一元二次方程根与系数的关系公开课教案
《一元二次方程根与系数的关系》教案.doc
《一元二次方程根与系数的关系》教案教学目标:1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合作交流的学习习惯。
2、探索、运用一元二次方程的根与系数关系,由一元二次方程的一个根求出另一个根及未知系数,提升学生的合作意识和团队精神。
3、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。
教学重点:一元二次方程的根与系数的关系及简单应用。
教学难点:一元二次方程的根与系数的关系的推导。
数学思考与问题解决:通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“韦达定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程。
一、自学互研 探索发现(每小题10分,共30分)(自主完成,组长检查)【师生活动】:教师引导,巡视,随时发现问题、了解学生导学案完成情况并点拨;评价、鼓励、调动学生参与的主动性和积极性。
学生独立完成导学案,观察、对比、发现问题,逐步由易到难,探索出一元二次方程的根与系数的关系;小组长检查小组成员完成情况;分小组汇报自学成果。
【设计意图】:本环节为“一元二次方程的根与系数的关系”的发现过程,即感性认识过程。
通过几个具体的方程,经过观察、比较、分析、归纳,感性地得出一元二次方程的根与系数的关系的一般规律。
培养学生发现问题、探求规律的学习习惯和注重自主加合作的学习方式。
【学案内容】:1、方程:X 2+3X –4=0(1)二次项系数是_____ ,一次项系数是______ ,常数项是______。
(2)解得方程的根X 1=______ ,X 2=______ 。
(3)则X 1+X 2=_______, 方程中 ()二次项系数一次项系数=- (4) X 1·X 2=_______, 方程中 ()二次项系数常数项=2、方程3 X 2+X-2=0(1)二次项系数是_____,一次项系数是______ ,常数项是______。
九年级数学上册《一元二次方程的根与系数的关》教案、教学设计
根据学生的个体差异,布置不同难度的课后作业,使每个学生都能在原有基础上得到提高。同时,针对学生在课堂上的表现,进行有针对性的辅导,解决他们在学习过程中遇到的问题。
7.教学评价,持续改进
通过课堂提问、作业批改、测验等方式,了解学生的学习效果,对教学方法和策略进行调整,以提高教学质量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对一元二次方程的求解方法有初步的了解。在此基础上,他们对一元二次方程的根与系数之间的关系有一定的探究欲望,但可能对根的判别式和韦达定理的理解还不够深入。因此,在教学过程中,教师应充分调动学生的积极性,引导他们通过观察、思考、总结,逐步理解并掌握一元二次方程的根与系数之间的关系。
1.培养学生对待数学问题的认真态度,严谨治学,克服困难,勇于探索。
2.培养学生用数学的眼光观察世界,认识世界,增强学生的数学应用意识。
3.培养学生的创新精神,激发学生的学习兴趣,使学生在学习过程中体验成功,树立自信心。
在教学过程中,要注意关注学生的个体差异,因材施教,使每个学生都能在原有基础上得到提高。同时,注重培养学生的数学思维和解决问题的能力,为学生的终身发展奠定基础。
四、教学内容与过程
(一)导入新课
在课堂的开始,我将通过一个贴近学生生活的实际问题来导入新课:“同学们,假设我们班要举行一次篮球比赛,已知比赛场地上有两个篮筐,分别距离地面一定高度。现在我们需要计算出篮球从地面抛起,到达篮筐高度时的速度。这个问题可以通过一元二次方程来求解,那么如何找到这个方程的根呢?”这个问题既能够引起学生的兴趣,又能让学生感受到数学与生活的紧密联系。
此外,学生在解决实际问题时可能会遇到一定的困难,需要教师耐心指导,帮助学生建立数学模型,提高学生的数学应用能力。同时,学生的个体差异较大,教师应关注每个学生的学习进度,针对性地进行教学辅导,使他们在原有基础上得到提高。
《一元二次方程根与系数的关系》教案
一元二次方程根与系数的关系教学目标:1、掌握一元二次方程根与系数的关系。
2、会利用定理求解一元二次方程两根之和与两根之积。
3、通过学生自己探索,发现根与系数关系,增强学生信心,激发学生对于数学的学习兴趣和探究欲望。
教学重点1、根与系数关系及运用 教学难点1、如何通过求根公式发现韦达定理。
2、如何运用韦达定理解决一些一元二次方程的求解问题。
过程一、复习提问(1)写出一元二次方程的一般式和求根公式。
ax 2+bx+c=0 (a ≠0) x= (b 2-4ac ≥0)(2)求一个一元二次方程,使它两根分别为①2和3;②-4和7;③3和-8;④-5和-2 二、新课讲解如果方程x 2+px+q=0有两个根是x 1,x 2 那么有x 1+ x 2=-p, x 1 •x 2=q猜想:2x 2-5x+3=0,这个方程的两根之和,两根之积是与各项系数之间有什么关系?问题2;对于一元二次方程的一般式是否也具备这个特征?设x 1 、x 2是一元二次方程ax 2+bx+c=0 (a ≠0)的两个根,则两根之和与两根之积与各项系数之间有什么样的关系? x 1+x 2= x 1·x 2=三、巩固练习a acb b 242-±-a b-ac口答下列方程的两根之和和与两根之积。
1)x 2-3x+1=0 2) x 2-2x=2 3) 2x 2-3x=0 4) 3x 2=1 判断对错,如果错了,说明理由。
