、数形结合思想是解答高考数学试题的一种常见方法与技巧,特别是在解选择题、填空题时发挥奇特功效,具体操作时,应注意以下几点:1.准确画出函数图象,注意函数的定义域;2.用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图)然后作出两个函数的图象,由图求解。

四、在运用数形结合思想分析问题和解决问题时,需做到以下四点:1.要清楚一些概念和运算的几何意义以及曲线的代数特征;2.要恰当设参,合理用参,建立关系,做好转化;3.要正确确定参数的取值范围,以防重复和遗漏;4.精心联想“数”与“形”,使一些较难解决的代数问题几何化,几何问题代数化,以便于问题求解。

中考数学专题复习数形结合-从简单处着手找规律公开课PPT课件

中考数学专题复习数形结合-从简单处着手找规律公开课PPT课件

二、深入探究
......
例2 用大小相等的小正方形拼成大正方形,拼第1个正方形需要4个
小正方形,拼第2个正方形需要9个小正方形,......按照这样的方法, 拼
成第n个正方形比第(n-1)个正方形多几个小正方形?
......
第1个正方形 第2个正方形
第3个正方形
第4个正方形
多了(1+2×2)个 多了(1+2×3)个 多了(1+2×4)个
特殊→一般→特殊
例1 用同样大小的棋子按图所示的方式摆图形,按照这样的规律摆
下去,则第n个图需棋子
枚(用含n的代数式表示).
......



从“形”的角度解答图形规律题


由_1 个 和(n-1) 个 组成
4+33(n+n1-1 )

第n个图形
一、例题精讲
方法一:从“数”的角度解答图形规律题
特殊→一般→特殊
椅子 20
把.
2、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)
上有n(n≥2)个圆点时,图案的圆点数为Sn.按此规律推断Sn关于n的关系式为:
Sn= 4n-4

谢谢聆听
1、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配
椅子
把.
2、下列每个图是由若干个圆点组成的形如四边形的图案,当每条边(包括顶点)
上有n(n≥2)个圆点时,图案的圆点数为Sn.按此规律推断Sn关于n的关系式为:
Sn=

四、课后作业
1、一张长方形桌子需配6把椅子,按如图方式将桌子拼在一起,那么8张桌子需配

人教版数学六年级下册-小升初专项复习-数形结合规律(试题)(含答案)

人教版数学六年级下册-小升初专项复习-数形结合规律(试题)(含答案)

人教版数学六年级下册小升初专项复习-数形结合规律(试题)(含答案)一、单选题1.摆一个小正方形要4根小棒,如果按照右图的摆法,摆n个小正方形需要()根小棒。

A.4n B.4(n-1)C.3n+1D.3n-12.一张正方形的桌子可以坐4人,同学们吃饭的时候把桌子拼在—起,如下图,那么8张桌子可以坐多少人?()A.23B.18C.25D.243.与其它三行排列的规律不一样的是()。

A.B.C.D.4.,遮住了()颗黑珠子。

A.3B.4C.5D.65.根据图中的信息,第六个图案所对应的式子是()A.7+1B.62+1C.72+1D.82+16.找规律A.B.C.D.7.…,第五个点阵中,点的个数是()A.1+4×3=13B.1+4×4=17C.1+4×5=21D.1+4×6=25 8.如右图,继续往下画,第8个点阵的点数是()个。

A.36B.35C.32D.289.木材厂将木头按下图堆放,第五堆有()个.A.15B.21C.28D.34二、填空题10.下面是由边长为1的等边三角形拼成的等腰梯形.(1)根据上面用三角形拼梯形的规律完成下面的表格.图号①②③④⑤⑥梯形的上底12三角形的个数35(2)如果梯形的上底为10,那么拼这个梯形一共用了个小等边三角形? 11.一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上,翻动95次后杯口朝;100次后杯口朝。

12.观察下图,按此规律,第十幅图下面的数应该是。

13.观察下列图形的构成规律,根据此规律,第8个图形中有个圆.14.按规律往下画一组。

15.用火柴棒按图的方式搭正方形。

搭20个这样的正方形需要根火柴棒。

搭n个这样的正方形需要根火柴棒。

16.有黑白两种颜色的珠子按照下面的规律排列,第14个珠子是色。

在36个珠子中,黑色珠子一共有个。

三、解答题17.我会找规律填一填18.按规律在空格里画图.19.开联欢会,同学们决定用不同颜色的气球装饰教室。

苏科版九年级数学下册专题复习:《数形结合》

苏科版九年级数学下册专题复习:《数形结合》

AB上一点,且BD=2,点P是边BC上一动点(D、P两
点均不与端点重合),作∠DPE=60°,PE交边AC于
点E.若CE=a,当满足条件的点P有且只有一个时,则
a的值为
.
以数解形 点的存在性 方程的解
典型例题
y A
例2.如图,直线 y 3 x b 与y轴交于点A ,与双曲线
3
B、 C
y k 在第一象限交于 B、C两点,且 AB • AC 4 ,则k= .
以形助数 代数式 图形距离
课堂小结:
数形结合思想就是通过数量关系与图形之间 相互转化来解决问题的思想,谈到数形结合,大 多和方程、函数有关,特别是函数的解析式和函 数图像,分别从数和形两个方面反映了函数的性 质,函数图像使抽象的数量关系有了直观的几何 意义,同时数量关系也能更加精确的描述图像的 性质,数与形是相互联系、密不可分的。
x
x 巩固练习
解不等式: x 2 x 3 5
解:从数轴上看,-2到3的距离是5,所以x不 能在-2和3之间(包括-2和3), 只能在-2的左侧 或3的右侧,不等式才能成立,故原不等式 的解集是 x>3或 x<-2。
x
k
以数解形 线段 方程
典型例题
例3.若m、n(m<n)是关于x的方程(x-a)(x-b)=2的 两个根,当a<b时,用<连接m、n、a、b.
以形助数 方程的根 函数图像
典型例题
例4.已知:0≤x≤2,0≤y≤2,求
x2 y2 (x 2)2 y2 x2 (y 2)2 (x 2)2 (y 2)2 的最小值.
专题复习:数形结合
数缺形时少直观, 形少数时难入微; 数形结合百般好, 隔离分家万事休。
——华罗庚

2022届高考数学一轮专题复习之数形结合(含解析)

2022届高考数学一轮专题复习之数形结合(含解析)

