北科大岩石力学课件-李长洪1.1_岩石的力学性质

合集下载

岩体力学-第一章 岩石的力学特性.PPT

岩体力学-第一章 岩石的力学特性.PPT
第一章 岩石的力学特性
本章内容:
岩石的应力-应变关系(静力学瞬时和长期荷载荷载作用下); 岩石弹性参数确定;岩石的本构关系;岩石的破坏准则; 以及介绍影响岩石力学性质因素,常见岩石试验方法。
本章重点与难点:强度与变形特征 1.1 静力学特性 1.2 流变特性 1.3 影响岩石力学性质的因素 1.4 破坏判据
c c1 0.778 0.222 h
d
1
2
2.5
3
h/d
13
点荷载强度指标(point load strength index):
P D2 c ——为h/d为2的试件单轴抗压强度
c 24 I s I s
I s ——点荷载强度指标,
普通材料试验机: 柔性试验机; 刚度较小; 不能控制荷载和变形; 只能做出岩石受力在达 到极限强度以前的变形 特征。
类型Ⅰ弹性的
类型Ⅱ 弹塑性的
类型Ⅲ 塑弹性的
类型Ⅳ 塑-弹-塑性的
类型Ⅴ 塑-弹-塑的
类型Ⅵ 弹-塑-蠕变的
4
类型Ⅰ:直线型; 包括玄武岩,石英岩,辉绿岩,白云岩和非常坚硬的石灰岩 类型Ⅱ:直线+弯曲下降; 石灰岩,粉砂岩,凝灰岩等致密但岩性较软的岩石 类型Ⅲ:下凹+直线 ; 花岗岩和砂岩等具有孔隙和微裂隙坚硬岩石 类型Ⅳ:S型直线陡且长,曲线较短 坚硬致密的变质岩,如大理岩,片麻岩等 类型Ⅴ:S型直线平且短,曲线长; 压缩性较高的岩石,片岩在垂直片理方向受压 类型Ⅵ:直线+弯曲; 盐岩
2P d2 d 2a
0.8 0.7 0.6 0.5
抛物线型压力分布 均匀压力分布 常位移条件压力分布 光弹试验
t
2P dh
P t 0.3 0.2 A

北京交通大学高等岩石力学课件1 岩石与岩体的力学特性

北京交通大学高等岩石力学课件1 岩石与岩体的力学特性

随之增大,当围压增大到一定值后,岩石变形就
成为典型的塑性流动。
(3) 主应力差在一定范围内,岩石的变形特征仍符合 弹性阶段特征。
(4) 当围压较小时,类似于单轴压缩存在剪胀现象, 随着围压的增大,剪胀现象将会完全消失。
(5) 随着围压的提高,岩石将由脆性逐渐变为延性,表
现出明显的塑性流动特征。
通常把岩石由脆性转化为延性的临界围压称为 转化压力。
H
劈裂试验 = 0.5
斜面剪切试验 = 1.0
试件加工精度:
沿试件高度,直径误差不大于0.3mm
D
上下端面的不平整度误差不大于0.05mm
端面应垂直与轴线,偏差角度不大于0.25度
取样要求:完整岩ቤተ መጻሕፍቲ ባይዱ,不含节理裂隙
1.2 岩石的单轴压缩强度与变形 1 试验设备与仪器
普通压力机、刚性压力 机、电液伺服控制压力机。
1.4 岩石抗拉强度
1)单轴拉伸试验 岩石的单轴抗拉强度:
Pmax ——试件被拉断时的最大荷载;
A ——试件的横截面面积。
2) 劈裂试验(巴西试验) 岩石的抗拉强度:
D,l ——试件的直径和厚度; P ——劈裂时的最大荷载。 1 承压板,2 钢丝,3 试件
将试件受力简化为如图所示的力学模型,试 件内部的应力状态:
4 生成条件 5 风化作用 6 密度 7 水的作用
1.5.2 试验方法上的因素 8 试件形状和尺寸
9 加载速率 10 温 度
2 岩体的力学特性
本章主要内容: 结构面的基本力学性质 岩体的力学性质
2.1 绪 论
2.1.1 岩体的变形与强度的主要影响因素
1. 组成岩体的岩石材料性质的影响; 2. 岩体中结构面力学性质的影响; 3. 岩体内结构面的发育组合情况——岩体结构类型 的影响; 4. 赋存环境的影响,特别是水和地应力的影响。