1) 2x 2-11x+4=0两根之和11,两根之积4。
2) x 2+2=0两根之和0,两根之积2。
3) x 2+x+1=0两根之和-1,两根之积1。
四、能力提高例题1 已知方程x 2+kx+k+2=0的两个实数根是x 1,x 2且x 12+x 22=4求k 的值 解:(略)引申:(1、若ax 2+bx +c =0 (a ≠0 且 ∆≥0) (1)若两根互为相反数,则b =0; (2)若两根互为倒数,则a =c;(3)若一根为0,则c =0 ; (4)若一根为1,则a +b +c =0 ;(5)若一根为-1,则a -b +c =0; (6)若a 、c 异号,方程一定有两个实数根例题2 方程mx 2-2mx+m-1=0(m ≠0 ) 有一个正根,一个负根,求m 的取值范围。
一元二次方程的根与系数的关系》教案
一元二次方程的根与系数的关系》教案一元二次方程的根与系数的关系知识与技能】掌握一元二次方程根与系数的关系,能够使用关系定理求已知一元二次方程的两根之和及两根之积,并解决一些简单的问题。
过程与方法】通过探究一元二次方程根与系数的关系,培养学生的观察思考、归纳概括能力和解决问题的能力,渗透整体的数学思想和求简思想。
情感态度】通过学生自主探究,发现根与系数的关系,增强研究的信心,培养科学探究精神。
教学重点】根与系数的关系及运用。
教学难点】定理的发现及运用。
一、情境导入,初步认识我们知道生活中许多事物存在着一定的规律,有人发现并验证后就得到伟大的定理,而我们的数学学科中更蕴藏着大量的规律。
那么一元二次方程中是否也存在什么规律呢?今天我们一起去探究,感受一次当科学家的滋味。
二、思考探究,获取新知解下列方程,将得到的解填入下面的表格中,观察表中x1+x2,x1·x2的值,它们与对应的一元二次方程的各项系数之间有什么关系?从中你能发现什么规律?教学说明】通过让学生计算一些特殊的一元二次方程的两根之和与两根之积,引导学生从中发现存在的一般规律,渗透特殊到一般的思考方法。
归纳总结】一般地,对于关于x的一元二次方程ax2+bx+c=0(a≠0),用求根公式求出它的两个根x1、x2,由一元二次方程ax2+bx+c=0的求根公式可知:x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a则有以下结果:x1+x2=-b/a,x1·x2=c/a教学说明】让学生自己发现规律,找到成功感,再从理论上加以验证,让学生经历从特殊到一般的科学探究过程。
三、运用新知,深化理解1.求下列方程的两根之和与两根之积。
1)x2-6x-15=0;2)5x-1=4x2;3)x2=4;4)2x2=3x。
2.已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.1)求k的取值范围;2)若|x1+x2|=x1x2-1,求k的值。
数学《一元二次方程根与系数的关系》教案
数学《一元二次方程根与系数的关系》教案教学目标:1. 知道一元二次方程的定义和一般形式;2. 能够求解一元二次方程的根;3. 知道一元二次方程根与系数的关系,掌握这种关系的应用。
教学重点:1. 一元二次方程的根与系数的关系;2. 解一元二次方程。
教学难点:1. 如何确定一元二次方程的解;2. 如何掌握一元二次方程根与系数的关系。
教学方法:1. 经验教学法;2. 归纳法;3. 演示法;4. 课堂讨论。
教学资源:1. 教材;2. ppt。
教学过程:Step 1. 引入新知识介绍今天的教学内容,告诉学生今天会讲一元二次方程的根与系数的关系。
Step 2. 一元二次方程的定义及一般形式教师简单介绍一下一元二次方程的定义,然后让学生看下面的一元二次方程的一般形式:ax^2+bx+c=0解释一下式子中的各个符号的含义,a,b,c分别代表什么。
Step 3. 如何求解一元二次方程的根让学生看下面这个一元二次方程的实例:x^2+6x+5=0请问这个一元二次方程的根是多少?教师引导学生使用求根公式:x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} 将a,b,c的值代入公式,求出x的值。
x=\frac{-6\pm\sqrt{6^2-4\times1\times5}}{2\times1}=-1或-5解释这个结果是什么意思,根是如何求得的。
Step 4. 一元二次方程根与系数的关系让学生看下面这个一元二次方程的实例:x^2+mx+n=0请问这个一元二次方程的根是多少?教师引导学生使用求根公式:x=\frac{-m\pm\sqrt{m^2-4n}}{2}然后让学生思考,如果我们知道了这个方程的根,是否可以求出m和n呢?引导学生进行讨论,发现可以求出m和n。
Step 5. 应用案例分析提供一些应用案例,让学生掌握一元二次方程根与系数的关系的应用。
例如:1. 设一元二次方程的两个根分别是3和4,求方程的一般形式。
八年级数学下册《一元二次方程的根与系数的关系》教案、教学设计
(一)教学重难点
1.重点:一元二次方程的根与系数的关系,求根公式的推导与应用,以及在实际问题中的运用。
2.难点:
-理解判别式的概念及其在一元二次方程根的性质判断中的应用。
-对求根公式的记忆和熟练运用,尤其是公式中各个符号的含义和它们之间的关系。
-将实际问题抽象成一元二次方程模型,运用数学知识解决实际问题。
-借助几何图形或动画,形象地展示求根公式的推导过程。
-通过实际例题,指导学生如何运用求根公式解题。
(三)学生小组讨论
1.将学生分成若干小组,针对以下问题进行讨论:
-一元二次方程的根与系数之间存在哪些关系?