数形结合 A 组一、选择题1. 函数f (x )=⎪⎩⎪⎨⎧>≤-)1|(|||)1|(|12x x x x ,如果方程f (x )=a 有且只有一个实根,那么a 满足( )A.a <0B.0≤a <1C.a =1D.a >1答案:C解析 :由图知a =1时,图象只有一个交点,故选C.2.已知函数f (x )=x 2+e x-12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,1eB.()-∞,eC.⎝ ⎛⎭⎪⎫-1e ,eD.⎝ ⎛⎭⎪⎫-e ,1e答案:B解析:由题意可得,当x >0时,y =f (-x )与y =g (x )的图象有交点,即g (x )=f (-x )有正解,即x 2+ln(x +a )=(-x )2+e -x-12有正解,即e-x-ln(x +a )-12=0有正解,令F (x )=e -x-ln(x +a )-12,则F ′(x )=-e -x-1x +a<0,故函数F (x )=e -x-ln(x +a )-12在(0,+∞)上是单调递减的,要使方程g (x )=f (-x )有正解,则存在正数x 使得F (x )≥0,即e -x-ln(x +a )-12≥0,所以a ≤1e 2e x x ---,又y =1e 2e x x ---在(0,+∞)上单调递减,所以a <1e 02e 0---=12e ,选B.3.已知圆C :(x -3)2+(y -4)2=1和两点A (-m,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( ) A.7 B.6 C.5 D.4 答案:B解析.根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m . 因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为|OC |=32+42=5,所以|OP |max =|OC |+r =6, 即m 的最大值为6.4.设平面点集A ={(x ,y )|(y -x )·(y -1x)≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为( ) A.34π B.35π C.47π D.π2答案:D 解析:因为对于集合A ,(y -x )⎝⎛⎭⎪⎫y -1x ≥0,所以⎩⎪⎨⎪⎧y -x ≥0,y -1x≥0或⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0,其表示的平面区域如图.对于集合B ,(x -1)2+(y -1)2≤1表示以(1,1)为圆心,1为半径的圆及其内部区域,其面积为π.由题意意知A ∩B 所表示的平面图形为图中阴影部分,曲线y =1x与直线y =x 将圆(x -1)2+(y -1)2=1分成S 1,S 2,S 3,S 4四部分.因为圆(x -1)2+(y -1)2=1与y =1x的图象都关于直线y =x 对称,从而S 1=S 2,S 3=S 4,而S 1+S 2+S 3+S 4=π,所以S 阴影=S 2+S 4=π2.二、填空题5.已知函数y =f (x )(x ∈R ),对函数y =g (x )(x ∈I ),定义g (x )关于f (x )的“对称函数”为函数y =h (x )(x ∈I ),y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x ))关于点(x ,f (x ))对称.若h (x )是g (x )=4-x 2关于f (x )=3x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围是________.答案:(210,+∞) 解析 由已知得h x +4-x 22=3x +b ,所以h (x )=6x +2b -4-x 2.h (x )>g (x )恒成立,即6x +2b -4-x 2>4-x 2,3x +b >4-x 2恒成立.在同一坐标系内,画出直线y =3x +b 及半圆y =4-x 2(如图所示),可得b10>2,即b >210,故答案为(210,+∞).6.椭圆x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为________.【解析】 ∵|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |,即4c 2=(a -c )·(a +c ),得a 2=5c 2,∴e =c a =55.【答案】 55三、解答题7.已知函数f (x )=2ln x -x 2+ax (a ∈R ).(1)当a =2时,求f (x )的图象在x =1处的切线方程; (2)若函数g (x )=f (x )-ax +m在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点,求实数m 的取值范围.解:(1)当a =2时,f (x )=2ln x -x 2+2x ,f ′(x )=2x-2x +2,切点坐标为(1,1),切线的斜率k =f ′(1)=2,则切线方程为y -1=2(x -1),即y =2x -1.(2)g (x )=2ln x -x 2+m ,则g ′(x )=2x -2x =-2(x +1)(x -1)x.∵x ∈⎣⎢⎡⎦⎥⎤1e ,e ,∴当g ′(x )=0时,x =1.当1e <x <1时,g ′(x )>0; 当1<x <e 时,g ′(x )<0.故g (x )在x =1处取得极大值g (1)=m -1.又g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2,g (e)=m +2-e 2,g (e)-g ⎝ ⎛⎭⎪⎫1e =4-e 2+1e 2<0,则g (e)<g ⎝ ⎛⎭⎪⎫1e ,∴g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值是g (e).g (x )在⎣⎢⎡⎦⎥⎤1e ,e 上有两个零点的条件是⎩⎪⎨⎪⎧g (1)=m -1>0,g ⎝ ⎛⎭⎪⎫1e =m -2-1e 2≤0, 解得1<m ≤2+1e2,∴实数m 的取值范围是⎝⎛⎦⎥⎤1,2+1e 2.8.已知函数f (x )的图象是由函数g (x )=cos x 的图象经如下变换得到:先将g (x )图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移π2个单位长度.(1)求函数f (x )的解析式,并求其图象的对称轴方程;(2)已知关于x 的方程f (x )+g (x )=m 在[0,2π)内有两个不同的解α,β. ①求实数m 的取值范围; ②证明:cos(α-β)=2m 25-1. 解 法一 (1)将g (x )=cos x 的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y =2cos x 的图象,再将y =2cos x 的图象向右平移π2个单位长度后得到y =2cos ⎝ ⎛⎭⎪⎫x -π2的图象,故f (x )=2sin x . 从而函数f (x )=2sin x 图象的对称轴方程为x =k π+π2(k ∈Z ). (2)①f (x )+g (x )=2sin x +cos x =5⎝ ⎛⎭⎪⎫25sin x +15cos x =5sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=15,cos φ=25.依题意,sin(x +φ)=m5在[0,2π)内有两个不同的解α,β,当且仅当⎪⎪⎪⎪⎪⎪m 5<1,故m 的取值范围是(-5,5). ②证明 因为α,β是方程5sin(x +φ)=m 在[0,2π)内的两个不同的解。

中考数学复习专题 数形结合思想(含答案)

中考数学复习专题 数形结合思想(含答案)

