对数与对数函数经典例题.

合集下载

高中数学对数与对数运算训练题(含答案)

高中数学对数与对数运算训练题(含答案)

高中数学对数与对数运算训练题(含答案)1.2-3=18化为对数式为()A.log182=-3 B.log18(-3)=2C.log218=-3 D.log2(-3)=18解析:选C.根据对数的定义可知选C.2.在b=log(a-2)(5-a)中,实数a的取值范围是() A.a>5或a B.2<a<3或3<a<5C.25 D.3<a<4解析:选B.5-a>0a-2>0且a-21,2<a<3或3<a<5. 3.有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中正确的是()A.①③ B.②④C.①② D.③④解析:选C.lg(lg10)=lg1=0;ln(lne)=ln1=0,故①、②正确;若10=lgx,则x=1010,故③错误;若e=lnx,则x=ee,故④错误.4.方程log3(2x-1)=1的解为x=________.解析:2x-1=3,x=2.答案:21.logab=1成立的条件是()A.a=b B.a=b,且b0C.a0,且a D.a0,a=b1解析:选D.a0且a1,b0,a1=b.2.若loga7b=c,则a、b、c之间满足()A.b7=ac B.b=a7cC.b=7ac D.b=c7a解析:选B.loga7b=cac=7b,b=a7c.3.如果f(ex)=x,则f(e)=()A.1 B.eeC.2e D.0解析:选A.令ex=t(t0),则x=lnt,f(t)=lnt.f(e)=lne=1.4.方程2log3x=14的解是()A.x=19 B.x=x3C.x=3 D.x=9解析:选A.2log3x=2-2,log3x=-2,x=3-2=19. 5.若log2(log3x)=log3(log4y)=log4(log2z)=0,则x +y+z的值为()A.9 B.8C.7 D.6解析:选A.∵log2(log3x)=0,log3x=1,x=3.同理y=4,z=2.x+y+z=9.6.已知logax=2,logbx=1,logcx=4(a,b,c,x>0且1),则logx(abc)=()A.47B.27C.72D.74解析:选D.x=a2=b=c4,所以(abc)4=x7,所以abc=x74.即logx(abc)=74.7.若a0,a2=49,则log23a=________.解析:由a0,a2=(23)2,可知a=23,log23a=log2323=1.答案:18.若lg(lnx)=0,则x=________.解析:lnx=1,x=e.答案:e9.方程9x-63x-7=0的解是________.解析:设3x=t(t0),则原方程可化为t2-6t-7=0,解得t=7或t=-1(舍去),t=7,即3x=7. x=log37.答案:x=log3710.将下列指数式与对数式互化:(1)log216=4;(2)log1327=-3;(3)log3x=6(x>0); (4)43=64;(5)3-2=19; (6)(14)-2=16.解:(1)24=16.(2)(13)-3=27.(3)(3)6=x.(4)log464=3.(5)log319=-2.(6)log1416=-2.11.计算:23+log23+35-log39.解:原式=232log23+353log39=233+359=24+27=51. 12.已知logab=logba(a0,且a1;b0,且b1).求证:a=b或a=1b.证明:设logab=logba=k,则b=ak,a=bk,b=(bk)k=bk2.∵b0,且b1,k2=1,即k=1.当k=-1时,a=1b;当k=1时,a=b.a=b或a=1b,命题得证.。

对数运算、对数函数经典例题讲义全

对数运算、对数函数经典例题讲义全

1.对数的概念如果a x=N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x=N ⇔log a N =____.对数恒等式:a log a N =____;log a a x=____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3l o g 2x=14的解是( )A .x =19B .x =33 C .x = 3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( )A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =12232x xy ⎡⎢⎥⎢⎥⎢⎥⎣的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a=8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a M N =____________________;(3)log a M n=__________(n ∈R ).2.对数换底公式log a b =log c b log c a(a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y )B .(log a x )n=n log a x C.log a x n=log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b=A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a 2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值等于( ) A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b=36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( ) A .0 B .1 C .2 D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( )A .g (x )=4xB .g (x )=2xC .g (x )=9xD .g (x )=3x6.若log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x,g (x )=log a x 的增减性相同,则a 的取值范围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________.9.给出函数则f (log 23)=________.三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2);(2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值范围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.122.下列各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x+1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x)的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x+log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x(-1≤x <0)的反函数是( )A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x-b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8C .16D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增. 2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或01.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <n C .p <m <n D .p <n <m 2.已知0<a <1,log a m <log a n <0,则( ) A .1<n <m B .1<m <n C .m <n <1 D .n <m <13.函数y =x -1+1lg(2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( ) A .0 B .-1 C .1 D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)7.已知log a (ab )=1p ,则log ab ab=________.8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________.10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围. 11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小;(2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.Word格式1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y=x对称.完美整理。

高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案

高中数学-对数与对数函数测试题及答案高中数学-对数与对数函数测试题满分150分,时间120分钟)班级:__________ 姓名:__________ 成绩:__________ 第Ⅰ卷(选择题,共60分)一、选择题(共12小题,60分)1.对数式loga 25a)b中,实数a的取值范围是()A。