-如何利用判别式判断方程的根的情况?
-求根公式在解题过程中的作用是什么?
2.各小组汇报讨论成果,老师进行点评和补充。
4.教学策略与方法:
-采用差异化教学,针对不同学生的学习风格和能力水平,提供个性化的指导和帮助。
-利用信息技术,如数学软件、在线平台等,为学生提供丰富的学习资源和工具,提高学习效率。
-定期进行学习反馈,通过作业、小测验等形式,及时了解学生的学习情况,调整教学进度和方法。
5.情感态度与价值观的培养:
-在教学过程中,注重鼓励学生,增强他们的自信心,培养面对困难的勇气和解决问题的毅力。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了一元一次方程的解法及其应用,对于一元二次方程也有初步的认识。在此基础上,学生对于本章节《一元二次方程的根与系数的关系》的学习,既有知识储备上的优势,也存在一定难度。大部分学生能够理解根与系数的关系,但可能在运用求根公式解题时,对公式的记忆和运用上存在困难。此外,学生在解决实际问题时,可能难以将问题抽象成一元二次方程模型。因此,在教学过程中,教师应关注以下几点:
一元二次方程的根与系数的关系教案
一元二次方程的根与系数的关系教案一元二次方程的根与系数的关系教案一、教学目标(一)知识与技能通过观察、归纳、类比、讨论等活动,探索并掌握一元二次方程的根与系数的关系.(二)过程与方法通过对方程的求解过程进行回顾,渗透从特殊到一般的数学思想,并培养学生的观察、探究能力.(三)情感态度与价值观通过一元二次方程根与系数的关系的探究,培养学生初步形成对数学整体性的认识以及前后一致的逻辑推理能力.二、教学重难点教学重点:掌握一元二次方程的根与系数的关系.教学难点:将根的判别式由数值计算推广到字母运算,正确理解判别式的意义.三、教学过程(一)导入新课,明确目标师:同学们,上一节课我们学习了如何解一元二次方程,并且通过几道例题对解法进行了具体的阐述。
今天我们将在此基础上,探究一元二次方程的根与系数的关系。
那么什么是一元二次方程的根与系数呢?如何用数学语言描述呢?带着这些问题,我们一起学习今天的课题“一元二次方程的根与系数的关系”。
(二)自主探究,掌握新知定义一元二次方程的根与系数。
师:首先请同学们思考一下,一元二次方程的根是什么?系数又是什么?他们之间存在什么样的关系呢?现在我们一起来探讨一下。
假设ax²+bx+c=0(a≠0)是关于x的一元二次方程,那么x1,x2是它的两个实数根。
其中a、b、c分别是方程的系数。
那么,根与系数之间存在什么样的关系呢?我们可以通过以下步骤进行探究:(1)分别计算出x1+x2和x1x2的值;(2)根据计算结果,总结根与系数的关系。
通过实例探究根与系数的关系。
师:现在我们通过一个具体的实例来探究一元二次方程的根与系数的关系。
例如,方程2x²-4x-6=0的两个根分别为x1=x2=1,则x1+x2=2,x1x2=-3。
那么我们可以发现,对于任何一个一元二次方程ax²+bx+c=0(a≠0),它的根与系数之间都满足以下关系:x1+x2=-b/a,x1x2=c/a。
一元二次方程的根与系数的关系数学教案
一元二次方程的根与系数的关系数学教案标题:一元二次方程的根与系数的关系I. 引言A. 课程目标B. 学习者背景C. 主题介绍II. 一元二次方程回顾A. 一元二次方程的定义B. 一元二次方程的标准形式C. 一元二次方程的解法(因式分解法、完全平方公式法、求根公式法)III. 根与系数的关系A. 定义:如果一元二次方程ax²+bx+c=0(a≠0)有两根x₁, x₂,则有如下关系:i. x₁+x₂=-b/aii. x₁x₂=c/aB. 推导过程C. 应用实例IV. 实践活动A. 分组讨论:通过实际问题引出一元二次方程,然后利用根与系数的关系解决问题B. 小组展示:每组分享自己的解决思路和方法C. 教师点评:对各小组的表现进行评价,并进一步强调根与系数的关系的重要性V. 总结与反馈A. 本节课的主要内容回顾B. 学生自我评估学习效果C. 教师给出下一节课程的学习建议以下是一个关于根与系数的关系应用实例的部分内容示例:实例:已知一元二次方程2x²-3x-5=0有两个实数根x₁, x₂,试求下列各式的值:a) (x₁²+x₂²)b) (x₁³+x₂³)解答:根据根与系数的关系,我们有:x₁+x₂=-(-3/2)=3/2x₁x₂=-5/2对于a),我们有:x₁²+x₂²=(x₁+x₂)²-2x₁x₂=(3/2)²-2(-5/2)=9/4+5=29/4对于b),我们有:x₁³+x₂³=(x₁+x₂)(x₁²-x₁x₂+x₂²)=(3/2)[(3/2)²-2(-5/2)+x₁²+x₂²]=(3/2)[9/4+5+29/4]=67/2。