岩石力学第2章岩石的基本物理力学性质PPT课件

岩石力学第2章岩石的基本物理力学性质PPT课件
格里菲斯强度理论
格里菲斯强度理论认为岩石的强度是由其内部微裂纹或弱面的能量释放率决定的。当这些 微裂纹或弱面受到外力作用时,它们会扩展并释放能量,当能量释放率达到一定值时,岩 石就会发生破裂。
岩石的破坏准则
最大应力准则
该准则认为当岩石受到的最大应力达到其单轴抗压强度时, 岩石就会发生破裂。该准则适用于脆性破坏和延性破坏。
表示岩石抵抗弹性变形的能力, 是衡量材料刚度的指标。
泊松比
表示岩石在单向受拉或受压时, 横向变形与纵向变形之比。
抗拉强度和抗压强度
抗拉强度
岩石在单向拉伸时所能承受的最大拉 应力。
抗压强度
岩石在单向压缩时所能承受的最大压 应力。
抗剪强度和摩擦角
抗剪强度
岩石在剪切力作用下所能承受的最大剪应力。
摩擦角
表示岩石在剪切力作用下,剪切面上的摩擦力与垂直剪切力之间的角度。
流变性质
蠕变
岩石在持续应力作用下发生的缓慢变形。
松弛
岩石在持续应变作用下,应力随时间逐渐减小的现象。
04
岩石的变形特性
弹性变形
02
01
03
弹性模量
表示岩石抵抗弹性变形的能力,是衡量岩石刚度的指 标。
泊松比
描述岩石横向变形的性质,与材料的弹性模量相关。
中区域形成并扩展导致的。
02
延性破坏
与脆性破坏不同,延性破坏是指岩石在受到外力作用时,会经历较大的
塑性变形,然后才发生破裂。这种破坏形式通常是由于岩石中的微裂纹
或弱面在应力作用下逐渐扩展和连接形成的。
03
疲劳破坏
疲劳破坏是指岩石在循环或反复加载过程中,由于应力水平的波动,导
致微裂纹的形成和扩展,最终导致岩石破裂。这种破坏形式通常发生在

《岩石力学》课件(完整版)-第三章岩石动力学基础

《岩石力学》课件(完整版)-第三章岩石动力学基础

能量吸收是指岩石在冲 击或振动载荷作用下吸 收能量的能力,与岩石 的破碎和变形有关。
疲劳是指岩石在循环载 荷作用下发生损伤和破 坏的现象,对地下工程 和边坡工程的稳定性有 重要影响。
03
岩石动力学的基本理论
弹性力学基础
01
弹性力学基本概念
弹性力学是研究弹性物体在外力作用下的应力、应变和位移的学科。它
理论分析方法。这些方法可用于求解各种复杂弹性力学问题。
塑性力学基础
塑性力学基本概念
塑性力学是研究塑性物体在外力作用下的应力、应变和位移的学科。塑性物体在达到屈服 点后会发生不可逆的变形,其应力-应变关系不再满足胡克定律。
塑性力学的基本方程
包括屈服准则、流动法则、增量理论和边界条件等。这些方程描述了塑性物体内部的应力 、应变和位移之间的关系,以及物体与周围介质之间的相互作用。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
有限元法是一种将连续介质离 散化为有限个小的单元体,并 对每个单元体进行力学分析的 方法。
离散元法
离散元法是一种将连续介质离散化为一系列刚性或弹性 单元体的方法。
数据分析
对实验获取的大量数据进行处理和分 析,提取岩石的动力学特性,如阻尼 比、质量放大系数等。
结果解释
根据实验结果,解释岩石在动态载荷 作用下的破坏机制和演化过程,为工 程设计和安全评估提供依据。
实验研究的挑战与展望
挑战
岩石动力学实验技术难度大,需要克服实验条件苛刻、测量精度要求高等问题。 同时,岩石材料的非线性、各向异性等特性也给实验结果分析带来困难。

岩石力学课件第一章 岩石物理力学性质

岩石力学课件第一章 岩石物理力学性质

42
三 、岩石的水理性质
岩石与水相互作用时所表现的性质称为岩石的 水理性。包括岩石的吸水性、透水性、软化性和 抗冻性。
1.含水量W 岩石孔隙中含水的质量与岩石总质
量之比的百分数
wm w/m %
m w :孔隙中含水的质量
43
三 、岩石的水理性质
含水率
岩石孔隙中含水的质量与固相质量 之比的百分数
V s :固相的体积 w :4℃水的密度
30
一、岩石的质量指标
试验方法:
比重瓶法
步骤: 粉碎
0.25mm 105-110 ℃
过筛 烘干
50g
称重
放入比重瓶
排气 读数(计算)
31
一、岩石的质量指标
比重瓶
32
一、岩石的质量指标
Gs

ms
m1 ms
m2
0
m1—瓶和装满的试液质量 ms—岩粉质量 m2—瓶、试液、岩粉质量 γ0—试验温度下试液的密度
岩石力学
三、岩石的地质成因分类
1、深成岩