(∞,5) B。

(2,5) C。

(2,+∞) D。

(2,3)∪(3,5)2.如果lgx lga3lgb5lgc,那么()A。

x=a+3b-c B。

x=ab/33 C。

x=a+b/3-c/3 D。

x=a-b/3+c/53.设函数y=lg(x^2-5x)的定义域为M,函数y=XXX(x-5)+lgx的定义域为N,则()A。

M∪N=R B。

M=N C。

M⊊N D。

M⊆N4.已知a = log0.70.8,b = log1.10.9,c = 1.1^9,则a,b,c的大小关系是()A。

a<c<b B。

b<a<c C。

a<b<XXX<c<a5.若函数y=log2kx^2+4kx+3)的定义域为R,则k的取值范围是()A。

(3/4,2) B。

(3/4,3/2) C。

(3/4,∞) D。

(-∞,3/4]∪[2,∞)6.设a,b,c∈R,且3a= 4b= 6c,则()。

A。

a=b+c B。

b=a+c C。

c=a+b D。

a+b+c=0 7.下列函数中,在(0,2)上为增函数的是()A。

y=log1x+1) B。

y=log2x^2-1) C。

y=log21/x D。

y=log1x^2-4x+5)8.已知函数f(x)=log3x+1),若f(a)=1,则a=()A。

2 B。

1 C。

-1 D。

-29.已知loga21,则a的取值范围是()A。

(0,2/3) B。

(2/3,1) C。

(1,2) D。

(2,∞)10.函数y=34x-3)log0.5的定义域为()A。

(0,1) B。

(完整版)对数和对数函数经典练习题

(完整版)对数和对数函数经典练习题

对数和对数函数练习题1 求下列各式中的x 的值:(1)313x =;(2)6414x =;(3)92x =; (4)1255x 2=;(5)171x 2=-.2 有下列5个等式,其中a 〉0且a ≠1,x 〉0 , y>0①y log x log )y x (log a a a +=+,②y log x log )y x (log a a a ⋅=+, ③y log x log 21y x log a a a -=,④)y x (log y log x log a a a ⋅=⋅, ⑤)y log x (log 2)y x (log a a 22a -=-,将其中正确等式的代号写在横线上_____________.3 化简下列各式:(1)51lg 5lg 32lg 4-+; (2)536lg 27lg 321240lg 9lg 211+--+;(3)3lg 70lg 73lg -+; (4)120lg 5lg 2lg 2-+.4 利用对数恒等式N a N loga =,求下列各式的值: (1)5log 4log 3log354)31()51()41(-+ (2)2log 2log 4log 7101.0317103-+(3)6lg 3log 2log100492575-+ (4)31log 27log 12log 2594532+-5 化简下列各式:(1))2log 2(log )3log 3(log 9384+⋅+; (2)6log ]18log 2log )3log 1[(46626⋅⋅+-6 已知a 5log 3=,75b =,用a 、b 的代数式表示105log 63=________.7 (1))1x (log y 3-= 的定义域为_________值域为____________。

(2)22x log y = 的定义域为__________值域为_____________.8 求下列函数的定义域:(1))2x 3(log x 25y a 2--=;(2))8x 6x (log y 2)1x 2(+-=-;(3))x (log log y 212=.9 (1)已知3log d 30log c 3b 30a 303303....====,,,,将a 、b 、c 、d 四数从小到大排列为_____________________.(2)若02log 2log m n >>时,则m 与n 的关系是( )A .m>n>1B .n 〉m>1C .1>m>n>0D .1〉n>m>010 (1)若a>0且a ≠1,且143log a<,则实数a 的取值范围是( ) A .0〈a 〈1 B .43a 0<< C .43a 043a <<>或 D .43a 0<<或a 〉1 (2)若1<x 〈d ,令)x (log log c x log b )x (log a d d 2d 2d ===,,,则( )A .a<b 〈cB .a 〈c 〈bC .c<b 〈aD .c 〈a<b11 已知函数)x 35(log y )4x 2(log y 3231-=+=,.(1)分别求这两个函数的定义域;(2)求使21y y =的x 的值;(3)求使21y y >的x 值的集合.12 已知函数)x 1x lg()x (f 2-+=(1)求函数的定义域;(2)证明f(x)是减函数.【同步达纲练习】一、选择题1.3log 9log 28的值是( ) A .32 B .1 C .23 D .2 2.函数)1x 2x (log )x (f 22+-=的定义域是( )A .RB .(-∞,1)∪(1,+∞)C .(0,1)D .[1,+∞]3.若函数x 2)x (f =,它的反函数是)x (f 1-,)(f c )4(f b )3(f a 111π===---,,,则下面关系式中正确的是( )A .a<b 〈cB .a 〈c< bC .b 〈c<aD .b 〈a<c4.4log 33的值是( ) A .16 B .4 C .3 D .25.)2x 2x (log )x (f 25+-=,使f(x)是单调增函数的x 值的区间是( )A .RB .(-∞,1)C .[1,+∞]D .(-∞,1)∪(1,+∞) 6.2log 3log 3log 2log )3log 2(log 3223223--+的值是( ) A .6log 2 B .6log 3 C .2 D .17.命题甲:a 〉1且x>y>0 命题乙:y log x log a a >那么甲是乙的( )A .充分而非必要条件B .必要而非充分条件C .充分必要条件D .既不充分也不必要条件8.如果0<a<1,那么下列不等式中正确的是( )A .2131)a 1()a 1(-<- B .1)a 1(a 1>-+C .0)a 1(log )a 1(>+-D .0)a 1(log )a 1(<-+9.5log 222的值是( ) A .5 B .25 C .125 D .62510.函数)x 2(log )x (f 3-=在定义域区间上是( )A .增函数B .减函数C .有时是增函数有时是减函数D .无法确定其单调性11.x log )x (f 2=,若142)a (f 1=--,则实数a 的值是( )A .4B .3C .2D .112.在区间(0,+∞)上是增函数的函数是( )A .1x )32()x (f +=B .)1x (log )x (f 232+=C .)x x lg()x (f 2+=D .x 110)x (f -= 13.3log 15log 15log 5log 52333--的值是( ) A .0 B .1 C .5log 3 D .3log 514.函数2x log y 5+=(x ≥1)的值域是( )A .RB .[2,+∞]C .[3,+∞]D .(-∞,2)15.如果)x 2(log )x (f a -=是增函数,则实数a 的取值范围是( )A .(1,+∞)B .(2,+∞)C .(0,1)D .(0,2)16.函数)3x 2x (log y 23--=是单调增函数的区间是( )A .(1,+∞)B .(3,+∞)C .(-∞,1)D .(-∞,-1)17.如果02log 2log b a >>,那么下面不等关系式中正确的是( )A .0〈a<b 〈1B .0〈b 〈a 〈1C .a 〉b>1D .b>a>1二、填空题1.函数f(x)的定义域是[-1,2],则函数)x (log f 的定义域是_____________.2.若412x log 3=,则x =_____________.3.若)1x (log )x (f 3-=使f(a)=2,那么a =_____________.4.函数)a ax x (log )x (f 23-+=的定义域是R(即(-∞,+∞)),则实数a 的取值范围是_____________.5.函数x )31(y =的图象与函数x log y 3-=的图象关于直线_____________对称. 6.函数)1x (log )x (f 24-=,若f(a)〉2,则实数a 的取值范围是_____________.7.已知1313)x (f x x +-=,则)21(f 1-=_____________. 8.x log )x (f 21=,当]a a [x 2,∈时,函数的最大值比最小值大3,则实数a =_____________.9.])2(log )41)[(log 2(lg 15121--+=_____________.三、解答题1.试比较22x lg )x (lg 与的大小.2.已知)1a (log )x (f x a -=(a>1)(1) 求f (x)的定义域; (2)求使)x (f )x 2(f 1-=的x 的值.3.实数x 满足方程5)312(log x x 2=-+,求x 值的集合.4.已知b 5log a 7log 1414==,,求28log 35(用a 、b 表示).。