一元二次方程的根与系数的关系教案
一元二次方程的根与系数的关系教案一、教学目标1、知识与技能目标:掌握一元二次方程根与系数的关系,利用根与系数关系求出两根之和、两根之积2、过程与方法经历一元二次方程根与系数关系的探究过程,培养学生的观察思考、归纳概括能力,解决问题的能力,渗透整体的数学思想、求简思想.3、情感态度价值观通过探索一元二次方程的根与系数的关系,激发发现规律的积极性,鼓励勇于探索的精神。
二、教学重难点1、教学重点:根与系数的关系及运用.三、教学难点:探究一元二次方程根与系数的关系的过程,运用一元一次方程的根与系数的关系解决问题四、教学过程1、导入新课(1)直接导入教师活动:回顾方程的求根公式,不仅表示可以由方程的系数a,b,c决定根的值,而且反应了根与系数的关系。
提问:那么一元二次方程根与系数之间的联系还有其他表现方式吗?顺势引出课题:一元二次方程根与系数的关系(2)情景导入教师复习一元二次方程,当时,;当时,方程有两个相等的实数根,为时,方程没有实数根小明同学在做课外习题时遇到这样一个问题∶已知方程2x²-4x-1=0,不解方程,求出方程的两根之和与两根之积。
解方程一向熟练的小明纳闷了,不解方程怎么求两根之和与两根之积呢?同学们,你们愿意帮助他吗?当你学完今天的内容就可以帮助他了。
今天我们来探讨一元二次方程的根与系数的关系。
2、讲授新课环节一:二次项系数为1的一元二次方程教师活动:教师通过多媒体展示思考问题提问:从因式分解法可知,方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根为x1和x2,将方程化为x²+px+q=0的形式,你能看出x1,x2与p,q之间的关系么?组织学生根据目标问题四人一组进行讨论或同桌之间交流,教师进行巡视指导,交流结束后,找学生回答,教师进行评价学生活动:根据问题探究出结论,将(x-x1)(x-x2)=0展开成x²-(x1+x2)x+x1x2=0得出x1+x2=-p,x1x2=q教师总结:关于x的方程x²+px+q=0(p,q为常数,p2-4q≥0)的两个根x1,x2与系数p,q的关系是环节二、二次项系数为a(a≠0)的一元二次方程教师活动:借助多媒体呈现课本思考题提问:如果一元二次方程二次项的系数不为1,根与系数之间又有怎样的关系呢?形如ax²+bx+c=0(a≠0)的方程,如果b2-4ac≥0,两根为x1,x2,引导学生利用上面的结论猜想x1,x2与各项系数a、b、c之间有何关系。
一元二次方程根与系数的关系公开课课件教案教学设计
x1
x2
c a
当b2-4ac>0时根的情况 一元二次方程有两个不相等的实数根 当b2-4ac<0时根的情况 一元二次方程有两个相等的实数根 当b2-4ac=0时根的情况 一元二次方程没有实数根
巩固练习
1.设方程4x2-7x-3=0的两根为x1,x2,不解方程,求下 列各式的值.
(1) (x1-3)(x2-3); (2)(x1-x2)2
ax2+bx+c=0
a≠0
当b2-4ac>0时,有两个不相等的实数根 当b2-4ac=0时,有两个相等的实数根 当b2-4ac<0时,没有实数根
构造一元二次方程
求实数根的和 求代数式的值 判断根的符号
确定字母系数的存在性
公 式 法x b b2 4a Nhomakorabea 2a韦 达
x1
x2
b a
定
c
理 x1 x2 a
一元二次方程 x2-3x-1=0与x2-x+3=0的
所有实数根的和等于
。
检验某两数是否为已知一元二次方程的两根
试检验
是不是方程
x²-8x+4=0的两根。
判断根的符号
m为何值时,关于x的一元二次方程 (m+3)x²-mx+1=0的两个根,
(1)均为正数;
(2)一正一负;
(3)均为负数.
结合一元二次方程根的判别式判定一元二次方程实根的 符号
2.已知关于x的一元二次方程x2+5x-m=0的一个根是2,则另
一个根是
. m=
.