数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。

① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。

数学总复习之数学思想《数形结合》

数学总复习之数学思想《数形结合》

数学总复习之数学思想《数形结合思想》一、要点:数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面。

题型一数形结合思想在解决方程的根的个数、不等式解集的问题中的应用【例题1】已知函数f (x )满足下面关系:①f (x +1)=f (x -1);②当x ∈[-1,1]时, f (x )=x 2,则方程f (x )=lg x 解的个数是 ;A .5B .7C .9D .10题型二 数形结合思想在求参数、代数式的取值范围、最值问题中的应用【例题2】若关于x 的方程x x m 245-+=||有四个不相等的实根,求m 的取值范围.题型三 数形结合思想在向量中的应用【例题3】设,a b 是非零向量,且2a =,22a b +=,则a b b ++的最大值是 .题型三 数形结合思想在求最值中的应用【例题4】设{}2()min 24,1,53f x x x x =++-,则max ()f x = .二、课后作业1. 方程lg sin x x =的实根的个数为( )A. 1个B. 2个C. 3个D. 4个2. 函数y a x y x a ==+||与的图象恰有两个公共点,则实数a 的取值范围是( )A. ()1,+∞B. ()-11,C. (][)-∞-+∞,,11D. ()()-∞-+∞,,11 3. 设命题甲:03<<x ,命题乙:||x -<14,则甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 不充分也不必要条件4.设函数,021(),0x x f x x x -≤⎧-=⎨>⎩,若f (x 0)>1,则x 0的取值范围是 ( )A.(-1,1)B.(-1,+∞)C.(-∞,-2)∪(0,+∞)D.(-∞,-1)∪(1,+∞)5.已知集合A={}{}|23,|14x x B x x x -≤≤=<->或,则集合A B =_________.6.设等差数列{}n a 的前n 项和为n S ,若4510,15S S ≥≤,则4a 的最大值为___________.7.设全集U ={x |0<x ≤10,x ∈N*},若A ∩B ={3},A ∩ðU B ={1,5,7},ðU A ∩ðU B ={9},求A ,B .8.已知实系数一元二次方程x 2+ax +2b =0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:(1)点(a ,b )对应的区域的面积;(2)b -2a -1的取值范围;(3)(a -1)2+(b -2)2的值域.。

数形结合专题复习

数形结合专题复习

5、教学过程:复习目标:能综合运用一次函数、反比例函数、二次函数的知识解决问题。

复习重点:能结合函数图象分析相关问题,即“以形定数”复习难点:善于从题目或图形中提取有用信息,培养学生综合分析问题和解决问题的能力易错点:与反比例函数图象有关的问题,要注意分象限讨论。

复习过程:一、知识点回顾:(课前自主完成)回顾一次函数、反比例函数、二次函数的图象及性质年 2011 题、选择题第 5题 24函数图象的增减性 与二次函数的关的 综合题3分14分年 2012.题、2选择题第 二次函数图象的平移 分3考 考 查 情 况第10题第24题第 25题(2)②题正比例函数与反比例函数图象与性质 与二次函数的关的综合题与二次函数最 值有关3分 14分5分2013 年 第14题第23题第 25题一次函数图象及性质应用反比例函数 综合题二次函数综合题3分12分 14分2014 年 9题第第21题第 24题正比例函数的图象及性质 一次函数与反比例函数综合二次函数综合题3分12分 14分命题 规律 解题 思路从近几年中考命题来看,与函数图象性质有关的题是必考内容,而且二次函数的分值越来越 大,覆盖面广,综合性强。

初中阶段所有的知识点几乎都可以与二次函数联系起来,特别是 一元二次方程、几何图形、实际问题的联系更紧密些。

解与函数图象性质有关的题的基本思路:1、明确各类函数解析式中各常量的作用,正确判断函数图象。

2、利用函数图象求一元二次方程的解时,注意解析式与方程之间的对应关系。

3、解决与图象有关的问题,不但要注意数形结合,而且还要注意分情况讨论。

1 1xxx 1x 111( 1 , 3 ) , B. ( 1,3 ) ” 3 ) , C. ( A .( D. , 3 ),2x3y ) 向上平移2个单位2、把抛物线,在向右平移3个单位,则所得的抛物线是 (22222 x3)3(x 3) 2y 3( 2 y3(x 3) y 3(x3) 2y A. B. C. D.x 0, 0c a a0,b 0,c0 0,b B. A.三、课前演练(限时训练8分钟)(针对填空、选择题训练) 22 2xy x )(1、二次函数的顶点坐标、对称轴分别是2c y ax bx( 3、若二次函数 )的图象如图,则221a 3x yax 如图,抛物线是二次函数的图象,5、a ______那么的值是四、例题解析(思维训练) (针对解答题训练)2xxy x 3y 0 ?,当取何值时,于例1:已知二次函数变式1: 2XXX 3 y y 的值小于已知二次函数取何值时,函数0,当?变式2: 2XX 7 y 2x y 的值小于0已知二次函数,当?取何值时,函数x 0 y )x)D(2 x 或的值大20) c (aaxy bx 4、已知抛物线的图象如图所示,20c ax bx 的两个根。

初中数学专题复习数形结合(含答案)

初中数学专题复习数形结合(含答案)

专题复习三数形结合Ⅰ、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离”.几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.Ⅱ、典型例题剖析【例1】(2005,嘉峪关,10分)某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,图3-3-1已表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)果你是推销员,应如何选择付费方案?解:(1)y1=20x,y2=10x+300.(2)y1是不推销产品没有推销费,每推销10件产品得推销费200元,y2是保底工资300元,每推销 10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择y1的付费方案;否则,选择y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.【例2】(2005,某农场种植一种蔬菜,销售员张平根据往年的销售情况,对今年这种蔬菜的销售价格进行了预测,预测情况如图3-3-2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1)2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3)l月到7月的销售价逐月下降;(4)7月到12月的销售价逐月上升;(5)2月与7月的销售差价是每千克3元;(6)7月份销售价最低,1月份销售价最高;(7)6月与8月、5月与9月、4月与10 月、3月与11 月,2月与12 月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.【例3】(2005,江西课改,8分)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3l 司所示的条形统计图:⑴请写出从条形统计图中获得的一条信息;⑵请根据条形统计图中的数据补全如图3-3-3所示的扇形统计图(要求:第二版与第三版相邻人并说明这两幅统计图各有什么特点?⑶请你根据上述数据,对该报社提出一条合理的建议。

浙教版七年级第一学期期末专项复习数形结合(含答案)

浙教版七年级第一学期期末专项复习数形结合(含答案)