高中数学对数与对数函数知识点及例题讲解

高中数学对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N . ②log aNM=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象O x y y = l o g x a >x<a11( )底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+基础例题题型1(对数的计算)1.求下列各式的值. (1)355log +212log 1505log -145log ; (2)log 2125×log 318×log 519.练习题 1.计算:lg 12-lg 58+lg12.5-log 89·log 278;2.log 535+212log -log 5150-log 514; 3.log 2125×log 318×log 519.4. 3991log log 4log 32+-. 5. 4lg 2lg 5lg 22+-221(6).log 24lg log lg 2log 32+-- 7.2lg 2lg3111lg 0.36lg823+++例2.已知实数x 、y 、z 满足3x =4y =6z>1. (1)求证:2x +1y=2z ; (2)试比较3x 、4y 、6z 的大小.练习题.已知log 189=a ,18b=5,用a 、b 表示log 3645.题型二:(对数函数定义域值域问题)例1.已知函数()22log 1xf x x -=-的定义域为集合A ,关于x 的不等式22a a x --<的解集为B ,若A B ⊆,求实数a 的取值范围.2.设函数22log (22)y ax x =-+定义域为A . (1)若A R =,求实数a 的取值范围;(2)若22log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围.练习题1.已知函数()()2lg 21f x ax x =++(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域2 求函数y =2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及其单调性)例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x-1.(1)求f(x)在[-1,0)上的解析式; (2)求f(12log 24)的值.2. 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性;(Ⅲ)若(2)()f m f m -<,求m 的取值范围.练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a >1时,求使f(x)>0的x 的取值范围2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12()log f x x =.(1)求函数()f x 的解析式; (2)解不等式2(1)2f x ->-;3.已知()f x 是定义在R 上的偶函数,且0x ≤时,12()log (1)f x x =-+.(Ⅰ)求(0)f ,(1)f ; (Ⅱ)求函数()f x 的表达式;(Ⅲ)若(1)1f a -<-,求a 的取值范围.题型4(函数图像问题)例题1.函数f (x )=|log 2x |的图象是1 1 1 11 1 1xxxx y yy yOO OO ABC D2.求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.3.设f(x)=|lg x|,a ,b 为实数,且0<a <b. (1)求方程f(x)=1的解; (2)若a ,b 满足f(a)=f(b)=2f 2a b +⎛⎫⎪⎝⎭, 求证:a·b=1,2a b+>1.练习题:1.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,xx g a-=11log )(,记)()(2)(x g x f x F +=(1)求函数)(x F 的定义域及其零点;(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围.2.已知函数f(x)=log 4(4x+1)+kx(k∈R)是偶函数. (1)求k 的值;(2)设g(x)=log 44•23x a a ⎡⎤⎢⎥⎣⎦-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围.3.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于题型五:函数方程1方程lg x +lg (x +3)=1的解x =___________________.2.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为4.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数). (Ⅰ)求函数()f x 的定义域;(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域; (Ⅲ)若函数()f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围.5.已知函数221log log (28).242x xy x =⋅⋅≤≤ (Ⅰ)令x t 2log =,求y 关于t 的函数关系式及t 的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的x 的值.6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N Ûlog a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNN a a log log log (a >0,a ≠1,b >0,b ≠1,N >0). 2.对数函数(1)对数函数的定义)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: : loglog a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象)对数函数的图象O xyy = l o g x a > Oxy<a <a y = l o g x a 1111( ())底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0. ④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. 基础例题1.函数f (x )=|log 2x |的图象是的图象是1 1 1-1 1111 1 xxxxy y y y O OOOA BC D解析:f (x )=îíì<<-³.10,log ,1,log 22x x x x答案:A 2.若f --1(x )为函数f (x )=lg (x +1)的反函数,则f --1(x )的值域为___________________. 解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f --1(x )的值域为(-1,+∞). 答案:(-1,+∞)∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________. 解析:由0≤log 21(3-x )≤1Þlog 211≤log 21(3-x )≤log 2121Þ21≤3-x ≤1Þ2≤x ≤25. 答案:[2,25]4.若log x7y=z ,则x 、y 、z 之间满足之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由logx 7y=z Þx z=7y Þx 7z=y ,即y =x 7z. 答案:B 5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则,则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D 6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于等于 A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A 7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21 B.-21 C.2 D.-2 解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B 注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21. 8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是能是OxyOxyOxyOxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,)111-1O xy注意:研究函数的性质时,利用图象会更直观. 【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间. 解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增. 注意:讨论复合函数的单调性要注意定义域. 【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和)和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|. (1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值. 解:定义域为x >3,原函数为y =lg 3)2(2--x x . 又∵3)2(2--x x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4, ∴当x =4时,y min =lg4. 【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f(x 1)+f (x 2)]<f (221x xx x +)成立的函数是)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A 探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,127m +m -+m )-+m+2m ≥+xm+2m )+x m ≥2m (当且仅当=xm ,即=m 时等号成立)+x m +2m )=4m ,即4m ≥≥169. 可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较. 3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用. 。

(完整word)对数函数题型及例题

(完整word)对数函数题型及例题

对数与对数函数例题解析一、对数(一)、对数的基本知识点1、定义: 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a 即有:⇔=N a b )1,0(log ≠>=a a N b a2、性质:①零与负数没有对数 ②01log =a ③1log =a a ;3、恒等式:N a N a=log ;b a b a =log )1,0(≠>a a 4、运算法则:N M MN a a a log log log )1(+=N M NMa a alog log log )2(-= M n M a n a log log )3(= 其中a>0,a ≠0,M 〉0,N>0 5、换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且 (二)、题型题型一.对数式的化简和运算 例1 计算:练习 求下列各式的值:例2 用x a log ,y a log ,z a log 表示下列各式:;(1)log zxya 32log )2(zyx a例3计算:(1)1log 2log 2a a +; (2)33log 18log 2-; (3)1lg lg 254-;(4)552log 10log 0.25+; (5)522log 253log 64+; (6)22log (log 16)。