3.a,b,c分别是△ABC的三边, a=9,b,c分别是x2-10x+8=0的
两根,则△ABC的周长为
。
《一元二次方程根与系数的关系》教案
《一元二次方程根与系数的关系》教案一、教学目标
知识与技能:
掌握、运用一元二次方程的根与系数关系。
在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值
过程与方法:
通过创设一定的问题情境,注重由学生自己发现、探索,让学生参与“定理”的发现、不完全归纳验证以及演绎证明等整个数学思维过程,体会由特殊到一般的数学思想。
情感态度与价值观:
1、发现、了解一元二次方程的根与系数的关系,培养学生善于独立思考、合
作交流的学习习惯。
2、在不解一元二次方程的情况下,会求直接(或变形后)含有两根积的代数式的值,并从中体会整体代换的数学思想,促进学生数学思维的养成。
二、教学重难点
重点:一元二次方程的根与系数的关系及简单应用。
难点:一元二次方程的根与系数的关系的推导。
三、教学用具
普通教学工具、多媒体工具
四、教学过程。
一元二次方程的根与系数的关系教案
21.2.4一元二次方程的根与系数的关系一、内容和内容解析 1.内容一元二次方程根与系数的关系2.内容解析一元二次方程根与系数的关系是一元二次方程中一种重要的关系,利用这一关系可以解决很多问题,同时在高中数学的学习中有着更加广泛的应用。
实际上,一元n次方程的根与系数之间也存在着确定的数量关系。
一元二次方程02=++c bx ax 的求根公式x =,反映了方程的根是由系数c b a ,, 所决定的,从一方面反映了根与系数之间的联系;而本节课中的ab x x -=+21, ac x x =21是从另一方面更简洁的反映了一元二次方程的根与系数之间的关系,即通常所说的一元二次方程的根与系数之间的关系.本节课从思考一元二次方程的根与方程中的系数之间的关系开始,由特殊到一般,先让学生思考二次项系数为1的情形,然后再思考并证明一般形式时根与系数 的关系。
本节课为选学内容,所以在利用根系关系解决问题时需酌情控制难度。
基于以上分析,确定本节课的教学重点是:一元二次方程的根与系数的关系的探索及简单应用。
二、目标和目标解析1.目标(1)知识与技能:了解一元二次方程的根与系数之间的关系,能进行简单应用。
(2)过程与方法: 在一元二次方程的根与系数的关系的探究过程中,感受由特殊到一般地认知规律。
(3)情感态度与价值观:感受数学的严谨性和数学结论的确定性,提高运算能力,获得成功的体验,建立自信心。
2.目标解析达成目标(1)的标志是:学生知道一元二次方程的根与系数的关系,并利用根与系数关系求出两根之和,两根之积。
达成目标(2)的标志是:学生能够借助问题的引导,发现、归纳并证明一元二次方程的根与系数的关系。
达成目标(3)的标志是:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。
在观察、归纳、类比、计算与交流活动中,感受数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
三.教学问题诊断分析一元二次方程的根与系数的关系是在学生已经学习了一元二次方程解法基础上,对一元二次方程的根与系数之间的关系进行再探究。
初中数学一元二次方程根与系数的关系(教案)
一元二次方程的根与系数的关系(一)教学内容:一元二次方程的根与系数的关系 教学目标:知识与技能目标:掌握一元二次方程的根与系数的关系并会初步应用. 过程与方法目标:培养学生分析、观察、归纳的能力和推理论证的能力. 情感与态度目标:1.渗透由特殊到一般,再由一般到特殊的认识事物的规律;2.培养学生去发现规律的积极性及勇于探索的精神.教学重、难点:重点:根与系数的关系及其推导.难点:正确理解根与系数的关系,灵活运用根与系数的关系。
教学程序设计: 一、复习引入:1、写出一元二次方程的一般式和求根公式.请两位同学写在黑板上,其他同学在纸上默写,交换检查,互相更正。
对出错严重之处加以强调。
2、解方程①x 2-5x +6=0,②-2x 2-x+3=0.观察、思考两根和、两根积与系数的关系.提问:所有的一元二次方程的两个根都有这样的规律吗? 观察、思考两根和、两根积与系数的关系. 在教师的引导和点拨下,由学生大胆猜测,得出结论。
二、探究新知推导一元二次方程两根和与两根积和系数的关系.设x 1、x 2是方程ax 2+bx+c=0(a ≠0)的两个根.试计算(1)x 1+x 2(2)x 1*x 2 板书推导过程。
由此得出,一元二次方程的根与系数的关系:结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么:a cx x a b x x =⋅-=+2121,教师举例说明,学生理解记忆。
三、反馈训练应用提高练习1.(口答)下列方程中,两根的和与两根的积各是多少?此组练习的目的是更加熟练掌握根与系数的关系.根据题目的计算难易选择不同层次的学生回答,对答对的同学给与充分的表扬,对答错者应引导其掌握方法,并多给一次机会,让其得以消化和巩固,同时增强学生自信,提高学习积极性。
反思(1)(2)导出结论2:如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.注意:结论1具有一般形式,结论2有时给研究问题带来方便.四、一元二次方程根与系数关系的应用:1、验根.(口答)判定下列各方程后面的两个数是不是它的两个根.(1)x2-6x+7=0;(-1,7)(2)-3x2-5x+2=0;(5/3,-2/3)(3)x2+9=6x (3,3)要求:学生先思考,再举手抢答,调动学习气氛。
初中数学初二数学下册《一元二次方程的根与系数的关系》教案、教学设计