浙教版七年级第一学期期末专项复习数形结合姓名班级学号一、选择题(每题3分,共30分)1.在如图所示的数轴上,表示数a绝对值的是()A.2B.- 12 C.12 D.-22.有理数a,b,c的位置如图所示,下列判断正确的是()A.abc < 0B.a - b > 0C.|c| < |b|D.c - a > 03.如图所示,数轴上的点A表示的数可能是下列各数中的()A.-8的算术平方根B.10的负的平方根C.-10的算术平方根D.-65的立方根4.已知A,B,C三点在同一条直线上,若线段AB = 6 cm,线段BC = 4 cm,则A,C两点间的距离为()A.2 cmB.10 cmC.5 cmD.2 cm或10 cm5.如图所示,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB= BC,如果|a| > |c| > |b|,那么该数轴的原点O的位置应该在()A.点A的左边B.点A与点B之间C.点B与点C之间D.点B与点C之间或点C的右边6.若a,b为有理数,在数轴上的位置如图所示,则下列大小关系中,正确的是()A.1 < 1b <1a B.1a < 1 <1b C.1b <1a < 1 D.1a <1b < 17.如图所示,数轴上的点A所表示的数为k,化简|k| + |1-k|的结果为()A.1B.2k - 1C.2k + 1D.1 - 2k8.如图所示,数轴上点A,B,C,D对应的有理数都是整数,若点B对应有理数b,点C对应有理数c,且b - 3c = 9,则数轴上原点应是()A.点AB.点BC.点CD.点D9.有四个有理数1,2,3,- 5,把它们平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:A = |1 + 3| + |2-5|.已知数轴上原点右侧从左到右有两个有理数m ,n ,再取这两个数的相反数,那么所有A 的和为 ( )A.4 mB.4 m + 4nC.4nD.4 m- 4n10.如图所示,数轴上表示1,2的对应点分别为A ,B ,则以点A 为圆心,AB 为半径的圆交数轴于点C ,则点C 表示的数是 A.2- 1 B.1 -2 C.2- 2 D.2- 2二、填空题(每题4分,共24分)11.数轴上点A 对应的数是-5,点B 对应的数是-2,点C 对应的数是 + 2,则A ,B 两点间的距离是 _________ ;A ,C 两点间的距离是 _________ .12.若将三个数-3,6,10表示在数轴上,其中能被如图所示的墨汁覆盖的数是 _________ .13.已知∠AOB = 120°,OC 在它的内部,且把∠AOB 分成1:3两部分,则∠AOC 的度数为 _________ .14.如图所示,已知四个有理数m ,n ,p 、q 在一条缺失了原点和刻度的数轴上对应的点分别为M ,N ,P ,Q ,且m + p = 0,则在m ,n 、p 、q 四个有理数中,绝对值最小的一个是 _________ .15.在数轴上,|a |表示数a 到原点的距离,这是绝对值的几何意义.进一步地可以规定,数轴上两个点A ,B ,分别用a 、b 表示,那么A 、B 两点之间的距离为:AB = |a - b |.利用此结论,式子|x - 1| + |x - 2| + |x - 3| + … + |x - 9|的最小值是 _________ .16.已知数a 、b ,c 的大小关系如图所示,则下列各式:①b + a + (- c ) > 0;②(-a )- b + c > 0;③a a + b b + cc = 1:④bc - a > 0;⑤|a - b | - |c + b | + |a - c | =-2b .其中正确的有 _________ (填序号). 三、解答题(共66分)17.(6分)把下列各数表示在数轴上,再按从大到小的顺序用“ > ”把这些数连接起来.| - 3|, - 5, 1 2 ,0, - 2.5, - 22,-(-1).18.(8分)邮递员骑摩托车从邮局出发,向东行驶了3 km到达小明家,继续向东行驶了1.5 km到达小亮家,然后向西行驶了9.5 km到达小刚家,最后回到邮局.(1)若以邮局为原点,以向东方向为正方向,用1个单位长度表示1 km,请你在数轴上表示出小刚家、小明家和小亮家的位置.(2)小刚家离小明家有多远?(3)如果邮递员所骑的摩托车油耗为0.04 L/km,摩托车行驶的路程消耗了多少升油?19.(8分)如图所示,在数轴上有A,B两点,点A在点B的左侧,已知点B对应的数为2,点A 对应的数为a.(1)若a =-3,则线段AB的长为 _________ (直接写出结果).(2)若点C在线段AB之间,且AC-BC = 2,求点C表示的数(用含a的代数式表示)20.(10分)对于有理数a,b,定义一种新运算“⊙”,规定a⊙b = |a + b| + |a -b|.(1)计算1⊙(-2)的值.(2)当a,b在数轴上的位置如图所示时,化简a⊙b.(3)已知(a⊙a)⊙a = 8 + a,求a的值.21.(10分)已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc _________ (填“ > ”“ = ”或“ < ”,下同)0,a + b _________ 0,ab- ac _________ 0.(2)若|a| = 2,且点B到点A,C的距离相等.①当b2 = 16时,求c的值.②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当点P在运动过程中,bx + cx + |x - c|-10|x + a|的值保持不变,求b的值.22.(12分)已知线段AB= 12,CD = 6,线段CD在直线AB上运动(点A在点B的左侧,点C在点D的左侧).(1)当点D与点B重合时,AC = _________ .(2)点P是线段AB延长线上任意一点,在(1)的条件下,求PA + PB-2PC的值.(3)M,N分别是AC,BD的中点,当BC = 4时,求MN的长.23.(12分)如图所示,两条直线AB,CD相交于点O,且∠AOC = ∠AOD,射线OM(与射线OB 重合)绕点O按逆时针方向旋转,速度为15°/s,射线ON(与射线OD重合)绕点O按顺时针方向旋转,速度为12°/s.两射线OM,ON同时运动,运动时间为t(s).(本题出现的角均指小于平角的角)(1)图中一定有 _________ 个直角;当t = 2时,∠MON的度数为 _________ ,∠BON的度数为_________ ∠MOC的度数为 _________ .(2)当0 < t < 12时,若∠AOM = 3∠AON-60°,试求出t的值.(3)当0 < t< 6时,探究MON BONCOM∠∠+∠27的值:在t满足怎样的条件时是定值;在t满足怎样的条件时不是定值.参考答案。