换底公式的应用: a b b c c a log log log ==ablg lg (0>a ,且1≠a ;0>c ,且1≠c ;0>b )1.设a =2lg ,b =3lg ,试用a 、b 表示12log 5.2.设a =7log 14,514=b ,试用a 、b 表示28log 35题型二:指数与对数的互化即:N x N a a x log =⇔= (10≠>a a 且) 反函数1 概念:函数y=f(x )的定义域为A ,值域为c ,由y=f(x )得x=φ(y) 函数y=φ(x)是y=f(x )的反函数.记作y=f -1(x )2 求反函数的步骤:1 由 y=f (x )解出x=f -1(y )2 将x=f -1(y)中的x 与y 互换位置,得y=f —1(x )3 由y=f(x )得值域,确定y=f —1(x )的定义域4 互为反函数的图像关于直线y=x 对称5 同底的指数函数与对数函数互为反函数练习1 把下列指数式写成对数形式:4611(1)5625;(2)2;(3) 5.73643m-⎛⎫=== ⎪⎝⎭练习2 把下列对数形式写成指数形式:12(1)log 164;(2)lg 0.012;(3)ln10 2.303=-=-=例4、已知x ,y,z 为正数,满足z y x 643==①求使2x=py 的p 的值,②求与①中所求的p 的差最小的整数③求证:xz y 1121-= ④比较3x 、4y 、6z 的大小变式:已知a 、b 、c 均是不等于1的正数,且0111=++==zy x c b a zy x ,求abc 的值二、对数函数的图象和性质(一)知识点归纳1.对数函数的定义:一般地,函数log a y x =,(a>0且a ≠1)叫做对数函数。

对数运算和对数性质例题和练习.doc

对数运算和对数性质例题和练习.doc

(性质3)设 log/ = p ,由对数的定义可得M =冲,. M n =a np对数的运算性质1. 对数的运算性质:如果 a>0 , gl, M 〉0 , N>0, 那么(1) k )g.(MN) = log.M+log.N ;M(2) log, —= log,M-log fl 2V ; (3) log“ M n=n\og (l M(ne R)・证明:(性质 1)设 log w M = p , log] N = q ,由对数的定义可得M =冲,,! I II :.MN = a p -a (,=a p+q, \I I I .L \og a (MN)= p + q , [ 即证得 log” MN = log“ M + lo g“ N ・说明:(1)语言表达:“积的对数二对数的和”……(简易表达以帮助记忆);(2) 注意有时必须逆向运算:如/og ]()5 + /og|()2 = /og ]()10 =l ;(3) 注意定义域:log 2(-3)(-5) = log 2(-3)-^log 2(-5)是不成立的,/o 幻0(-10)2 =2/华]0(-10)是不成立的;(4) 当心记忆错误:log a ( MN ) # log a M ・log a N ,试举反例,log a ( M 土 N)。

log a M ± log a N ,试举反例 o2. 例题分析:例].用 log a x 9 log“y, log“z 表示下列各式:(1) log fl — ;(2) log”Z例2.求下列各式的值:(1) log2(47x25); (2) IgVlOO .例 3.计算:(1) Igl4-21g- + lg7-lgl8; (2)散竺3 lg9例4・已知lg2 = 0.3010, lg3 = 0.4771,求lg 1.44的值。

例5.己知log“ x = log“ c + Z?,求工.例 6. (1)已知3" =2,用a表示log34-log36; (2)已知log32 = a 93” =5,用3.换底公式换底公式:log“ N二吼小N (立〉0 , a A 1 ; m > 0, m 1) log,/证明:设log/ = x,则a,= N ,两边取以m为底的对数得:log〃" = log,M,A xlog m a = log,,, N ,从而得:工=堕酒,..・log,N = ^^・log”,。