一、教学目标
(一)知识与技能
1.理解一元二次方程的根的概念,了解一元二次方程的根与系数之间的关系。
2.学会使用根的判别式来判断一元二次方程的根的情况,并能根据判别式的值来确定方程的根的性质。
3.掌握一元二次方程的求解公式,能够运用公式法求解一元二次方程,并解决实际问题。
-激发学生的学习兴趣,通过表扬和鼓励,增强学生的学习信心。
-关注学习困难的学生,给予个别辅导,帮助他们克服学习中的困难。
四、教学内容与过程
(一)导入新课
1.创设情境:通过一个关于抛物线的实际例子,如“一个篮球在抛出后,其运动轨迹形成一个抛物线,假设我们知道篮球的初始速度和抛出角度,如何确定篮球落地的时间?”来引入一元二次方程的根与系数的关系。
-讲解:在学生探究的基础上,教师进行总结讲解,强调重难点,并配合典型例题进行解释。
-练习:设计梯度明显的练习题,让学生在课堂上即时巩固所学知识,并及时给予反馈。
-应用:结合实际生活情境,设计综合应用题,让学生运用所学知识解决问题,提高学生的数学应用能力。
3.教学评价:
-过程评价:关注学生在课堂上的参与度、合作探究能力和解决问题的策略。
-利用多媒体辅助教学,通过动态演示和图形展示,帮助学生形象地理解抽象的数学概念。
-实施分层次教学,针对不同水平的学生设计不同难度的练习题,使每个学生都能在课堂上得到有效的训练。
2.教学过程:
-导入:通过一个实际问题引入本节课的内容,激发学生的好奇心和学习兴趣。
-探索:引导学生通过小组合作、讨论的方式,探究一元二次方程根与系数的关系,总结根的判别式的使用方法。
4.能够运用一元二次方程的根与系数的关系解决一些简单的应用问题,提高数学应用能力。
06一元二次方程的根与系数的关系教案
一元二次方程的根与系数的关系一、教学目标(一)知识与技能:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一 元二次方程两个根的倒数和与平方和,两根之差.(二)过程与方法:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神.(三)情感态度与价值观:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度,体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心.二、教学重点、难点重点:一元二次方程根与系数的关系.难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述.三、教学过程忆一忆1.一元二次方程的一般形式是什么?ax 2+bx +c =0(a ≠0)2.一元二次方程的求根公式是什么?a ac b b x 242-±-=(b 2-4ac ≥0)3.一元二次方程的根的情况怎样确定?⎪⎩⎪⎨⎧⇔<⇔=⇔>-=.0Δ0Δ0Δ4Δ2方程无实数根根;方程有两个相等的实数根;方程有两个不等的实数ac b 解下列方程并完成填空:(1) x 2-5x +6=0 (2) x 2+3x -4=0 (3) x 2+6x +8=0以上方程有什么共同特点,你从中发现了什么?三个方程的二次项系数都是1,它们的两根之和等于一次项系数的相反数,两根之积等于常数项.思考从因式分解法可知,方程(x -x 1)(x -x 2)=0(x 1,x 2为已知数)的两根为x 1和x 2,将方程化为x 2+px +q =0的形式,你能看出x 1,x 2与p ,q 之间的关系吗?把方程(x -x 1)(x -x 2)=0的左边展开,化成一般形式,得方程x 2-(x 1+x 2)x +x 1x 2=0 这个方程的二次项系数为1,一次项系数p =-(x 1+x 2),常数项q =x 1x 2.于是,上述方程两个根的和、积与系数分别有如下关系:(x 1+x 2)=-p ,x 1x 2=q 思考一般的一元二次方程ax 2+bx +c =0中,二次项系数a 未必是1,它的两个根的和、积与系数又有怎样的关系呢? 根据求根公式可知,a ac b b x 2421-+-=,aac b b x 2422---= 由此可得 ab a b a ac b b a ac b b x x -=-=---+-+-=+2224242221 ac a ac b b a ac b b a ac b b x x =---=---•-+-=22222214)4()(2424 因此,方程的两个根x 1,x 2和系数a ,b ,c 有如下关系:a b x x -=+21,ac x x =21. 这表明任何一个一元二次方程的根与系数的关系为:两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比.注意:(1)不是一般式的,要化成一般式;(2)在方程有实数根的条件下应用,即b 2-4ac ≥0;(3)在使用ab x x -=+21时,注意“-”不要漏写. 把方程ax 2+bx +c =0(a ≠0)的两边同除以a ,能否得出该结论?02=++a c x ab x x 2+px +q =0→(x 1+x 2)=-p ,x 1x 2=q解方程2x 2-3x +1=0,验证上述关系?解:a =2,b =-3,c =1.Δ=b 2-4ac =(-3)2-4×2×1=1>0 方程有两个不等的实数根413242±=-±-=a ac b b x 即 x 1=1,x 2=21 2321121=+=+x x ,2121121=⨯=x x . 