感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思

感悟数形结合思想 发展数学核心素养——“解直角三角形中的数形结合”专题复习教学及反思

一、内容和内容解析1.内容“解直角三角形中的数形结合”专题复习课包括图1本节课为第1课时,以解直角三角形及其应用为载体,在综合运用相关知识解决问题的过程中,提炼运用数形结合思想方法解题的操作步骤、作用、注意要点等.2.内容解析(1)地位和作用.代数和几何是初中数学的主要研究对象.数形结合是通过数与形的相互转化达到认识和解决问题的一种思想和方法.通过“以形助数”和“以数解形”,准确把握数与形的关联点,可以使抽象的问题形象化、直观的问题精细化,从而快速获取解题思路,逻辑清晰地解决问题.运用数形结合思想解决问题的过程也是学生发展直观想象、数学运算、数学抽象、逻辑推理、数学建模等素养的过程.数形结合在数学学习和研究中占有重要地位,它不仅是一种重要思想,也是一种常用的解题策略与方法.本节课是运用数形结合思想解决相关问题的专题复习课,从具体的锐角三角函数问题的解决开始,总结提炼数形结合思想方法的作用、操作步骤和注意要点,并用于解决综合性问题.锐角三角函数是数形结合的产物,它的概念的产生和应用都与图形有着密切的联系,在历年中考试题中都占有一定的比重.因此,学好本节课的内容对中考备考有重要作用.(2)概念的解析.运用数形结合思想方法解决问题的操作步骤、注收稿日期:2021-01-16基金项目:河南省教育科学规划2020年度一般课题——基于“互联网+信息技术”的初中数学解题教学实践研究(2020YB0980).作者简介:赵智勇(1963—),男,中学高级教师,主要从事中学数学教育教学研究.——“解直角三角形中的数形结合”专题复习教学及反思赵智勇摘要:文章以锐角三角函数知识内容为载体,着眼于数形结合思想方法的深层感悟,实现数与形的双向沟通.通过“解直角三角形中的数形结合”专题复习课的教学,引导学生概括数形结合解决问题的基本思路,体会其作用,归纳其注意要点;引导学生应用概括出的数形结合思想的基本思路解决问题,实现数形结合思想的巩固和迁移;引导学生融合不同的思想方法解决综合性问题,实现思想方法的融合.关键词:数形结合;锐角三角函数;专题复习;教学研究感悟数形结合思想发展数学核心素养··47意要点、作用如下.操作步骤:分析问题结构—构想数形关联—实施数形转换—获得问题答案.注意要点:考虑数形结合解决问题的必要性、可行性和简洁性;解决几何证明题需要几何直观分析、代数抽象分析对应进行;代数性质与几何图形的对应互换.作用:运用数形结合思想方法解决问题能够使抽象的问题形象化,使复杂的关系得到直观、具体的表示,对理解题意、挖掘题目中的各种信息、发现蕴含的条件和关系、获得解题的灵感和方法等都具有重要意义.(3)思想方法.数形结合的实质是把抽象的数量关系与直观的图形表示结合起来,或把几何中的定性结论转化为可计算的定量结果,或以直观图形辅助抽象的代数运算与推理.(4)知识类型.本专题内容属于程序性知识,还是策略性知识,由知识类型所决定.在教学中,教师要注重以问题为引导,以学生活动为主,在独立思考、合作交流中,师生共同提炼数形结合思想方法的操作步骤和核心要点,进一步体会数形结合思想方法的作用;在应用中注重引导学生用数形结合思想方法去分析问题和解决问题.(5)教学重点.基于以上分析,确定本节课的教学重点为:提炼数形结合思想解题的一般步骤和注意要点.二、目标和目标解析1.目标(1)通过解直角三角形及其应用问题,了解数形结合思想的内涵和作用.(2)经历问题解决过程,能抽象概括出用数形结合思想解决问题的操作步骤、注意要点和作用.(3)能正确进行数形互化,运用数形结合思想解决有一定综合性的问题,形成解题策略.2.目标解析达成目标(1)的标志:知道数形结合研究数的精确与形的直观之间的转化,可使解题思路变得简单明了,从而化繁为简、化难为易.达成目标(2)的标志:明确运用数形结合解决问题一般需要经历“分析、构想、建立、求解”四个步骤.数与形的对应转换是运用数形结合解决问题的关键,明确以形助数、以数解形的具体操作步骤.知道在运用数形结合解决问题时,要考虑可行性等,不能用形的显然替代推理论证,既需要进行几何直观分析,又需要通过符号抽象、运算和推理进行量化研究.达成目标(3)的标志:在解决相关问题的过程中,能有意识借助形的几何直观性来阐述数之间的普遍关系和一般规律,借助数的精确性阐述形的某些属性和一般规律;能运用数形结合思想方法解决一些有一定难度的中考试题.三、教学问题诊断分析1.已具备的认知基础学生已经学习了直角三角形的两锐角互余、勾股定理、锐角三角函数等知识,并能运用直角三角形的性质解直角三角形;经历了数轴、坐标系、函数等概念的学习,对数形结合有一定的认识,对数与形的对应和转换有一定的模仿经验,具有一定的解决问题的能力,这为本节课的学习奠定了基础.2.与本课目标的差距分析(知识、能力)初中生运用数形结合解决问题,需要具备以下能力:敏锐的观察能力;准确的语言表达能力;灵活的思维能力;较强的综合应用能力.运用数形结合思想解决有一定难度的综合问题时,需要进一步培养学生敏锐的观察能力和灵活的思维能力.3.可能存在的问题运用数形结合思想解决综合性较强的题目时,纵横联系的知识点多,这对学生的数形结合能力提出了较高的要求.对于某些问题,学生有可能误用形的直观替代严谨的推理论证,也可能抓不住数的特征构建适当的形.4.应对策略本节课需要通过具体实例多次展现数形结合的具体操作步骤,使学生获取更多活动经验,提升学生对数形结合思想的认识和理解.首先,创设问题情境,引导学生利用数形结合思想解决问题;其次,引导学··48生对上述问题分解并进行反思总结,组织学生进行思想方法的交流和一般性思考;最后,通过对例题进行有针对性地指导,使学生经历数形结合解决问题的过程,既进行几何直观分析,又对应进行代数抽象探究,提升学生的认知加工水平和解题能力.基于以上分析,确定本节课的教学难点为:进行数与形的等价转化,并运用数形结合思想解决有一定难度的综合问题.四、教学支持条件分析利用希沃白板制作课件、互动授课;借助希沃授课助手拍照上传、进行投屏等,灵活展示和点评学生的学习成果,呈现课堂细节;结合GeoGebra 软件辅助构图操作,提升课堂效率.五、教学过程设计1.课前检测——针对强化,提升实效检测题1:△ABC 在正方形网格中的位置如图2所示,则sin α的值为().(A )34(B )43(C )35(D )45A BCαACB图3图2补测题:△ABC 在正方形网格中的位置如图3所示,则sin B 的值为.