深成岩颗粒均匀,多为粗—中粒状结构,
致密坚硬,孔隙很少,力学强度高,透水性 浆 较弱,抗水性较强,所以深成岩体的工程地

质性质一般比较好。花岗岩、闪长岩、花岗 闪长岩、石英闪长岩等均属常见的深成岩体,
常被选作大型建筑场地。如举世瞩目的长江
三峡大坝的坝基就是坐落在花岗闪长岩体之
岩石含:固相、液相、气相。 三相比例不同而密度不同。
29
一、岩石的质量指标
1.比重 G s
岩石的比重是岩石固体部分的质量和4℃时同 体积纯水质量的比值(颗粒密度:岩石固相的质量与
固相体积之比。它不包括孔隙在内,因此其大小仅取决 于组成岩石的矿物密度及其含量)

《岩石物理力学性质》PPT课件

《岩石物理力学性质》PPT课件
▪ 矿物的解理就是矿物晶体受应力作用超过 弹性限度,沿结晶学方向破裂成光滑的平面 的现象.
微裂隙
▪ 白云质灰岩晶间微裂隙
▪ 粒间空隙
粒间空隙
晶格
▪ 晶格边界、晶格缺陷
▪ 微构造面对岩石工程性质的影响 ▪ 大大降低岩石的强度 ▪ 导致岩石的各向异性 ▪ 增大岩石的变形、改变弹性波速、电阻率
和热传导率等
▪ 岩石是构成岩体的根本单元。
1.2.1 岩石的根本构成
▪ 岩石的根本构成是由组成岩石的物质成分和构造 两方面决定。
▪ 组成岩石的矿物称为造岩矿物。矿物是地壳中天 然生成的自然元素或化合物,它具有一定的物理 性质、化学成分和形态。
▪ 主要造岩矿物:最主要的造岩矿物只有30多种, 如石英、长石、辉石、角闪石、云母、方解石、 高岭石、绿泥石、石膏、赤铁矿、黄铁矿等。
基性和超基性岩石主要是由易于风化的矿物组成,非常容易风化 ;
酸性岩石主要由较难风化的矿物组成,抗风化能力比起同样构造的基性 岩要高 ;
沉积岩主要由风化产物组成,大多数为原来岩石中较难风化的碎屑物或 是在风化和沉积过程中新生成的化学沉积物,稳定性一般都较高;
1.2.1.2 常见的岩石构造类型
▪ 岩石的构造是指岩石中矿物〔及岩屑〕颗 粒相互之间的关系,包括颗粒的大小、形 状、排列、构造连结特点及岩石中的微构 造面。
1.2.1.1 岩石的主要物质成分
按照生成条件划分,矿物可分为: 原生矿物——由岩浆岩冷凝生成,如石英、长石、辉石、角闪石、 云母等; 次生矿物——由原生矿物经风化作用直接生成,如由长石风化而成 的高岭石、由辉石或角闪石风化而成的绿泥石等,或 在水溶液中析出生成,如石膏、方解石。
矿物的外表形态: 结晶体——大多呈现规那么的几何形状; 非结晶体——呈现不规那么的形状。