例4 根据一元二次方程的根与系数的关系,求下列方程两个根x 1,x 2的和与积:(1) x 2-6x -15=0 (2) 3x 2+7x -9=0 (3) 5x -1=4x 2解:(1) x 1+x 2=-(-6)=6,x 1x 2=-15. (2) x 1+x 2=37-,x 1x 2=39-=-3. (3) 方程化为 4x 2-5x +1=0. x 1+x 2=45--=45,x 1x 2=41. 练习不解方程,求下列方程两根的和与积:(1) x 2-3x =15 (2) 3x 2+2=1-4x (3) 5x 2-1=4x 2+x (4) 2x 2-x +2=3x +1解:(1)方程化为 x 2-3x -15=0. x 1+x 2=-(-3)=3,x 1x 2=-15.(2) 方程化为 3x 2+4x +1=0. x 1+x 2=34-,x 1x 2=31. (3) 方程化为 x 2-x -1=0. x 1+x 2=-(-1)=1,x 1x 2=-1.(4) 方程化为 2x 2-4x +1=0. x 1+x 2=24--=2,x 1x 2=21. 课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.。
21.2.4一元二次方程的根和系数的关系(教案)
-理解韦达定理的推导过程,特别是为何两根之和等于-b/a,两根之积等于c/a。
-学会灵活运用韦达定理解决复杂的一元二次方程问题。
-在实际问题中,如何将问题抽象成一元二次方程,并进行求解。
举例解释:
-难点在于让学生理解韦达定理背后的数学原理。可以通过图形或代数方法解释,如:一元二次方程的图像是一个开口向上或向下的抛物线,其两根对应的点在x轴上,而韦达定理正是这两个点的坐标关系的体现。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程的根与系数关系的基本概念。一元二次方程的根与系数关系是通过韦达定理进行描述的,它是解决一元二次方程相关问题的重要工具。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过韦达定理快速求解一元二次方程的系数和根。
3.重点难点解析:在讲授过程中,我会特别强调韦达定理的两个重点:根之和与根之积的表达式。对于难点部分,如推导过程和理解其背后的数学原理,我会通过举例和比较来帮助大家理解。
2.学会运用韦达定理解决实题,让学生感受数学在现实生活中的应用,提高解决问题的能力。
二、核心素养目标
1.培养学生运用数学知识分析和解决问题的能力,通过一元二次方程的根与系数关系的探究,提高学生的逻辑推理和数学抽象素养。
2.强化学生的数学建模素养,使学生能够将现实问题转化为数学问题,运用所学知识求解,并解释结果的实际意义。
-通过实际例题,让学生感受数学在现实生活中的应用。
举例解释:
-对于一元二次方程ax^2+bx+c=0(a≠0),重点强调其两根x1、x2与系数a、b、c的关系:x1+x2=-b/a,x1x2=c/a。
-在解决实际问题时,如已知一个根x1,可以运用韦达定理求解另一个根x2或方程的系数,如:若x1=2,则x2=(-b-a*x1)/a,或b=-a*(x1+x2)。
一元二次方程根与系数的关系教案(完美版)
一元二次方程根与系数的关系一、教学目标(一)知识与技能掌握一元二次方程的根与系数的关系并会初步应用.(二)过程与方法培养学生分析、观察、归纳的能力和推理论证的能力.(三)情感、态度与价值观1.渗透由特殊到一般,再由一般到特殊的认识事物的规律;2.培养学生去发现规律的积极性及勇于探索的精神.二、教学重点、难点、疑点及解决方法1.教学重点:根与系数的关系及其推导.2.教学难点:正确理解根与系数的关系.3.教学疑点:一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系.三、教学过程(一)明确目标一元二次方程x2-5x+6=0的两个根是x1=2,x2=3,可以发现x1+x2=5恰是方程一次项系数-5的相反数,x1x2=6恰是方程的常数项.其它的一元二次方程的两根也有这样的规律吗?这就是本节课所研究的问题,利用一元二次方程的一般式和求根公式去推导两根和及两根积与方程系数的关系——一元二次方程根与系数的关系.(二)整体感知一元二次方程的求根公式是由系数表达的,研究一元二次方程根与系数的关系是指一元二次方程的两根的和,两根的积与系数的关系.它是以一元二次方程的求根公式为基础.学了这部分内容,在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础.本节先由发现数字系数的一元二次方程的两根和与两根积与方程系数的关系,到引导学生去推导论证一元二次方程两根和与两根积与系数的关系及其应用.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神.(三)重点、难点的学习及目标完成过程1.复习提问(1)写出一元二次方程的一般式和求根公式.(2)解方程①x2-5x+6=0,②2x2+x-3=0.观察、思考两根和、两根积与系数的关系.在教师的引导和点拨下,由学生得出结论,教师提问:所有的一元二次方程的两个根都有这样的规律吗?2.推导一元二次方程两根和与两根积和系数的关系.在线分享文档设x 1、x 2是方程ax 2+bx+c=0(a ≠0)的两个根.以上一名学生在板书,其它学生在练习本上推导.由此得出,一元二次方程的根与系数的关系.(一元二次方程两根和与两根积与系数的关系)结论1.如果ax 2+bx+c=0(a ≠0)的两个根是x 1,x 2,那么x 1我们就可把它写成x 2+px+q=0.结论2.如果方程x 2+px+q =0的两个根是x 1,x 2,那么x 1+x 2=-p ,x 1·x 2=q . 结论1具有一般形式,结论2有时给研究问题带来方便. 练习1.(口答)下列方程中,两根的和与两根的积各是多少? (1)x 2-2x +1=0;(2)x 2-9x +10=0; (3)2x 2-9x +5=0;(4)4x 2-7x +1=0;(5)2x 2-5x =0;(6)x 2-1=0此组练习的目的是更加熟练掌握根与系数的关系. 3.一元二次方程根与系数关系的应用.(1)验根.(口答)判定下列各方程后面的两个数是不是它的两个根.在线分享文档验根是一元二次方程根与系数关系的简单应用,应用时要注意三个问题:(1)要先把一元二次方程化成标准型,(2)不要漏除二次项系数,(3)还要注意-b/a的负号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根与系数的关系公开课教案