对数与对数函数例题

对数与对数函数例题

第二章 第七节 对数与对数函数1.设函数f (x )=log a x (a >0且a ≠1),若f (x 1x 2…x 2010)=8,则f (21x )+f (22x )+…+f (x 22010x )=( )A.4B.8C.16D.2log a 8 解析:∵f (x 1x 2…x 2010)=f (x 1)+f (x 2)+…+f (2010)=8,∴f (21x )+f (22x )+…+f (22010x )=2[f (x 1)+f (x 2)+…+f (x 2010)]=2×8=16. 答案:C2.已知log 23=a ,log 37=b ,则用a ,b 表示log 1456为 . 解析:∵log 23=a ,log 37=b ,∴log 27=ab , ∴log 1456=log 256log 214=3+log 271+log 27=3.1ab ab ++ 答案:31ab ab ++3.(2009·广东高考)若函数y =f (x )是函数y =a (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )= ( ) A.log 2x B.12xC. 12log xD.x 2解析:由题意f (x )=log a x ,∴a =log a 12a =12,∴f (x )=12log x .答案:C4.若函数f (x )=log a (x +b )的图象如图所示,其中a ,b 为常数,则函数g (x )=a x +b 的大致图象是 ( )解析:由题意得0<a <1,0<b <1,则函数g (x )=a x +b 的大致图象是D. 答案:D5.已知函数f (x )=288(1),65(1),x x x x x -⎧⎨-+>⎩≤ g (x )=ln x ,则f (x )与g (x )两函数的图象的交点个数为 ( ) A.1 B.2 C.3 D.4解析:画出f (x )=288(1),65(1),x x x x x -⎧⎨-+>⎩≤g (x )=ln x 的图象如图,两函数的图象的交点个数为3,故选C. 答案:C6.(2009·天津高考)设a =13log 2,b =12log 3,c =(12)0.3,则 ( )A.a <b <cB.a <c <bC.b <c <aD.b <a <c 解析:∵13log 2<13log 1=0,∴a <0;∵121log 3>121log 2=1,∴b >1; ∵(12)0.3<1,∴0<c <1,故选B. 答案B7.已知函数f (x )=lg(x +1),用h (t )替换x ,那么不改变函数f (x )的值域的替换是( ) A.h (t )=t 2 B.h (t )=2t -2 C.h (t )=sin t D.h (t )=1t解析:原函数f (x )=lg(x +1)的值域是R ,用h (t )替换x 后,要使f (x )的值域不变,应使h (t )+1能够取遍所有正数,只有h (t )=2t -2符合题意. 答案:B8.(文)函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C. 2D. 4 解析:故y =a x 与y =log a (x +1)单调性相同且在[0,1]上的最值分别在两端点处取得. 最值之和:f (0)+f (1)=a 0+log a 1+a +log a 2=a , ∴log a 2+1=0,∴a =12.答案:B(理)函数f (x )=a x +log a x 在区间[1,2]上的最大值与最小值之和为-14,最大值与最小值之积为-38,则a 等于 ( )A.2B.12C.2或12D.23解析:a x 与log a x 具有相同的单调性,最大值与最小值在区间的端点处取得,f (1)+f (2)=-14,f (1)·f (2)=-38,解得a =12.答案:B9.已知f (x )=log a (ax 2-x )(a >0,且a ≠1)在区间[2,4]上是增函数,求实数a 的取值范围. 解:设t =ax 2-x =a (x -12a )2-14a, 若f (x )=log a t 在[2,4]上是增函数,0<<1,>1,114,4,22164>042>0,0<<1,>1,11,,>1.8411>,>,24a a a a a a a a a a a a a ⎧⎧⎪⎪⎪⎪⎨⎨⎪⎪--⎪⎪⎩⎩⎧⎧⎪⎪⎪⎪⎪⎪∴⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩需≥或≤即≤或≥ 所以实数a 的取值范围为(1,+∞).10.(2009·辽宁高考)已知函数f (x )满足:当x ≥4时,f (x )=(12)x ;当x <4时,f (x )=f (x +1).则f (2+log 23)= ( )A.124B.112C.18D.38 解析:∵2<3<4=22,∴1<log 23<2. ∴3<2+log 23<4,∴f (2+log 23)=f (3+log 23)=f (log 224)=242log 12()=242log 2-=1242log 2=124.答案:A11.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间是 .解析:定义域为(0,+∞)∪(-∞,-12),当x ∈(0,12)时,2x 2+x ∈(0,1),因为a > 0,a ≠1,设u =2x 2+x >0,y =log a u 在(0,1)上大于0恒成立,∴0<a <1,所以函数f (x )=log a (2x 2+x )(a >0,a ≠1)的单调递增区间是u =2x 2+x (x ∈(-∞,-12)∪(0,+∞))的递减区间,即(-∞,-12).答案:(-∞,-12)12.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2f (a )=2(a >0且a ≠1). (1)求f (log 2x )的最小值及相应x 的值;(2)若f (log 2x )>f (1)且log 2f (x )<f (1),求x 的取值范围. 解:(1)∵f (x )=x 2-x +b , ∴f (log 2a )=(log 2a )2-log 2a +b =b , ∴log 2a =1,∴a =2.又∵log 2f (a )=2,∴f (a )=4.∴a 2-a +b =4,∴b =2. ∴f (x )=x 2-x +2.∴f (log 2x )=(log 2x )2-log 2x +2=221(log -)2x 2+74.∴当log 2x =12,即x =2时,f (log 2x )有最小值74.(2)由题意知22222log log 2>2,log 2<2.x x x x ⎧-+⎪⎨+⎪⎩()(-)222log <0l og >1,0<2<4.0<<1>2,1<<2.0<<1.x x x x x x x x ⎧⎪∴⎨-+⎪⎩⎧∴⎨-∴⎩或或。

带标准答案对数与对数函数经典例题

带标准答案对数与对数函数经典例题

经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4]. 类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解析:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2 则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。

带答案对数与对数函数经典例题.

带答案对数与对数函数经典例题.

; (3)
.
(2)

(3) 法一:
法二:
.
总结升华: 运用换底公式时,理论上换成以大于 0 不为 1 任意数为底均可,但具体到每一个题,一般以题中
某个对数的底为标准,或都换成以 10 为底的常用对数也可 .
类型五、对数运算法则的应用
5.求值 (1) log 89· log2732
(2)
(3) (4)(log 2 125+log 425+log 85)(log 1258+log 254+log 52)
(1)
(2)lg2 · lg50+(lg5) 2 (3)lg25+lg2 · lg50+(lg2) 2
(2) 原式 =lg2(1+lg5)+(lg5) 2=lg2+lg2lg5+(lg5) 2=lg2+lg5(lg2+lg5)=lg2+lg5=1
(3) 原式 =2lg5+lg2(1+lg5)+(lg2) 2
=2lg5+lg2+lg2lg5+(lg2)
2
=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.
【变式 2】已知 3a=5b=c, 解: 由 3a=c 得:
同理可得
,求 c 的值 . .
【变式 3】设 a、 b、 c 为正数,且满足 a2+4】已知: a2+b2=7ab, a>0, b>0. 求证:
.
证明: ∵
a2+b
2
=7ab,