岩体力学第二章岩石的基本物理力学性质PPT课件

岩体力学第二章岩石的基本物理力学性质PPT课件

岩石的强度和破坏
强度
岩石抵抗外力破坏的能力, 通常分为抗压、抗拉和抗 剪强度。
破裂准则
描述岩石在不同应力状态 下从弹性到破坏的过渡规 律。
破裂模式
岩石破坏时的形态和方式, 如脆性、延性、剪切等。
04
岩石的物理力学性质与岩体力学应用
岩石的物理力学性质在岩体工程设计中的应用
岩石的物理性质在岩体工程设计中具有重要影响, 如密度、孔隙率、含水率等参数,决定了岩体的承 载能力和稳定性。
岩石的物理力学性质在岩体工程治理中的应用
在岩体工程治理中,需要根据岩石的 物理力学性质制定相应的治理方案。
在治理过程中,还需要根据岩石的变形和 破坏模式,采取相应的监测和预警措施, 以确保工程治理的有效性和安全性。
如对于软弱岩体,可以采用加固、注浆等措 施提高其承载能力和稳定性;对于破碎岩体 ,可以采用锚固、支撑等措施防止其崩塌和 滑移。
弹性波速
表示岩石中弹性波传播速度, 与岩石的密度和弹性模量等有 关。
岩石的塑性和流变
01
02
03
塑性
当应力超过岩石的屈服点 时,岩石会发生塑性变形, 不再完全恢复到原始状态。
流变
在长期应力作用下,岩石 的变形不仅与当前应力状 态有关,还与应力历史有 关。
蠕变
在恒定应力作用下,岩石 变形随时间逐渐增加的现 象。
岩体力学第二章岩石的基本物 理力学性质ppt课件

CONTENCT

• 引言 • 岩石的物理性质 • 岩石的力学性质 • 岩石的物理力学性质与岩体力学应
用 • 结论
01
引言
岩石的基本物理力学性质在岩体力学中的重要性
岩石的基本物理力学性质是岩体力学研究的基础,对于理解岩体 的变形、破坏和稳定性至关重要。

岩石力学第三章岩石的力学特性及强度准则精品PPT课件

岩石力学第三章岩石的力学特性及强度准则精品PPT课件
-内摩擦系数
C-粘聚力
-内摩擦角
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
密度是试验指标,只有通过试验才能得到具体数值,而 孔隙度和孔隙比是计算指标。
(二)岩石的水理性质
1.吸水性:在常压条件下,岩石浸人水中充分吸 水,被吸收的水质量与干燥岩石质量之比为吸 水率—岩石的容水性(已介绍)
2.透水性:是指岩石容许水透过的能力,用渗透 系数表示(已介绍)
3.软化性:岩石浸水后强度降低的性能称软化性。 软化性用软化系数表示,它是指岩石饱和状态 下与天然风干状态下单轴抗压强度之比。
岩石名称 泥岩 泥灰岩 石灰岩 片 麻岩
石英片岩、角闪片岩 云母片岩、 绿泥石片岩 千枚岩 硅质板岩 泥质板岩 石英岩
软化系数 0.40~0.60 0.44~0.54 0.70~0.94 0.75~0.97 0.44~0.84
0.53~0.69 0.67~0.96 0.75~0.79 0.39~0.52 0.94~0.96
研究生课程:石油工程岩石力学 第三章:岩石的力学特性及强度准则
第一节:岩石的力学性质
岩浆岩、沉积岩和变质岩是岩石的成因 分类,它主要讨论岩石的结构、构造和 矿物成分等地质特性。
对于工程技术人员,更应关注的是直接 用于工程设计的岩石工程性质:岩石的 物理性质、水理性质和力学性质。
一、岩石的工程性质
常 见 岩 石 的 软 化 系 数
岩石名称 花岗岩 闪长岩 辉绿岩 流纹岩 安山岩

北科大岩石力学-李长洪1.2岩石的力学性质

北科大岩石力学-李长洪1.2岩石的力学性质

16.06.2020
.
8
▪ 1.6 单轴压缩条件岩石应力-应变曲线6种类型
▪ 岩石的应力—应变曲线随着岩石性质不同有各种不同的类 型。
▪ 米勒(Müller)采用28种岩石进行大量的单轴试验后,据 峰值前应力—应变曲线将岩石分成六种类型,如图所示。
16.06.2020
.
9
▪ 类型Ⅰ 应力与应变关系是一直线或者近似直线,直到试 件发生突然破坏为止。
1 岩石的力学性质-岩石的变形
上节课讲过:
岩石的强度:岩石抵抗外力作用的能力,岩石破坏 时能够承受的最大应力。 本节课接着讲:
岩石的变形:岩石在外力作用下发生形态(形状、 体积)变化。
岩石在荷载作用下,首先发生的物理力学现象是变 形。随着荷载的不断增加,或在恒定载荷作用下, 随时间的增长,岩石变形逐渐增大,最终导致岩石 破坏。
▪ 另一方面还和它的受力条件,如荷载的大小及其组 合情况、加载方式与速率及应力路径等密切相关。
▪ 例如,在常温常压下,岩石既不是理想的弹性材料, 也不简单的塑性和粘性材料,而往往表现出弹一塑 性、塑一弹性、弹一粘一塑或粘一弹性等性质。
▪ 此外,岩体赋存的环境条件,如温度、地下水与地 应力对其性状的影响也很大。
▪ 按以上标准,大部分地表岩石在低围压条 件下都是脆性或半脆性的。
▪ 当然岩石的塑性与脆性是相对的,在一定
的条件下可以相互转化,如在高温高压条
件下,脆性岩石可表现很高的塑性。
16.06.2020
.
7
▪ 5)延性 (ductile): 物体能承受较大塑性变形而不 丧失其承载力的性质,称为延性。
▪ 岩石是矿物的集合体,具有复杂的组成成分和结构, 因此其力学属性也是很复杂的。这一面受岩石成分 与结构的影响;