Revised on November 25, 2020
一元二次方程根与系数的关系教案
教材出处:义务教育课程标准实验教科书实践与探索第1课时根与系数的关系。
授课时间:2016年8月31 教学目标:
1、知识目标:巩固一元二次方程的解法、根的判别式等知识,掌握一元二次方程的根与系数的关系并会初步应用,会运用根与系的关系解决相关数学问题和实际问题。
2、能力目标:培养学生分析、观察、归纳的能力和推理论证的能力。
3、情感目标:渗透由特殊到一般,再由一般到特殊的认识事物的规律。
培养学生去发现规律的积极性及勇于探索的精神和全面辩证地认识事物的能力。
教学重点:根与系数的关系的推导、运用。
教学难点:正确归纳、理解、运用根与系数的关系,培养学生探索和发现意识。
教学方法:发现法,引导法,讲练结合法。
教学过程:
一、问题情境,导入新课:
观察上面的表格,你能得到什么结论
(1)关于x 的方程220(40)x px q p q q ++=-≥、为常数,p 的两根1x ,2x 与系数p ,q 之间有什么关系
(2)关于x 的方程20(0)ax bx c a ++=≠的两根1x ,2x 与系数a ,b ,c 之间又有何关系呢你能证明你的猜想吗
二、探究新知: 1、根与系数关系:
(1)关于x 的方程220(40)x px q p q q ++=-≥、为常数,p 的两根1x ,2x 与系数p ,q 的关系是:
12x x p +=-,12x x q =。
引导学生用文字语言来描述一下这两个关系式。
并思考:如果一元二次方程二次项的系数不为1,根与系数之间又有怎样的关系呢
(2)形如20(0)ax bx c a ++=≠的方程,如果240b ac -≥,两根为1x ,2x ,引导学生利用上面的结论猜想1x ,2x 与各项系数a 、b 、c 之间有何关系。
然后教师归纳,可以先将方程转化为二次项系数为1的一元二次方程,再利用上面的结论来研究,即:对于方程20(0)ax bx c a ++=≠ ∵0a ≠
∴20b c
x x a a
+
+= ∴12b x x a
+=-,12c
x x a =
对于这个结论我们又应该如何证明呢引导学生利用求根公式给出证明。
证明:∵20(0)ax bx c a ++=≠,当240b ac -≥时根为:
设12b x a -+=,22b x a
-=,则
∴1222b b
x x a a
-+=
+==- 学生思考、归纳并回答下列问题:
(1)你认为什么是根与系数的关系根与系数的关系有什么作用 (2)运用根与系数的关系要注意些什么 三、应用举例
例1、不解方程,口答下列方程的两根和与两根积:
(1)2310x x --=(2)22350x x +-=(3)21
203x x -=
(4)2+=5)220x -=(6)2210x x ++=
例2、已知方程2290x kx +-=的一个根是-3,求另一根及k 的值。
先让学生求解,再让学生代表介绍解法。
教师展示: 从上面的两种解法中引导学生谈谈有什么启示
例3、已知2220050x x αβ+-=、是方程的两个实数根,求23ααβ++的值。
分析:因为αβ、是原方程的两个实数根,故都满足原方程,将α代入原方程可得
2222005022005αααα+-=+=,所以,而223(2)()ααβαααβ++=+++,利用根与系数的关系可知2αβ+=-,从而可求23ααβ++的值。
四、巩固练习:
1、已知方程2290x kx --=的两根互为相反数,求k 的值。
2、已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,求m 的值。
3、备选题:关于x 的方程22(21)20x k x k +++-=两实数根的平方和等于11,求k 的值。
五、归纳小结:
1、这节课我们学习了什么知识有何作用
2、运用本节课所学知识解决问题时要注意些什么
3、这节课我们学到了解决数学哪些方法运用了哪些数学思想 六、课后作业:
1、若方程241x x -=的两个根为1x ,2x ,则1x ,2x 的值是 。
2、已知a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为 。
3、若方程22310x x --=的两根为1x ,2x ,则
12
11x x +的值为。
4、关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且
22
127x x +=,求212()x x -的值。
板书设计:
一元二次方程根与系数的关系
1、对于20(0)ax bx c a ++=≠的方程,若240b ac -≥,两根为1x ,2x 。
那么12b x x a
+=-,12c
x x a ⋅=
2、根与系数关系使用的前提是: (1)是一元二次方程,即0a ≠。
(2)方程为一般形式。
即形如:20ax bx c ++=。
(3)判别式大于等于零,即240b ac -≥。