2
2
a +2ab+b =9ab,即

对数函数测试题与答案

对数函数测试题与答案

对数与对数函数测试题一、选择题。

1.3log 9log 28的值是 〔A .32 B .1C .23 D .22.若log 2)](log [log log )](log [log log )](log [log 55153313221z y x ===0,则x 、y 、z 的大小关系是〔A .z <x <yB .x <y <zC .y <z <xD .z <y <x3.已知x =2+1,则lo g 4<x 3-x -6>等于〔 A.23 B.45 C.0 D.214.已知lg2=a ,lg3=b ,则15lg 12lg 等于〔A .b a ba +++12B .b a ba +++12C .ba ba +-+12D .ba ba +-+125.已知2lg<x -2y >=lg x +lg y ,则y x 的值为〔A .1B .4C .1或4D .4或16 6.函数y =)12(log 21-x 的定义域为〔A .<21,+∞> B .[1,+∞)C .<21,1] D .<-∞,1>7.已知函数y =log 21<ax 2+2x +1>的值域为R,则实数a 的取值范围是 〔A .a >1B .0≤a <1C .0<a <1D .0≤a ≤1 8.已知f <e x >=x ,则f <5>等于〔A .e 5B .5eC .ln5D .log 5e9.若1()log (01),(2)1,()a f x x a a f f x -=>≠<且且则的图像是〔 A B C D y y y y10.若22log ()y x ax a =---在区间(,13)-∞-上是增函数,则a 的取值范围是〔A .[223,2]-B .)223,2⎡-⎣C .(223,2⎤-⎦D .()223,2-11.设集合B A x x B x x A ⋂>=>-=则|},0log |{},01|{22等于 〔A .}1|{>x xB .}0|{>x xC .}1|{-<x xD .}11|{>-<x x x 或12.函数),1(,11ln +∞∈-+=x x x y 的反函数为〔A .),0(,11+∞∈+-=x e e y xx B .),0(,11+∞∈-+=x e e y xx C .)0,(,11-∞∈+-=x e e y xx D .)0,(,11-∞∈-+=x e e y xx二、填空题.13.计算:log 2.56.25+lg1001+ln e +3log 122+=. 14.函数y =log 4<x -1>2<x <1=的反函数为__________. 15.已知m >1,试比较<lg m >0.9与<lg m >0.8的大小.16.函数y =<log 41x >2-log 41x 2+5在2≤x ≤4时的值域为______.三、解答题.17.已知y =log a <2-ax >在区间{0,1}上是x 的减函数,求a 的取值范围. 18.已知函数f <x >=lg[<a 2-1>x 2+<a +1>x +1],若f <x >的定义域为R求实数a 的取值范围.19.已知f <x >=x 2+<lg a +2>x +lg b ,f <-1>=-2,当x ∈R 时f <x >≥2x 恒成立,求实数a 的值,并求此时f <x >的最小值?20.设0<x <1,a >0且a ≠1,试比较|log a <1-x >|与|log a <1+x >|的大小. 21.已知函数f <x >=log a <a -a x >且a >1,〔1求函数的定义域和值域;〔2讨论f <x >在其定义域上的单调性; 〔3证明函数图象关于y =x 对称.22.在对数函数y =log 2x 的图象上<如图>,有A 、B 、C 三点,它们的横坐标依次为a 、a +1、a +2,其中a ≥1,求△ABC 面积的最大值.对数与对数函数测试题参考答案一、选择题:ADBCBCDCBAAB 二、填空题:13.213,14.y =1-2x <x ∈R >,15.<lg m >0.9≤<lg m >0.8,16.8425≤≤y 三、解答题:17.解析:先求函数定义域:由2-ax >0,得ax <2又a 是对数的底数, ∴a >0且a ≠1,∴x <a2由递减区间[0,1]应在定义域内可得a2>1,∴a <2 又2-ax 在x ∈[0,1]是减函数∴y =log a <2-ax >在区间[0,1]也是减函数,由复合函数单调性可知:a >1 ∴1<a <218、解:依题意<a 2-1>x 2+<a +1>x +1>0对一切x ∈R 恒成立.当a 2-1≠0时,其充要条件是:⎪⎩⎪⎨⎧<--+=∆>-0)1(4)1(01222a a a 解得a <-1或a >35 又a =-1,f <x >=0满足题意,a =1,不合题意.所以a 的取值范围是:<-∞,-1]∪<35,+∞> 19、解析:由f <-1>=-2,得:f <-1>=1-<lg a +2>+lg b =-2,解之lg a -lg b =1,∴ba=10,a =10b . 又由x ∈R ,f <x >≥2x 恒成立.知:x 2+<lg a +2>x +lg b ≥2x ,即x 2+x lg a +lg b ≥0,对x ∈R 恒成立,由Δ=lg 2a -4lg b ≤0,整理得<1+lg b >2-4lg b ≤0 即<lg b -1>2≤0,只有lg b =1,不等式成立. 即b =10,∴a =100.∴f <x >=x 2+4x +1=<2+x >2-3 当x =-2时,f <x >min =-3. 20.解法一:作差法|log a <1-x >|-|log a <1+x >|=|a x lg )1lg(-|-|a x lg )1lg(+|=|lg |1a <|lg<1-x >|-|lg<1+x >|>∵0<x <1,∴0<1-x <1<1+x ∴上式=-|lg |1a [<lg<1-x >+lg<1+x >]=-|lg |1a ·lg<1-x 2>[来源:] 由0<x <1,得,lg<1-x 2><0,∴-|lg |1a ·lg<1-x 2>>0, ∴|log a <1-x >|>|log a <1+x >| 解法二:作商法|)1(log ||)1(log |x x a a -+=|log <1-x ><1+x >|∵0<x <1,∴0<1-x <1+x,∴|log <1-x ><1+x >|=-log <1-x ><1+x >=log <1-x >x+11由0<x <1,∴1+x >1,0<1-x 2<1 ∴0<<1-x ><1+x ><1,∴x+11>1-x >0 ∴0<log <1-x >x+11<log <1-x ><1-x >=1 ∴|log a <1-x >|>|log a <1+x >| 解法三:平方后比较大小∵log a 2<1-x >-log a 2<1+x >=[log a <1-x >+log a <1+x >][log a <1-x >-log a <1+x >]=log a <1-x 2>·log ax x +-11=|lg |12a ·lg<1-x 2>·lg x x +-11∵0<x <1,∴0<1-x 2<1,0<xx+-11<1 ∴lg<1-x 2><0,lgxx+-11<0 ∴log a 2<1-x >>log a 2<1+x >,即|log a <1-x >|>|log a <1+x >| 解法四:分类讨论去掉绝对值当a >1时,|log a <1-x >|-|log a <1+x >|=-log a <1-x >-log a <1+x >=-log a <1-x 2> ∵0<1-x <1<1+x ,∴0<1-x 2<1 ∴log a <1-x 2><0,∴-log a <1-x 2>>0当0<a <1时,由0<x <1,则有log a <1-x >>0,log a <1+x ><0∴|log a <1-x >|-|log a <1+x >|=|log a <1-x >+log a <1+x >|=log a <1-x 2>>0 ∴当a >0且a ≠1时,总有|log a <1-x >|>|log a <1+x >| 21.解析:<1>定义域为<-∞,1>,值域为<-∞,1><2>设1>x 2>x 1 ∵a >1,∴12x x a a>,于是a -2x a <a -1x a则log a <a -a 2x a ><log a <a -1xa >即f <x 2><f <x 1>∴f <x >在定义域<-∞,1>上是减函数<3>证明:令y =log a <a -a x ><x <1>,则a -a x =a y ,x =log a <a -a y > ∴f -1<x >=log a <a -a x ><x <1>故f <x >的反函数是其自身,得函数f <x >=log a <a -a x ><x <1=图象关于y =x 对称. 22.解析:根据已知条件,A 、B 、C 三点坐标分别为<a ,log 2a >,<a +1,log 2<a +1>>,<a +2,log 2<a +2>>,则△ABC 的面积S=)]2(log [log 2)]2(log )1([log 2)]1(log [log 222222++-++++++a a a a a a因为1≥a ,所以34log 21)311(log 2122max =+=S。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

对数函数典型例题.