北科大岩石力学课件-李长洪1.1 岩石的力学性质(qiangdu).ppt

北科大岩石力学课件-李长洪1.1 岩石的力学性质(qiangdu).ppt
a.试验者和时间:意大利人冯卡门(VonKarman) 试验者和时间: 试验者和时间 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 试验岩石: 试验岩石 具有很细的颗粒并且是非常均质的。 c.试验发现: 试验发现: 试验发现 ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容 扩容,泊松比迅速增大。 扩容
5)水对单轴抗压强度的影响-软化系数 岩石的软化系数:饱和岩石抗压强度σb与 干燥岩石抗压强度σc之比
η=σb/ σc≤1
1.2岩石单轴抗拉强度
1)定义:岩石在单轴拉伸荷载作用下达到 )定义: 破坏时所能承受的最大拉应力称为岩石的 破坏时所能承受的最大拉应力 单轴抗拉强度(Tensile strength) ,。 试件在拉伸荷载作用下的破坏通常是沿其 横截面的断裂破坏,岩石的拉伸破坏试验 分直接试验和间接试验两类。
2)实验加载方式 实验加载方式: 实验加载方式
a. 真三轴加载 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加压铁 板所引起的摩擦力,对试验结果有很大影响,因而实用意 义不大。故极少有人做这样的三轴试验。 b.假三轴试验 假三轴试验:,试件为圆柱体,试件直径25~150mm, 假三轴试验 长度与直径之比为2:1或3:1。加载方式如图所示,轴 向压力的加载方式与单轴压缩试验时相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加载 时要轻微得多。 应力状态: σ1>σ2=σ3

岩石力学课件第二章 岩体力学性质.ppt

岩石力学课件第二章 岩体力学性质.ppt
结构体有块状、柱状、板状及菱形、楔形 和锥形体等,如果风化强烈或挤压破碎严重, 也可形成碎屑状、颗粒状和鳞片状等。
岩石力学
二、结构体
岩石力学
二、结构体
岩石力学
三、岩体结构单元
结构体和结构面称为岩体结构单元或岩体
结构要素。不同类型的岩体结构单元在岩体
内的组合、排列形式称为岩体结构。
岩体结构单元可划分为两类四种,四种结
构单元在岩体内组合、排列形式不同,构成
不同的岩体结构。
结构面
坚硬结构面(干净的) 软弱结构面(夹泥的夹层)
岩体结构单元
结构体
块状结构体(短轴的) 板状结构体(长厚比大于15)
岩石力学
四、结构体的作用
结构体(岩石) 对岩体力学性质的影响, 通过结构体的力学性质来表征。
在某种情况下结构体对岩体力学性质和力 学作用具有控制作用,在结构体强度很高时 主要是结构面的力学性质决定岩体的力学性 质。
构造: 组成成分的空间分布及其相互间排列关系
岩石力学
一、岩石与岩体的概念
岩浆岩:强度高、均质性好
岩石分类 沉积岩:强度不稳定,各向异性
变质岩:不稳定与变质程度和原
岩性质有关
岩体=岩块+结构面
岩体
结构面
岩块
结构面:断 面、节理、 层理、、片 理、不整合 面等。
岩石力学
一、岩石与岩ห้องสมุดไป่ตู้的概念
岩体是地质体,它经历过多次反复地质作用,经受 过变形,遭受过破坏,形成一定的岩石成分和结构, 赋存于一定的地质环境中。
Ⅱ 1
完整 结构
无显结构面切割