检测题2:如图4,已知在Rt△ABC 中,∠C =90°,tan ∠DBC =13,AD =3,AB =5,则cos A 的值为.A C D B图4DA BC图5补测题:如图5,在Rt△ABC 中,∠C =90°,∠BAC =30°,延长CA 至点D ,使AD =AB ,则tan D 的值为.【设计意图】通过课前检测题,了解学生对本节课的相关基础知识的掌握情况,可以根据检测的结果决定是否需要补测题,为后续提炼数形结合步骤和要点及进一步利用数形结合解决问题做好铺垫.2.解决问题——经历过程,感悟应用问题1:如图6,已知在△ABC中,AB =BC =5,tan∠ABC =43.(1)求AC 的长;(2)设边BC 的垂直平分线与边AB 的交点为点D ,求AD AB的值.师生活动:教师引导学生审清题意,从数与形两个方面的关联分析问题.第(1)小题中,作高构建数所对应的形,根据形所对应的数量关系确定求AC 的长的方法(设未知数,将求AC 的长转化为解方程问题求解).第(2)小题中,从图形特征关联图形对应的数量关系,确定求比值的方法.在引导学生审题和分析问题的过程中,教师结合学生的回答给出如表1所示的数形关联表,然后通过追问使学生理解“图形的形状确定,则图形中对应的数量关系也随之确定”.因此,求图形中两条线段的比值时,不必关注具体的数量,而把目光聚焦到图形中元素间的数量关系上,则求解过程更为简捷.表1追问1:你是如何使用“tan∠ABC =43”这个条件的?AB C图6··49追问2:条件“边BC的垂直平分线与边AB的交点为点D”对应的图形和数量关系表达式是什么?追问3:若将“AB=BC=5”改为“AB=BC”,你还能求出ADAB的值吗?为什么?【设计意图】通过解决第(1)小题,使学生经历以数解形的思考与解决问题的过程,将图形信息转换为具体的数量关系,借助图形的直观性,增加问题解决的准确性,使问题求解更加简明.通过解决第(2)小题,使学生经历以形助数的思考与解决问题的过程,让学生感悟借助图形的几何直观来解决数的问题,常常可以避免复杂的推理计算,使问题化难为易,使抽象的问题具体化.解决问题后,借助数形关联表,通过问题串促进学生对解决问题的过程进行反思总结,提炼运用数形结合解决问题的一般步骤、注意要点和作用,提升学生的思维能力.3.交流提炼——合作交流,提炼方法问题2:结合课前检测和问题1,你能总结一下利用数形结合思想解决问题的一般步骤和作用吗?师生活动:引导学生回顾课前检测题2的问题解决过程,师生共同建立如表2所示的数形关联表.表2结合问题1的解决过程和如表1、表2所示的数形关联表,师生共同归纳上述问题的解题思路和方法,总结提炼数形结合的一般操作步骤、作用和转化策略.作用:实现数与形的相互转化,使抽象思维与形象思维相结合,从而化繁为简、化难为易.一般操作步骤如下.(1)分析问题结构——审题,得到数的关系和形的特征.(2)构想数形关联——从数的角度想象和表示图形特征,从形的角度想象和描述数量关系,找到数与形的关联点,如几何度量(如距离、角度等)或坐标.(3)实施数形转换——构建数所对应的形,对形所对应的数量或数量关系进行符号抽象、运算和推理.(4)获得问题答案——有逻辑地表达解题过程.转化策略:关注具有显著特征的对象,基于基本的几何度量(距离和角度)找出数量关系与几何图形的关联点.【设计意图】概括数学思想方法,需要把数形结合思想的操作过程模型化、程序化、一般化.组织学生相互讨论交流,进一步挖掘数形结合思想的本质内涵,使学生对数形结合思想的认识从内隐转化为外显,实现运用数形结合思想解决问题操作策略的明朗化. 4.迁移应用——知识迁移,能力拓展问题3:如图7,我国两艘海监船A,B在南海海域巡航.某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C.此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向.已知A船的航速为30海里/时,B船的航速为25海里/时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,2≈1.41.)图7AB45°53°C师生活动:学生按以下步骤进行独立探索,并在学案上构建数形关联表,解决问题3.第一步:分析问题结构.过点C作AB所在直线的垂线,垂足为点D,由已知AD=DC,∠CBD=53°,··50AB=5.根据两艘船的速度,求等待时间,就要求AC 和BC的长.已知两角和一边,求另外两条边的长,这其实就是解直角三角形问题.第二步:构想数形关联.当已知角和边的条件时,利用锐角三角函数解决问题,通常要构建直角三角形.第三步:实施数形转换.设未知数,根据图形结构列出方程.第四步:获得问题答案.检验解的意义,得到实际问题的答案.教师在学生的分析、思考过程中,关注学生对数形结合解决问题一般步骤的操作表现,并利用希沃授课助手(手机APP结合电脑端)对学生完成的较规范的数形关联表和解题过程进行拍照上传、展示点评.结合学生的思考,师生共同构建如表3所示的数形关联表,解决问题3.表3【设计意图】通过对问题3的解决,进一步明确运用数形结合解决问题的思考步骤和注意要点,感知数与形之间的关联性,挖掘数与形之间的联系,促使学生自觉运用数形结合思想,提升分析问题和解决问题的能力.问题4:如图8,在△ABC中,AB=AC,AD是边BC上的高,E是AB的中点,F是边AC上一个动点,EF与AD相交于点G,AC=10,cos∠DAC=45.当△AGF为等腰三角形时,求EG的长.师生活动:首先,引导学生关注问题中的特殊元素,如两个中点E,D,连接ED构造△AGF∽△DGE;其次,解题需要关注主要构图对象,借助GeoGebra软件中的“复选框”功能简化图形,最终将问题转化为“在△DEG中,DE=5,cos∠EDG=45,当△DEG为等腰三角形时,求EG的长”.再运用GeoGebra软件中的“滑动条”控制动点F在边AC上移动,通过分类讨论,师生共同构建如表4所示的数形关联表,利用数形结合解决问题.代数关系式由BD=DC,BE=EA,得△AGF∽△DGE.由△AGF为等腰三角形,得△DGE为等腰三角形.得DE=5,cos∠EDG=45情况1:DE=EG;情况2:DE=DG;情况3:EG=DG对应的几何图形EDG(舍去)情况1EGDEGD(方法1)(方法2)情况2EGDEGD(方法1)(方法2)情况3AEFGDB CEGD5表4AEFGDB C图8··51追问1:此题还有其他解法吗?