对数函数典型例题.

对数运算与对数函数复习例1.求下列函数的定义域:(1)2log x y a =;(2))4(log x y a -=;(3))9(log 2x y a -=.例2.比较下列各组数中两个值的大小:(1)2log 3.4,2log 8.5;(2)0.3log 1.8,0.3log 2.7;(3)log 5.1a ,log 5.9a . (4)0.91.1, 1.1log 0.9,0.7log 0.8;例3.求下列函数的值域:(1)2log (3)y x =+;(2)22log (3)y x =-;(3)2log (47)a y x x =-+(0a >且1a ¹).例4.(1)已知:36log ,518,9log 3018求==ba 值. 例5.判断函数22()log (1)f x x x =+-的奇偶性。

的奇偶性。

对数运算与对数函数复习练习一、选择题1.3log 9log 28的值是的值是( ) ( ) A .32 B B..1 C 1 C..23 D D..22.函数)2(x f y =的定义域为[1,2],则函数)(log 2x f y =的定义域为(的定义域为( ) A .[0,1] B .[1,2] C .[2,4] D .[4,16] 3.函数2x log y 5+=(x (x≥≥1)1)的值域是的值域是的值域是( ) ( )A .RB R B..[2[2,+∞,+∞,+∞]C ] C ] C..[3[3,+∞,+∞,+∞]D ] D ] D..(-∞,-∞,2) 2)4.如果0<a<10<a<1,那么下列不等式中正确的是,那么下列不等式中正确的是,那么下列不等式中正确的是( ) ( )A .2131)a 1()a 1(-<-B B..1)a 1(a1>-+C C..0)a 1(log )a 1(>+-D .0)a 1(log )a 1(<-+5.如果02log 2log b a >>,那么下面不等关系式中正确的是,那么下面不等关系式中正确的是( ) ( )A .0<a<b<1B 0<a<b<1 B..0<b<a<1C 0<b<a<1 C..a>b>1D a>b>1 D..b>a>1 6 若a>0且a ≠1,且143log a <,则实数a 的取值范围是的取值范围是( ) ( )A .0<a<1B 0<a<1 B..43a 0<<C C..43a 043a <<>或D D..43a 0<<或a>1 7.设0,0,a b <<且,722ab b a =+那么1lg |()|3a b +等于(等于( )A .1(lg lg )2a b +B .1lg()2abC .1(lg ||lg ||)3a b +D .1lg()3ab 8.如果1x >,12log a x =,那么(,那么( ) A .22a a a >> B .22a a a >> C .22a a a >> D .22a a a >>二、填空题(共8题)8.计算=+×+3log 22450lg 2lg 5lg . 1010.若.若412x log 3=,则x =________ 11 .函数f(x)的定义域是[-1,2],则函数)x (log f 2的定义域是_____________1212..函数x )31(y =的图象与函数x log y 3-=的图象关于直线的图象关于直线_________________________________对称.对称.1313..x log )x (f 21=,当]a a [x 2,Î时,函数的最大值比最小值大3,则实数a=______________..1414.函数.函数)a ax x (log )x (f 23-+=的定义域是R(R(即即(-∞,+∞-∞,+∞)))))),则实数,则实数a 的取值范围是的取值范围是_____________ _____________ 15.根据函数单调性的定义,证明函数2()log 1x f x x =-在(0,1)上是增函数.上是增函数.16. 16. 已知已知f (x )=log a (a -ax ) (a >1).(1) (1) 求求f (x )的定义域和值域;的定义域和值域; (2) (2) (2) 判证并证明判证并证明f (x )的单调性的单调性. .17. 17. 已知已知f (x )=log a x (a >0, a ≠1)1),当,当0<x 1<x 2时,试比较时,试比较 的大小,并解释其几何意义的大小,并解释其几何意义)]()([21)2(2121x f x f x x f ++与。

对数与对数的运算精典练习题

对数与对数的运算精典练习题

2.2.1 对数与对数的运算练习一一、选择题 1、 25)(log 5a -(a ≠0)化简得结果是( ) A 、-aB 、a 2C 、|a |D 、a2、 log 7[log 3(log 2x )]=0,则21-x 等于( )A 、31 B 、321 C 、221 D 、3313、 nn ++1log(n n -+1)等于( ) A 、1B 、-1C 、2D 、-24、 已知32a=,那么33log 82log 6-用表示是( )A 、2a -B 、52a -C 、23(1)a a -+D 、 23a a -5、 2log (2)log log a a a M N M N -=+,则NM的值为( ) A 、41B 、4C 、1D 、4或16、 若log m 9<log n 9<0,那么m,n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<n<m<1D 、0<m<n<17、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( ) A 、a<b<c B 、 a<c<b C 、c<b<a D 、c<a<b二、填空题8、 若log a x =log b y =-21log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________9 、若lg2=a ,lg3=b ,则log 512=________10、 3a=2,则log 38-2log 36=__________11、 若2log 2,log 3,m na a m n a+===___________________12、 lg25+lg2lg50+(lg2)2=三、解答题13、 222522122(lg )lg lg (lg )lg +⋅+-+14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2)(lg )lg(ba ab ⋅的值。