Ⅱ 2
断续 结构
显结构面断续切割
Ⅱ3

《岩石力学教案》课件

《岩石力学教案》课件

《岩石力学教案》PPT课件第一章:岩石力学概述1.1 岩石力学的定义岩石力学的定义和研究对象岩石力学的应用领域1.2 岩石的物理和力学性质岩石的物理性质岩石的力学性质1.3 岩石力学的研究方法实验研究理论分析和数值模拟第二章:岩石的力学行为2.1 岩石的弹性行为弹性模量和泊松比弹性应变和应力2.2 岩石的塑性行为塑性应变和应力岩石的屈服和破坏2.3 岩石的断裂行为断裂韧性和断裂强度断裂准则第三章:岩石的变形和强度3.1 岩石的变形线应变和切应变弹性变形和塑性变形3.2 岩石的强度压缩强度和拉伸强度剪切强度和抗弯强度3.3 岩石的流变行为粘弹性理论和流变模型岩石的长期强度和蠕变特性第四章:岩石力学实验4.1 岩石力学实验方法实验设备和原理实验步骤和数据采集4.2 岩石力学实验案例压缩实验剪切实验弯曲实验4.3 实验结果分析和讨论实验数据的处理和分析实验结果的可靠性和精度第五章:岩石力学在工程中的应用5.1 岩石工程中的岩石力学问题岩体支护和加固设计5.2 岩土工程中的岩石力学应用岩土工程的稳定性分析岩土工程的支护和加固技术5.3 采矿工程中的岩石力学应用矿山压力和岩层控制矿山支护和通风技术第六章:岩石力学数值模拟6.1 数值模拟方法概述有限元方法离散元方法有限差分方法6.2 岩石力学数值模型连续介质模型离散介质模型6.3 数值模拟案例分析岩体稳定性分析岩石破裂过程模拟第七章:岩石力学在地质工程中的应用7.1 地质工程中的岩石力学问题地质灾害防治7.2 地质工程中的岩石力学应用隧道工程基坑工程7.3 地球物理勘探中的岩石力学地震勘探地球物理测井第八章:岩石力学在土木工程中的应用8.1 土木工程中的岩石力学问题大坝和水库岩体稳定性道路和桥梁基础稳定性8.2 土木工程中的岩石力学应用岩体支护和加固岩体锚固技术8.3 地质灾害防治中的岩石力学滑坡防治岩体崩塌防治第九章:岩石力学在采矿工程中的应用9.1 采矿工程中的岩石力学问题矿山压力和岩层控制矿山支护和通风技术9.2 采矿工程中的岩石力学应用地下开采技术露天开采技术9.3 矿山安全与环境保护矿山安全评价矿山环境保护措施第十章:岩石力学的未来发展趋势10.1 岩石力学研究的新理论连续介质力学的发展非连续介质力学的研究10.2 岩石力学研究的新技术先进的测试技术数字图像分析技术10.3 岩石力学在可持续发展中的作用绿色岩石力学可持续岩石工程设计重点和难点解析重点环节1:岩石的物理和力学性质岩石的物理性质包括密度、孔隙度、渗透率等,这些性质对岩石的力学行为有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-8-20 岩石力学
2)四种典型的非限制性剪切强度试验:a. 单面剪切试验, b.冲击剪切试验, c.双面剪 切试验,d.扭转剪切试验,分别见图。
2012-8-20
岩石力学
3)非限制性剪切强度记为So计算公式:
(a)单面剪切试验 So=Fc/A (b)冲击剪切试验 So=Fc/2πra (c)双面剪切试验 So=Fc/2A (d)扭转剪切试验 So=16M c /πD3
2012-8-20
岩石力学
4)第一个经典三轴试验
a.试验者和时间:意大利人冯· 卡门(Von· Karman) 于1911年完成的。 b.试验岩石:白色圆柱体大理石试件,该大理石 具有很细的颗粒并且是非常均质的。 c.试验发现: ①在围压为零或较低时,大理石试件以脆性方式 破坏,沿一组倾斜的裂隙破坏。 ②随着围压的增加,试件的延性变形和强度都不 断增加,直至出现完全延性或塑性流动变形,并 伴随工作硬化,试件也变成粗腰桶形的。 ③在试验开始阶段,试件体积减小,当达到抗压 强度一半时,出现扩容,泊松比迅速增大。
2012-8-20
岩石力学
d.计算公式:
σt=σx=-2P/πdt σy=(1/r1+1/r2-1/d)2P/πt
圆盘中心处:
σt=σx=-2P/πdt σy=6P/πdt
2012-8-20
岩石力学
1.3抗剪切强度
1)定义:岩石在剪切荷载作用下达到破坏前所能 承受的最大剪应力称为岩石的抗剪切强度 (Shear strength)。 剪切强度试验分为非限制性剪切强度试验 (Unconfined shear strength test)和限制性剪 切强度试)二 类。 非限制性剪切试验在剪切面上只有剪应力存在, 没有正应力存在;限制性剪切试验在剪切面上除 了存在剪应力外,还存在正应力。
2012-8-20
岩石力学
②残余强度:当剪切面上的剪应力超过了峰值剪切强度 后,剪切破坏发生,然后在较小的剪切力作用下就可使岩 石沿剪切面滑动。能使破坏面保持滑动所需的较小剪应力 就是破坏面的残余强度。 正应力越大,残余强度越高,如图所示。所以只要有正应 力存在,岩石剪切破坏面仍具有抗剪切的能力。
2012-8-20
岩石力学
1.4 三轴抗压强度
1)定义:岩石在三向压缩荷载作用下,达 到破坏时所能承受的最大压应力称为岩石 的三轴抗压强度(Triaxial compressive strength)。 与单轴压缩试验相比,试件除受轴向压力 外,还受侧向压力。侧向压力限制试件的 横向变形,因而三轴试验是限制性抗压强 度(confined compressive strength)试验。
曲线形:
直线形:
2012-8-20 岩石力学
6) 三轴试验岩石强度参数的确定 a.直线形:τ轴的截距称为岩石的粘结力(或称内 聚力),记为C(MPa),与σ轴的夹角称为岩 石的内摩擦角,记为φ(度)。 b.曲线形: ①一种方法是将包络线和τ轴的截距定为C,将包 络线与τ轴相交点的包络线外切线与σ轴夹角定为 内摩擦角。 ②另一种方法建议根据实际应力状态在莫尔包络 线上找到相应点,在该点作包络线外切线,外切 线与σ轴夹角为内摩擦角,外切线及其延长线与τ 轴相交之截距即为C。 实践中采用第一种方法的人数多。
应力状态: σ1>σ2=σ3
2012-8-20
岩石力学
三轴压缩试验加载示意图 真三轴
σ1>σ2> σ3
假三轴
σ1>σ2=σ3
2012-8-20 岩石力学
3)假三轴试验装置图:
由于试件侧表面已被加压油缸的橡皮套包住,液压油不会 在试件表面造成摩擦力,因而侧向压力可以均匀施加到试 件中。其试验装置示意图如下。
2012-8-20 岩石力学
2012-8-20
岩石力学
4)实验方法 a.试件标准
立方体50×50×50mm或 70×70×70mm 圆柱体,但使用最广泛的是圆柱体。圆柱体直径 D一般不小于50mm。 L/D=2.5~3.0(国际岩石力 学委员会ISRM建议的 尺寸) 要求:两端不平度0.5mm;尺寸误差±0.3mm; 两端面垂直于轴线误差±0.25度。 加载速率:0.5~0.8Pa/s