追问2:“EG=ED”这种情况不存在,我们还可以怎样说明?追问3:当EG=DG时,E G的长有限制吗?【设计意图】通过对问题4的解决,以数形结合、分类讨论思想为基础,引导学生在分析问题、规划思路时,将目光聚焦在特殊的视角和特殊的对象(等腰、中点、平行线)上,根据已有的数学活动经验合理寻求解决问题的突破口,体会利用数形结合进行推理得到的结论具有一般性,掌握目标导向的认知策略,使学生进一步感知数与形之间的关联性,挖掘数与形之间的必然联系,提升分析问题和解决问题的能力.追问4:结合以上问题,你能总结一下利用数形结合解决问题的注意要点和转化策略吗?注意要点如下.(1)代数性质与几何图形要对应互换.(2)考虑数形结合解决问题的必要性、可行性和简洁性.(3)不能用图形的直观代替严密的逻辑推理,既需要几何直观分析,又需要进行对应的代数抽象分析.5.反思总结——回顾思考,深化思维(1)数形结合的作用是什么?(2)运用数形结合解决问题可以分为哪些步骤?(3)运用数形结合解决问题的过程中最关键是哪一步?需要注意什么?(4)你还有哪些收获?师生共同总结出如图9所示的框图.数形结合作用实现数与形的相互转化,使抽象思维与形象思维相结合化繁为简,化难为易1.分析问题结构2.构想数形关联3.实施数形转换4.获得问题答案转化策略:找出数量关系与几何图形的关联点操作步骤注意要点1.考虑数形结合解决问题的必要性、可行性和简洁性2.几何证明题需几何直观分析、代数抽象分析对应进行3.代数性质与几何图形的对应互换图9【设计意图】回顾本节课的学习历程,并再次总结数形结合思想的解题思路、操作步骤、要点和作用,深化学生对数形结合思想的理解,强化目标导向的认知策略.六、目标检测——自我检测,巩固反馈1.新冠肺炎疫情期间,教育部号召各地各类学生居家学习.为支持小明学习,妈妈特意买了新台灯.图10(1)是放置在水平桌面上的台灯,图10(2)是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,AC 可以绕点A上下调节一定的角度,CD可以绕点C上下调节一定的角度.使用时发现:当灯臂与底座构成的夹角∠CAB=53°,∠ACD=157°时,台灯光线最佳.求光线最佳时点D到桌面的距离为多少?(结果保留一位小数.参考数据:sin53°≈45,cos53°≈35.)A BCD(2)(1)图102.如图11,在Rt△ABC中,∠C=90°,sin B=45,AC=4.D是BC的延长线上的一个动点,∠EDA=∠B,AE∥BC.当△ADE为等腰三角形时,求AE的长.AB C DE图11【设计意图】巩固利用数形结合思想解决问题的过程与方法,对应知应会的核心知识进行检测,为下节课的解题课奠定基础.通过解决问题,进一步体现数形结合思想应用的广泛性和有效性,提高学生对数学思想的感悟层次,提升学生分析问题和解决问题的能力,感受数形结合的育人价值.··52七、教学反思教学设计是静态的,而课堂生成是动态的.通过对数形结合的设计和实施教学,笔者认为,在教学中,教师引导学生感悟数形结合思想方法,发展数学学科核心素养应注意以下几点.1.进行单元整体教学从整体上把握教学内容,整体构思单元各课时的教学内容,注重知识的前后联系,以及对后续学习的重要作用,体现数学知识的整体性、逻辑的连贯性、思想的一致性和方法的一般性.在相互联系中引导学生感悟其中蕴涵的数学思想方法,发展学生的数学素养,有利于深化学生对数形结合思想的理解,培养理性精神和探究精神,提升中考数学备考能力.2.发挥一般观念的引领作用本节课的教学设计和实施是在一般观念的指导下,以数学知识的内在逻辑构建自然而然的研究过程.以解直角三角形内容为载体,根据题目条件和数学知识的内在逻辑关系设计系列问题串,自然引出数形关联表,利用问题串和数形关联表引导学生概括总结问题的解决思路和方法,提炼数形结合的作用、一般操作步骤、转化策略,形成基本套路,提升教学的整体性和思想性,帮助学生体会数形结合思想方法,使学生透过现象看本质,从复杂问题中抓住关键要素,从而化繁为简,形成数学的思维方式,提升发现问题、提出问题、分析问题和解决问题的能力. 3.遵循数学思想方法教学的原理数学思想方法的学习要经历“解决问题—概括提炼—迁移应用—联系发展”这四个阶段.本节课以此为依据进行教学设计.首先,通过具体问题的解决,体会数形结合思想;其次,将如何分析问题结构、构想数形关联、实施数形转换这一操作过程显性化,明确其作用、操作步骤和要点,提炼和概括数形结合思想;最后,让学生用概括出来的数形结合思想解决新的问题,感悟利用数形结合解决问题的关键是从数的角度观察图形特征,从形的角度实现数量代换,找到数与形的关联点,使学生内化数形结合思想,形成数学活动的经验.例如,在回顾检测题2和问题1时,给表格加个题目“数形关联表”,在对照表格进行引导时用“数量关系关联的几何图形”和“几何图形关联的数量关系”等语言,可以促进学生使用“关联”进行概括.4.精选样例引导学生感悟数形结合思想方法,重要的是精选适当的题目,利用题目归纳操作流程.巩固操作流程可以利用相关的变式题目和拓展题目进行迁移训练,使学生在合作探究中内化数形结合的操作流程,在反思总结中形成有结构的知识经验.5.坚持以学为中心在以学生活动为主、以感悟数形结合思想为目标的复习教学中,教师需要注意鼓励学生积极思考、提出有价值的问题,关注学生是否能够用数学的思维方式观察、分析、解决问题,使学生感受数与形之间的相互转化,使抽象思维与形象思维相结合;合理运用信息技术手段,有利于增强学生的学习兴趣,提高课堂学习效果.教学时,若教师不揭示方法的本质,学生只会看到简单的数学操作,看不到问题的本质.数学思想是对数学知识的更高层次的概括与提炼,是培养学生的数学能力、发展数学学科核心素养的重要环节.数学思想方法的教学对解题教学具有十分重要的指导作用,有助于提升学生的解题能力和应用能力,发展学生的理性思维和科学精神,有效发挥数学学科的育人价值.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[3]吴增生.科学用脑高效复习:初中数学总复习教学设计[M].杭州:浙江科技出版社,2018.[4]吴增生.整体建构核心素养导向下的总复习教学策略体系[J].中国数学教育(初中版),2019(7/8):3-11,37.[5]王华鹏.“四个理解”指导下的教学设计新思路:以“位似”教学设计为例[J].中国数学教育(初中版),2019(9):3-8,13.··53。