对数函数知识点及典型例题

对数函数知识点及典型例题
解:先证明 (x)是单调函数.设-1<x <x <1,则
( x )- ( x ) = lg + -lg - = lg + ,
∵-1<x <x <1,∴ x -x >0, 1-x >1-x >0,1 + x >1 + x >0,
∴ >1, >0,即 ( x )- ( x )>0,
∴函数 (x)是单调递减函数.
(3) lg - lg +lg .
解:(1)方法一 利用对数定义求值
设 =x, 则(2+ )x=2- = =(2+ )-1,∴x=-1.
方法二 利用对数的运算性质求解
= = (2+ )-1=-1.
(2)原式=lg (2lg +lg5)+ =lg (lg2+lg5)+|lg -1|
=lg +(1-lg )=1.
⑴当-4<a<0时, <0,恒有g(x)>0,函数y的定义域为R,又y与g(x)单调性一致.所以在(-∞, ]上,y单调递减;在[ ,+∞)上,y单调递增;
⑵当a=-4时, = 0,y = lg(x + 1) ,其定义域为{x | x≠-1,x∈R},
∴在(-∞,-1)上y单调递减;在(-1,+∞)上,y单调递增;
⑶当a= 0时, = 0,y = lg(x-1) ,其定义域为{x | x≠1,x∈R},
∴在(-∞,1)上y单调递减;在(1,+∞)上,y单调递增;
⑷当a<-4或a>0时, >0,函数的定义域为:
(-∞, )∪( ,+∞).
∴在(-∞, )上,y单调递减;在( ,+∞)上,y单调递增.
例7 已知函数 (x) = lg + ,x∈(-1,1 ),问y = (x) 的图象上是否存在两个不同的点A、B,使AB⊥y轴,若存在,求A、B的坐标,若不存在,说明理由.

高中数学对数与对数函数知识点及经典例题讲解

高中数学对数与对数函数知识点及经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数函数
1.对数函数的定义:
函数 叫做对数函数,其中x 是自变量
(1)研究对数函数的图象与性质:
由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。

(2)复习)10(≠>=a a a y x
且的图象和性质
2.对数函数的图像:
3.对数函数的性质:
a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x
=x
y a =y x =
1.对数:
(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数.
① 以10为底的对数称为常用对数,N 10log 记作___________.
② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:
① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:
① log a (MN)=___________________________; ② log a N
M =____________________________;
③ log a M n = (n ∈R).
④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)
⑤ log m
n
a a n
b b m = .
2.对数函数:
① 定义:函数 称为对数函数,
1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数;
4) 函数x y a log =与函数 ______
)1,0(≠>=a a a y x 且互为反函数. ② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当
10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);
4) 函数y =log a x 与 的图象关于x 轴对称. ③ 函数值的变化特征:
经典例题透析
类型1:(求对数函数定义域与值域)1.N > 0 2. a > 0且 不= 1
例1、求下列函数的定义域:
(1) 2
a y log x = (2)
a y log (4x)
=- (3)2
(3x)y log x -=
变式练习1.
2. 求下列函数的定义域: (1) (2) (3) (4)
类型二、指数式与对数式互化及其应用
例1.: (1) (2)

举一反三:
【变式1】求下列各式中x 的值: (3)lg100=x (4)
类型二、利用对数恒等式化简求值(恒等式

例2 .求值:
【变式1】求
的值(a ,b ,c ∈R +,且不等于1,N>0)
5y log (1x)
=-21y log x
=
7
1y log 13x
=-3y log x
=
类型三、积、商、幂的对数
① log a(MN)=___________________________;
M=____________________________;
② log a
N
③ log a M n=(n∈R).
例3.已知lg2=a,lg3=b,用a、b表示下列各式.
(1)lg9
(2)lg64
(3)lg6
(4)lg12
(5)lg5
(6) lg15
举一反三:
【变式1】求值
(1)(2)lg2·lg50+(lg5)2(3)lg25+lg2·lg50+(lg2)2
【变式2】已知3a=5b=c,,求c的值.
【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.
【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.
类型四、换底公式的运用
例4.(1)已知log x y=a,用a表示;
(2)已知log a x=m,log b x=n,log c x=p,求log abc x.
举一反三:
【变式1】求值:(1);(2);(3).
类型五、对数运算法则的应用
例5.求值
(1) log89·log2732
(2)
(3)
(4)(log2125+log425+log85)(log1258+log254+log52)
举一反三:
【变式1】求值:
【变式2】已知:log23=a,log37=b,求:log4256=?
类型6、函数图象问题
例7.作出下列函数的图象:
(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.
类型7、对数函数的单调性及其应用
利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;
④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.
例8. 比较下列各组数中的两个值大小:
(1)log23.4,log28.5
(2)log0.31.8,log0.32.7
(3)log a5.1,log a5.9(a>0且a≠1)
举一反三:
【变式1】(2011 天津理7)已知则()
A.B.C.D.
解析:另,,,在同一坐标系下作出三个函数图像,
由图像可得
又∵为单调递增函数,∴故选C.
9. 证明函数上是增函数.
思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.
证明:设,且x1<x2 则
又∵y=log2x在上是增函数
即f(x1)<f(x2)
∴函数f(x)=log2(x2+1)在上是增函数.
举一反三:
【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.
解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,
∴ f(t1)-f(t2)=,
∵ 0<x1<x2,a>1,∴ f(t1)<f(t2),∴ f(t)在R上为增函数,
当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.
10.求函数y=(-x2+2x+3)的值域和单调区间.
解:设t=-x2+2x+3,则t=-(x-1)2+4.∵ y=t为减函数,且0<t≤4,
∴ y≥=-2,即函数的值域为[-2,+∞.
再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.
∴ t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.
∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.
类型7、函数的奇偶性
11. 判断下列函数的奇偶性. (1)(2).
(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.
解:由
所以函数的定义域为:(-1,1)关于原点对称

所以函数是奇函数;
总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的
运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.
(2)解:由
所以函数的定义域为R关于原点对称

即f(-x)=-f(x);所以函数.
总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.
类型8、对数函数性质的综合应用
12.已知函数f(x)=lg(ax2+2x+1).
(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.
思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.
f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,
使u能取遍一切正数的条件是.
解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;
当a≠0时,有a>1.∴ a的取值范围为a>1.
(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或
0≤a≤1,
∴ a的取值范围为0≤a≤1.
.。

相关文档
最新文档