σc=P/A
岩石力学
2012-8-20
3)4种破坏形式: 1.X状共轭斜面剪切破坏,是最常见的破坏形式。 2.单斜面剪切破坏,这种破坏也是剪切破坏。 3.塑性流动变形,线应变≥10%。 4.拉伸破坏,在轴向压应力作用下,在横向将产生 拉应力。这是泊松效应的结果。这种类型的破坏就 是横向拉应力超过岩石抗拉极限所引起的。
2012-8-20 岩石力学
2)实验加载方式:
a. 真三轴加载:试件为立方体,加载方式如图所示。 应力状态:σ1>σ2> σ3 这种加载方式试验装置繁杂,且六个面均可受到由加压铁 板所引起的摩擦力,对试验结果有很大影响,因而实用意 义不大。故极少有人做这样的三轴试验。 b.假三轴试验:,试件为圆柱体,试件直径25~150mm, 长度与直径之比为2:1或3:1。加载方式如图所示,轴 向压力的加载方式与单轴压缩试验时相同。 但由于有了侧向压力,其加载上时的端部效应比单轴加载 时要轻微得多。
式中:Mc—试件被剪断前达到的最大扭矩 (N•m) D—试件直径(m)
2012-8-20
岩石力学
4)四种典型的限制性剪切强度试验
a.直剪仪(剪切盒)压剪试验(单面剪) b.立方体试件单面剪试验 c.试件端部受压双面剪试验 d.角模压剪试验(变角剪切试验)
2012-8-20
岩石力学
巴西试验法(Brazilian test),俗称劈裂试验法。 a.试件:为一岩石圆盘,加载方式如图所示。实际 上荷载是沿着一条弧线加上去的,但孤高不能超 过圆盘直径的1/20。
2012-8-20
岩石力学
b.应力分布:圆盘在压应力的作用下,沿圆盘直径y—y的 应力分布和x—x方向均为压应力。而离开边缘后,沿y—y 方向仍为压应力,但应力值比边缘处显著减少。并趋于均 匀化;x—x方向变成拉应力。并在沿y—y的很长一段距离 上呈均匀分布状态。 c.破坏原因:从图可以看出,虽然拉应力的值比压应力值 低很多,但由于岩石的抗拉强度很低,所以试件还是由于 x方向的拉应力而导致试件沿直径的劈裂破坏。破坏是从 直径中心开始,然后向两端发展,反映了岩石的抗拉强度 比抗压强度要低得多的事实。
岩石强度与外力有关 a.外力性质:动载荷、静载荷 b.外力方式:拉伸、压缩、剪切 C.应力状态:单向、双向、三向
2012-8-20
岩石力学
1.1 岩石单轴抗压强度
1)定义:岩石在单轴压缩荷载作用下达到破坏 前所能承受的最大压应力称为岩石的单轴抗压强 度(Uniaxial compressive strength),或称为非限 制性抗压强度(unconfined compressive strength)。如图所示。 2)计算公式:
5)水对单轴抗压强度的影响-软化系数
岩石的软化系数:饱和岩石抗压强度σb与
干燥岩石抗压强度σc之比
η=σb/ σc≤1
2012-8-20
岩石力学
1.2岩石单轴抗拉强度
1)定义:岩石在单轴拉伸荷载作用下达到 破坏时所能承受的最大拉应力称为岩石的 单轴抗拉强度(Tensile strength) ,。 试件在拉伸荷载作用下的破坏通常是沿其 横截面的断裂破坏,岩石的拉伸破坏试验 分直接试验和间接试验两类。
2012-8-20
岩石力学
2)直接拉伸试验加载和试件示意图
2012-8-20
岩石力学
计算公式:破坏时的最大 轴向拉伸荷载(Pt)除以试件 的横截面积(A)。即:

σt=Pt/A
2012-8-20
岩石力学
2)直接拉伸试验加载和试件示意图-(续)
2012-8-20
岩石力学
3)间接拉伸试验加载和试件示意图
2012-8-20
岩石力学
b.非标准试件的对试验结果的影响及其修正
2012-8-20
岩石力学
c.压缩实验设备示意图(500t压力机)
2012-8-20
岩石力学
d. 端部效应及其消除方法
端部效应:
消除方法:
①润滑试件端部(如垫云母片;涂黄油在端部) ②加长试件
岩石力学
2012-8-20
5) Hoek直剪仪试验装置
2012-8-20
岩石力学
6)角模压剪试验及受力分析示意图
在压力P的作用下,剪切面上可分解为沿剪切面 的剪力Psinα/A和垂直剪切面的正应力Pcosα/A, 如图所示。
2012-8-20 岩石力学
7)限制性剪切强度试验结果及其分析
①试验结果:剪切面上正应力越大,试件被剪破坏前所 能承受的剪应力也越大。 原因:剪切破坏一要克服内聚力,二要克服摩擦力,正应 力越大,摩擦力也越大。 将破坏时的剪应力和正应力标注到σ-τ应力平面上就是一 个点,不同的正、剪应力组合就是不同的点。将所有点连 接起来就获得了莫尔强度包络线,如图所示。
1 岩石的力学性质
岩石的强度:岩石抵抗外力作用的能力,岩 石破坏时能够承受的最大应力。 a.单向抗压强度 b.单向抗拉强度 c.剪切强度 d.三轴抗压强度 岩石的变形:岩石在外力作用下发生形态 (形状、体积)变化。 a.单向压缩变形 b.反复加载变形 c.三轴压缩变形 d.剪切变形
2012-8-20 岩石力学
2012-8-20 岩石力学
5) 三轴试验与莫尔强度包络线
a.三轴压缩试验的最重要的成果:就是对于同一种岩石的不同试件或 不同的试验条件给出几乎恒定的强度指标值。这一强度指标值以莫尔 强度包络线(Mohr’s strength envelop)的形式给出。 b.莫尔强度包络线的绘制:须对该岩石的5~6个试件做三轴压缩试验, 每次试验的围压值不等,由小到大,得出每次试件破坏时的应力莫尔 圆,通常也将单轴压缩试验和拉伸试验破坏时的应力莫尔圆,用于绘 制应力莫尔强度包络线。如图所示。
相关文档
最新文档