初三数学专题复习数形结合思想

初三数学专题复习数形结合思想

专题复习——数形结合思想一、复习内容:数形结合数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。

应用数形结合,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化解题过程,这在解选择题、填空题更显优越,要注意数形结合思想意识,要胸中有图,见数想图,当然,数缺形少直观,形缺数难入微。

环节一、借助数轴解数与式的问题例1:实数ba,在数轴上的位置如图所示,化简:2)(abba-++=__________.练习:1.实数a、b上在数轴上对应位置如图1所示,则2||a b b-+等于()A.a B.a-2b C.-a D.b-a2.不等式组114xx->⎧⎨≤⎩的解集在数轴上,图3-3-7所示)表示应是()环节二、借助平面直角坐标系解函数问题例2:如图,已知二次函数cxaxy+-=42的图象经过点A和点B.(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点P(mm,)与点Q均在该函数图象上(其中0>m),且这两点关于抛物线的对称轴对称,写出m的值及点Q到x轴的距离.···a b例1图图1例2图5图3练习:1、已知二次函数y 1=ax 2+bx+c (a≠0)和直线y 2=kx+b (k ≠0)的图象如图2,则: 当x=___ ___时,y 1=0;当x____ __时,y 1<0;当x____ __时,y 1>y 2;2、已知抛物线2y x bx c =++的部分图象如图3,若y <0,则x 的取值范围是 3.如图4,在反比例函数y= kx (k >0)的图象上有三点A 、B 、C ,过这三点分别向x轴、y 轴作垂线,过每一点所作的两条垂线与x 轴,y 轴围成的面积分别为S 1,S 2,S 3,则 (用等式或不等式连结S 1,S 2,S 3); 环节三:巩固练习1.如图2所示,在平面直角坐标系中,直线AB 与x 轴的夹角为60°,且点A 坐标为(-2,0),点B 在x 轴上方,设A B=a ,那么点B 的横坐标为2、已知直线y 1=2x -1和y 2=-x -1的图象如图6,根据图象填空. (1)当x______时,y 1>y 2;当x______时,y 1=y 2;当x______时,y 1<y 2. (2)方程组211y x y x =-⎧⎨=--⎩的解是_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5、教学过程:
复习目标:能综合运用一次函数、反比例函数、二次函数的知识解决问题。

复习重点:能结合函数图象分析相关问题,即“以形定数”
复习难点:善于从题目或图形中提取有用信息,培养学生综合分析问题和解决问题的能力易错点:与反比例函数图象有关的问题,要注意分象限讨论。

复习过程:
一、知识点回顾:(课前自主完成)
回顾一次函数、反比例函数、二次函数的图象及性质。

二、中考导航
三、课前演练(限时训练8分钟)(针对填空、选择题训练)
1、二次函数222
+--=x x y 的顶点坐标、对称轴分别是 ( ) A .( 1-
, 3 ) , 1=
x B. ( 1, 3 ) ,1=x C. ( 1-, 3 ) , 1-=x D. ( 1 , 3 ) , 1-=x 2、把抛物线2
3x y =向上平移2个单位, 在向右平移3个单位,则所得的抛物线是( ) A.2)3(32-+=x y B. 2)3(32++=x y C. 2)3(32--=x y D. 2)3(32
+-=x y 3、若二次函数c bx ax y ++=2
的图象如图,则 ( ) A. 0,0,0>>>c b a B. 0,0,0<<<c b a
C. 0,0,0>><c b a
D. 0,0,0><<c b a 4、已知抛物线2
(0)y ax bx c a =++<的图象如图所示, 当0y >时,x 的取值范围是( )
()22()42()22
()42
A x
B x
C x x
D x x -<<-<<<-><->或或
5、 如图,抛物线是二次函数2231y ax x a =-+-的图象, 那么a 的值是____________
四、例题解析(思维训练)(针对解答题训练)
例1:已知二次函数x x y 32
+=,当x 取何值时,函数y 的值大于0?
变式1:
已知二次函数x x y 32+=,当x 取何值时,函数y 的值小于0?
变式2:
已知二次函数227y x x =--,当x 取何值时,函数y 的值小于0?
变式3:
二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题: (1)直接写出方程2
0ax bx c ++=的两个根。

(2)直接写出不等式20ax bx c ++>的解集。

(3)若方程2
ax bx c k ++=有两个不相等的实数根,求k 的取值范围。

例2:如图,二次函数2
(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题:
(1)比较 ,,,0a b c a b c c ++-+的大小,并用“<”把他们连起来; (2)2
0ax bx c ++=的正数根在0和1之间,它的负数根在哪两个相邻的整数之间?
变式:
已知二次函数c bx ax y ++=2
的图象如图,下列结论:
①0<++c b a ;②
0>
+-c b a ; ③0<abc ; ④a b 2=;⑤,△0<
正确的个数是 ( ) A 4 个 B 3个 C 2 个 D 1个
例3:(2012•嘉兴)如图,一次函数b kx y +=1的图象与反比例函数x
m
y =2的图象相交
于点A (2,3)和点B ,与x 轴相交于点C (8,0). (1)求这两个函数的解析式; (2)当x 取何值时,12y y >
考点:反比例函数与一次函数的交点问题. 分析:(1)将A 点代入x
m
y =
2,即可求出m 的值,从而得到反比例函数解析式,把 A (2,3)、C (8,0)代入b kx y +=1,可得到k 、b 的值;
(2)求出一次函数与反比例函数的另一交点B 的坐标,则根据图象可直接得到12y y >时x 的取值范围.
(2012年第10题).如图3,正比例函数11y k x =和反比例函数
2
2k y x
=
的图象交于A(-1,2)、B (1,-2)两点。

若y 1<y 2,则x 的 取值范围是( )。

(A )、x <-1或x >-1 (B )、 x <-1或0<x <1 (C )、-1<x <0或0<x <1 (D )、-1<x <0或x >1
三、本节小结:
本节主要学习用“数形结合法——以形定数”来研究与函数有关的问题,让学生学会结合函数图象进行分析,形象直观,解法简洁明快。

四、课堂小测:
4、如图,直线b
ax
y+
=与抛物线
c
bx
ax
y+
+
=2的图象正确的是()
B C
图1
图2 图3。

相关文档
最新文档